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Abstract: In order to systematically shift existing control and management paradigms in distribution
systems to new interoperable communication supported schemes in smart grids, we need to map
newly developed use cases to standard reference models like Smart Grid Architecture Model (SGAM).
From the other side, any new use cases should be tested and validated ex-ante before being deployed
in the real-world system. Considering various types of actors in smart grids, use cases are usually
tested using co-simulation platforms. Currently, there is no efficient co-simulation platform which
supports interoperability analysis based on SGAM. In this paper, we present our developed test
platform which offers a support to design new use cases based on SGAM. We used this platform
to develop a new scheme for wide area monitoring of existing distribution systems under growing
penetration of Photovoltaic production. Off-the-shelf solutions of state estimation for wide area
monitoring are either used for passive distribution grids or applied to the active networks with wide
measurement of distributed generators. Our proposed distribution state estimation algorithm does
not require wide area measurements and relies on the data provided by a PV simulator we developed.
This practical scheme is tested experimentally on a realistic urban distribution grid. The monitoring
results shows a very low error rate of about 1% by using our PV simulator under high penetration of
PV with about 30% error of load forecast. Using our SGAM-based platform, we could propose and
examine an Internet-of-Things-based infrastructure to deploy the use case.

Keywords: smart grid architecture model; state estimation; wide area monitoring;
distribution systems; real time simulation; PV penetration

1. Introduction

Nowadays, we are moving from hierarchical power distribution networks to smart distributed
systems, where control policies (or services in general) and Renewable Energy Sources (RES) are
pervasively deployed across distribution networks. This distributed power network, also known
as smart grid, must provide features to be self-healing and resilient to anomalies [1]. To foster this
transition and to systematically shift existing control and protection paradigms to a full smart grid
view, we need to map new use cases and services to Smart Grid Architecture Model (SGAM) [2].
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As defined in [2], SGAM is a methodology that helps in designing new smart grid’s use cases
and services with an architectural approach. This methodology allows a neutral representation of the
involved technologies highlighting their interoperability supported by standards and, consequently,
enabling standards gap analysis. For this purpose, SGAM defines a three-dimensional model
(see Figure 1) consisting of five interoperable layers: (i) Component Layer, (ii) Communication Layer,
(iii) Information Layer, (iv) Function Layer and (v) Business Layer.

Figure 1. Smart grid architecture model (SGAM) with interoperability layers.

To test and validate novel services and algorithms for smart grids, a near real-world environment
is needed [1]. Hence, to study the interoperability in smart grids based on SGAM, we need to
combine different tools and simulators that concurrently reproduce the behaviour of the five SGAM
layers for different use cases. Thus, we need a distributed real-time co-simulation framework able to
simulate systems and to test and verify performance of new general-purpose services. In this view,
distributed real-time simulations (RTS) can support the research efforts to meet emerging lab test
requirements [3–5].

RTS is the most reliable tool for electromagnetic transient analysis (EMT) in power systems,
which is greatly flexible and scalable thanks to its computation parallelism feature. Different software
algorithms and functions, as well as various hardware devices, could be tested using RTS through
so-called software in-the-loop and hardware in-the-loop set-ups. This can reduce costs and enable
more complete and continuous testing of the entire system without interruption, with many possible
configurations, and safely under possibly dangerous conditions.

Considering the importance of both SGAM and co-simulation, and noting the great contribution
which RTS could add, we developed a distributed SGAM-based co-simulation platform that integrates
RTS functionalities with distributed software components for smart grid management (e.g., device
management, data collection and services) so that use case developers could also partially use
real-world systems by coupling hardware devices or using actual measurements in real-time.
The system under test could be replaced by the real physical system as the last phase of test and
validation before completely deploying the new system in the field. In this view, all physical
components of the electric system can be modelled and simulated by Digital Real Time Simulators
(DRTSs). However, some of these components like intelligent electronic devices including meters
could be decoupled from the core of DRTS, in case they are real (physical) devices or prototypes.
This so-called hardware in-the-loop experiment enables more complete and real-like testing of the
system for interoperability analysis of new devices.
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ICT (Information and Communication Technology) infrastructure gives to the Smart Grid the
character of a complex cyber-physical system [6]: hardware and software elements acting together
to foster innovative automation and control process in the grid management. Unfortunately, the
cost of developing and deploying real-world testbed to assess innovation feasibility is too high
and risky. Resiliency of the power grid could come under stress during the testing of new Smart
Grid technologies. Hence, the co-simulation of the communication network and the power system
infrastructure has become of primary importance in the Smart Grid challenge to determine the benefit
of these innovation [7,8].

In this paper, we present a novel distributed real-time co-simulation framework based on SGAM.
To prove platform functionalities, we also propose a novel algorithm for wide area measurement-free
monitoring of smart grids under high PV Penetration. Our co-simulation framework is flexible on
integrating and testing different services, even concurrent, to realize distributed intelligence in smart
grids. The scientific novelty of the proposed co-simulation framework consists of:

• providing a test and validation tool to evaluate performance and operation of novel smart grid’s
use cases based on SGAM;

• providing modularity, flexibility and scalability to easily test new use cases in a plug-and-play
fashion;

• allowing an interoperability analysis of all the entities either hardware or software) involved in
the simulation scenario;

• integrating digital real-time simulators to grant even the opportunity of performing hardware
in-the-loop simulations;

• integrating ICT network simulators (i.e., OMNeT++ [9]) to study the impact of new
Internet-connected technologies (i.e., Internet-of-Things devices) on the communication networks;

• integrating third party software (e.g., smart metering architectures [10]) to allow distributed software
in-the-loop simulations by exploiting even data collected by real-world Internet-of-Things (IoT)
devices.

As mentioned before, to prove our platform functionalities, we proposed also a novel solution to
use distribution state estimation for active distribution networks in which rooftop PV panels are being
increasingly installed in the low voltage grid, while no wide area measurement is available. There are
currently several methods used in distribution state estimation of active networks; however, these
methods need sparse real-time measurements, which requires a communication infrastructure with
large bandwidth and high reliability. Most current networks do not have wide area measurements,
while they are rapidly accommodating more and more distributed generations, especially rooftop PV
panels in low voltage residential grids. The novelty of our proposed distribution state estimator is to
monitor these evolving smart grids during the transitory period when smart meters are not widely
deployed in the system for collecting real-time measurements from PVs.

The rest of the paper is organized as follows: Section 2 reviews relevant literature solutions.
Section 3 presents the proposed software architecture for general purpose services in smart grids based
on SGAM. To better explain what the general and specific elements are, we map our developed use
case to SGAM. Section 4 then introduces in detail our use case solution for wide area monitoring of
smart grids with high penetration of PV production, without collecting measurements from secondary
substations or prosumers. Section 5 presents both the case study and the experimental results of the
use case. Finally, Section 6 discusses the concluding remarks.

2. Related Work

In this section, we shortly discuss three main contexts based on them we developed our
approaches to present in this paper. Firstly, we introduce Smart Grid Architecture Model as a standard
and greatly recommended solution to map and analyse newly developed use cases in smart grids.
Secondly, we review some existing advanced co-simulation platforms designed or proposed for smart
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grid studies. Finally, we briefly discuss current approach of distribution state estimation for smart
grids with Distributed Generation (DG) and highlight its limitation. The contributions of our work
will be then explained referring to the presented literature solutions.

2.1. Smart Grid Architecture Model

Smart Grid Architecture Model (SGAM) [2] offers a support to design new use cases in smart
grids with an architectural approach by which interoperability viewpoints can be well represented.
To design new services compliant with SGAM, the following main questions have to be addressed:

1. What are physical components required?
2. How should the information be exchanged?
3. What data should be communicated?
4. What are the needed functions?
5. What are business and regulatory constraints to be applied?

As shown in Figure 1, these considerations respectively form the five SGAM interoperable
layers: (i) Component Layer, (ii) Communication Layer, (iii) Information Layer, (iv) Function Layer and
(v) Business Layer. Each layer reports the two dimensions of the Smart Grid Plane: zones and domains.
Zones represent the hierarchical levels of power system management: Process, Field, Station, Operation,
Enterprise and Market. Domains cover the complete electrical energy conversion chain: Bulk Generation,
Transmission, Distribution, Distributed Energy Resources (DER) and Customers Premises.

According to [2], the Component Layer consists of all the physical components playing in a smart
grid context including hardware devices, physical entities and infrastructures. The Communication
Layer includes all the protocols and mechanisms needed to exchange information among actors.
The Information Layer defines information objects and flows, type of data exchanged among actors (e.g.,
measurements, alarms and commands) and underlying canonical data models. The Function Layer
consists of smart services in an advanced distribution management system (e.g., advanced outage
management, demand response and distributed energy resources control). Finally, the Business Layer
defines business objectives, political and regulatory framework to develop a use case.

2.2. Co-Simulation Platforms

This section reviews literature solutions on co-simulation platforms for power systems. In [11],
Hopkinson et al. present Electric Power and Communication Synchronizing Simulator (EPOCHS)
that links PSCAD/EMTDC electromagnetic transient simulator, Positive Sequence Load Flow (PSLF)
electromechanical transient simulator and ns-2 communication simulator [12] through a federated
simulation based upon custom interface inspired by IEEE 1516 High Level Architecture (HLA)
standard [13]. EPOCHS is a breakthrough technology, since it is the first known co-simulator for
realizing simulation of power systems and communication networks.

HLA plays a fundamental role in co-simulation techniques and it is commonly used to
(i) synchronize different simulation engine, (ii) manage timings between different simulation
environment, and (iii) exchange data between simulators. INSPIRE [14], an HLA based co-simulation
platform, has been presented as a solution to interconnect a power system simulator called DIgSILENT
PowerFactory, a communication network simulator called OPNET and other continuous time-based
application modelled in MATLAB, JAVA, GNU R and C++.

A different approach was used to design GECO [15], which interfaces PSLF and ns-2 through a
global event-driven mechanism to manage the co-simulation orchestration. Another platform that
exploits an event-driven approach is Mosaik [16], a framework for modular simulation of active
components in Smart Grids that adopts a discrete event-based simulation approach to execute
models. In [17], Mosaik has been used to address integration of DRTS such as RTDS to address
a Power-Hardware-in-the-Loop co-simulation platform.
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Another approach refers to ad hoc co-simulation infrastructure, such as SGSim [18,19]. SGSim
combines Omnet++, another communication network simulator, and OpenDSS to simulate and
investigate new approaches of Smart Grid applications. Moreover, Bian et al. [20] present a real-time
co-simulation platform using Opal-RT and OPNET for analysing Smart Grid performance exploiting
the possibility to interface OPNET simulation environment with the real world through Internet
Protocol (IP). Venkataramanan et al. [21] present an ad hoc co-simulation framework to design a testbed
for microgrid cyber-physical analysis by combining (i) RTDS, (ii) a communication network emulator
using Common Open Research Emulator (a.k.a. CORE) and (iii) Open Platform Communication
based on FreeOPCUA. A more complex ad hoc approach has been proposed in [22] where JADE, a
popular multi-agent platform, has been connected to both PSCAD electromagnetic transient simulator
and OPNET.

The presented literature solutions do not follow SGAM that supports the design of services
highlighting the interoperability among the actors in the smart grid system. Moreover, most of
literature solutions are not easy to use and they are more often monolithic rather than distributed
software. Indeed, distributed co-simulation platforms allow even to easily include new software
components (e.g., new algorithms or services) in a plug-and-play fashion, making the whole platform
scalable and flexible. Finally, literature solutions lack the integration of IoT devices and third-party
platforms, such as smart metering architectures [10], that can feed the algorithm to be tested with
real-world data, even in (near-) real time.

2.3. Solutions for Wide Area Monitoring

Wide area monitoring of modern distribution systems is a crucial application in distribution
management systems (DMS) in which Distribution system State Estimator (DSE) plays a very important
role. The state estimator provides a real-time estimate of the present operating state using the system
model and a set of measurements obtained from meters. It provides an estimation of node voltages,
branch currents, active and reactive power injections and power flows in all parts of the system.

In traditional distribution systems, where no distributed generation (DG) exists, the voltage
and current measured at the head of the feeders are the only available measurements to be used for
wide area monitoring. In these networks, conventional distribution state estimation methods could
accurately estimate the whole network state. However, vast integration of DGs is shifting the operation
of traditional networks from a passive system towards active networks. Although, from many aspects,
this transition provides lots of opportunities, but it also creates emerging challenges to the system
monitoring and management; conventional methods for state estimation do not work properly or
accurately with only measurements from head of feeders.

A solution to this problem is to deploy a wide area measurement system such as Advanced
Measurement Infrastructure (AMI), supported by many newly installed smart meters. Despite
the various methods proposed [23,24], due to the limited number of measurements downstream
from the substations, only a limited number of utility companies have been implemented the state
estimation [23]. This means along with growing penetration of DGs, more and more measurement
devices should be installed in the network to efficiently deploy state estimation. However, different
fields of smart grid technologies do not evolve with the same pace. This has led to current distribution
systems with a high rate of DG integration (mainly Photovoltaic in low voltage grids), but no
commensurate monitoring infrastructure.

There are a number of methods proposed in the literature for distribution networks with
DER [25,26]. However, such methods need sparse real-time measurements, which requires a
communication infrastructure with large bandwidth and high reliability [27]. The problem is that the
current distribution networks are in a transition period towards active distribution networks which is
not well supported by developed measurement and communication infrastructures.

In this context, we need a solution for this transitory period to support wide area monitoring of
these active networks, independently from wide area measurements.
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2.4. Contribution

Referring to the three main topics discussed in the previous sections, we discuss hereafter the
scientific novelty of our solution.

The proposed co-simulation infrastructure aims at easing tests and validations of general-purpose
services to realize distributed intelligence in a realistic laboratory environment. Differently from
literature solutions, it has been designed to be distributed and fully compliant with SGAM so that
developers can easily deploy their new components (i.e., new services or simulation modules) in
a plug-and-play fashion and assess the interoperability with the other actors (either hardware or
software) playing in the smart grid. On the one hand, prior to deploying a newly developed software
algorithm or hardware prototype in the real smart grid, it is recommended to map and describe it in
SGAM to evaluate its interoperability; on the other hand, any new installation should be supported
by some ex-ante lab tests and validations which require simulations; reviewing literature, we found
some gap to link the two requirements. Therefore, we developed a laboratory-based co-simulation
platform which follows SGAM structure and eases interoperability analysis of new use cases. To allow
the communication among its component, our platform exploits IoT communication paradigms and
technologies which makes the platform modular, scalable, and flexible [28].

In its core, our co-simulation platform integrates both a DRTS (i.e., OPAL-RT) and an ICT network
simulator (i.e., OMNeT++ [9]). DTRS simulates power grids allowing also flexible and scalable software
in-the-loop and hardware in-the-loop techniques, whilst the ICT network simulator is needed to study
the impact of new Internet-connected technologies (i.e., IoT devices) on the communication networks,
evaluating their performance and congestions (e.g., time-delay and packet losses). In addition, our
platform provides distributed software components (i) to integrate and manage heterogeneous devices,
(ii) to collect data, (iii) to define categories, properties and relations between the actors and (iv) to
describe information flows and data models. These features allow interconnecting many virtual or
physical devices [29], with other simulation modules and/or third-party software (e.g., smart metering
architectures [10]) to allow distributed software in-the-loop simulations. Finally, thanks to the adopted
IoT communication paradigms, our co-simulation platform is ready to receive real-world data, even in
(near-) real time, that can feed the algorithms to be tested.

To demonstrate how our platform could support developing new control, monitoring, or
management schemes for smart grids, we designed a new use case for the above-described problem of
wide area monitoring in active distribution networks. Some related works were briefly discussed in
Section 2.3, but all methods could handle either passive networks using measurements of head
of feeders, or active networks using a wide area measurement infrastructure. We developed a
scheme, considering the standard requirements of SGAM interoperability layers, to perform state
estimation in distribution systems with high Photovoltaic (PV) production without retrieving wide
area measurements (i.e., from secondary substations or prosumers). This algorithm uses a PV simulator
which estimates PV production in the network and provides additional pseudo-measurement for state
estimation.

3. SGAM-Based Co-Simulation Architecture

Future smart grid will be complex and distributed systems that will bring new challenges to the
system analysis, control and management. In this context, the interdependency and interoperability of
the different distributed actors playing in a smart grid requires wide and accurate test and analysis
before field implementation.

In this section, we present our proposed co-simulation architecture that follows the SGAM
model depicted in Figure 1. It is a distributed infrastructure that has been designed to be flexible
and scalable for testing different general-purpose smart grid’s services in a plug-and-play fashion.
Our architecture exploits Internet-of-Things (IoT) communication paradigms and technologies that
allow a fast bidirectional communication among the actors in the smart grid, either hardware or
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software. Figure 2 depicts our co-simulation architecture for each SGAM layer. The rest of this section
describes each layer of the proposed co-simulation architecture in more detail.

(a) Component Layer (b) Communication Layer

(c) Information Layer: Business context view (d) Information Layer: Data model

(e) Function Layer (f) Business Layer

Figure 2. Scheme of the proposed SGAM-based co-simulation architecture.
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3.1. Component Layer

The Component Layer (see Figure 2a) includes all the possible hardware technologies that can
be installed to perform different services in a distribution network. As shown in the figure, the
distribution network is constantly monitored and actuated by a certain number of heterogeneous
Devices that exploit a Concentrator to send information and receive commands to/from a clusters of
servers where Distribution Management System, Message Broker, Data Storage and Services are deployed.
These servers can be physically in a remote server farm or in the cloud. The Distribution Management
System is a collection of applications used by the Distribution System Operators (DSO) to monitor,
control and optimize the performance of the distribution system and manage it. The Message Broker
allows an asynchronous bidirectional communication among the actors in the system through the
MQTT (Message Queue Telemetry Transport) protocol [30]. The Data Storage consists of different
non-relational databases that are specifically developed for Big Data management ensuring scalability
and clusterization. More in depth, our co-simulation architecture implements: (i) InfluxDB [31], an
open-source time-series database, to collect measurements from devices and (ii) MongoDB [32], an
open-source document-oriented database, to store all the relation between the actors in the system.
Finally, Services are all those distributed algorithms needed to maintain and enhance the operational
status of the smart grid, such as PV Simulator and Distribution State Estimator (see Section 4).

In our co-simulation infrastructure, the distribution network can be either real or simulated
through Digital Real-Time Simulators (DRTS), such as OPAL-RT. DRTS reproduces the behaviour
of a real electric distribution system, which is modelled as a testbed for testing and validation
of new technologies, management algorithms or control strategies. DRTS allows also to perform
software in-the-loop or hardware in-the-loop simulations [33].

For power system electromagnetic transient analysis (EMT), real-time simulation is very reliable
with flexibility and scalability due to its computation parallelism feature. All physical components of
the electric system can be modelled and simulated by DRTS; this would correspond to the process,
field, and station zones in SGAM. However, some of these components like intelligent electronic
devices including meters which are normally mapped to the field zone, or data concentrators which are
mapped to the station zone could be decoupled from the core of DRTS, in case they are real (physical)
devices or prototypes. This so-called hardware in-the-loop experiment enables more complete and
real-like testing of the system for interoperability analysis of new devices.

3.2. Communication Layer

The Communication Layer includes all the protocols and the software components to allow a
fast bidirectional communication over the Internet. As shown in Figure 2b, our co-simulation platform
exploits two main protocols for the communication over the Internet: (i) MQTT [30] and (ii) REST
(Representational State Transfer) [34], whilst the heterogeneous Devices deployed along the smart grid
communicates with different low-level protocols either wireless or wired, such as ZigBee, Wi-Fi or
PLC.

MQTT protocol [30] enables an asynchronous bidirectional communication to send data in
(near-) real time. It implements the publish/subscribe approach [35]. This paradigm removes the
interdependencies between information producer and consumer that increases the scalability of the
whole co-simulation platform [28]. This allows for developing distributed services and algorithms
that can react to specific events in (near-) real-time ensuring independency from data-sources. On the
other hand, REST [34] implements a synchronous communication based on the request/response
communication paradigm, which is complementary to publish/subscribe. REST represents a system
for transmitting data over the HTTP protocol and it is widely used to develop Web Services.

To integrate the heterogeneous devices in our co-simulation platform and to enable the
interoperability among them, we developed different Device Connectors (DeCs). DeC is software
component that acts as bridge between our platform and the underlying technologies providing MQTT
functionalities, both for publishing and subscribing. In particular, it converts information coming from
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devices into a common data-format adopted by our platform and send it through the MQTT protocol,
and vice versa. Each technology needs its own DeC, which is a key component to allow us in using
each low-level technology transparently. To develop the different DeCs, we followed a methodology
described in [36]. DeCs are installed in the Concentrators, thus, physically closed to the devices to be
integrated. In addition, we developed a specific DeC to integrate also DRTS (e.g., OPAL-RT) into our
co-simulation platform.

To assess the impact on data transmission according to different Internet media, the Communication
Layer includes also OMNeT++ [9], which is a framework to simulate different physical layers and
protocols in communication networks (e.g., 5G, 4G and fibre optics). We integrated OMNeT++ in our
co-simulation platform following a methodology in [37,38] based on socket connections. In a testbed
environment, OMNeT++ can be installed in a server that works as a virtual router that simulates the
different network technologies. In this view, all the traffic generated by the actors in the co-simulation
platform is routed through our OMNeT++ virtual router to evaluate delays, congestions and packet
losses in the communication for each Internet media.

3.3. Information Layer

The Information Layer defines categories, properties and relations between the actors, either
hardware or software, playing in a smart grid domain (e.g., places, substations and devices).
This includes information flows and data models (see Figure 2c,d, respectively). This information is
georeferenced and is handled by the Asset Manager, which can be installed in a server together with
the Data Store where this information is collected.

In case of the proposed wide area measurement-free monitoring system (see Section 4), Figure 2c
shows the relations among senders and receivers together with the different information flows. Devices
send VMEAS and IMEAS to Distribution Management System, Data Storage and Services through the
Concentrator and the Message Broker via MQTT, whilst the Distribution State Estimator (DSE) receives
information about PV estimation, PVEST , and provides as output VEST and IEST to Distribution
Management System via REST.

The actors in the proposed platform exploit the JSON open-standard format to exchange
information among them. We choose JSON because it is becoming a common data-format for data
exchange in the Web and across IoT devices. It uses human-readable text to transmit data objects
consisting of key-value pairs.

Regarding the common information model, our platform is compliant with both IEC 61968
and IEC 61850 standards [39] (see Figure 2d). IEC 61968-4 [40] defines the information model
for data exchange between devices and networks in electrical distribution systems, whilst
IEC 61850-7-4 [41] defines the communication between devices in transmission, distribution and
substation automation systems.

3.4. Function Layer

The Function Layer includes all services and algorithms that a specific use case provides.
Our co-simulation platform includes the following main functionalities (refers to blue-boxes in
Figure 2e): (i) Data Collection performed by Devices to monitor and collect physical behaviours; (ii) Data
Transmission to route data and messages from/to the actors in the system through the Internet; (iii) Data
Acquisition to store information; (iv) Device Management to remotely manage all the devices deployed
in the smart grid. The Device Management features are implemented by the Device Manager, which is
another software component in our platform physically installed in a remote server farm or in the
cloud.

In addition, this layer provides the functionalities of each individual service for smart grids (refers
to green-boxes in Figure 2e). As an example, in case of the proposed wide area measurement-free
monitoring system (see Section 4), the platform includes also PV Estimation and Distribution State
Estimation to estimate the status of the grid with photovoltaic systems.
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Our platform is flexible in integrating and testing more services and modules (such as new models
for renewable energy systems) to realize distributed intelligence. Since this architecture has been
designed to be modular, services can either play concurrently or be replaced in a plug-and-play fashion.
Thanks to the IoT communication paradigms and technologies adopted to exchange data among the
actors in the platform, services can be assessed in testbed environments by exploiting DRTS, or even in
real-world scenarios by using real Devices deployed across the smart grid. Replacements or updates
can be done without affecting the rest of the platform.

3.5. Business Layer

The Business Layer accommodates the use case business processes, services and organizations.
This includes the business objectives, regulatory and economic constraint related to the use case.
Figure 2f represents the zones and domains affected by the use case and consequently influenced by
underlying business objectives and economic and regulatory constraints. This layer would include the
content, structure, and governance of transactions anticipated to create value by taking advantage of
business opportunities [42].

The business layer contains non-functional requirements for implementation. Therefore, we
do not associate directly some physical components to run/serve such contents. Nevertheless, a
business model needs to establish the content and structure. As an example, for the use case, we
developed and demonstrated in this work, the business model in general is “monitoring wide area of
distribution grid”, and, as a detailed view, it can “monitor system normal state violations or operation
interruptions and report to regulator”. Wide area monitoring is the basis for many other use cases like
Fault Detection, Isolation, Restoration (FDIR) [43] or Volt/VAr control [44]. For the security, some of
the following regulations, as examples, are required: NERC CIP [45], BDEW White Paper [46] and ISO
27001/02/19 (Information Security Management) [47].

4. Wide Area Measurement-Free Monitoring

In this section, we present a DSE solution for distribution systems in which a high level of
generation is assumed by rooftop PV panels installed in low voltage systems. We assume either no
dedicated smart meter is measuring PV production, or no real-time information is reported by possible
connected meters due to insufficient communication infrastructure. Our proposed solution is able to
estimate system state with only conventional measurements at the head of feeders.

The proposed DSE considers the presence of multiple PV units. Nevertheless, there are still
substations assumed to be supplying purely passive Low Voltage (LV) grids (with no PV installation).
We will demonstrate our algorithm not only performs proper state estimation of nodes with no PV
connection, but also monitors the network with an acceptable accuracy during nights when no PV
power is injected to the grid.

The proposed method for wide area monitoring mainly relies on accurate estimated PV
generations using the technique described in Section 4.1. The proposed DSE employs the predicted PV
generations as accurate pseudo measurements to predict the current system state. No new meters are
needed to be installed widely in the distribution network to measure operational parameters along the
feeders, secondary substations, or at customer premises.

Figure 3 presents the overall conceptual architecture of the proposed scheme. Having the weather
forecast and city geographic information of an area, load estimator and PV simulator (PVsim) would
forecast the generation and consumption data for that area. The distribution management centre
receives the forecasted data and the measurements taken at all feeders’ main HV/MV substations.
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Figure 3. Proposed scheme for wide area monitoring in distribution systems with high PV penetration.

For each time step (e.g., every 15 min), having the forecasted consumptions and generations,
system electrical data and main substations measurements, the DMS runs the state estimator for each
feeder to estimate the system state. With an accurate estimation of the system state for each time step,
the distribution system manager can monitor all line currents, node voltages, power losses, etc. in near
real time, hence it can send appropriate commands to manage the network.

The scheme components in Figure 3 are the following:

• System data including configuration of the network, parameters of the lines and transformers, and
in general information about the grid infrastructure;

• Load ES providing an estimation or forecast of load data;
• PV Simulator giving an accurate estimation of PV production of roof-top PV panels;
• Weather Forecast feeding both Load ES and PV Simulator with climate conditions collected by real

weather stations;
• Geographic Information including all the geographic information of the city given as input to PVsim

(see Section 4.1);
• Distribution System providing measurements at the beginning of MV feeders in primary

substations;
• Distribution State Estimator computing the state of the distribution network;
• Distribution Management System managing the distribution network.

The proposed architecture only requires the system data, estimated demands, estimated PV
productions and voltage and current measured at the beginning of MV feeder at the primary substation
to predict system state in near real-time. Among these, the system data, load estimates and main
substation measurements are already available for traditional distribution networks. The remaining
challenges are a method for accurate estimation of PV productions and an appropriate DSE which can
realize the proposed architecture in Figure 3. Therefore, the rest of this section introduces PVsim and
describes the algorithm for Distribution State Estimator.

4.1. PV Simulator to Estimate Energy Production

To estimate energy production of PV systems in urban contexts, we exploited the methodology
proposed in our previous work [48] as enabling technology by relying on both GIS (Geographic
Information System) and meteorological data.

The main input of the PV simulator (PVsim) is a Digital Surface Model (DSM), our GIS data, which
is a high-resolution raster image representing terrain elevation of buildings of interest. Thanks to DSM,



Energies 2019, 12, 1417 12 of 27

PVsim detects encumbrances on roofs (e.g., chimneys and dormers) that prevent the deployment of
PV panels, and simulates the evolution of shadows on roofs over one year, with 15-minute intervals, in
clear-sky conditions. As a preliminary result, this phase identifies the suitable area, which is the real
area of a roof that can be used to deploy PV panels.

To estimate the evolution of temperature and irradiance over the time in real-sky conditions,
PVsim combines the shadow model with weather data retrieved from weather stations through
third-party services (e.g., weather underground [49]). To estimate the incident global radiation, solar
radiation is decomposed by considering the attenuation due to air pollution (i.e., Linke turbidity
coefficient [50]). Solar radiation decomposition needs as inputs both the direct normal incident radiation
and the diffuse horizontal incident radiation [51]. However, if weather stations provide global
horizontal radiation only, incident radiation is computed by applying decomposition models in
literature [52–57].

Finally, PVsim estimates the PV production for each identified area by using the evolution of
temperature and irradiance in real-sky conditions. For this computation, PVsim exploits characteristics
and parameters of some commercial PV systems as default values. However, such parameters can
be changed according to the characteristics of other commercial PV systems. The final output of the
PVsim is georeferenced information on the size of deployable PV systems and the related generation
profiles for each building.

4.2. Distribution State Estimator Formulation

State estimation refers to the estimation of the most probable values for system state variables
using the system mathematical representation and a set of measurements. The calculation of unknown
system states is usually done by minimization of a function representing the difference between the
estimated and the measured values. The measurement set includes:

1. real measurements (e.g., nodal voltages, branch currents, power flows);
2. pseudo measurements (e.g., the estimated consumption data).

With enough number of measurements which are well distributed over the distribution system,
the system will be observable and its state can be estimated. In distribution systems, owing to the large
number of pseudo measurements (i.e., loads), observation is rarely a problem.

Measurements are functions of state variables (x). The equations between the state variables (x)
and measurements (z) can be presented as follows:

z = h(x) + e, (1)

where h is the vector of functions and e denotes the vector of measurement errors. Our Distribution State
Estimator is based on Branch current-based State Estimation (BSE), proposed for distribution systems
in [58]. In this method, the real and imaginary parts of branch currents are selected as state variables:

x = [Br, Bi] , (2)

where Br and Bi are the real and imaginary parts of the vector of branch current. The system states can
be estimated by minimization of the following least-squares function j(x):

j(x) =
m

∑
i=1

wi(zi − hi(x))2 = [z − h(x)] T W [z − h(x)], (3)

where W is the diagonal weighting matrix with wi elements and m is the number of measurements.
The wi elements indicate the influence of each measurement on the resulted estimation. To have

more accurate estimations, higher wi values should be considered for more accurate measurements
(e.g., nodal voltages) and lower wi values should be considered for inaccurate measurements (e.g.,
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estimated loads). Minimizing the least-squares function leads to the best possible values of state
variables. By taking the derivation of j(x) and setting it equal to zero, the following iterative solution
is obtained:

xk+1 = xk +
[

G(xk)
]−1

HT(xk) W
[
z − h(xk)

]
, (4)

where the gain matrix G and H are defined as follows:

G(x) = HT(x) W H(x), (5)

H(x) =
[

∂h(x)
∂x

]
. (6)

In the BSE method, by selecting the real and imaginary parts of branch currents as state variables,
the H and G matrices become constant which simplifies and speeds up the computations.

During the state estimation, starting from an initial guess, the following equation is solved
iteratively until the objective function is minimized, and the state variables are updated in
each iteration:

∆xk = G−1 HT W [z − h(xk)] , (7)

xk+1 = xk + ∆xk. (8)

In this paper, as proposed in [58], the real and imaginary parts of branch currents are selected as
state variables. Therefore, Equation (7) can be rewritten as follows:

∆Bk = G−1 HT W [z − h(Bk)] , (9)

where ∆Bk denotes the change in branch currents in iteration k and includes a real and an
imaginary part:

∆B = [∆Br ∆Br]
T . (10)

In order to better illustrate the methodology used in our algorithm, the case study is briefly
introduced here, while the formulation and procedure is discussed in a generic manner.

The considered distribution system as the case study is shown in Figure 4a. The network is a
small portion of an urban medium voltage distribution system in Turin city in the northwest of Italy.
A near future scenario of high penetration of roof-top PV production is assumed for low voltage
grids supplied by this network. It includes a set of MV feeders feeding customers through MV/LV
transformers. The voltages and currents measured at the head of each MV feeder are considered
as the only available real measurements, and there is no wide area measurement over this network.
The estimated aggregated demands and the aggregated PV generations at MV/LV transformers are
considered as pseudo measurements.



Energies 2019, 12, 1417 14 of 27

(a) Physical nodes as secondary substations. (b) Virtual nodes for aggregated generations.

Figure 4. MV distribution system with high PV penetration.

For aggregated loads, in each iteration, the estimated load should be converted to an Equivalent
Load Current Measurement (ELCM):

ILt
k =

[
Pt

L + jQt
L

Vt
k−1

]∗
, (11)

where Pt
L and Qt

L represent the aggregated load for MV/LV transformer at node t, Vt
k−1 is the node

voltage at iteration k − 1, and ILt
k is the node equivalent current measurement at iteration k.

For aggregated PV generation at each node, similarly, in each iteration, the estimated generation
should be converted to an equivalent current measurement:

IGt
k = −

[
Pt

G + jQt
G

Vt
k−1

]∗
, (12)

where Pt
G and Qt

G represent the aggregated generation for MV/LV transformer at node t, and IGt
k is

the node equivalent generation current measurement (EGCM) at iteration k.
As noted before, the wi elements indicate the influence of each measurement on the resulted

estimation. Therefore, to have more accurate estimations, different wi values should be considered for
more aggregated loads and aggregated generation based on their estimation accuracies.

The problem is in conventional BSE; it is not possible to consider different weighting values for
different equivalent current measurements connected at the same node, while, in our case study, the
equivalent model of aggregated PV generators and loads of low voltage systems are connected to the
same MV node.

To tackle this challenge, the aggregated generations are considered to be connected to a virtual
node, as shown in Figure 4b. The virtual node is then connected to the main MV node using a
zero-impedance branch.
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Using the above equations, all the pseudo measurements can be converted to equivalent current
measurements and Equation (9) can be rewritten as follows for three phase (a, b, c):



∆Br
a

∆Br
b

∆Br
c

∆Bi
a

∆Bi
b

∆Bi
c



k

= G −1 HT W



∆Ir
a

∆Ir
b

∆Ir
c

∆Ii
a

∆Ii
b

∆Ii
c



k

, (13)

where ∆I indicate the difference between the calculated currents and the equivalent current
measurements, and subscribes r and i show the variables real and imaginary parts. Figure 5 summarises
the method procedure as a flowchart.
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Figure 5. Flowchart of the proposed BSE state estimation.

5. Case Study and Experimental Results

To test the performance of the developed algorithm of wide area monitoring discussed in Section 4,
we performed some simulations on a portion of an urban distribution system in Turin, city in the
northwest of Italy. It should be noted that wide area monitoring requires a wide area measurement
collection system like Advanced Metering Infrastructure for a very precise observation of the system
operational state. However, currently integration of renewable energy resources, like PV panels in
Turin, is growing faster than deploying new measurement devices. Therefore, a solution for the
transitory period is needed for wide area monitoring. The results of the proposed scheme may not be
as precise as advanced measurement-based schemes, but we demonstrate in this section that it can
provide fairly accurate results.
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To perform a real-time simulation, we used an Opal RT digital real time simulator with eMEGAsim
configuration of solver which is based on electromagnetic transient analysis (EMT). The modelling
environment for eMEGAsim is MATLAB Simulink, and an interfacing software named RT-LAB is
used to compile the model to load and execute on hardware simulator. The portion of the real
system used in our study is in medium voltage; however, the values of loads and PVs are aggregated
power of all low voltage connected prosumers under each secondary substation (MV/LV substation).
This network has five MV feeders which are all cables. Hence, we modelled all branches with pi
model of transmission lines. It should be noted that the real system is modelled in Opal-RT for real
time simulation which plays the role of a real-world system. However, this grid is also modelled in
MATLAB for running power flow used in BSE [59]. The former is fed by real and accurate input, while
the latter in distribution state estimation gets load and PV input data with errors.

As introduced in Section 4.2, the network in Figure 4 is assumed to be under high PV penetration,
and two scenarios of sunny and cloudy days are considered. The co-simulation platform set-up, as
shown in Figure 6, includes an OP5600 Opal-RT digital real time simulator to run the grid model
including components of process, field and station zones; a laptop PC to run the distribution state
estimation algorithm and three different desktop PCs to execute PVsim, to run the MQTT message
broker and to accommodate the data storage, respectively.

MQTT Broker

Data Storage

PV Simulator

Distribution State 
Estimator

OPAL-RT Digital 
Real Time Simulator

Figure 6. The lab set-up and platform components.

This set-up tries to mimic the real-world system with a real physical network; the real-time
simulator can be just replaced with the real network. In the latter case, the real network has to send
only measurements from the beginning of feeders at primary substations. From a real-time simulator,
this signal is generated by running the virtual model of the grid.

This set-up is actually our test system to observe the results of our new wide area monitoring
system which relies on PVsim, rather than wide area measurements. Since no measurements
from prosumers are available, the monitoring system is blind to the real amount of production
or consumption; we provide just an estimation of consumption with 30% error.

The reference system to be used for validating the results of test system is actually the real network
or the virtual model of the real network with all captured voltage and current values of nodes. In our
laboratory, we stored all these values in the real-time simulator and, at the end of each scenario
simulation, we made a comparison between these values and what the estimator could estimate.
This is illustrated in Figure 7.
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Figure 7. Test and reference system output comparison.

To assess the results of our algorithm for wide area measurements compared to reference data,
we exploited the following indexes that are widely used in descriptive statistics:

1. Bias is the mean value of the differences between state estimation and observed values;
2. Mean Absolute Error (MAE) is defined as the average of the absolute difference between the state

estimation and the reference data;
3. Root Mean Square Difference (RMSD) is the standard deviation of differences between state

estimation and observed values;
4. Correlation Coefficient is a 0 to 1 number representing the strength of the correlation between the

state estimation and observed values;
5. Index of Agreement is the standardised measure of the agreement of the state estimation with the

observed values. It ranges from −1 to 1, where 0 means no agreement, −1 a perfect negative
agreement and 1 a perfect positive agreement, respectively.

We report Bias, MAE and RMSD in percentage.
Figure 8a shows the maps of the selected substations reporting the involved buildings with their

heights, expressed in floors (i.e., the reference case). As shown in the map, most of the buildings
are lower than eight floors and just a few of them are higher than 17 floors. In this urban area, we
simulated the PV energy production by exploiting the PVsim presented in Section 4.1. We supposed to
deploy PV modules with the following characteristics: (i) nominal power of about 283 W, (ii) efficiency
in standard condition of 22.5%, (iii) temperature coefficient equal to 0.38 [%/C]. The total capacity
of the whole area is 48.45 MW, with a mean value of 1.1 MW for each substation. Figure 8b shows
the energy produced for each of the 43 substations. As shown in the figure, the maximum energy,
about 2.68 MW, is produced by PV systems at substation 10. Figure 9a,b present our simulation results
for two days with different meteorological conditions: sunny and cloudy, respectively. These figures
would refer to our test system.



Energies 2019, 12, 1417 18 of 27

(a) Number of floors per building.

(b) PV potential of the Area.

Figure 8. Case study area.
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(a) PV Energy Production in a sunny day.

(b) PV Energy Production in a cloudy day.

Figure 9. PV energy production.

Figure 10 shows the map of the daily energy consumption of each substation. This is made based
on the reference scenario of consumption with no errors (i.e., the reference system). It is possible to
notice that the seven substations have the highest consumption that ranges between 12.4 MWh and
13.3 MWh. Just one substation has a level of consumption lower than 1.8 MWh and the majority of the
substations have a consumption ranging between 4.1 MWh and 8.4 MWh.

In our simulations, we supposed that load data has an estimation error of about 30%. Two cases
are considered to evaluate the proposed methods performance. In the first case, the test system
is considered to be heavily loaded and weather is considered to be sunny. Figure 11 presents the
estimated and actual voltage magnitudes of the last node of the test system longest feeder (refers to
Chieri feeder in Figure 4). This is because the last node highlights the effect of errors and it is more
interesting to be used for validation of the algorithm. As shown in this figure, the estimated voltage
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profile perfectly matches the actual node voltage. The main contribution of the PV units is the middle
of the day. In this period while the electricity consumptions are higher, the PV units help the network
to keep the voltage levels in the standard range (0.95–1.05 p.u.).

Figure 10. The actual energy consumption of buildings.

Figure 11. The estimated and actual values of the last node voltage (sunny day).

The same load profiles are considered for the second case for which the weather is considered to
be cloudy. The voltage profile of the feeder last node under this case is presented in Figure 12. As can
be seen, also for this case, the difference between the estimated and actual voltages is acceptable and
the accuracy is very high. This accurate results are confirmed by the performance indexes in Table 1.
Indeed, both Correlation Coefficient and Index of Agreement are 0.99 for both sunny and cloudy days,
which indicates a high match between the actual and estimated voltages. It is interesting to note that
the lower PV productions in Figure 12 compared to Figure 11, due to cloudy weather, have resulted in
under voltage situation for some hours of the day.
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Figure 12. The estimated and actual values of the last node voltage (cloudy day).

Table 1. Performance indexes for estimation.

Bias [%] MAE [%] RMSD [%] Correlation
Coefficient

Index of
Agreement

Last node sunny day 0.016 0.08 0.098 0.99 0.99
cloudy day −0.006 0.065 0.08 0.99 0.99

All nodes sunny day −0.008 0.036 0.055 0.99 0.99
cloudy day 0.005 0.03 0.049 0.99 0.99

Node voltages are the parameters usually used to evaluate the accuracy of different state
estimation methods. Therefore, the voltage of all nodes of the feeder are presented in Figures 13
and 14 for both the sunny and cloudy day cases at 12:00 p.m. As shown, for both cases, there is a
good match between the estimated and actual voltages. Regarding the performance of our distribution
state estimation, although the scheme is designed for smart grids under high PV penetration, but even
for the nodes with no PV connection, estimations are pretty accurate. These good performances are
confirmed by the indexes for all 18 nodes in Table 1, which indicate the overall performance for the
whole feeder. Even in this case, both Correlation Coefficient and Index of Agreement are 0.99 for both
sunny and cloudy days. Bias ranges between −0.008% and 0.005%. MAE and RMSD are about 0.03%
and 0.05%, respectively. Thus, among the nodes in the feeder under analysis, the error rate is about
0.1%, which is very low.

The feeder line currents at 12:00 p.m. for both sunny and cloudy days are presented in Figures 15
and 16 for its 18 lines. For both cases, the system is considered to be heavily loaded. As shown in the
figures, there is little difference between the estimated and actual line currents.

In case of sunny days, due to the increase in local power generation, the feeder line currents are
decreased. However, in the case of cloudy days, the feeder has high line current values. As can be seen,
the PV penetration level has considerably changed the line currents. The same effect can be seen in
Figures 13 and 14, where the decrease in local power generation in a cloudy day has resulted in lower
voltage levels, compared to a sunny day.
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Figure 13. The estimated and actual values of the node voltages at 12:00 p.m. (sunny day).

Figure 14. The estimated and actual values of the node voltages at 12:00 p.m. (cloudy day).

Figure 15. The estimated and actual values of the line currents at 12:00 p.m. (sunny day).
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Figure 16. The estimated and actual values of the line currents at 12:00 p.m. (cloudy day).

Such changes caused by variations of local power generation highlight the need for a monitoring
scheme for electricity distribution systems with large-scale DG integration but no commensurate
monitoring infrastructure. To highlight the potential of the proposed method for better grid monitoring,
Figure 17 presents the feeder actual load demands, estimated load demands and the available erroneous
load data employed for the estimations. As it can be seen from the plot, the proposed architecture helps
making an accurate estimation of the actual system loading. Besides the load demands, estimating the
line flows is important for grid control and management. Figure 18 shows the estimated values of line
power flows which match the actual line flows with acceptable accuracy.

Figure 17. The estimated, actual and available load demands at 12:00 p.m. (sunny day).
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Figure 18. The estimated and actual line power flows at 12:00 p.m. (sunny day).

6. Conclusions

To develop new use cases for smart grids, it is wise and also recommended to reuse existing assets
as much as possible while shifting towards new control and management paradigms. This would
require mapping use cases to SGAM. However, test and validation of newly developed use cases
are usually performed in laboratories where interoperability analysis might be overlooked. We
demonstrated how an IoT-based infrastructure could support establishing a co-simulation platform
following SGAM requirements. Integrating a digital real-time simulator could enable use case
developers to test physical devices through hardware in-the-loop set-ups as well as evaluating the
performance of new algorithms via software in-the-loop experiments.

As an example of using this platform for developing a use case, a Distributed State Estimator
is proposed for monitoring of traditional distribution systems with high PV penetration without a
massive deployment of new IoT devices. The experimental results, performed in real MV Distribution
system with high PV penetration, demonstrated that the proposed DSE has good performance either
in sunny or cloudy days, with an error rate lower than 1% and a high correlation, about 0.99, between
our results and reference data. Though the results of the proposed monitoring scheme architecture are
not as precise as a real advanced measurement infrastructure, it can provide fairly accurate results.
It does not require any new installations and can be considered as a cheap and practical solution for
the current transition period of distribution systems with increasing penetration of PV units.
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