
1  

  

Machine Learning for Optimised and Clean Li-ion Battery Manufacturing: 1 

Revealing the Dependency between Electrode and Cell Characteristics   2 

  3 

  4 

Mona Faraji Niri, Kailong Liu, Geanina Apachitei, Luis Roman Ramirez, Michael Lain, Dhammika Widanage, James Marco   5 

Warwick Manufacturing Group, University of Warwick, CV4 7AL Coventry, United Kingdom   6 

The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, UK (mona.faraji-niri@warwick.ac.uk)  7 

  8 

ABSTRACT  9 

The large number of parameters involved in each step of Li-ion electrode manufacturing process as well as the complex 10 

electrochemical interactions in those affect the properties of the final product. Optimization of the manufacturing process, 11 

although very challenging, is critical for reducing the production time, cost, and carbon footprint. Data-driven models offer 12 

a solution for manufacturing optimization problems and underpin future aspirations for manufacturing volumes. This study 13 

combines machine-learning approaches with the experimental data to build data-driven models for predicting final battery 14 

performance. The models capture the interdependencies between the key parameters of electrode manufacturing, its 15 

structural features, and the electrical performance characteristics of the associated Li-ion cells. The methodology here is 16 

based on a set of designed experiments conducted in a controlled environment, altering electrode coating control 17 

parameters of comma bar gap, line speed and coating ratio, obtaining the electrode structural properties of active material 18 

mass loading, thickness, and porosity, extracting the manufactured half-cell characteristics at various cycling conditions, 19 

and finally building models for interconnectivity studies and predictions. Investigating and quantifying performance 20 

predictability through a systems’ view of the manufacturing process is the main novelty of this paper. Comparisons 21 

between different machine-learning models, analysis of models’ performance with a limited number of inputs, analysis of 22 

robustness to measurement noise and data-size are other contributions of this study. The results suggest that, given 23 

manufacturing parameters, the coated electrode properties and cell characteristics can be predicted with about 5% and 24 

3% errors respectively. The presented concepts are believed to link the manufacturing at lab-scale to the pilot-line scale 25 

and support smart, optimized, and clean production of electrodes for high-quality Li-ion batteries.   26 

KEYWORDS: Li-ion Battery Electrodes, Cathode Manufacturing, Machine Learning, Modelling, Prediction, Optimised 27 

Production   28 

1.  INTRODUCTION  29 

Lithium-ion battery (LiB) is a popular energy source and plays an important role in applications such as electrified 30 

transportation systems and smart grids due to its superiorities in terms of low self-discharge and high energy density. 31 

However, A major limitation for LiB’s wider applications is its manufacturing technology. According to the literature the 32 

production cost of batteries is expected to be reduced from about 400 €/kWh in 2013 to circa 75 €/kWh in 2022 (Turetskyy, 33 

et al, 2021). Although the manufacturing cost is declining, it is still highly affected by the waste, scrape rates and process 34 

deflections. The amount of material and component waste during manufacturing can be as high as 15% of the total costs 35 

(Hanisch, et al, 2015). Beside material waste resulted from the failed batteries at the end of manufacturing processes, the 36 

large number of characterisation tests has also a significant impact on the cost as well as carbon emissions in the concepts 37 

of clean production (Kwade, et al, 2018). Currently, the LiB manufacturing is responsible for about 50% of Co2 emissions 38 

during production of electrified transportation systems (Turetskyy, et al, 2021). The processes within battery manufacturing 39 

chain significantly affect the properties of intermediate products, which would in turn determine the quality of produced 40 

batteries (Kwade, et al., 2018; Väyrynen & Salminen, 2012). Consequently, it is vital to well monitor and analyse battery 41 

manufacturing chain in the pursuit of producing high-quality and economically affordable batteries, avoiding, or limiting 42 

production failures and detecting process deflections at early stages of manufacturing chain (Zwicker, et al, 2020). 43 
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Revealing the correlations between the key manufacturing parameters, the intermediate products’ characteristics and final 44 

battery quality can help achieve an optimised production process by reducing production cost and lowering its 45 

environmental impacts.  46 

Battery manufacturing can be generally divided into four processes, including the electrode manufacturing, battery 47 

assembly, battery finishing and characterisation. The electrode manufacturing consists of many individual processes such 48 

as the mixing, coating, drying, calendaring, and cutting. Each process contains chemical, mechanical, and electrical 49 

operations that generate numerous and strongly coupled parameters in the order of tens or hundreds in total. 50 

Furthermore, the battery itself is a complex system with interactions between its components such as anode, cathode, 51 

electrolyte, and current collectors which eventually determine its energy capacity, internal resistance, and lifetime. The 52 

current mainstream strategy to analyse the manufacturing parameters is still based on trial and error, which is significantly 53 

time and resource consuming (Thomitzek, et al, 2018). Therefore, a reliable, systematic, and data-oriented strategy to 54 

explore and predict the impact variables of manufactured batteries is urgently required but challenging.   55 

Due to the dramatic increase of cloud platforms as well as advanced machine-learning technologies, data-driven 56 

strategies are becoming one of the most popular research topics in many industrial domains (Li, et al, 2019; Lipu, et al, 57 

2021).   58 

For battery application, a good deal of studies has focused on developing reasonable machine-learning solutions and 59 

data-driven methods to promote battery management activities and improving its performance. In (Niri, et al, 2020a) the 60 

battery dynamic states related to its remaining energy are estimated and predicted via Gaussian mixture models for 61 

applications with unknown loading conditions. Cells’ state of energy index is predicted via multi-layer Markov models in 62 

(Faraji, et al, 2019) and verified experimentally for electric vehicle’s state of power estimation via wavelet-Markov in (Niri, 63 

et al, 2020b). Remaining useful life of batteries is forecasted under variable discharge profiles in (Hong, et al, 2021) by 64 

deep-learning methods, while a feature-based approach to build an early-prediction model with a regularized linear 65 

structure is proposed by (Severson, et al, 2019). (Liu, et al, 2020a; Tian, et al, 2021) combine physics-based single particle 66 

models and artificial intelligence to forecast and optimise battery service and its calendar life. (Lipu, et al, 2020) has 67 

reviewed data-driven methods including neural networks, support vector machines and probabilistics algorithms for the 68 

battery state of charge estimation. Battery charging controller design and fast charging process optimisation via a Bayesian 69 

approach has been addressed by (Attia, et al, 2020), where the experimental data are combined with machine learning 70 

techniques to predict the battery life given the data at its early stages of the use. Smart energy management and energy 71 

control strategies have been developed in (Wu, et al, 2020; Liu, et al, 2020b), battery thermal modelling and management 72 

via Gaussian-Markov models are proposed in (Faraji, et al, 2020a) and a recent review of battery thermal management 73 

methods taking the advantage of data-driven approaches in performed by (Lin, et al, 2021). Battery reuse and recycle 74 

considerations, addressed by a variety of machine learning models are also reviewed in (Garg, et al, 2020; Liu, et al, 2019).   75 

Evidently, most of these studies have focused primarily on improving produced battery performance but relatively little 76 

has been performed on techniques for manufacturing their internal components and providing solutions to benefit the 77 

battery manufacturing and production process (Dahodwalla & Herat, 2000; Liu, et al, 2021a) as well as the battery 78 

manufacturning flow (He, et al, 2020). The large amount of data generated during production processes when combined 79 

with machine-learning techniques would provide an opportunity to establish data-driven models to analyse the battery 80 

manufacturing parameters and the final cells’ characteristics. According to the recent updates, machine learning is 81 

expected to support shortening the development cycle of advanced energy storage systems from decades to only a few 82 

years (Mistry, et al, 2021). Following this opportunity, through utilizing a concept of quality gate (Schnell & Reinhart, 2016) 83 

has proposed a strategy for diagnosing the failure cases and improving the control performance of battery production. On 84 

the basis of an effective framework called cross industry standard process, neural network models are designed in (Schnell, 85 

et al, 2019) for the forecast and analysis of the dependencies between the parameters of battery manufacturing processes. 86 

The decision tree-based strategies are derived in (Turetskyy, et al, 2020) to quantify the importance weight of 87 

manufacturing parameters and forecast related battery maximal capacities. (Cunha, et al, 2020) has utilized 88 

machinelearning methods for the electrode property classification and then analysed electrode manufacturing parameters 89 

through 2D graphs from experimental data. In (Liu, et al, 2021a; Liu, et al, 2021b) the importance as well as correlations 90 

among four parameters from mixing and coating stages are quantified through an interpretable machine-learning 91 

framework.  92 
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The research also highlights the effect of the key parameters on the mass loading and porosity of cell electrodes.   93 

Recent reviews conclude that although a number of existing works have adopted the data-driven strategies to benefit 94 

battery manufacturing, several limitations are not yet addressed. Most of the mentioned studies are aimed at covering the 95 

issues related to intermediate products, especially electrodes only. They offer data-driven concepts, standardize the 96 

procedures to capture relevant data from production lines, technical building services and cell diagnostics (Turetskyy, et al, 97 

2020), determine the important process steps, identify crucial features (Filz, et al., 2020), and distinguish variables that 98 

show the effect of manufacturing control parameters on the quality of the intermediate product (Thiede, et al, 2019; Faraji, 99 

et al, 2020b). In particular, (Cunha, et al , 2020) has focused on the effect of mixing and coating control parameters on the 100 

characteristics such as mass loading and porosity of the coated electrodes. (Liu, et al, 2021b; Liu, et al, 2021a) have utilised 101 

the manufacturing parameters and data recorded by (Cunha, et al , 2020) during electrode manufacturing to build 102 

interpretable artificial intelligence models, and (Duquesnoy, et al, 2021) has predicted the homogeneity of electrode 103 

structure given the parameters of active material, liquid to solid ratio and coating gap. In (Duquesnoy, et al, 2020) a 104 

combination of experimental results, in silico generation of electrode mesostructures and machine learning algorithm of 105 

Sure independent Screening and Sparsifying Operator are used to link the uncalendared and calendared electrode 106 

structure properties. (Chen, et al., 2021) have taken the advantage of various machine-learning models to optimise the 107 

fabrication of thin solid state electrolyte films for energy storge application and studied the effect of polymer content, 108 

liquid to solid ratio and co-solvent on the film conductivity. Statistical methods of covariance analysis and principal 109 

component analysis are utilised in (Primo, et al, 2021) to link the calendaring parameters of cathode manufacturing, (i.e., 110 

the applied pressure, roll temperature, and line speed) to the electrode conductivity. Neither of the studies are correlating 111 

the key parameters to the final assembled cell’s electrochemical performance.   112 

On the other hand, a number of studies such as (Turetskyy, et al, 2021) offer prediction of final product properties, 113 

such as battery maximum capacity, via a cyber-physical framework. Data-driven methods are addressed in (Kornas, et al, 114 

2019) to reveal cause-effect relationships between electrolyte mass and final characteristic of maximum capacity. However, 115 

the mentioned studies only cover a limited number of key parameters from intermediate to final steps and no correlation 116 

to the initial manufacturing parameters has been studied.  117 

Knowing that the quality of the final cell is determined by multiple factors, a lack of a comprehensive study covering 118 

the key parameters, intermediate and final product characteristics is obvious. Therefore, this paper investigates how 119 

machine-learning algorithms can support the quality prediction of not only the intermediate product’s features, but also 120 

the performance of the final product in terms of the interested indices.   121 

Here, a design of the experimental methods and modelling process is proposed to predict battery manufacturing 122 

quality – a process that traditionally has been based on a qualitative understanding and trial-and-error experience. 123 

Furthermore, a set of inputs and outputs, including comma bar gap, coating line speed, coating ratio, coating thickness, 124 

porosity, mass loading and cell energy capacity at various C-rates of C/20, C/2, 1C and 2C are considered which have not 125 

been discussed in a holistic manner within the previous literature so far and this is the main part of research distinguishing 126 

it from the previous ones.  127 

This study follows the four main objectives:  128 

- Provide a comprehensive design of experiment methodology for studying the correlation between electrode 129 

manufacturing parameters and product quality.  130 

- Suggest a systematic process for data preparation, data processing, modelling, and property prediction of battery 131 

manufacturing processes.  132 

- Determine the most important intermediate and final product parameters that impact battery quality and process 133 

efficiency   134 

- Quantify the predictability of structural and electrochemical properties of electrodes and Li-ion cells.  135 

The objects are achieved by offering the ranges, limits, and brake points of control parameters in a real manufacturing 136 

line, the full table of designed experiments, the data processing steps, and finally correlation analysis of manufacturing 137 

parameters with intermediate product’s features. The analysis is then followed by building models and investigating their 138 

performance for predicting characteristics of the intermediate and final products.   139 
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The main model of this study is based on support vector machine (SVM) and is compared with the widely known 140 

prediction algorithms of linear regression (LR), decision tree (DT), feedforward artificial neural network (NN) and gradient 141 

boosted trees (GBT). These comparisons quantify the predictability of various parameters via both common and advanced 142 

modelling techniques. Further analysis is performed in four main aspects to facilitate the extension of the proposed models 143 

from lab scale to the volume manufacturing scale: 1) data size that is necessary for an accurate training and prediction, 144 

this analysis suggests an approximate number of the experiments required to build representative models. 2) the sensitivity 145 

of models to measurement noise, this analysis is aimed at quantifying the effect of measurement equipment errors and 146 

calibrations in real manufacturing processes, 3) predictability analysis considering a limited number of input variables, this 147 

part focuses on feature selection and helps to eliminate the cost of experiments for measuring the variables that do not 148 

have a significant impact on the prediction accuracy. 4) generalisability and interpolation capability of models to quantify 149 

the predictability of electrochemical characteristics via models when the relevant data is not utilised in the training process, 150 

this analysis is critical in reducing the number of cycling and characterisation tests at various conditions.   151 

The approach used for design of experiments to gather the data with minimum effort, the methodology of data 152 

collection and preparation, performance, and property prediction as well as the comprehensive analysis and discussions 153 

mentioned in above are considered as the other novelties of this study compared to the previous research.   154 

It is also worth mentioning that this study is focused on the positive electrode (cathode), is based on calendared 155 

coatings, and discusses half-cell performance for simplicity. Without loss of generality, the offered approaches and driven 156 

results are a stepping-stone to the complete solution for the performance prediction of full cell Li-ion battery.   157 

The structure of this paper is as follows, in Section 2, the experimental study details are presented. This section contains 158 

the details of the electrode manufacturing process, cell manufacturing steps and how the key indices are quantified. 159 

Section 3 describes the data preparation and modelling methodology, the predictive models, and comparisons. Section 4 160 

provides results, discussions, and validations under various assumptions. Finally, section 5 gives concluding remarks and 161 

challenges to be addressed in future works.   162 

2.  EXPERIMENTAL MANUFACTURING STUDY  163 

The pilot-line scale battery manufacturing process is summarized in Figure 1. This study is focused on cathode coating 164 

process and the impact of its control parameters on the quality of the electrodes as well as the performance of the 165 

manufactured half-cells. For minimizing the effect of the control parameters of other steps, they have been kept constant 166 

in between the runs.   167 

 168 

  169 

Material   Mixing   
Coating and  

drying   
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Figure 1 Pilot-line scale battery production chain  170 

Figure 2 (a) Laboratory 171 scale electrode manufacturing line, (b) coating machine  

For electrode 172 coating the comma bar technology, Figure 2, has been used which is 

a self-metered 173 technique, where the coating thickness is determined via adjusting 

the gap between the 174 comma bar and the substrates as well as the speed of the coating 

line (i.e., web/line 175 speed). During the experiments, the control parameters were set 

and after a certain 176 length of coated electrode was completed, the key performance 

indicators (KPIs) 177 were obtained and then settings were altered for the next 

experiment in 178 machine.   

2.1 Electrode 179 manufacture  

The cathode 180 formulation was 96% active material of nickel, manganese cobalt 

oxide (NMC 622), 181 

2% conductive 182 

additive of carbon 183 

black (C65), and 184 

2% of 185 

Polyvinylidene 186 

fluoride binder. 187 

First the dry 188 

components were 189 

mixed, then the 190 

solvent of choice, 191 

N-methyl 192 

pyrrolidinone was 193 

added to create a 194 

mixture of appropriate consistency with 77% solid content at the kneading stage. Then, the mixture (slurry) was diluted 195 

with further addition of solvent to a final solid content of 67%, Figure 3 (a). Quality checks of the intermediate products 196 

were performed via a Hegman gauge, Figure 3 (b) to ensure the fineness of grind and absence of large agglomerates.  197 

In the next step, the slurry was used to coat a 15 um Aluminium foil to get the cathode electrode. The roll-to-roll 198 

coating process was accomplished via a pilot-scale coating machine, Dürr Megtec, with comma bar technology and 3-zone 199 

thermal dryer with an effective drying length of about 3.5 meters, Figure 2 (a). During the coating process, the backing roll 200 

and the comma bar created a reservoir for the slurry. The coating moved from the reservoir onto the backing roll and then 201 

transferred on the current collector which was supported by the bump roll. The foil was guided and supported by both 202 

rolls through the ovens, moving with a controlled web/line speed (m/min).  203 

  

Comma bar   

Slurry reservoir   

Chrome precision  
( backing) roll   Bump roll   

Aluminium Foil   

( a )   ( b )   
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(a)  204 

(d)  205 

  206 

Figure 3 Intermediary products from different manufacturing stages: a) slurry, b) slurry test on Hegman gauge, c) electrode after coating and drying,  207 

d) section of calendared electrode, e) die-cut electrodes at different stages during calendaring, f) assembly   208 

The quantity of slurry released onto the backing roll was controlled by the comma bar gap (um), the gap between 209 

comma bar and backing roll. The rate of transfer from the chrome roll to the foil, called coating ratio (%), referred to the 210 

ratio of the bump roll speed (for which the reference was the web speed) to the backing roll speed and was also used to 211 

control the mass loading of the coating, Figure 2 (b). After coating, the electrodes were dried overnight for 12 hours in a 212 

BinderTM vacuum furnace. During drying, the solvent was evaporated under controlled temperature of 120 °C, the 213 

conditions were kept unchanged for all experiments to minimize the effect of the drying control parameters on the coating 214 

and cell characteristics. Then, the coating was calendared to a target porosity of 30%. Intermediate products including 215 

electrodes after coating, and calendaring are given in Figure 3 (c) and (d) respectively.   216 

2.2 Quantifying electrode KPIs  217 

On total three properties of mass loading (g/m2), thickness (um), and porosity (%) were measured/calculated for each 218 

manufactured electrode. For mass loading of the electrode, which is the weight of the active material on the electrode per 219 

unit area, the MeSys GmbH machine was used with ultrasound sensors located at ~0.3mm intervals, one output value per 220 

6 seconds and an accuracy of +/- 2 g/m2. Thickness of the electrodes was measured by a digital micrometre, Mitutoyo,  221 

( c )   

( e )   

( f )   

( b )   
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1 with the accuracy of about 1 um. Measurements were obtained from 10 different locations on electrode surface and then 2 

averaged. After measuring the electrode mass loading and thickness, electrode porosity (%) was calculated by (1).  

1−Vnom A Gsm* 

Porosity = = 
 Vact avg *Th   (1) 

3 While Vnom (cm3) is the nominal volume of cathode coating. Vact denotes the actual volume of the electrode as (2), and it 4 will 

simplify the porosity to (3).  

A Gsm* 

Vnom = , Vact = A Th* 

 avg  (2) 

  

5  Here, Gsm is the coating mass loading (g/m2), Th denotes the coating thickness (um) and ρavg is the average density of 

the 6  electrode (g/cm3) and A the coating area in (m2).    

A Gsm* 

Porosity =  

 avg *Th  (3) 

  

7  2.3 Coin-cell manufacture  

8 After producing the electrodes and measuring their key parameters, each piece of electrode was used to manufacture  

9 at least three cells. For this purpose, the electrode discs with a diameter of 14.8 mm2 were obtained by die-cutting, Figure 

10 3 (e). They were left for drying once again before assembly for another 12 hours in 120 Cͦ. The cut electrodes, (i.e., cell 11 

electrodes) were measured/calculated once again for thickness (um), mass loading (g/m2), and porosity (%) by 12 micrometre, 

high precision scale and the equations of (1) to (3). Finally, half-cells (2032 coin cells), with lithium metal as 13 the counter 

electrode, were made by stacking electrodes, separator and Li-ion discs, adding electrolyte and crimping the 14 cell case in a 

nitrogen filled box, Figure 3 (f). In total 115 half coin cells were left after excluding failed ones. It is worth 15 pointing that here 

half-cells were preferred over full cells to keep focus on cathode manufacturing.  

16  2.4 Quantifying coin-cell KPIs  

17 After assembly, the half-cells went through a formation cycle at C/20, 5 conditioning cycles at C/5, then  

18 characterisation cycling at different C-rates using MaccorTM battery testing equipment connected to a BinderTM thermal 

19 chamber at 25 Cͦ. The capacity of half-cells (mAh) was obtained by constant current, constant voltage discharge at low 20 (C/20, 

C/5), medium (C/2 and 1C) as well as high (2C) C-rate for a comprehensive analysis. All samples were gone through 21 a C/5 

charging process at the similar cycling conditions after each characterisation test.  

22  2.5 Design of experiments   

23 As running the experiments are quite time and resource consuming, here a design of experiments (DoE) approach was 24 used 

to obtain as much information as possible from the minimum of experiments. DoE is to reduce the total amount of 25 experiments 

required for the identification of the main influencing factors of the electrode manufacturing process and 26 study their effect 

on electrode mass loading, thickness, and porosity as well as performance.   

27 The DoE consisted of two parts, in the first part, a screening design was employed to identify the main influencing 28 factors 

of the coating process and determine their effect on the physical characteristics of the electrode as well as 29 electrochemical 
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performance. In the second part, a response surface methodology (RSM) was used to gather further 30 information on the 

identified main factors (Oehlert, 2010).  

31 The screening design consisted of a fractional factorial saturated design (Steinberg, 1996) where five main factors 32 were 

considered into account, involving two extreme settings for each. These factors and their settings were chosen based 33 on 

recommendations from the literature (Cunha, et al , 2020; Mishra, et al., 2018) and feedback from expert users.   

34 The initial factors included, comma bar gap (80 and 140 um), coating ratio (110 and 150 %), web speed (0.5 and 1.5 35 m/min), 

drying air speed (5 and 15 m/s) and drying temperature (85 and 110 °C). The drying process was designed to take  

36  place in a dryer with three zones and independent temperature settings. Nevertheless, to keep the number of factors  
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limited, only the upper section temperature was considered as a key factor here. Furthermore, for simplicity, the air speed 1 

for all three sections were kept the same. The screening DoE matrix was comprised of 12 experimental runs at different 2 

conditions as in Table 1.   3 

Table 1 Experiments for the screening DoE  4 

Experiment number  1  2  3  4  5  6  7  8  9  10  11  12  

Comma bar gap (um)  140  80  80  140  80  80  140  140  140  140  80  80  

Web speed (m/min)  0.5  0.5  1.5  0.5  1.5  1.5  1.5  1.5  1.5  0.5  0.5  0.5  
Temperature (°C)  85  85  110  110  85  110  110  85  85  110  85  110  
Air speed (m/s)  5.0  15  5.0  5.0  5.0  15  5.0  15  15  15  5.0  15  
Coating ratio (%)  150  150  150  110  110  110  150  110  150  110  110  150  

Since the analysis of the output variables revealed a strong correlation only for comma bar gap, web speed and coating 5 

ratio, a second DoE of RSM type was employed focused on these three factors. The RSM consisted of a Box-Wilson 6 

composite design (CCD) involving five levels for each of the factors (Myers, et al , 2016). Because the ranges used in the 7 

screening DoE were identified as practical limits for the factor settings, an inscribed CCD (CCID) was finally used in which 8 

the factor levels are inside the region given by the extreme settings (i.e., comma bar gap: 80, 92, 110, 128 and 140 µm; 9 

web speed: 0.5, 0.7, 1.0, 1.3 and 1.5 m/min, and coating ratio: 110, 118, 130, 142 and 150 %). A graphical representation 10 

of the CCID is shown in Figure 4.   11 

It is worth mentioning that this DoE consists of 6 centre runs to provide stability of the variance and is consisted of 20 12 

runs reported in Table 2. The combination of both screening and CCID resulted 32 experiments that were all combined for 13 

modelling purposes.  14 

Table 2 Experiments for the CCID DoE  15 

Experiment 

number  
1  2  3     7  8  9  10     14   

 
  

Comma bar 

gap (um)  
  80  110  110  128  92  92   92  110  140  110  92     

Web speed 

(m/min)  
0.7  1.0  1.0  1.5  1.0  0.7  1.3  0.7  1.0  0.7  1.0  1.0  1.0  1.3  1.0  1.0  1.3  0.5  1.3  1.0  

Coating ratio 

(%)  
142  130  130  130  110  118  142  142  130  118  130  130  130  118  150 130 118  130 142  130  

 140  [128, 0.7, 142]  16 

     17 

Figure 4 Graphical representation of the CCID experimental design  18 
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3.  MODELING AND PREDICTIONS  19 

3.1 Data preparation  20 

In this section, two machine learning models are developed to describe how the variation in electrode manufacturing 21 

parameters influences the properties and quality of intermediate and final products. The first model is M2S (manufacture 22 

to structure), aimed at exhibiting the effect of comma bar gap (um), web speed (m/min) and coating ratio (%) on thickness  23 

(um), porosity (%) and dry mass loading (g/m2) of cathode coating. These parameters are associated with the calendared 24 

electrode, where the calendaring step free parameters are kept the same for all cases. The purpose is to focus on coating 25 

process and reduce the complexity of models.   26 

The second model is S2P (structure to performance) aimed at correlating capacity (mAh) at C/20, C/2, 1C, and 2C rates 27 

with thickness (um), mass loading (g/m2) and porosity (%) of assembled half-cells. In total there exists 32 records of 28 

experiments addressing the parameters and properties of cathode manufacturing for M2S model and 115 records of 29 

performance properties for half coin-cells for S2P model. Figure 5 is the flow diagram of all steps and the input-output sets 30 

of each model in this methodology.   31 

It is worth mentioning that after each run of experiments a large piece of electrode/cathode coating is obtained that 32 

can be as long as 10 meters in length. However, only a very small section of each piece is used for manufacturing the half 33 

coin cells. Therefore, while each thickness, mass loading and porosity data-point in M2S model is an average of all 34 

measured values from various locations on the manufactured surface, the thickness and mass loading in S2P is the exact 35 

and single measurement related to each small section used for half coin cell assembly as described in 2.3.  36 

 37 

  38 

Figure 5 Methodology workflow for manufacturing line modelling and predictions   39 

Since the long piece of the electrode can have nonuniformities, and quite different features at different locations on it, 40 

the average coating thickness, mass loading and porosity are not necessarily consistent with these features of the cathode 41 

inside each coin cell. Therefore, to minimize the effect of coating nonuniformity on the model performance and its 42 

predictability, the two models are trained individually and combining those is under investigation for future works.   43 

The data available via experiments were gone through a data preparation step before being used for M2S modelling 44 

as shown in the flowchart of Figure 5. In the first step, the recorded data of the coating mass load as well as thickness and 45 

porosity were cleaned from outliers. Outliers were data records at least three times of the scaled median absolute 46 

deviations away from the median of all the records at the same experiment. For mass loading outliers were also datapoints 47 

related to the edges of the electrodes which were not used for cell assembly later on. For mass loading data, one extra 48 

step of missing-value management was followed as well. The reason was that the mass loading data were obtained by 49 

continuously measuring the weight over time and position intervals and included various missing records because of errors 50 
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of the measurement equipment. These missing values were replaced with the nearest neighbour value to preserve the 51 

consistency. In the next step, the features (mean value) of coating mass loading, thickness and porosity were calculated.   52 

The pre-processing steps for all half-cell performance characteristics, as well as half-cell mass loading, thickness, and 53 

porosity of S2P model was only limited to outlier removal as the records were directly used as inputs and outputs of the 54 

model.   55 

3.2 Modelling and validation Algorithms  56 
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1 In order to predict the intermediate and final product KPIs, support vector regression (SVR) model is trained based on 2 the 

data. SVR is based on the same concepts of support vector machine for continuous targets. This algorithm is selected 3 because 

of certain advantages supported by relevant literature such as (Ma & Guo, 2014). It facilitates optimizations by 4 quadratic 

programming with a global solution. SVR is a soft margin learning method with high robustness to outliers, it is  

5 suitable for small sample size and able to transfer a low dimensional nonlinear problem to a high dimensional linear one 6 via 

kernel trick (Shawe-Taylor & Cristianini, 2004). The goal in SVR is to find a function in training step that can correctly 7 predict 

the new targets not been considered during training.  

8 To estimate a continuous function f with weight w and bias b, given a multi-dimensional data x and y with N 9 observations, 

the problem is first written in the form of (4).  
T 

 y = f x( ) = w x b
T + =

   
      

w
b I

x 
, w x y, , 

 

 
 (4) 

10 For M2S model, x includes sample points of the comma bar gap, web speed and coating ration, and y includes 11 thickness, 

porosity, and mass loading of electrodes. On the other hand, for S2P model, x consists of cell thickness, porosity, 12 and mass 

loading and y includes capacity at various C-rates. Solving the estimation problem by SVR is attempted such that, 13 i) the function 

f be as flat as possible which is formulated as (5) which minimizes the norm value or magnitude of w, and 14 ii) the distance 

between the predicted and real outputs is bounded by a prescribed value of ε as (6). By this definition of 15 error function, the 

SVR and be called ε-SVR.  

   minw 12 w 2   (5) 

yn −(w xT 
n +b) , n N  

 (6) 

16 In order to increase the feasibility of the optimization problem, (5) is modified by two non-negative variables ξ and ξ* 17 to 

achieve a soft margin estimation. By soft margin approach (5) and (6) would reformulate the estimation problem as (7).  

 1 2 N * 

 J w( ) = 2 w +C n=1(  n + n )  (7) 

 st y. .n −(w x
T 

n +b)  + n, n =1,...,N 

  

(w x
T 

n + −b) yn  + n
*
, n =1,...,N 

n  0, n
*  0 

18 Here C is the regularization parameter or penalty factor which is for penalizing the training samples that fall outside 19 the 

margin of ε to avoid overfitting, larger C gives more weight to minimizing the prediction error compared to the flatness 20 of 

function. In order to solve the optimization problem given above, the Lagrange dual formula (8) is used which provides 21 a lower 

bound for the main optimization problem of (7). The results of two problems do not need to be equal, but the 22 solution of the 

primal problem would be obtained from the solution of the dual problem (Awad & Khanna, 2015).   
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 N N * * N * N * 

)  =  i=1j=1(    i − i )( j − j )G x x( i, j )+ i=1(  i + i )− i=1yi (  i − i )   L( 

(8) 

 st. . nN=1(  n − n*)= 0   

 0  n C, 0  n
* C 

23 Here G is the kernel function and α is the nonnegative Lagrange multiplier. Kernel functions facilitate mapping data 24 into a 

higher dimensional space, the kernel space, via them SVR can provide an acceptable accuracy for data with nonlinear 25 

interconnections (Shawe-Taylor & Cristianini, 2004). The models in this study are based on quadratic kernels and are 26 compared 

with the models with linear, cubic, and Gaussian (radial basis) kernels.  

27  By dual formula (8), the prediction function can be obtained as (9). The complementary modified conditions required 28 

 to obtain the optimal solution via dual formula are as (10).  
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 f x( ) = iN=1(  n − n*)G x( n,x)+b   (9) 1 

   n ( + − +n yn f x( n)) = 0 2 

 * *  (10) 3 

   n ( + + −n yn f x( n)) = 0   4 

n (C − n ) = 0, n
*(C − n

*) = 0 5 

To handle this optimization problem, it is expressed in the form of quadratic programming and solved by the sequential 6 

minimal optimization (SMO) approach (Fan, et al, 2006). SMO is an iterative algorithm based on the optimization of the 7 

smallest sub-problem. In each iteration the problem is broken to a set of the smallest sub-problems for SVR, which involves 8 

two points and has two Lagrange multipliers of αi. The Lagrange multipliers are then solved analytically (Platt, 1998).   9 

The model when received a set of training data obtained from experiments, provides M2S and S2P models that can 10 

assign predicted electrode and cell KPIs to a similar dataset, i.e., test data set. It’s the test dataset that shows the models’ 11 

ability to predict. Generally, the test data are a fracture of the whole data and obtained by randomly splitting data to train 12 

and test. However, considering the fact that in real manufacturing and especially pilot-scale studies the size of data might 13 

be rather small, having access to enough data for validation and test can be quite a challenge. To address this issue, here, 14 

cross validation (CV) approach is utilised (Fushiki, 2011). CV is both to make a decision about the applicability of a designed 15 

model to new data and tuning its hyperparameters. In this approach the data are randomly split into K (here, 5) mutually 16 

exclusive subsets or folds of the same size. At each run, K-1 groups are used for training, and one is left for hyperparameter 17 

tuning and test, then, model performance is assessed via an accuracy index. The training and test process is repeated K 18 

times changing the data used for training and testing until all data go for training and test at least once. Finally, K accuracy 19 

indices will be available, and their mean and standard deviation represent the final accuracy of the model. K-fold cross 20 

validation helps taking the risk of over/under fitting into account as well as choosing the tuning parameters of the 21 

prediction algorithm systematically. In this approach the best tuning parameter is the one that minimizes the mean squared 22 

error (MSE) of fold’s predictions i.e., cross validated MSE. The flowchart of the SVR algorithm with cross validation is given 23 

in Figure 6.  24 

 25 
  

Figure  6   The flowchart of SVR algorithm   

select  C ,  ε , Kernel parameters and  K   

Cross validate using leave  test fold out   

Train the SVR model via K - 1  folds   

Test the SVR model via 1 - fold   

Calculate and  s tore the performance metrices    

Calculate the average cross validated performance  
metrices   

Select  C , and  ε  with best average performance  
matrices   

Input  Data Set   
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4.  RESULTS AND DISCUSSIONS  26 

4.1. Structural characteristics and performance Prediction   27 

Based on the experiments, the manufacturing parameters of comma bar gap (um), coating ratio (%) and web speed 28 

(m/min) affect the coating thickness, mass loading and porosity. Given the mass loading and the coating thickness, the 29 

coating porosity has been calculated by equations (1) – (3). Figure 7 shows the distribution of manufacturing settings in 30 

relation to structural properties of battery cathode.   31 

According to these figures a higher dry mass loading is achieved when the comma bar gap is larger and coating ratio is 32 

set to a higher value. This is because a larger amount of active material is transferred to the electrode foil in this case. The 33 

dependency of mass loading on web speed is not as strong as the other two parameters, suggesting that web speed does 34 

not significantly affect the coating weight. For coating thickness, thicker electrodes are obtained by both larger values of 35 

comma bar gap and the higher coating ratio. The dependency is justified similar to the mass loading, as with higher values 36 

of these two parameters more material is transferred to the electrode surface during manufacturing. Thickness is also 37 

higher for slower coating speed. The porosity of the coated electrode has an inverse relationship with the three 38 

parameters. At higher values of comma bar gap the porosity decreases as more material is pressed on the surface. This is 39 

also the case for web speed and faster coating leaves more pores in the coating.   40 

  41 
Figure 7 Distribution of manufacturing parameters with relation to (a) dry mass loading, (b) coating thickness, (c) Coating porosity  42 

Similar to the Figure 7, the colour maps of Figure 8 show the distribution of energy capacities at different C-rates in 43 

relation to the structural parameters.   44 

( a )   ( b )   ( c )   
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  45 
Figure 8 Distribution of the battery structural properties (Mass loading, Thickness and Porosity) with half coin cell performance, (a) Capacity C/20,  46 

(b) Capacity C/2, (c) Capacity 1C, (d) 2C  47 

According to the figures, higher thickness, and larger mass loading result cells with higher capacities at C/20, C/2 and 48 

1C C-rates at all porosities between 25% to 45%. This is due to the larger amount of active material that becomes available 49 

for the electrodes in these cases. However, for 2C capacity it’s the opposite at almost all porosities in the same range. 50 

Generally, at higher C-rates, capacity is limited by electronic conduction in the solid components and/or ionic conduction 51 

in the pores of the electrode and accordingly for heavier and thicker electrodes the capacity drops off. These general 52 

conclusions correspond well with previous studies reported in the literature (Mei, Chen, Sun, & Wang, 2019; Horváth, 53 

Coelho, Tian, & Nicolosi, 2020).  54 

Although the figures show a clear dependency between manufacturing and structural parameters with the quality of 55 

electrodes and cells, predicting the outputs of each structural and electrochemical properties and quantifying the 56 

correlations requires investigation followed in this section. For this purpose, the M2S model is designed to have the three 57 

manufacturing inputs and 3 targets. Figure 9 shows the predicted coating features with respect to the associated measured 58 

values as well as the prediction error. Each model has been evaluated 10 times, each time by shuffling the data randomly 59 

and averaging the results to achieve more confident and statistically reliable conclusions.   60 

( a )   ( b )   

( d )   ( c )   
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 61 

Figure 9 Prediction of cathode structural properties, (a) Mass loading, (b) Thickness, (c) Porosity via M2S model  62 

Similarly, the prediction results for S2P model are depicted in Figure 10. To better visualise the deviation of the predicted 63 

results for the data samples in this model, plots for predicted versus actual values are also given. In a representative model, 64 

the observations should be very close to the perfect prediction line. According to the figures, most of the predicted targets 65 

agree with the observations and cluster around the perfect prediction line without large outliers. This implies the ability of 66 

models to capture the pattern of data.  67 

The accuracy of the models is related to the error of predicting the output that is associated with certain input data 68 

that has not been used for training but only for validations at each step of cross validation. The accuracy indices here are  69 

RMSE defined by RMSE= 
1 

i
N

=1(y yi − ˆi )2
, as well as R2 and their standard deviations. R2 is called the coefficient of  70 

N 71 

determination and indicates the proportionate amount of variation in the target variable that has been explained by the 72 

independent input variables of the model. It is considered to be a measure of explained variance in relation to the total 73 

variance. The larger values of R2 confirm that more variability has been captured by the model.  74 

R2 is calculated as R2 
= −1 

SSE where SSE is the sum of the squared error defined as SSE= i
n
=1(y yi − ˆi )2. TSE is the  75 

TSS 76 

total sum of squares obtained viaTSE= n
N

=1(yn −y y)2
, = N

1 
n

N
=1yn for i =1,...,N.Beside the two mentioned metrics, mean absolute 77 

error (MAE) is also considered as an accuracy measure which is obtained by MAE= N
1 

i
N

=1 y yi − ˆi .  78 

Numeric results of prediction indices are summarized in the Tables 3 and 4. All indices have been reported by their 79 

average (mean) value of 10 runs, their standard deviation (std) and percent (%) to the mean value of dataset.  80 
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1   

2 Figure 10 Prediction of half-cell capacity (mAh) (a-1, a-2) C/20, (b-1, b-2) C/2, (c-1, c-2) 1C, (d-1, d-2) 2C through S2P model  

3 Table 3 Prediction performance of three ML methods for Cathode coating Weight and Thickness  
Mass Loading (g/m2)  

SVR  9.33  5.12  0.45  0.2  5.23  2.87  0.94  
LR  9.45  5.19  0.46  0.2  7.05  3.87  0.92  
DT  21.6  11.8  2.68  1.4  9.55  5.24  0.61  

GBT  10.3  5.68  0.53  2.9  9.40  5.16  0.87  
NN  9.28  5.10  0.46  0.2  5.15  2.83  0.95  

   Thickness (um)      

 Algorithm  RMSE (Mean) RMSE (Mean %) RMSE (std)  RMSE (std %) MAE (Mean) MAE (%)  R2 (mean)  

 

Algorithm  RMSE (Mean) RMSE (Mean %) RMSE (std)  RMSE (std %) MAE (Mean) MAE (%)  R2 (mean)  

SVR  4.03  5.40  0.12  0.1  2.50  3.35  0.92  
LR  4.24  5.68  0.18  0.2  3.24  4.34  0.91  
DT  9.66  12.9  0.40  0.5  4.15  5.56  0.50  

GBT  4.16  5.57  0.21  0.2  3.10  4.15  0.85  
NN  4.02  5.39  0.14  0.1  2.21  2.96  0.93  
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4 The results are for SVR with quadratic Kernel and compared to four other models including linear regression, decision 5 

tree, gradient boosted trees, and feedforward neural network. Linear regression is selected as it usually acts as a 6 benchmark 

and reference in many regression problems because it is simple to implement and has a low computational 7 cost. Here it is a 

choice to confirm whether moving from simple linear estimation towards a more advanced model such 1 as the SVR, which is 

known to be more expensive algorithm in terms of computational cost, is necessary or not. It is also 2 selected to investigate 

which of the KPIs are linearly predictable and quantify that predictability. The second model is a 3 decision tree, and it is 

selected as an example of a nonlinear regression model to highlight the performance of SVR  

4 particularly with nonlinear kernels. Decision trees are known to be more sensitive to outliers and noise compared to the 5 SVR 

while less expensive from the computational cost point of view (Suthaharan, 2016; Rokach & Maimon, 2007). 6 Comparisons to 

decision trees are provided to quantify the performance and run time and investigate whether this 7 nonlinear model could be 

choice for predicting the KPIs of the battery manufacturing problem.   

8 The SVR is also compared with two advanced models. One is a feed forward neural network, which is a multi-layer  

9 perceptron model to investigate if a network of nonlinear functions improves the predictability. The final model is a 10 

gradient boosted machine which is a class of ensemble machine learning models. Here the model is based on decision 11 trees 

so it’s a gradient boosted trees model. This model is selected to investigate if advanced techniques such as 12 ensembling could 

benefit the regression tasks.    

13   Table 3 summarises the results of M2S model. For porosity the results are given separately in Table 4. Since porosity 14 

 has been calculated based on mass loading and thickness predictions, only RMSE and its deviations are reported.  

15 According to the results of in Table 3 and Table 4, all five M2S models are acceptably accurate. For predicting the mass 16 

loading, SVR is resulting a 5.12% error equivalent to 9.33 (g/m2), the thickness prediction error is about 5.4% or 4.03 (um), 17 

both error values are quite small compared to the average weight of a coated electrode. For both targets R2 is higher than 18 0.9 

which confirms that the model has captured the variability in the data set successfully. Due to the high predictability 19 of these 

characteristics, the porosity can also be obtained with an error of 5.6%. For all models, the standard deviation of 20 the RMSE is 

below 0.3%, which shows a high confidence of the reported numbers.  

21 Table 4 Prediction performance of three ML methods for Cathode coating Porosity  
Porosity (%)  

Algorithm RMSE (Mean) RMSE (Mean %) RMSE (std) RMSE (std %) MAE (Mean)  MAE (%)  
SVR  2.63  5.60  0.15  0.3  2.41  5.13  
LR  2.74  5.26  0.75  0.1  2.53  5.39  
DT  4.85  10.3  0.63  1.3  3.02  6.43  

GBT  3.54  7.54  0.56  1.2  3.20  6.81  
NN  2.70  5.75  0.22  0.4  2.51  5.34  

22 The RMSE and R2 values for S2P model are in Table 5 and confirm the ability of the SVR model to predict the half-cell 23 

capacity. For lower C-rates of C/20 and C/2, the prediction error is below 2% and R2 is higher than 0.99. For medium C24 rate of 

1C, the accuracy is 2.5% with R2 higher than 0.97 and for 2C it is 3.1% with R2 of 0.97.  

25 Table 5 Prediction error of five ML methods for battery properties   

C/20 capacity (mAh)           1C capacity (mAh)    

SVR  0.075  1.59  0.001  0.02  0.073  1.54  0.992    0.104  2.50  0.002  0.048  0.086  2.0  0.979  
LR  0.072  1.53  0.001  0.02  0.072  1.52  0.993    0.104  2.50  0.002  0.048  0.089  2.1  0.978  
DT  0.168  3.56  0.036  0.07  0.078  1.65  0.964    0.158  3.80  0.017  0.042  0.091  2.1  0.956  

GBT  0.071  1.50  0.001  0.02  0.072  1.52  0.993    0.098  2.36  0.019  0.046  0.078  1.8  0.980  
NN  0.073  1.55  0.001  0.02  0.057  1.53  0.993    0.097  2.33  0.010  0.024  0.068  1.6  0.990  

Algorith 

m  

RMSE 

(Mean)  

RMSE RMSE RMSE  MAE MAE  

(%)  (std) (std %) (Mean) 

(%)  

R2   

 

  RMSE RMSE RMSE RMSE  MAE MAE  

(Mean)  (%) 

(std) (std %) (Mean) (%)  

R2   
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  0.046   0.066   0.146   
35   0.021   0.022   0.031   

 C/2 capacity (mAh)            2C capacity (mAh)     

Algorith RMSE RMSE RMSE RMSE  MAE MAE R2   RMSE RMSE RMSE RMSE  MAE MAE R2  m (Mean) (Mean)  (Mean) 

(std %) (Mean) 
SVR  0.071  1.61 0.004  0.09  0.064 1.45 0.993    0.127  3.10 0.007  0.17  0.114 2.78 0.976  

LR  0.074  1.68 0.001  0.02  0.065 1.47 0.992    0.289  7.05 0.009  0.20  0.214 5.22 0.874  

DT  0.161  3.65 0.034  0.76  0.101 2.29 0.961    0.269  6.56 0.037  0.90  0.206 5.02 0.882  

GBT  0.065  1.47 0.001  0.05  0.060 1.36 0.994    0.125  3.05 0.019  0.46  0.101 2.46 0.985  

NN  0.066  1.50 0.002  0.04  0.062 1.41 0.994    0.124  3.02 0.020  0.49  0.095 2.32 0.991  

 

26 The standard deviation of the reported results is very small for all cases with SVR, an RMSE (std%) of 0.02% for C/20,  

27 0.08% for C/2, 0.048% for 1C and 0.17% for 2C shows that for all 10 runs of the model, the RMSE values cluster around 

1 the RMSE (mean) very well and the results are highly trustable. In all cases the SVR model performs very well in capturing 2 the 

pattern of data and can be widely used to predict the battery capacity given the properties of the coating.  

3 Compering the SVR with LR and DT shows that for both S2P and M2S models, the SVR has better performance 4 considering 

RMSE, its standard deviation as well as R2. For mass loading, thickness, and porosity, LR is slightly behind the 5 SVR, but DT is 

significantly weaker. In S2P model, the same trend is noticed between SVR, LR and DT, for capacity in low 6 and medium C-rate, 

while for higher C-rate of 2C SVR is significantly better than the other two. For both models SVR has 7 the lower standard 

deviation in the RMSE index, which confirms that SVR has a higher robustness to the organisation of 8 data compared to LR and 

DT. The superiority is a result of SVR capturing the non-linearity in the data better than LR and  

9 DT. It is also because of offering flexibility about the tolerable errors by the model through error margins, it not only 10 

minimises the prediction error for training data, but also minimises the upper bound of generalisation error consisting of 11 

training error and a confidence level.   

12 Regarding the models of NN and GBT, NN is showing slightly improved accuracy over SVR in the S2P model (0.04 to 13 0.17% 

of RMSE). It is also showing slight improvement (0.02% of RMSE) over SVR for M2S model. This is a result of a 14 network structure 

of this model and its capability of learning more complex and nonlinear patterns of the data set. The  

15 gradient boosted tree is having different behaviours for M2S and S2P models compared to other models. This is witnessed  

16 in all indices of RMSE, R2 and MAE. GBT is having a 0.45% to 0.17% higher RMSE for mass loading and thickness but 17 

demonstrates an average of 0.1% less RMSE in S2P model outputs. This is believed to be due to the fact that GBT and NN 18 

generally require a large dataset for optimising their weight and avoiding overfitting.     

19  In order to complete the comparison between the five models of this study, a comparison between the run time and 20 

 the computational complexity of models is necessary. Table 6 is developed for this purpose.  

21 In terms of prediction time, the linear regression provides the fastest predictions, and it is followed by DT, GBT, SVR 22 and 

finally NN. It is worth mentioning that this run time is for equivalent epochs for optimisation. The time is logged by 23 running 

algorithms on a personal computer with 1.90 GHz and 2.11 GHz CPU and 16.0 GB RAM. The table does not include 24 porosity 

as it’s a direct calculation based on coating weight and its thickness.  

25 Higher run times of NN compared to the others is justifiable considering its more complex structure. Since 26 investigating the 

effect of electrode’s structural parameters on the performance of the battery is usually an offline study 27 and analysis, then the 

run time of models is not considered as a key factor when selecting a particular prediction algorithm, 28 but definitely it can be 

a decision-affecting factor for any online analysis of automated manufacturing processes.  

29  Table 6 Run time (sec) of various ML methods for electrode and battery characteristics (single Run)  

   SVR  LR  DT  GBT  NN  
C/20 capacity  0.205  0.024  0.034  0.136  0.451  
C/2 capacity  0.257  0.035  0.038  0.128  0.440  
1C capacity  0.225  0.037  0.040  0.131  0.480  

 2C capacity  0.219 0.442  

 Coating Weight  0.0 0.490  

( ) %   ( ) std   ( ) std %   ( ) %   ( ) std       ( ) %   
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 Coating Thickness  0.029  0.015  0.021  0.028  0.446  

30  4.2 SVR kernel effect on performance  

31 Different kernels affect the generalisation capabilities of the SVR models. To further reflect the predictability achieved 32 via 

the M2S and S2P SVR models, four different kernels are used to train them and compare the results. With xi and xj as  

33 the data point, a linear kernel is defined as G x x( i, j) = x xi
T 

j. A Gaussian kernel is G x x( i, j ) = exp − x xi − j 
2

 

and a  

 

34 polynomial kernel is given byG x x( i, j) = +(1 x xi
T 

j)p with p = 2 for the quadratic and p = 3 for cubic cases. The performance  

35 of the models is summarized in the Table 7 and Table 8. The best performance of both models belongs to quadratic 

kernel. 36 For mass loading and thickness in Table 7, if quadratic kernel RMSE values be considered as a benchmark, SVR with 

cubic 37 kernel leads to 3.4% of more error, while linear and Gaussian kernels are 27.4% and 87.57% less accurate. For capacity  

38  prediction at C/20, linear, cubic, and Gaussian kernels result 1.3%, 61% and 89% more error than quadratic kernel, 
Table 39  8. For C/2 capacity, linear, cubic, and Gaussian kernels are 4.2%, 55.2% and 64% less accurate. The order 
slightly changes 40  for 1C and 2C capacities.  
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Table 7 Kernel effect on SVR model performance for electrode coating properties prediction  1 

SVR  Mass Loading (g/m2)  Thickness (um)  

Kernel 

Linear  
RMSE  R2  RMSE  R2   
11.89  0.811  4.98  0.771  

Quadratic  9.33  0.942  4.03  0.92  
Cubic  9.65  0.912  4.01  0.887  

Gaussian  17.5  0.761  7.70  0.712  
Table 8 Kernel effect on SVR model performance for capacity prediction  2 

SVR  C/20 capacity (mAh)  C/2 capacity (mAh)  1C capacity (mAh)  2C capacity (mAh)  

Kernel and 

Index  
RMSE  R2  RMSE  R2   RMSE  R2  RMSE  R2   

Linear  0.076  0.993  0.0745  0.992  0.105  0.978  0.260  0.887  
Quadratic  0.075  0.992  0.0715  0.993  0.104  0.979  0.127  0.976  

Cubic  0.1208  0.981  0.1111  0.982  0.137  0.963  0.145  0.961  
Gaussian  0.142  0.985  0.1175  0.987  0.136  0.971  0.147  0.937  

For 1C, linear kernel is only 1% less accurate, but cubic and Gaussian kernels are leading to 31% and 30% more errors. 3 

Same order is observed for 2C capacity, 1% extra error for linear, and 14% and 15% more error for cubic and Gaussian 4 

kernels compared to quadratic kernels. The comparisons suggest that after quadratic kernel, the linear kernel is the best 5 

choice, and this is both concluded based on RMSE and R2 values. This would leave cubic and Gaussian kernels out of 6 

recommended kernel functions for both of the electrode and half-cell performance prediction purposes.   7 

4.3 Noise Effect (Robustness evaluations)  8 

While the comma bar gap, coating ratio and line speed are set through the coating machine, the other parameters 9 

used as the inputs and targets of prediction models are obtained through direct measurement. Coating weight, and 10 

thickness are measured via equipment, porosity is calculated via equations, and energy capacities from different half-cells 11 

are recorded by cycling tests. All of these observations are subject to measurement noise. Generally, measurement noise 12 

is an inevitable part of data at real manufacturing scale. In fact, different manufacturers might not have access to costly 13 

and very accurate sensors. Therefore, it is important to evaluate the robustness of the models so that the manufacturers 14 

can decide whether it is applicable to them with the level of noise in their data. The measurement noise if considered in 15 

the training step, the resilience of the model would be increased and the predictions will be more reliable for the validation 16 

data (Isaev & Dolenko, 2018). In order to analyse the robustness of model, three steps have been taken here. First the 17 

training data are augmented to include measurement noise. This is achieved by intentionally adding a fixed level of noise 18 

and creating a synthetic data set based on the original data, the approach is adopted from (Xu, Caramanis, & Mannor, 19 

2014). The noise is assumed to be of Gaussian type with a variance between [1 -10] % of sample records while preserving 20 

the mean value of them. Then, the models are trained for the data and validated by 5-fold cross validation approach. 21 

Finally, the robustness of models to noise level is evaluated by both the RMSE (%) of the average predicted variable as well 22 

as the R2 coefficient.   23 

The Figure 11 and Figure 12 show the error level, in % of data that has been used to augment the data, versus the 24 

RMSE and R2. Here, an acceptable model is defined to have less than 15% RMSE, (blue region) and R2 higher than 0.7 (red 25 

region), these threshold are adjusted following the definition of a predictive model in (Tropsha, et al, 2003). The vertical 26 

overlap of two regions, (RMSE < 15% and R2 > 0.7) shows the upper limit of noise which is tolerable by models.  27 

 28 

Figure 11 M2S SVR Robustness to noise analysis, (a) Mass load, (b), Thickness  29 
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Figure 11 is devoted to M2S model for predicting coating mass load and thickness. Similarly, Figure 12 shows the 30 

dependency of the RMSE and R2 values to the noise level in the data set of S2P model.   31 

It is worth noting that models are run 10 times for capturing the variation in performance metrics and the effect of 32 

random noise added to the data. The noise level has been incremented by 0.5% for all models. The results at location 0 of 33 

the x axis of each figure show the model performance of original data. Compared to location 0, original data scenario, noise 34 

in data increases the prediction error and reduces the R2 value. This is accompanied by an increase in the variance observed 35 

for both metrics due to an increase in the variance of noisy data.  36 

Figure 11 implies that the M2S can tolerate measurement noise up to 6.5%. Same level of noise is tolerable by M2P as 37 

well. According to Figure 12, while the prediction RMSE can be in the acceptable range of [0 -15] % for up to 9% of the 38 

noise, the R2 drops below 0.7 after increasing the noise to only 6.5%. This concludes that despite the presence of noise in 39 

the data, the predictability of SVR model can still be maintained up to a good level.  40 

 41 

Figure 12 SVR Robustness to noise analysis, (a) C/20 capacity, (b), C/2 capacity, 1C capacity, (d) 2C capacity  42 

4.4 Training by limited number of input variables  43 

Battery manufacturing process is a complex chain with numerous variables at various steps. Monitoring and measuring 44 

all the variables are very costly and not practical in the context of volume manufacturing. Therefore, to understand the 45 

significance of each of the input variables for the accuracy of the predicted coating properties and half-cell performance, 46 

in this section, SVRs are trained with a limited number of predictors. The results of each attempt are then compared in 47 

terms of RMSE. This analysis is important to understand if one or more of the input variables can be taken out of the input 48 

variable pool for a simpler and/or more accurate model, to improve the efficiency of the model development process and 49 

underpinning data collection activity.  50 

 51 

Figure 13 Comparing RMSE in regression by different manufacturing settings as predictors  52 
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The comparative results of the M2S model, with the regression index of RMSE, are given in Figure 13 for a selection of 53 

the coating ratio (CR), comma bar gap (CB) and web speed (W) inputs. According to these figures the lowest error is 54 

achieved with the pair of comma bar gap and coating ratio as the predictors.  55 

The regression indices for S2P model are also given in Figure 14. Considering the results, it can be concluded that for 56 

C/20 capacity, C/2 capacity and 1C capacity, the single input of mass loading (M) can provide results as accurate as all 57 

inputs.  58 

This means that for low and medium C-rates, the capacity is more dependent to mass loading and less to the thickness 59 

(T) and porosity (P). However, the RMSE values for 2C capacity confirm that neither of inputs by their own are enough for 60 

understanding the pattern of data and all three inputs are required to capture the variance in the data and make a 61 

successful prediction.   62 

 63 

Figure 14 Comparing RMSE in regression by different structural properties, (a) C/20 capacity, (b), C/2 capacity, (c) 1C capacity, (d) 2C capacity  64 

To further analyse the impact of each input variable on the electrode and cell characteristics, correlation coefficients 65 

between any two pairs are calculated via Pearson product-moment correlation coefficient formula (Cleophas & 66 

Zwinderman , 2018).  67 

Correlation coefficients are values between 0 and 1 and can be positive or negative. A positive coefficient for a pair of 68 

variables implies a direct relationship between those pair and means increase in one variable would increase the other. 69 

Also, the larger the number the stronger the correlation. When a correlation coefficient is 1 it means that the two variables 70 

are linearly related.   71 

According to the heatmap Figure 15 (c) for M2S model, comma bar gap, web speed and coating ratio are fairly 72 

independent and only minor correlations is noticed in between those. For S2P model, the thickness and mass loading are 73 

strongly correlated, Figure 15 (d). Both coating weight and thickness are highly correlated with the manufacturing 74 

parameters of coating ratio and comma bar gap, Figure 15 (a) and this is exactly what was suggested by Figure 13. For S2P 75 

model, all capacities at various C-rates are highly correlated with the cell Mass Loading and Thickness. Considering the 76 

interconnections between mass loading and thickness according to Figure 15 (d), the importance of mass loading in the 77 

prediction of C/20, C/2 and 1C capacities shown by Figure 14 (a), (b) and (c) is justifiable.   78 

The strong correlation between 2C capacity and cell porosity is also confirming its contribution in lowering the 79 

prediction error as found by Figure 14 (d). Obviously, there is a different impact of key factors on the capacity at various C-80 

rate. For discharge at 1C and under, the limiting process in the electrode is resistance. Thus, the capacity increases for 81 

thicker / higher coat weight electrodes, and the coating porosity has relatively little impact. However, at high rates, the 82 

limiting process is usually mass transport, and often ionic conduction of liquid electrolyte in the pores of the electrode. 83 

Thinner electrodes perform better than thicker electrodes at very high discharge rates. At 2C, the electrode is arguably in 84 

the transitional region between these two limiting processes. For thicker electrodes, there is a conflict between increased 85 

capacity and reduced ionic conductivity, and therefore porosity is an important factor and increased porosity is beneficial.   86 

The comparisons for both M2S and S2P models with fewer features show that for larger data sets a selection of the 87 

inputs instead of all may be used in order to reduce the complexity of models. In fact, the ability of predicting target 88 
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variables with a smaller number of input variables will significantly reduce the costs associated with the measurement of 89 

less important inputs.  90 

  91 

 92 

  93 

Figure 15 Correlation coefficients for models (a) Input-Output of M2S, (b) Input-Output of S2P, (c) Inputs of M2S, (d) Inputs of S2P  94 

4.5 Effect of K in K-fold validation method  95 

K fold validation is a solution when the size of the dataset is rather small. It is a resampling procedure to give every 96 

single sample to be part of both training and testing processes and evaluate model performance. The number of folds, K, 97 

is a variable that can be selected arbitrarily. Generally, when K increases the size of the training subset grows and the size 98 

of the test subset becomes smaller in each try. Also, by an increased K, the difference between the training and resampling 99 

subsets becomes smaller. As this difference decreases, the bias of the modelling technique reduces. This is achieved at the 100 

cost of higher variance of the model performance index obtained from multiple (K) tries. Empirically, two common choices 101 

of K are 5 and 10, which have shown to provide validation error estimates with an acceptable balance between bias and 102 

variance. Here, Table 9 and   103 

Porosity is not included in the M2S table as it is calculated based on predicted values of the other two variables. Some 104 

of the indices of the given tables are visualised in Figure 16.   105 

Table 10 are given to highlight the effect of K on the M2S and S2P model performance based on the battery 106 

manufacturing data set.  107 

Table 9 The performance of M2S SVR model under validations with different folds (K)   108 

Coating Weight (g/m2)        Coating Thickness (um)  
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 RMSE RMSE RMSE RMSE  2  R2  Time  Time    RMSE RMSE RMSE RMSE  R2   R2  Time  Time  109 

 Folds  R 110 

 (Mean)  (std %)  (mean) (Mean) (std %)  (mean) 111 

2 10.10  5.54  0.33  0.18 0.884 0.013 0.021 0.011   4.33  5.79  0.07  0.09  0.790 112 

0.012 0.022 0.010  113 

3 10.07  5.53  0.39  0.21 0.896 0.015 0.024 0.012   4.29  5.74  0.10  0.13  0.860 114 

0.0145 0.025 0.012  115 

 5  9.331  5.12  0.45  0.25 0.943 0.016 0.035 0.015   4.03  5.40  0.12  0.16  0.921 0.0164 0.029 0.014  116 

  ( ) %   ( ) std   std ) (     ( ) std     % ) (   ( ) std   ) std (     ( ) std   
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( ) %   ( ) std   ( ) std   ( ) % ( ) std   

( ) %   ( ) std   ( ) std   ( ) %   ( ) std   

 10  9.013  4.94  0.51  0.28 0.958 0.030 0.121 0.022   3.93  5.27  0.22  0.29  0.930 0.0370 0.124 0.021  
 15  8.862  4.86  0.71  0.39 0.961 0.033 0.130 0.036   3.90  5.23  0.29  0.39  0.934 0.0389 0.142 0.038  

1    
2 Porosity is not included in the M2S table as it is calculated based on predicted values of the other two variables. Some 3 of 

the indices of the given tables are visualised in Figure 16.   

4 Table 10 The performance of S2P SVR model under validations with different folds (K)  

C/20 capacity (mAh)        1C capacity (mAh)  

 RMSE RMSE RMSE RMSE  2  R2  Time  Time   RMSE RMSE RMSE  RMSE  R2   R2  Time Time  
 Folds  R 

 (Mean)  (std %)  (mean) (std)  (Mean)    (std %)  (mean) 
2 0.087  1.84 0.0008 0.016 0.991 0.0013 0.163 0.071  0.110 2.64 0.0013  0.031 0.970 0.0004  0.135 

0.071  
3 0.078  1.65 0.0009 0.019 0.992 0.0015 0.181 0.076  0.106 2.55 0.0021  0.041 0.974 0.0005  0.169 

0.075  
5 0.075  1.59 0.0014 0.029 0.992 0.0021 0.205 0.085  0.104 2.50 0.0023  0.048 0.979 0.0006  0.225 

0.102 10  0.074  1.57 0.0021 0.044 0.993 0.0032 0.298 0.102  0.096 2.31 0.0030  0.071 0.982 0.0012 

 0.470 0.145  

 15  0.073  1.55 0.0030 0.063 0.993 0.0034 0.442 0.133  0.094 2.26 0.0042  0.010 0.986 0.717 0.181  

C/2 capacity (mAh)       2C capacity (mAh)  

Folds RMSE RMSE RMSE RMSE  2  R2  Time  Time   RMSE RMSE RMSE  RMSE  R2   R2  Time 

Time R 

 (Mean)  (std %)  (std)  (Mean)  (std %)  (mean) 
2 0.074  1.68  0.002  0.05 0.991 0.003 0.166 0.067  0.139 3.39 0.0056  0.14 0.937 0.0028  0.145 0.065  
3 0.076  1.72  0.003  0.07 0.992 0.004 0.193 0.068  0.138 3.37 0.0062  0.15 0.940 0.0031  0.161 0.066  

 5  0.071  1.61  0.004  0.09 0.993 0.005 0.257 0.092  0.127 3.10 0.0073  0.17 0.976 0.0044  0.219 0.085  
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5  
6 Figure 16 K effect in K-Fold validation of SVR, (a), (b), (c), indices of M2S model, (d), (e), (f), indices of S2P model  

7 According to the figures, as the number of folds increases the error of the validation reduces, 

Figure 16 (a) and (d), 8 and the R2 index increases, Figure 16 (b) and (e). This highlights that the 

bias of the model and the degree of overfitting is  

9 reduced with increased K. The process time and computational complexity are on the other hand and is a conflicting 10 

decision factor when choosing K. As shown in Figure 16 (c) and (f), by increasing K, the number of training and test 11 processes 

increases, which causes an increase in the total process time. Considering the conflicting factors, K = 5 is a  
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rational choice for this problem, especially because the improvement rate after this value is rather small considering the 1 

complexity of calculations it adds.  2 

4.6 Dataset size effect  3 

In general, the accuracy of predictions based on machine learning is a function of the data size and the richness of data. 4 

While a large dataset may improve the accuracy in training phase it may raise concerns about overfitting. One of the 5 

questions that needs to be answered before transferring a model from lab scale to volume scale or from one manufacturer 6 

to the other is about the size of the data set required to obtain a desirable prediction accuracy. In order to answer this 7 

question and quantify the effect of the data size on model performance, in this section SVR models are trained by different 8 

fractions of the available data. This study is only conducted for S2P model which has a bigger data set coming from the 9 

designed experiments and further analysis for M2S will be performed in future works when more experimental data are 10 

available. Figure 17 shows the effect of the number of experiments (samples) on the prediction error of each half-cell 11 

battery characteristic. Results are accompanied with the RMSE of linear regression and decision tree to further highlight 12 

the SVR methods merits. Similar to the previous sections, all models are trained for 10 selections of data and at each 13 

attempt the data are selected randomly from the pool of all data (115 samples).  14 

 15 

Figure 17 The prediction accuracy in % with respect to the data size (a) C/20 capacity, (b) C/2 capacity, (c) 1C capacity, (d) 2C  16 

According to Figure 17, the model prediction error reduces as the data size increases. The trend is generally visible in 17 

all four predicted characteristics. It is worth noting that the decision tree method is showing significantly larger prediction 18 

error for energy capacities in all cases. While the accuracy of SVR and linear regression have almost same RMSE trend and 19 

reduction slope in response to reduction in data size for C/20, C/2 and 1C capacities, for 2C-rate capacity the SVR is showing 20 

the least error for smaller data sets. For all the 4 battery characteristics, SVR is giving accurate results even with small data 21 

sets and this is aligned with the findings of previous literature on the data size effect on model accuracy (Tange, Rasmussen, 22 

Taira, & Bro, 2017; Cunha, Lombardo, Primo, & Alejandro , 2020). The results suggest that the data size can be reduced in 23 

all cases according to the desired prediction accuracy. Obviously, the reduction in data size should be performed only by 24 

making sure that the smaller data set can still cover the range of inputs and targets and explain the variation in the data.  25 

4.7 Interpolation between characteristics  26 

As reported in the previous sections, a model trained via the experimental half-cell data with electrochemical 27 

characteristics at a specific C-rate can successfully predict the same C-rate capacity given the inputs of mass loading, 28 

thickness, and porosity. In this section is it shown that the model can also predict the performance at any other C-rates in 29 

between the minimum and maximum C-rates used for training, even if the associated data is not included in the training 30 

of the model. For this purpose, the C-rate (cycling current) is considered as the fourth input of the model beside mass 31 

loading, thickness, and porosity. Then, the model is trained via energy capacity data at all C-rates expect a particular one 32 

and finally that excluded C-rate data is used for validation.   33 

The predicted values and their relation to the true data are given in Figure 18 for three different scenarios. For scenario 34 

(a), C/20, C/2, 1C, and 2C data are used for training then C/5 capacity is predicted. The RMSE at this case is 0.128 (mAh) 35 

which is equivalent to 2.8% error, the R2 is 0.98. For scenario (b), C/20, C/5, 1C, and 2C capacities are used for training and  36 
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C/2 is used for validation. In this case the RMSE is less than 0.128 (mAh) or 2.9% with R2 of 0.97. In the final case, (c), 1C is 37 

excluded from the same training data pool and then validated. The prediction error in this case is 0.1502 (mAh) or 3.3% 38 

with R2 of 0.97. According to the results, the RMSE for predicting low C-rate capacities is very desirable, even if they are 39 

not considered in the training step of building the model. The error for 1C capacity is slightly higher than the other two 40 

which is due to its dependency to 2C capacity data that has higher variability compared to the C/20, C/2, and C/5 capacity 41 

data.   42 

The part 3 of Figure 18 has summarized the importance of each input in the model performance. According to the 43 

results, while C-rate (C) cannot act a as sole input to provide enough accuracy when interpolating the capacities, when 44 

used beside the electrode characteristics of mass loading (M), thickness (T), and porosity (P), it can help to predict the 45 

target. Figure 18, (a-3), (b-3) and (c-3) also confirm that mass loading, thickness, and C-rate (M, T, C) are the inputs with 46 

the most significant impact on the model accuracy.  47 

  48 

 49 

Figure 18 S2P Model capability for Capacity interpolation  50 

The ability of the models with an extra input of C-rate to get capacities at other cycling conditions is a very significant 51 

advantage for manufacturers as it will eliminate the need to run experiments in the labs for obtaining that the values. This 52 

is more significant at lower C-rates since they can be quite time consuming due to the smaller inputs current applied to 53 

cells for discharging purposes.  54 
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5.  CONCLUSIONS  55 

This study introduces a model-based quality assessment method for the Li-ion battery by analysing its manufacturing 56 

process parameters. The purpose is to determine the key parameters affecting the characteristics of the intermediate 57 

products during electrode (cathode) coating step and guarantee a desired final cell quality via data-centric analysis.   58 

This work is built upon a case study with 133 Li-ion battery cells manufactured in the pilot line of The University of 59 

Warwick (UK). It combines the design of experiments techniques, data acquisition, data preparation, machine learning and 60 

artificial intelligence to represent the battery production processes. It is based on a set of input and output variables that 61 

have not been studied in the previous literature and suggests a new methodology for model-based prediction of battery 62 

characteristics from the manufacturing variables. It is providing opportunities for in-situ control of the manufacturing 63 

processes and the ability to:  64 

• Predict battery electrochemical performance, i.e., energy capacity, based on manufacturing variables,   65 

• Define and quantify the correlation between manufacturing parameters and electrode/cell performance,   66 

• Facilitate flexible manufacturing without the need for resource intensive calculations and setups each time the 67 

quality targets are changed,    68 

• Perform model-based quality checks where experiments are hardly applicable (e.g., after battery cell assembly),  69 

• Distinguish cells with lower quality or higher probability to fail at earlier stages.   70 

This study paves the way towards optimised battery production with a reduced carbon footprint via limiting the waste 71 

of resources due to the failed processes and replacing characterisation tests with model-based predictions.   72 

The analysis during this study revealed that the cathode’s structural features are highly predictable, with about 5% 73 

error, via the coating manufacturing parameters of comma bar gap, coating ratio and web speed. Among the three selected 74 

features for cathode manufacturing modelling, comma bar gap and coating ratio had the most significant effects on the 75 

predictability of the model. Correlation analysis showed that the three parameters are highly independent with correlation 76 

coefficients weaker than 2%.  77 

The results also showed that half-cell energy capacities are highly predictable with circa 3% error at various loading 78 

Crates given cell features of electrode mass loading, thickness, and porosity. Mass loading and thickness were identified as 79 

the most important predictors for most of the C-rates, while electrode porosity was also important for predictions at higher 80 

C-rate. Thickness and mass loading were detected as strongly correlated features with correlation coefficients higher than 81 

98%. For electrochemical characteristics, the prediction accuracy reduced as the C-rate increased and this was because the 82 

environmental variables such as temperature become more significant in the cell performance at higher Crates and 83 

introduce more degrees of freedom. The analysis showed that SVR is a better method compared to liner regression and 84 

decision trees when dealing with battery manufacturing and performance data, while more advanced machine learning 85 

models of artificial neural networks and gradient boosted trees, were at the same levels of accuracy or only about 0.1% 86 

more accurate due to the rather small data set. It was also found that SVR can preserve the predictability with a smaller 87 

number of data and can tolerate measurement noise up to 6.5%.  88 

To further address the challenges of optimised battery manufacturing, future works are still required. There are four 89 

main directions under study by the authors.  90 

1) Models and experiments are sought to be extended in order to predict other the electrochemical characteristics 91 

such as internal resistance at various states of charge and gravimetric/volumetric capacity.   92 

2) More manufacturing steps are intended to be taken into account. Here the focus has been on calendared coating 93 

parameters, and it is worth considering the mixing and drying step data to reveal the interconnections.   94 

3) Apply methodology and models to anode coating and associated half-cells is another direction to be pursued. 95 

Although it is believed that the concepts would be the same, the manufacturing parameters are expected to have different 96 

effects on the anode’s features.   97 

4) Analysing the transformability of the methods to the full-cell scale as well as other types of cells, such as cylindrical 98 

and pouch cells is another area to be investigated more deeply in the future.  99 
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APPENDIX  100 

In order to increase the reproducibility of the results reported in this paper, the full list of the model parameters and setting 101 

are given here. The hyper parameters of all models have been set via a grid search method and optimisation in the ranges 102 

provided as the following:   103 

−  Support vector regression: Kernel= [polynomial degree 2 (quadratic), polynomial degree 3 (cubic), Radial basis 

function, linear], gamma of Gaussian kernel = scale, C = [0.1 1000], ε = [0.01 0.5].   

−  Neural networks: Number of hidden layers = [5 10], Maximum number of epochs = 50, Training function = 

LevenbergMarquardt backpropagation.  

−  Decision tree: Minimum samples split = [2 5], Minimum samples leaf = [1 5].  

−  Gradient boosted tree: Number of leaves = [2 50], Maximum depth = -1, Learning rate = [0.005 0.5], Number of  

estimators = [50 2000], Subsample for bin= [20 1000], Minimum child samples= [1 10]. The 104 

data of this study could also be shared upon request.  105 
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