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Abstract—This paper presents the Modified Flower Pollina-
tion Algorithm-based Multi-Layer Perceptron Neural Network
(MFPA-MLPNN) as an optimization technique for efficient power
flow management in a Smart Building Microgrid (SBMG) in-
tegrated with solar and wind generation, and Electric Vehicle
Batteries (EVBs) within grid connected structure while concur-
rently reducing optimization processing time. To achieve both
technical and economic superiority, two optimization objectives
are addressed. Firstly, a Demand Response (DR) framework is
harnessed to accommodate the stochastic behavior and forecast-
ing errors associated with intermittent sources. Secondly, the
degradation of EVBs is considered, ensuring an economically
viable power flow proposed strategy for both EV owners and mi-
crogrid (MG) authorities. Power generation of Variable Renew-
able Energy Sources (VRES) has been forecasted using MLPNN.
Battery degradation and system stability under the action of
the proposed topology have been evaluated using a simulation-
based environment. Results show a significant decrease in battery
degradation and processing time using the proposed MFPA-
MLPNN optimization architecture.

Index Terms—Smart Building Microgrid, Renewable energy,
Electric vehicle batteries, Energy management, Demand re-
sponse, Flower pollination algorithm.

I. INTRODUCTION

The energy consumption in buildings contributes to 40% of
global energy requirements, driving a need towards sustain-
able solutions to address climate concerns. Transformation in
energy and environmental-centered solutions is thus evident
from transitioning to low-carbon technologies and smart cities
[1], especially in developed nations. This shift involves a sig-
nificant share of Variable Renewable Energy Sources (VRES)
and widespread Electric Vehicle (EV) adoption [2].

Solar and wind power exhibit a stochastic character at-
tributed to the variability of their uncertain and unpredictable
parameters, causing fluctuations over time. Thus, it is impor-
tant to study the atmospheric viability of solar and wind energy
systems when examining economic as well as technical factors
for Smart Building Micro Grid (SBMG).

The existing literature on microgrid energy management so-
lutions primarily focuses on small buildings, often neglecting

uncertainties associated with various energy sources (such as
solar irradiance, wind speed, and vehicle travel plans) due to
processing time and complexity constraints in the optimization
process. Authors in [3] developed an energy management
system (EMS) for zero-energy building as a mix of Neural
Network and Model Predictive Control (NNPC). The building
is powered with a 1.75 kW hybrid system which includes
750 W of low-speed wind turbines and a 1 KW photovoltaic
(PV) unit, and alongside, two 100 Ah storage batteries. The
NNPC however suffers from computational complexity and
risk of overfitting. A hybrid approach integrating artificial
neural network (ANN) and bacterial foraging optimization
algorithm (BFOA) is presented in [4] to manage MG system
that contains wind turbine, PV system, and storage batteries.
An intelligent EMS strategy based on a Recurrent Neural
Network (RNN) and Ant-Lion Optimizer (ALO) algorithm is
described in [5] to identify energy scheduling in MG. The
BFOA and ALO face challenges such as limited exploration
in high-dimensional spaces and sensitivity to parameter tun-
ing, impacting their convergence and overall performance.
Developing optimization and ANN approaches are greatly
useful for small-scale MG that rely only on renewable energy
sources and high-capacity batteries for storage. Unlike existing
models addressing MG energy management, such as [6], the
proposed SBMG’s model formulation is intricate due to the
inclusion of commercial electric vehicle and residential charg-
ing demands. Despite extensive research optimizing power
flow using in-system batteries and studying battery health
under fast charging/discharging, there is a notable gap in
enhancing battery life under Vehicle-to-grid (V2G) or G2V
operations. In this work, EVs are employed as on-demand
backup power sources, strategically utilized during peak load
hours within the microgrid. This research primarily focuses
on improving battery life in V2G and G2V operations while
ensuring network stability and efficient utilization of connected
sources. The main objectives are as follows:

979-8-3503-3120-2/24/$31.00 © 2024 IEEE



2

Fig. 1: Smart building microgrid integrated with EVs.

II. SBMG ENERGY MANAGEMENT MODEL

This section aims to create a mathematical model, as
depicted in the detailed flowchart Fig. 3, which considers
fluctuating VREs, EVBs, and building electric demand. Each
time slot factors the variable household and VRE output,
unknown electricity cost, and State of Charge (SoC) for in-
coming EVBs. In this section, EVBs and VREs mathematical
modeling, Demand forecast model, Demand response, and
problem formulation are described.

A. Network modelling

1) EVBs mathematical modelling: The building is as-
sumed to have 300 residential EVs on the usual day and an
extra 80 EVs parked in the basements for visitors. Within the
building parking facility, Electric Vehicle Charging Booths
(EVCBs) are strategically placed to recharge EVs during
off-peak hours, capitalizing on the lowest electricity rates.
Subsequently, surplus electricity is supplied to grid authorities
at higher tariffs during peak hours. It is noteworthy that the
number of EVs connected to MG fluctuates based on the
routines of individual customers. The EV battery behavior
could be expressed as, e.g.[7]:

yi (t+ 1) = xi yi(t) + zi wi(t) (1)

where k is time index, i is a variable index presenting EV
owner ith ={1, . . . , N}. yi is ith battery SoC while xi shows
dissipation factor. The zi =

[
ηci, η

d
i

]
is charging/discharging

coefficient vector and wi is the power vector defined as
wi(t) =

[
wci (t)w

d
i (t)

]T
with wci and wdi showing charging

and discharging powers, respectively.
To anticipate the impact of widespread EVB adoption on

the electric demand landscape, a stochastic model is de-
vised to monitor the unpredictable charging and discharging
behavior of EV users. This model considers variables like
arrival/departure times, and daily mileage as random variables
due to their uncertain nature. This addresses the uncertainty
associated with EV charging operations aiding to effective

charging management. Eq.(2) and Eq.(3) representing depar-
ture and arrival times [8], respectively, are integral to this
stochastic approach.
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f(x | ψ, ζ, η) is the distribution parameter. Location scale
values are as follows: ψ = 8.08, ζ = 1.08, η = 2.10 and
variance κ = 3.92.
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Distribution parameters are selected as a normal distribution
with ψ and δ with their values of 16.4 and 2.76 respectively.
EV charging and discharging are approximated by using
departure and arrival time profiles.
To address high costs and capacity reduction in batteries for
short duration, real-life aging tests for Capacity Etiolation
(CE) are impractical due to expense and time constraints
[9]. Artificial Neural Networks (ANNs) emerge as a viable
solution for predicting battery lifetime. CE is influenced
by temperature, voltage, current, and SoC [9], incorporating
Depth of Discharge (DoD) and average SoC in calculations.
Battery capacity is determined at specific temperature T and
voltage V , with charge throughput Q measured in ampere-
hours and time t in days. Authors in [10], [11] suggest both
linear and square root aging for overcharge throughput Q. In
idle mode, SoC and temperature significantly impact capac-
ity and thus for precise CE estimation, real-time data from
NASA Ames Prognostics Data Repository [12] is utilized.
The dataset contains battery currents, voltages, temperature,
and corresponding SoC at different ambient temperatures, and
serves as an ideal resource for training the ANN to predict
battery CE dynamics. The neural network architecture depicted
in Fig. 3 is employed for battery CE prediction.

2) VRES mathematical modelling: The VRES consists of
solar and wind energy sources, with consideration of zero
marginal cost to maximize the clean power utilization given
as:

PR(t) = PPV (t) + Pwind (t) (4)

where PPV (t) and Pwind (t) denote the solar and wind energy
at a given time instant t, respectively. Available solar energy
has been evaluated by using solar irradiation data of Karachi
which is sourced from the World Bank Group [13]. On the
other hand, the total available wind energy in Karachi is
evaluated using the wind power potential from [14]. The
VRES output power on an hourly basis is shown in Figs.
4 and 5, respectively. To introduce forecasting of available
renewable power, a neural network is trained with inputs
(wind speed, temperature, and irradiance) and targets (wind
and solar power). The use of a prediction framework for VRES
generation ensures the capability of the proposed architecture
to be installed at any realistic scenario-optimization using
predicted information. The neural network architecture given
in Fig. 3 is used for the prediction of VRES power generation.
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Fig. 2: Electric load of SBMG (hourly basis)

Fig. 3: Flowchart Diagram of proposed MFPA-MLPNN archi-
tecture

Fig. 4: Output power of Solar (hourly basis)

Fig. 5: Wind output power (hourly basis)

3) Demand forecast model: The primary goal of demand
forecasting is to enhance cost efficiency, ensuring that the total
power demand for the entire building, illustrated in Fig. 2,
stays below a specified threshold. This allows for an even
distribution of loads throughout the day. Future demand fore-
casting employs a neural network with current load demand
as input and future demand as the target, depicted in Fig. 3.

4) Demand response: The energy management system
prioritizes minimizing power consumption during peak hours
by shifting non-critical loads to off-peak periods. Smart meters
monitor utility demand limits, and the control room ensures
critical loads remain unaffected. Load-shifting decisions are
based on priority levels, reflecting consumer preferences and
promoting flexibility. This system enhances reliability, flexi-
bility, and cost-effectiveness in electricity usage, optimizing
overall efficiency. The control room’s demand response signal
guides the power consumption of controllable non-critical
loads, contributing thus to efficient energy management.

5) Problem formulation: The problem involves simultane-
ously minimizing two computing objective functions: overall
hourly load demand and batteries CE, while adhering to
various equality and inequality constraints. The overall load
demand comprises a fixed load throughout the day and a
variable load allowed only during off-peak hours, as expressed
in (5).

PL =
∑24

t=1
PF (t)+

∑18

t=1
PV (t)+

∑21

t=19
PV (t)+

∑24

t=22
PV (t)

(5)

minimize
∑24

t=1
PL(t) = PL (6)

where: PL is the overall load demand of the building in kWh.
PF is the fixed electric load with continuous operation 24/7
in kWh. PV is the variable electric load having variable
off-peak hours operation in kWh. t is the time interval in
h. Minimize the objective function, representing the overall
load demand, while adhering to the constraint that the total
generation must equal the sum of power generated by solar
and wind sources. (7) shows the total generation (PG (t)) at
time t and the inequality constraint based on the generators’
power limits.

PG(t) = PPV (t) + Pwind (t) & Pmin
G ≤ PG(t) ≤ Pmax

G (7)

where Pmin
G and Pmax

G are min and max values of real
powers allowed from the generators, respectively. However,
for comparison purposes, the total CE of an EV battery can
be minimized by taking the sum of all day capacity loss due
to charging and discharging as:

minimize
∑24

t=1
Ce(t) (8)

The proposed battery CE model adheres to planning and
operation constraints, applied to each time interval within the
optimization time horizon. It ensures that the charging and dis-
charging power of an EV stays within the specified minimum
and maximum limits at each time interval, as outlined in (9).

Pmin
c ≤ Pc(t) ≤ Pmax

c & Pmin
d ≤ Pd(t) ≤ Pmax

d (9)

where Pmin
c and Pmax

c are the minimum and maximum limits
of charging powers for the EV battery, respectively. Pmin

d
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and Pmax
d are the minimum and maximum discharging power

limits, respectively. The V2G discharging power, PV 2G(t), is
equal to the sum of powers from all EVs available at parking
(PV 2G(t) = NAv ∗ Pd). Where NAv is the number of parked
EVs available for discharging towards the grid and have SoC
more than SoCmin.

The total power available at the supply side should be
greater than the required power at the demand side of SBMG,
as a constraint (PL(t) ≤ PR+PV 2G). The EV batteries should
charge and discharge to minimize battery CE following the
constraints given below:

SoCmin ≤ SoC(t) ≤ SoCmax & DoD(t) = 100%−SoC(t)
(10)

Tmin ≤ T (t) ≤ Tmax & Vd ≤ V (t) ≤ Vc (11)

where SoCmin and SoCmax are the minimum and maximum
limits of EV battery SoC, respectively. DoD(t) and SoC(t)
represent Depth of Discharge (DoD) and SoC at each time
instant, respectively. Tmin and Tmax are the minimum and
maximum limits of cell temperature for the EV battery,
respectively. Voltage limits are Vd for discharging and Vc for
charging.

B. Control algorithm
1) Modified flower pollination algorithm based on multi-

layer perceptron neural network (MFPA-MLPNN): Yang et.
al. created the Flower Pollination Algorithm (FPA) [15]. It has
been used in this paper to optimize the power flow for demand-
side load management and to keep the process economical
by decreasing the battery degradation process. The worldwide
pollination and flower constancy [16] can be depicted using
(12)−(14)

yt+1
n = ytn + αL(ω)

(
x∗ − ytn

)
(12)

L ≈ ωτ(ω) sin(πω/2)

π

(
1

β1+ω

)
(β >> β0 > 0) (13)

yt+1
n = ytn + ε

(
yti − ytk

)
(14)

L(λ) is the Lévy flight-based step size, which corresponds
to the pollination’s strength. τ(ω) is the standard gamma
function, and the distribution is suitable for large steps β > 0.
where yti and ytk are pollen from separate flowers of the same
plant species, imitating flower consistency in a small area. As
yti and ytk are from the same species in a local random walk,
the ε is sampled from uniform distribution over the interval
[0, 1].

The computational time challenge in global pollination is
mitigated by employing a modified flower pollination al-
gorithm based on a multi-layer perceptron neural network
(MLPNN) architecture. Thus, neural networks are used to
establish input-output relations for system dynamic under-
standing. The energy management architecture for SBMG’s
multiple objectives is simulated using MFPA in MATLAB,
addressing equality and inequality constraints. The objective
function given below:

Minimize F =
∑24

t=1
[PL(t), Ce(t)] (15)

TABLE I: Parameters and values

Symbol Value
VRES Useful Life (n) 25
Total capacity of wind farm (Cw) 2300kW
Capacity Factor (Cp(w)) 40%
Total capacity of solar plant (Cpv) 800kW
Capacity Factor (Cp(pv)) 30%
Daily EV resident and visitor park batteries (V1,2) 300, 80
Charging and Discharging Coefficient of batteries of
EVs (zi)

0.1

Max capacity of batteries of EVs (Zmax) 85KWh
Max and Min SoC of batteries of EVs (YH ). (YL) 70kWh, 10kWh
Max charging and discharging power of EV’s batter-
ies (WH ), (WL)

60kW, 60kW

Dissipation factor of Batteries (xi) 1

The objective functions of MFPA capturing the relationship
between load demand, CE, and input variables, are used as
input-output data for training the MLPNN controller. Various
scenarios are simulated to collect data for training, validation,
and testing sets. The MLPNN is trained using the same
inputs as MFPA as y(t) = f(x(1), x(2), x(3), . . . x(n)),
where, x(1), x(2), x(3), . . . x(n) are input states of MLPNN
controller and y(t) presents output states (targets). The opti-
mization problem involves minimizing a combined objective
function, F , comprising load demand (PL) and CE for each
time slot. MLPNN is employed to estimate day-ahead load
demand and CE using input data such as wind and solar output
power, estimated charging/discharging, temperature, voltage,
and current of EV batteries. The regression model, informed
by training data, is used to derive predictions, with a learning
algorithm optimizing the model during training. The MFPA
data is divided for training (75%) and validation (25%).

III. SIMULATION AND RESULTS

A comparative investigation is performed in MATLAB to
demonstrate the efficacy of the proposed power flow manage-
ment in handling network overloading during peak hours. The
operational parameters for VRES are given in Table. I. The
Tesla Model S [17] is selected for the modeling process and it
has a battery of 85 kWh capacity. The acceptable SoC values
for minimum discharge and maximum charging are considered
to be 10 and 80 % respectively.

The MFPA iteration for time instant optimization averages
120 seconds, making it impractical for real-time applications.
In contrast, the MLPNN takes less than 5 seconds on average
to solve the multi-objective function. The trained MLPNN
demonstrates significantly shorter simulation times compared
to implementing MFPA for power flow management in the
proposed SBMG architecture as shown in the comparative
analysis in Fig (6).

Results in Fig. (7) compare optimized and original power
consumption and the maximum limits. The actual power de-
mand surpasses the allowable limit, resulting in network load
issues, subsequent overloading, and eventual network failure.
The proposed optimization algorithm effectively suppresses

the network electric demand from the grid below the allowed
range by leveraging the capabilities of in-system EVBs. The
total generated output power from wind and solar are shown
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Fig. 6: Comparative analysis of optimization time

Fig. 7: Comparison of overall load demand: optimized versus
original

in Fig. (8). Noteworthy, wind and solar capacities are selected
following the observed load demand of the SBMG. Fig. (9)
depicts optimized residential EV charging and discharging in
the building within the SBMG network, based on estimated EV
availability from departure and arrival times. Before MFPA-
MLPNN optimization, linear battery charging led to network
overloading. Post-optimization, EVBs dynamically pull power
during off-peak hours, reducing the grid load. Notably, this
approach contributes to network overload control and ensures
sufficient charging for EVB functionality. Similarly, external
EV visitors adhere to curtailment limits, as shown in Fig.(10),
ensuring overall charging within constraints through two-way
communication links. This enables EVBs to be effectively

Fig. 8: Total power generated from VRES

Fig. 9: All regular EVs whose batteries are charg-
ing/discharging at the building on a typical day

Fig. 10: All irregular EVs whose batteries are charg-
ing/discharging at the building on a typical day

utilized for network overload management even after discon-
necting from SBMG, optimizing power consumption and risks
associated with network failure.

The result in Fig.(11) illustrates the battery capacity
throughout its life cycle without V2G participation and with
optimized controller-enabled V2G. The naturally decreasing
graph lines depict capacity degradation. This etiolation esti-
mated using manufacturer-provided base values aligns with
a linear decrease as observed from the manufacturer’s data.
As depicted in Fig. 11, the battery takes 1270 cycles without
MFPA-MLPNN and 2701 cycles with MFPA-MLPNN to reach
their respective critical states. The proposed optimizer extends
the life cycles of participating batteries, aligning to maximize

Fig. 11: Battery Capacity degradation over life
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battery health. This increase in battery life reduces the V2G
penalties to the Microgrid (MG) and the EV owners. The
results shows a significant improvement in battery life in V2G
and G2V operations, ensuring network power flow stability
and efficient utilization of connected resources.

IV. CONCLUSION

In this paper, the role of EVBs has been highlighted in opti-
mizing SBMG power flow management specifically addressing
the intermittent behavior of VRES. The proposed MFPA-
MLPNN has demonstrated its efficacy through comprehensive
testing that incorporated the stochastic nature of both VRES
and EV driving cycles, including arrival and driving patterns.
The network demand stress on the utility grid is adeptly
diminished by the proposed control algorithm, which dynam-
ically regulates the connected flexible loads and manages the
charging and discharging of EVBs. With optimized operation,
electric demand stays below the allowed maximum network
power flow capacity. Additionally, this proposed controller
significantly reduces EVB degradation resulting from V2G
and G2V operations by controlled charging/discharging cycles,
adeptly managing the EVB degradation process and minimiz-
ing it to the utmost extent, adding a significant increase in
the battery life cycle. Integrating EVBs into the microgrid
eliminates the need for grid expansion, reducing overall elec-
tricity costs significantly. Future work would aim at detailed
techno-economic analysis to demonstrate the effectiveness of
the proposed optimized model and its impact on the overall
cost-effectiveness of the grid system.
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