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Abstract 

This thesis investigates the application of artificial intelligence to smart farming. The 

Amaranthus Viridis crop has been grown within London South Bank University, and 

different machine learning models have been used to evaluate the crop dataset.  

A comparative analysis of the performance of the machine learning models for the 

datasets from the Nutrient Film Technique (NFT), Aeroponic (AER), Aggregate (AG), and 

Floating Hydroponic systems from the Department of Agriculture, University of 

Peloponnese (UP), Kalamata, Greece to predict the Onion Bulb Diameter (OBD). The 

dataset has been from four different hydroponics systems, namely Aggregate (AG), 

Aeroponics (AER), Floating and Nutrient Film Technic (NFT). The onion crop has been 

grown for 92 days after transplant from the nursery.  

Artificial intelligence subsets, such as machine learning and deep neural networks, have 

been used to evaluate the Amaranthus Viridis crop. The centralised smart farm network 

models evaluate the provided dataset while sharing the data with the server during 

training. The decentralised network for a smart farm has been considered, a scenario 

where the raw dataset has yet to be shared with the server during the dataset evaluation.  

Federated learning models allowed the researcher to train the models and make 

predictions of the dependent variables. 

Smart farming involves applying information and communication technology to the 

traditional farm system. It implies the use of the Internet of Things (IoT), edge and cloud 

computing, and centralised and decentralised machine learning models for predictions of 

the farm produce. A survey of the existing smart farms identifies the various challenges 

experienced by farmers, which include low technological know-how of smart farm 

techniques, inadequate infrastructure provision, computational power issues with 

technological devices, poor internet facilities, high latency within the existing internet 
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connectivity in the farms, insufficient human, technical skills capacity to manage smart 

farm operations, security of smart farm data during transmission, data reliability, the 

communication cost of smart farm network. 

The floating hydroponic system involves planting the crop on the water surface, and wool 

rock holds the crop within the pot, allowing its roots to touch the water beneath as it 

grows. 

The Onion Bulb Diameter (OBD) dataset for four different hydroponic systems, namely 

Floating, AER, AG, and NFT hydroponic systems, has been analysed using the XGBoost, 

Linear regression, Deep Neural Network (DNN), and Federated Split Learning (FSL) models 

for their predictive and interpretive abilities. 

 To automate the predictions of the OBD, machine learning models have been used to 

predict the OBD for days not considered manually within the crop life cycle. The model 

helps the farmers determine the harvest even before the commencement of the new 

planting season based on the previous planting season dataset. 

The developed models have been used to analyse the Amaranthus Viridis Leaves image 

dataset comprehensively. The Convolutional Neural Network (CNN) model has been used 

to determine the percentage of the predicted Amaranthus leaves that match the original 

images from a hydroponic smart farm. The CNN forecasted a higher accuracy than the K-

Nearest Neighbour, Support Vector classifier and Decision Tree model. 

The crop growth rate was analysed using machine learning algorithms. The XGBoost models 

produced higher prediction values for the crop growth rate than the Theil-Sen, Decision 

Tree, Support Vector, Quantile and K-Neighbours regressors. 

The dataset is shared with the server during training in a centralised network. The 

federated learning models train the dataset from the smart farm network without having 

access to the raw dataset with the server. The federated averaging model has been used 
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to investigate the prediction of crop types using climatic parameters as the independent 

variables. The hyper-tuned federated Learning model predicted the crop chickpea and 

achieved high accuracy. 

The federated Learning smart farm network emulation was used to compare the client, 

server and centralised node performance. The Server model converged faster than the 

edge node models, classical centralised models, since it uses all the combined weights from 

the edge nodes to aggregate the combined models before sending them to the edge node 

for further training of the raw dataset. The results show that the combined decentralised 

network model produced a higher accuracy than the classical centralised model. 
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Chapter 1 Introduction 

1.1 Overview of Smart Farming 

 
According to a report from the Food and Agricultural Organisation (FAO), a United Nations agency 

monitoring food production across the world, in 2019, about 2.05 billion people did not have 

access to adequate food on planet Earth and this number increased to 2.37 billion in the year 

2020 [1]. United Nations Sustainable Development Goal (SDG) 2 aims to end hunger by achieving 

food security, improving nutrition, and promoting a sustainable agricultural landscape.  

Farmers have used Internet of Things (IoT) devices for collecting climatic data, monitoring 

irrigation systems, crop growth and farm produce.  

Smart farming is applying information technology to crop cultivation, fish and livestock 

production to increase farm produce's harvest volume and quality by utilising the 

resources efficiently and reducing the environmental impact. Moreover, it enhances the 

quantity and quality of crop yield using Information Technology (IT) software, hardware, 

and Artificial Intelligence models (AI) [4]. 

Farmers have managed agricultural irrigation systems and fertilizer applications using an 

Android app [2]. Farming Guru is one of the many innovative applications developed to 

enhance smart farming [3]. It helps farmers predict weather conditions within their region 

and assists farmers in understanding the climatic conditions before the commencement 

of a farming season to avoid loss of crop yield.  

Low-power Wide-area Network (LPWAN) has been used to improve the technique of 

monitoring soil and plant quality by enhancing the wireless communication range within 

the farm. This approach minimizes the power consumption to as low as 15.36 

milliampere-hour (mAh) per day for wireless devices within a smart farm network [5]. 

Smart farming technologies have been used to monitor soil temperature, moisture, 

humidity, animal location, rainfall, geospatial location, and light intensity [6]. These 
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sensors have been used to capture rain and geospatial locations. Using these sensors has 

boosted profitability and enabled environment-friendly farming. 

Sensors are deployed in smart farms to capture rainfall, temperature, humidity, 

moisture, pH, motion, sound, and electrical conductivity data [7].  

Sensors have played a role in the transformation of agriculture, as their utilisation in 

smart farms has made data collection easy and more reliable. The data collected using 

sensors from IoT devices can help farmers and researchers in the Agricultural industry 

to monitor, analyse and make decisions regarding smart farming. The data collected is 

transferred via Wi-Fi towers over the Internet. Figure 1 shows a smart farm with 

Unmanned Aerial Vehicles (UAV), sensors, actuators, livestock, and crops. The UAV 

collects data from the crops and livestock and sends the data to the Mobile edge 

computers via wireless connectivity. 

 

Figure 1: An architecture of a smart Farm 
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For example, the Cassava crop was planted, and the smart farm's water consumption has 

been monitored using sensors. The IoT edge devices' captured data was transmitted to 

the cloud via the Internet [8]. The water pump has been powered using solar panels to 

provide an uninterrupted power supply. Such supply has been helpful for IoT devices 

since the smart farms are at a remote location without a national power grid. 

Artificial Intelligence (AI) devices such as Raspberry Pi have been used to monitor water 

levels, humidity, temperature, and pH in water systems in real time [9]. The real-time 

data from the hydroponic system is transmitted to the cloud and analysed by machine 

learning models. 

A monitoring system has been developed to monitor aquaponic and hydroponic systems' 

air and water temperature [10]. The collected data from the IoT devices have been 

analysed. A correlation between the outdoor air and temperature with atmospheric 

pressure is 1.0 and 0.9, respectively, while the indoor air and water temperatures' 

correlation with atmospheric pressure is 0.7 and 0.9, respectively. The network 

architecture is centralised and experiencing high latency, typical of all centralised network 

systems since the data has been transmitted to the cloud for a thorough analysis. 

Tomato plants have been grown using a hydroponic system. The concept was based on 

the premise that crops can be grown without soil [11]. The hydroponic system is 

connected to IoT devices such as Raspberry Pi incorporated with sensors that collect data 

such as water level, humidity, the potential of hydrogen (pH), light intensity, etc. The data 

analysis has been carried out using machine learning algorithms such as the Bayesian and 

deep neural networks [11]. However, the accuracy and loss values have not been 

discussed. This research examines the analysis of our results from the model evaluation of 

the smart farming dataset. 
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Due to advancements in the manufacturing of mobile devices and improved AI models, 

more innovative technologies have been devised for better data analysis and decision-

making [12] in crop prediction.  

Several challenges have been experienced in the traditional cloud-based technologies 

used for AI and machine learning applications [13]. These include latency, communication 

issues and data security. Evaluating data within cloud-based networks gives rise to privacy 

concerns for data owners. The Agricultural sector is one of the many industries where 

data privacy is a significant concern. Mobile edge devices can improve privacy by enabling 

the training of data closer to the data source. Using Federated Learning (FL), these data 

are trained at their local location, providing data privacy. The data scientists do not access 

the raw data. The FL concept has provided the data owner security and privacy, and an 

application of these FL technologies to smart farming has been conducted in this 

research.  

Cloud-based networks have experienced serious latency challenges. The recent 

innovation of Decentralized Deep Learning (DDL), namely FL and Swarm Learning, has 

improved privacy concerns about data processing within edge infrastructures [11]. FL and 

swarm learning may improve the performance of edge computing devices and enhance 

the communication of the edge devices within the FL network. Smart farming 

components involve intelligent edge devices. DDL can provide privacy for the agricultural 

data captured by IoT devices, thereby improving the communication between the edge 

and the aggregate servers. DDL has many advantages in the inter-network framework, 

but its handling of resource allocation and deployment within a fully decentralised 

network is currently under investigation by researchers.  

Cross-silo federated learning [16] is a network where all the client nodes of the Federated 

learning network can be institutions such as hospitals, banks, factories, etc. [16]. The 
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network edge server receives all the updated weights from each client node and sends 

them to the server. An example of a federated network, where all the client nodes are 

hospitals collecting medical data, e.g., scanned images from patients in different 

hospitals, is evaluated using the federated learning platform. The cross-device FL network 

constitutes a scenario where all the client nodes are devices [16]. An example is an 

enterprise network where all the client nodes are mobile devices, e.g., mobile phones, 

laptops, handheld devices, etc. These client nodes train their local model at the client 

node location and send their updated weights to the server for aggregation [16]. This 

thesis explores cross-device Federated Learning for a smart farm network. The modelling 

of the smart farm Federated Learning platform has been investigated where the client 

nodes of the smart farm federated learning network are cross-devices, and a comparison 

of the performance of the client nodes, Server and classical centralised machine learning 

models has been explored.  

1.2 Motivation 

The centralised network platform constitutes a platform where the edge nodes send their 

data to a central server in the cloud, and the data are analysed by the server in the cloud 

[17]. This process has resulted in high latency within the network. The security and 

privacy of the data have been a significant concern during the transmission of the data to 

the server [17]. Resolving the privacy concern in the agricultural sector is one of the 

motivations for this research. Studies of FL applications to smart farming are minimal, and 

this research is one of the few offering FL solutions to smart agriculture. More research is 

needed in the smart farming sector to address the farmers ’ concerns about their data 

analysis. Federated Learning is a machine learning technique where the updated weights 

are sent to the server for aggregation, but the raw data are not sent to the server. The 

combined model from the aggregate server is sent back to the edge nodes for further 
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training by the edge nodes using the local models [17]. Due to the latency issues within 

the centralised network, the computational time within the link is high, resulting in 

increased bandwidth consumption within the network link. This thesis investigates the 

modelling of the smart farm network within a Federated Learning platform. Emulators 

have been used as testbeds for experimentation since simulations cannot represent real-

world scenarios within a smart farm. 

1.3 Thesis Aim 

The research aim is to investigate the application of AI and FL in smart farming. The smart 

farming network architecture has been illustrated in Figure 1. The Amaranthus Viridis 

crop has been grown within Suitelab at London South Bank University. It has been 

produced in a hydroponic system. IoT devices (Raspberry Pi) have been used to capture 

climatic data as well as images of the crop. The images have been evaluated using the 

Convolutional Neural network, Decision Tree, K-Nearest Neighbours and Support Vector 

Machines models [116]. Theil-Sen, Support Vector, Quantile, Decision Tree, K-Neighbours 

and XGBoost regressors [110] have been used to predict the Amaranthus Viridis crop 

growth rate based on the collected dataset from the smart farm within Suitelab. The days 

after transplant, the length of leaves, the width of the leaves, the number of leaves per 

day, and crop height have been the independent variables, and the crop growth rate has 

been the dependent variable. 

1.3.1 Research Questions 

1. Which Machine Learning Models applied to Hydroponic systems will produce 

optimal prediction values for the Onion Bulb Diameter? 

2. How to measure the accuracy of the smart farm Decentralised and Centralised 

network? 

3. How will machine learning models achieve optimal accuracy and crop growth 

rate predictions for the Amaranthus Viridis crop? 
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1.4 Contributions 

This study investigates the application of Federated Learning models to smart farming. I 

have developed machine learning models for the Analysis of smart farming datasets from 

the University of Peloponnese, Greece and developed models that can evaluate smart 

farming datasets without having access to the raw datasets. 

1. Automation of the analysis of the datasets for four hydroponic systems from the 

University of Peloponnese, Kalamata, Greece. 

2. An extensive comparative analysis of several machine learning algorithms for 

Amaranthus Viridis crop growth rate, the XGBoost model outperformed the other 

machine Learning models for crop growth rate prediction. 

3. Accessibility to smart farming datasets is a challenge. Federated Averaging and 

Federated split-learning models have been used to evaluate smart farming 

datasets without having access to the raw dataset. 

4. In the comparative analysis of the Amaranthus Viridis image dataset using 

Machine Learning Algorithms, the CNN model outperformed the other considered 

models. 

5. Modelling of the Federated Learning (FL) smart farm network, the decentralised 

farm network produced a higher accuracy than the centralised machine learning 

models. 
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1.5 Organisation of Thesis 

This study identifies some challenges with smart farming and explores the application of 

Artificial intelligence to smart agriculture, as follows: 

Chapter 2: Related Work 

Overview of the technologies applied to smart farming. The technologies reviewed are 

cloud, centralised network platform, decentralised network platform, mobile edge 

computing, Internet of things, unmanned aerial vehicles, and multi-access mobile 

computing. Various hydroponic systems have been considered for this research. 

Additionally, the use of Federated Learning is presented. The gaps in the application of 

technologies to smart farming are identified in this chapter. 

Chapter 3: Detail description and data preprocessing of the Onion Bulb diameter dataset 

from the University of Peloponnese, Kalamata, Greece, Amaranthus Viridis Crop 

numerical and image datasets, and Federated Learning smart farm network modelling 

datasets used for this research. 

Chapter 4: This research has developed Artificial intelligent models that predict the OBD, 

and these AI models automate the OBD predictions. Amaranthus Viridis has been grown 

in the Suitelab smart farm. To determine the crop growth rate, AI models have been used 

to predict the crop growth rate.   

Chapter 5: Existing literature discusses centralised models used for crop classification. 

This research has proposed decentralised models for crop classification. The Modelling of 

the decentralised smart farm network has also been investigated. 

Chapter 6: Conclusion and future works 

Conclusions are drawn from the obtained results, and recommendations are proposed. 

Future work focuses on further areas of research. 
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Chapter 2 Background   

2.1 A Survey of the gaps identified in a smart farm 

Agriculture production has been enhanced using information Technology, and edge 

devices have been used to control actuators, manage resources, and improve product 

quality to reduce production costs and maximize profits [17]. The use of IoT in smart 

farming has enabled the collection of climatic data, detection of diseases, monitoring of 

the growth rate of crops, appropriate harvesting techniques to reduce crop wastage, 

tracking of farm animals’ movement within the farm environment, livestock conduct & 

improvement of the breeding of livestock and crops. It can be inferred from Figure 2 that 

Agriculture has changed over thousands of years [18], with improved farming techniques, 

ranging from crop planting to harvesting, storage of farm produce, use of genetically 

modified seeds and use of AI in farm machinery. 

 

Figure 2. Changes in Farming techniques since 12,000 B.C. [84] 
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2.2 Smart farming 

 The introduction of IT devices to farming, such as Artificial intelligence, the Internet of 

Things, and sensors, is referred to as smart farming [19]. It can be inferred that software 

and hardware infrastructure have boosted farming produce. Farmers can monitor their 

farms remotely using technology and control actuators using the Internet of Things within 

the farm [17]. 

Water management has been improved using IoT within the farms [19], and climatic 

parameters prediction, soil management and disease outbreak within the farm are 

effectively monitored. The researchers discussed that in 2050, 525 million farms would 

use sensors, and a vast volume of data will be generated and transmitted within these 

farms. It can be inferred that more advanced software and hardware development IT 

methodologies will be required to handle these smart farming data. 

2.2.1 Crops production 

 The Authors in [20] discussed that leaves with overlapping background images could be 

separated using a marked watershed algorithm. Their research achieved a 97% accuracy 

in strawberry crop disease identification using a minicomputer running a neural network 

model with a computational time of 1.2 seconds in Cyprus. Still, their developed model 

cannot resolve the challenge of separation since the crops can display different symptoms 

at different stages of infestation. The authors need to consider other protocols for 

communication between the devices used for disease detection for crops and animals. 

2.2.2. Livestock production 

Farm Animals frequently move within the farm. [21] discussed that monitoring of the 

animals can be achieved by attaching a neck collar device to the animals for monitoring 

their movement and collecting body vitals such as temperature and blood pressure. It can 
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be inferred that the devices will stop transmitting data from the farm animals once the 

battery-operated device runs out of power.  Sea-lice counting and crowd control have 

been used to solve aquaculture problems in smart fish farming [22]. It can be deduced 

that IoT devices have been used to monitor animals’ movement, behaviour patterns, 

body vitals, and fish crowd control [21,22]. Still, their research has not addressed the 

psychological impact of the electronic devices attached to these animals’ bodies. 

2.2.3. Post-harvesting 

The Red Green Blue-D sensors have been used to detect the sweet pepper's colour and 

shape [23]. Their research enabled them to determine the dimensions of the pepper, but 

the computation time for the detection was very high. The authors in [24] used the 

Monte Carlo simulation to determine the harvest age of a coconut crop. It can be 

deduced from their research that the coconut crop's harvest age impacts the crop's 

selling price. Their research has yet to consider other factors such as holding cost, 

inventory, transportation cost, and demand, which also affect the selling price of the 

crop. The computation time of the model needs to be addressed for faster detection of 

the sweet pepper dimensions, and factors like demand, transportation cost, holding cost, 

government regulations, levies and taxes should be considered for their models to 

determine the coconut harvest age effectively [23,24]. 

Table 1 depicts gadgets used in smart farming to monitor farm animals’ movement and 

power-related challenges [21,22], and these animals experience psychological problems. 

The inventory, transportation cost and market demand, computational time, and 

communication protocol have been issues identified in Table 1 in smart farming [20, 23, 

24].  
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Table 1:  Comparing Crop, Animal production, and post-harvesting in smart farming [84] 

Properties  Crop 
production  

Animal 
production  

Post harvesting 

The computational power of 
a system  

N N/A Y[84] 

Operated by Batteries  N Y [84] N 
Psychological effect  N Y [84] N/A 
Detection speed  Y [8] N Y [84] 
Demand of market  Y [8,84] Y [8,84] N 
Inventory Y [8] Y [8] Y [8] 

Holding cost N N Y [8] 

Transportation cost N N Y [8] 

Yes = Y, No = N, N/A = Not Applicable. 

2.2.4 Hydroponic Systems 

2.2.4.1 Floating Hydroponic System 

The floating hydroponic framework is a method in which plants are placed on a floating 

system, often composed of Styrofoam. The plants float in a nutrient-rich liquid, allowing 

the roots to absorb the necessary nutrients [161]. 

This system floats on a nutrient-rich medium, and the plants are placed in gaps in the raft, 

allowing their roots to dangle freely within the solution. The medium is oxygenated to 

ensure enough oxygen flow to the roots. The system is simple to set up and maintain, 

perfect for cultivating vegetables, and inexpensive but unsuitable for growing tap roots 

crops. Figure 3 depicts the floating hydroponic system with the air pump pumping air into 

the water and the crops floating on the top.  

 

Figure 3: Floating hydroponic system [164] 
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2.2.4.2 Aeroponic Hydroponic System 

[162] discussed that plants cultivated using Aeroponics hydroponic systems have their 

roots suspended in the air, and the crop roots have been sprayed with the solution. As a 

result of the suspension of the plant roots, good air circulation is achieved, enabling plant 

growth. In any case, for the frameworks to work successfully, the root environment must 

be kept up at 100% relative humidity to anticipate the root’s lack of hydration [163]. 

Although aeroponics frameworks can deliver yields ten times more than crops cultivated 

using soil, pump glitches or power disruptions can cause drying up and the killing of the 

crops. Figure 4 shows the Aeroponic Hydroponic system. 

 
 

 

Figure 4: Aeroponic hydroponic system [164] 

2.2.4.3 Nutrient Film Technique (NFT) Hydroponic System 

The Nutrient Film Technique hydroponic system is a system where the mixed solution 

flows over the roots, providing them with the necessary nutrients [164]. It requires a 

smaller volume of nutrients compared with the floating system, but the energy 

requirements are higher than the floating system. The air within the channels blows over 

the roots, directly providing oxygen to the crops. The passage is sloppy in shape, which 

allows the solution to flow by gravity. The crop roots have direct contact with the mixed 

solution, enabling the crops to absorb the nutrients from the hybrid solution. The mixed 
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solution is recycled through the system, allowing for reliable use of the solution and 

preventing wastage. The hydroponic system needs to have a steady, consistent flow of 

the solution and efficient nutrient concentrations. Still, power and pump failure are some 

issues associated with the Nutrient Film Technique system [164]. Figure 5 shows the 

Nutrient Film Technique Hydroponic system. 

 

Figure 5: Nutrient Film Technique Hydroponic system [164] 

 

2.2.4.4 Aggregate Hydroponic System 

In an Aggregate hydroponic framework, crops are developed in a robust and dormant 

medium such as perlite, vermiculite, or coconut coir [164]. The medium enables the crops 

to stand upright. It holds dampness and supplements the crop roots. The system pH and 

nutrient level should be observed frequently. The solution has been drained to prevent 

waterlogging. A drip irrigation technique is applied to the system. The system solid 

medium used for holding the crops upright sometimes dissolves in the solution and 

contaminates, which causes disease infestation to the crops [164]. Figure 6 shows the 

Aggregate Hydroponic system. 
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Figure 6:  Aggregate Hydroponic System 

 

2.2.4.5 Amaranthus Viridis Crop Grown in Suitelab Hydroponic smart farm Testbed 

Smart Farming is the introduction of IoT, AI, cloud computing, and edge computing to 

agriculture to improve its harvest quality and quantity [83, 84]. Practitioners are now 

considering using ML. Big data are being used along with sensors to capture data in smart 

farming, which are used for evaluation to forecast crop yield, manage water usage, and 

detect infestation within the farm [85]. Some continents have poor weather conditions, 

which causes them to use hydroponic systems to grow crops [86]. Artificial lighting has 

been deployed to save energy in hydroponic Farming [87]. To monitor IoT devices 

deployed in smart farms, Application programming interface (API) models have been 

developed [88]. 

Robots are currently deployed to smart farms to cultivate the soil [89]. Raspberry Pi is an 

edge device used for data capturing via sensors connected to it. These data are trained, 

and predictions are made from the analysis. The authors in [90] have been able to grow 

Lettuce crops using the NFT hydroponic system. Still, they have not been able to monitor 

the evapotranspiration during the cultivation of the lettuce crop. 
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Tomatoes crop growth rates have been obtained using a machine learning algorithm 

while growing on soil. They discuss that the crop uptake of nutrients has been higher for 

Na and K than for other nutrients [92]. Their research did not inform us of the dry weight 

matter of the crop and the relative crop growth rate. Further research is needed to 

ascertain the tomatoes’ crop growth rate using recycled water. 

[93] discuss that hydroponic systems used for crop cultivation have been used to produce 

good-quality crops. Better quality and quantity of crops have been grown by [94], and it 

can be inferred from their research that the crops used less water during growth 

compared with cultivation on a soil medium. 

The authors in [96] discuss that highly valued vegetables have been grown using 

hydroponics systems, and the crops are not infested with soil-prone diseases since they 

are grown in water mixed with nutrient solutions. 

Figure 7 depicts the Floating hydroponic system architecture for cultivating the 

Amaranthus Viridis crop at London South Bank University. It has been observed that the 

Amaranthus Viridis plant gets its light for photosynthesis from artificial light and obtains 

its nutrients from the water solution mixed with nutrients. The sensors connected to the 

IoT device (Raspberry Pi) collect the climatic data (Temperature and humidity) every 

minute and transmit these data from the SQLite3 database to the Mobile edge cloud. The 

data are further transmitted to the tier 1 cloud. The Application Programming Interface 

developed using Python coordinates the collection and transmission of the data from 

collection to the cloud. The edge devices also collected image data of the Amaranthus 

leaves. These images were used to train the dataset using a convolution neural network, 

support vector machines, and K-Nearest Neighbour models. The submersible pump has 

been used to refill the crop water container from the reservoir. In contrast, the air pump 

pumps air into the tank to provide oxygen inside the water, which helps to prevent 
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bacteria and fungi growth within the water. The crops also need this oxygen during 

photosynthesis. 

[90, 97] narrates the cultivation of lettuce using hydroponic systems. Their considered 

system monitors the pH of the liquid and climatic parameters in real time. The tomato 

crop growth rate has been computed using the data obtained from the hydroponic 

system in which it has been grown [98]. An integrated system that rears fish and grows 

crops at the same time is known as aquaponics. This system has been used to capture the 

electrical conductivity (EC), pH, temperature, and carbon IV oxide to evaluate the dataset 

[99]. The Deep Flow Technique (DFT) is growing crops in a floating raft where the plant 

roots are aerated with the solution, and the IoT devices connected to the system capture 

data while the crop grows [100]. 

Handheld devices have been used to capture data from smart farms remotely. These data 

can be accessed at any time and from any location for analysis because they are stored in 

the cloud [101, 102, 103, 104] 

Sensors have been used to capture climatic data, light intensity, and carbon (IV) Oxide 

from a smart farm. Still, the parameters considered for independent and dependent 

variables have not been iterated [105, 107]. Farms installed with IoT sensors experience 

data security challenges, and the absence of broadband service has affected such farms' 

network connectivity [106].  The LoRaWAN platform has been used to collect data within 

a smart farm, the data can be viewed in graphical format, but farmers will have to pay to 

use the LoRaWAN platform, and rural farmers cannot use it due to financial constrain 

[108]. 
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A Floating hydroponic smart farm has been set up within the Suitelab research lab at the 

computer science of London South Bank University. The Amaranthus Viridis crop has been 

grown for two weeks in a nursery and transplanted to the hydroponics system for 

another six weeks before it was harvested. The decision to use the Amaranthus Viridis 

crop for this research has been made because of its shallow root system, which is suitable 

for the hydroponic systems procured for this experiment. The hydroponic system pipe 

component is 3cm in diameter, as seen in Figure 11, and is more suitable for growing 

shallow root crops. The Amaranthus Viridis crop matures within eight weeks of harvest.  

The nutrient solution used as fertilizer for the hydroponic systems, which provided the 

nutrients in the water, contained the following chemical components, namely, Nitrogen, 

Phosphorus, and Potassium in a ratio of 2:0.9:3.3. The Nutrient solution had Nitrogen 

(Nitrogen Nitrate, 1.78%, Ammonia Nitrogen, 0.28%), Phosphorus Pentoxide, 0.87%, 

Potassium oxide, 3.31%.  

The Hydroponic nutrient solution, when mixed with water, contains the following 

percentages of elements: Calcium Oxide, 1.47%; Copper (CU), 0.002%; Iron (Fe), 0.040%; 

Manganese, 0.010%; Molybdenum, 0.001%; Zinc, 0.0025%. The hydroponic system uses 

Sunlight or artificial light for photosynthesis. The Lumi 600watts Ballast Grow Light Kit 

Hydroponics Black 600watts Bulb has been used as a hydroponics system artificial light. 

The 600-watt light has been put on for 12 hours daily for growing the crop. An IoT device, 

Raspberry Pi, has been configured to capture images of the crop while it was producing, 

and the DHT 11 sensor has been connected to a Raspberry Pi. An application program 

interface (API) has been developed to collect the Temperature and humidity data within 

the Hydroponic smart farm. The collected data has been stored in the SQLite database 

repository. 
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Figure 7: Floating Hydroponic system setup at SuiteLab [158] 

Figure 7 shows the Floating Hydroponic system deployed at London South Bank University 

to cultivate the Amaranthus Viridis crop. Figures 8 and 9 show the Amaranthus Viridis 

crop in the nursery just after two days and five days, respectively, of planting. Figure 11 

shows the Amaranthus crop after 14 days in the nursery. Figure 12 shows the Amaranthus 

crop after 21 days of transplant in the hydroponics system, with the Raspberry Pi 

capturing images as the crop grows. 
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Figure 8: Amaranthus Viridis crop in the nursery just after two days 

 

Figure 9: Amaranthus Viridis crop in the nursery just after five days 

 

Figure 10: Amaranthus crop after 14 days in the nursery 

 

Figure 11: Amaranthus crop after 21 days of transplant in the hydroponics system with 
the Raspberry Pi capturing images 
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2.2.4.6 Convolutional Neural Network 

The panicle segmentation-based convolution neural network has been used to evaluate 

wheat ears count, and a harmonic mean of 98.3% has been achieved during one ear 

classification training [113]. 

A comparison of the performance of CNN and regional CNN for the evaluation of real-

time object detection with an accuracy of 47.7% and 75.6% for CNN and regional CNN, 

respectively, have been achieved.[114]. 

The authors in [115] discussed that using their dynamic resource-aware CNN model 

framework, their model has achieved 97.1% and 94.6% for CNN inference accuracy 

estimation and CNN model resource consumption, respectively. Figure 12 shows the 

convolutional neural network architecture using the Amaranthus Viridis in the input layer. 

 
Figure 12: CNN Architecture 

 
The CNN operation formula can be expressed as in equation 1, 
 

 

𝐺𝑗
𝑙 = ∑ 𝐺𝑖

𝑙−1𝑚
𝑖 𝑥  𝑇𝑖𝑗   

𝑙 + 𝑄𝑗
𝑖   ……………………………………………………………….(1) 

Where 𝑙 is the hidden layer has a feature map of 𝑙-1, the bias is 𝑄𝑗
𝑖 , the feature map 

weight is 𝑇𝑖𝑗   
𝑙 Using the Jth feature map [114]. 

The Fast-R-CNN algorithm was modified using the bottleneck attention module (BAM) for 

multi-target detection of transmission lines for image recognition. They used a softer 

NMS, K-means++ clustering algorithm to optimize the model. The modified Fast-R-CNN 
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accuracy achieved a higher accuracy value of 90.71% compared with the traditional Fast-

R-CNN, which had an accuracy of 86.41% [116]. 

The Spiking Neural Network (SNN) algorithm uses a low power consumption for its 

training. The authors use the spike time-dependent plasticity (STDP), reward-modulated 

STDP learning rules and Spyke Torch library. Upon evaluating the model using the MNIST 

dataset, an accuracy of 97% has been achieved [117]. 

The wafer pattern counting convolutional neural network (WPCCNN) uses a deep learning 

algorithm to identify, evaluate and count wafer patterns with 11 different patterns from 

over Two hundred wafers. Their proposed model uses an encoder and decoder structure 

on the CNN algorithm. An accuracy of 99.6% has been obtained from their model 

evaluation, indicating their model's high performance [118]. 

2.2.4.7 Federated Learning  

The Federated Learning algorithm aggregates several models by a server in a Federated 

learning platform or network [135]. The Federated Learning server sends its base model to 

the edge nodes, and these edge nodes use the base model for training its local datasets. 

The updated weights are sent to the server. The server aggregates all the various updated 

weights from each edge node and forms a new global model. The updated global model is 

returned to each edge node for another training of its updated weights. This process 

continues until convergence is achieved. [159] discussed that one of the challenges 

experienced in enterprise networks is Data privacy. Federated Learning has been adopted 

to address this privacy challenge in smart farming.  

As discussed in [130], using satellite images has helped to analyze soil and crops in 

farmlands to determine their condition, which has been used to resolve many challenges 

in agriculture. These solutions have enhanced farming through the forecast of the crop 

harvesting time to make decisions to combat poor harvest from the farms. Their research 
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only considered small state farmlands and has not been widely considered for nationwide 

farms. According to [131], using the six domain models for designing smart farms has 

created interconnection between several systems and boosted data utilization. The domain 

models have enhanced the joint data-sharing ecosystem between the industry players.  

This research explores a smart farming use case within the federated learning platform, 

inferring that smart farms utilize interconnected ICT and IoT devices via the cloud or the 

internet. Significant data exchange and traffic flow within these farms are indicated in 

[130, 131]. It will be interesting to investigate federated learning applications to these 

smart farms, where the data owner retains control over their data and the data scientist 

can evaluate the smart farming data without direct access to the farm data. 

The research of [132] discussed the automation of a smart farm where a mobile app is used 

to monitor the irrigation system. The App enables farmers to monitor the IoT device's data 

and the plant's environmental parameters. The limitation of their work is that the 

automated system does not handle any analysis of the data captured. 

Using automation of IoT devices, [133] was able to develop an IoT device that collected 

climatic data, and these were used to make predictions for frost and pest infestation within 

their smart farm. Still, the limitation of their work was that the device could not effectively 

handle the large volume of Big Data generated from the capturing and the farmer’s 

feedback for analysis purposes. 

The research conducted by [134] discussed the use of IoT devices to capture climatic data 

such as humidity, temperature, and moisture content of the soil. Their results inform us 

that the system retained more water at night due to the low temperature, and more water 

was lost during the day because of the high temperature within their country. The plants 

experience high moisture during the day and low humidity at night, as captured by the IoT 
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device, prompting the researchers to calibrate the automated device to supply more water 

during the day. The limitation of their work is that they needed to provide an analysis of 

the data captured by the automated device.  

It was observed from [130,131,132,133,134] that IoT devices enabled the automation of 

the traditional farming system in many countries. Climatic and crop data were captured by 

the devices deployed by the various researchers in their work. Still, many automated IoT 

devices performed little or no analysis of the captured data. The synergies of the results, 

predictions, or analysis have not been achieved due to different platforms and operating 

systems for global use.  

The concept of federated learning is a decentralised technique where the end devices 

collect data and do not share it with their neighbours [135]. However, they update the 

model and transmit the updated weights to the server. FL provides privacy for the data. 

The server then aggregates the updated weights from all the edge devices and sends the 

new updated global model to the edge or end nodes with information on its new updated 

global model. This iteration process continues until the model converges.  

The authors in [136] discuss that recent research has focused on supervised learning in 

federated learning platforms and recommend that academics investigate the 

unsupervised machine learning models within a federated learning platform or the 

combination of the federated averaging and unsupervised learning models. 

As discussed in [137], to preserve the privacy of the data trained in a machine learning 

system, a shift from the classical machine learning algorithm to a decentralised machine 

learning platform where the data are not sent to the central server or cloud for training, 

this equally reduce the latency since the bandwidth consumption within the network is 
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reduced equally. It can be inferred from [135, 136, 137] that their work has not been 

applied to an unsupervised learning algorithm, which is a limitation. 

As cited in [138], federated learning enables us to establish a cross-domain, cross-data, 

cross-enterprise biosphere for Big data and unreal cognition. The limitation of their 

research is that their work did not inform us if the edge nodes considered are 

homogeneous or heterogeneous. 

Homogeneous edge nodes all have the same attributes, such as the same memory, 

processor, and equal power capacities, while heterogeneous edge nodes have different 

memory, processing and power capacities. In this research, our edge nodes are 

homogeneous because all the edge nodes have the same memory, processor and 

transmitting power.  

The authors in [139,140] discussed a server and edge nodes correlation and cross-domain, 

cross-data transaction between edge nodes and server nodes in a Federated learning 

network.  It was discussed in [139] that little model updates and weight increments within 

the federated learning network were considered in their research, contributing to 

minimising the latency in their work.  

It can be inferred that two ranks reduced communication costs in a Federated Learning 

network with variable parameters. Their research considered low bandwidth consumption 

edge nodes during the rounds. Still, their model has not been tested in a high bandwidth 

scenario like a video broadcasting network, which is a limitation.  

In [140], it is considered that a modest assets scenario where federated learning (FL) 

network, federated distillation (FD), this is an algorithm that reduces communication 

overhead better than the Federated averaging algorithm. It interchanges just the 

aggregated model outputs within the network and the Hybrid federated distillation (HFD) 
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algorithm. This helps enhance the performance gap between FL and FD by controlling the 

average probability vector and average input from the dependent variable during the 

offline phase. It was reported in their paper that FD and HFD yield better results compared 

with federated learning when the number of uplinks and downlink channels is negligible. 

Despite the impressive outcome of their work, their research needed to address the use of 

their model for a wired non-fading channel link and no information was provided on the 

frequency of the wireless edge nodes used for the experiment. 

The work of [139] inspires our architecture, where we set up a server in our test bed for 

experimentation. We use edge nodes with the same attributes, such as memory capacity 

processors. We inferred that all our edge nodes are homogeneous since they have the 

same capacities and features. 

In [141], it is observed that using the distance of convex functions enables researchers to 

pick more nodes compared to other technological technics when the accumulation of 

mobile edge computing (MEC) devices allows applications to be run close to the service 

user for a rather demanding mean square error request which was achieved through 

increment of antennas at a base station in their experiment. The MEC allows cloud 

computing features and information technology profiles at the edge of any network.  

It can be deduced from their paper that the aggregation of more mobile edge nodes in their 

experiment enhanced the performance of their model. Some limitations were observed in 

their research, such as not investigating the effect of channel uncertainty in the model 

accumulation, and their study needed to address the computational complexity of the 

algorithm used.  

This research considers the smart farming variables’ performance within the laudable 

federated learning technique, a subset of machine learning. 
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The authors in [142] have used a greedy algorithm, a two-magnitude image analytical 

solution, where the edge nodes are vehicular.  It can be deduced that the greedy algorithm 

helps to achieve model accuracy and aggregation efficiency for a federated learning 

vehicular network. Their work inspires the accuracy performance of smart farming 

variables within a federated Learning platform. 

The authors in [143] discussed their modified C-fraction Federated Stochastic gradient 

descent algorithm, which considers the ratio of the online participants to the total number 

of participants within the federated network. Their modified algorithm gave between 

99.65% to 99.85% accuracy from the training using different values of the c-fraction during 

experimentation. Despite the impressive results from their experiment, it can be observed 

that the same learning rate was considered for the four different C-fractions. It would have 

been interesting to get the results for each C-fraction using different learning rates.  

Many different learning rates have been considered for this research, unlike the study of 

[143], to determine the effect of the different learning rates on our accuracy values using 

other optimizers such as stochastic gradient descent (SGD) and Adam optimizer. 

According to the authors in [141], the Adam activation function has been used in a 

Federated averaging algorithm for crowd-sourcing speech data to study an asset-limited 

wake word detector instead of using the normal global averaging for its training. Their work 

achieved a 95% recall per 5 false alarms per hour (FAH) for 100 communication cycles when 

the crowd-sourced dataset communication cost per participant was 8 Megabytes (MB).  

Using the Adam optimisation enabled the network to converge faster. The limitation of 

their work is that a memory-efficient end-to-end model was not used in their research. 

[141] used a speech dataset within a federated learning platform. Still, our experimentation 

is applying Adam and SGD optimizers to a smart farming dataset within a Federated 
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learning platform, which can be considered an original knowledge contribution. We 

obtained different accuracy and F1 score values during hyper-tuning the learning rate. 

The authors in [142] stated that stochastic gradient descent converges better than other 

algorithms investigated in their paper. [143] discussed that SGD converges faster, but the 

step sizes decay quickly, which affects its efficiency during training. However, [144] stated 

that the Adam optimizer is a robust optimizer that combines two other optimizers, namely 

Adagrad and RMSProp, and uses less memory for training and converges faster than SGD.  

We have considered both the SGD and Adam optimizer in our research for analysis, and 

our results depict the model's performance using smart farming variables within a 

Federated Learning network. The results indicate that the Adam optimizer has higher 

accuracy than the SGD optimizer while using climatic variables for crop type prediction. 

It is evident from [137,138, 139,140,141,142,143,144] that federated learning has been 

implemented in various networks with edge nodes which have reduced edge node queuing, 

bottleneck traffic, and latency of traffic due to the application of different technic of 

algorithm schemes to facilitate the communication cost and make the network more 

efficient. 

Related works have shown that researchers have adopted several techniques to reduce the 

latency and network traffic challenges within a particular network. This research explores 

options for hyper-tuning the parameters to achieve optimal convergence within the 

federated learning network while predicting the crop type. 

2.2.4.7.1 Federated Learning Algorithm 

1. Initialisation of the tasks  

The server decides the training task. 
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The server handles the training process and global model hyperparameters. 

The selected participants receive the task and initialise the global model 𝑉𝑝
𝑜 

2. Update and train the local model. 

The edge nodes use their local data and devices to optimize the local model  𝑉𝑝
𝑡, 

Where t represents the recent iteration index.  

The purpose of the edge nodes i in the process t is to determine the best variables Vi
t, 

 that will decrease the loss function    𝐿(𝑉𝑖
𝑡) 

𝑉𝑖
𝑡   =    arg min 𝐿(𝑉𝑖

𝑡)    ................................................................................(2) 
                     𝑉𝑖

𝑡 
The server receives the updated local model parameters. 

Global model accumulation and modification.  

Local models are aggregated from the edge nodes to the server. The edge nodes receive 

the modified global model. 𝑉𝑝
𝑡+1  

             𝐿(𝑉𝑝
𝑡)     is the global loss function, minimised by the server. 

  𝐿(𝑉𝑝
𝑡) =

1

𝑁
∑ 𝐿(𝑉𝑖

𝑡)𝑁
𝑖    .............................................................................................(3) 

The global loss function converges after many repetitions of steps 2 to 3 (state which 

additional iterations do not enhance the model)  
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 Algorithm 1: Federated Averaging Algorithm [11] 

The Learning rate is    η 
The number of local epochs is e 
Locally reduced batch (mini-batch) = S 
Number of edge nodes in each iteration = c 
Global model   𝑉𝑝

𝑜 

1. The participants are represented by i 
2. Local Training    𝑉𝑖 
3. Divide the local dataset 𝐺𝑖 to small mini-batches, and place in set Gi\\ 
4. s which is part of a set  𝑆𝑖 
5. for every local epoch h, from i to e do 
6. for every  𝑠ϵ𝑆𝑖          do    where ( η= learning rate and    δ=gradient of L on S) 
7.  end for 
8. end for 
9. [server] 
10. set   𝑉𝑝

𝑜 

11. for iteration t from 1 to t do 
12.   arbitrarily select a subset  𝑌𝑡 of C edge nodes from N 
13.    for each edge node i ϵ𝑌𝑡 similarly do 

14.             𝑉𝑖
𝑡+1                     local training (i, 𝑉𝑝

𝑡)      

15.    end for 

16.                    aggregating       𝑉𝑝
𝑡 =

1

∑ 𝐷𝑖𝑖ϵ𝑁
∑ 𝐷𝑖𝑉𝑖

𝑡𝑁
𝑖=1                           

17. end for 
 

 
The server then aggregates all the updated weights from each edge node to determine its 

new global model. Subsequently, it sends the updated global model back to the edge 

devices for the next round of training iterations. This process continues until further 

training no longer improves the local models. It is important to note that the server never 

sees the raw data of the edge devices throughout the entire process, which provides data 

privacy for the data owner for the whole analysis and creates data security. 

In this research, as shown in Figure 13, which depicts our architecture, the mobile edge 

computers receive the data from the IoT devices, the MEC perform the local training of the 

data and only sends their updated weights to the server upon completion of the 

aggregation of all the received local weights, the server sends its new updated global model 

to each MEC, and they also use this new received updated global model to perform the 

next training, this process continues until convergence is achieved.  
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Figure 13: Federated Learning Architecture 

 

Figure 14 shows the Federated Learning network flow sequence from the sensors that 

capture data and send these data to the edge devices. Unlike classical machine learning, 

where the data is sent to the cloud for training, Federated learning adopts a different 

approach. The server sends its initial global models to the edge devices. Since training takes 

place at the edge nodes where the data is domiciled, the edge devices use the initial global 

model sent from the server to train its local model, the edge devices then send its updated 

weights to the server.  

 

Figure 14: The Federated Learning sequence 
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2.2.4.8 Gaussian Naïve Base (NB) Classifiers 

[146] discussed that Binary relevance breaks down the multi-class dataset into several 

independent binary variables such that one variable is in one label. 

According to [ 147], the classifier chain Gaussian NB equally disintegrates the multi-class 

dataset into many independent variables. Still, it recognises the dependent variable 

correlations, which are an enhancement over the Binary relevance Gaussian NB model. 

The authors in [147] discuss that the Label powerset Gaussian NB transform the multi-

label dataset into many multi-classes single-label classification problem. The Gaussian 

Naïve Bayes is implemented from the Naive Bayes theorem. Equation 4 depicts the Naive 

Bayes theorem.  

(H|K) =
P(K|H) 𝑥 P(H)

(P(K))
    ……………………………………………………………………………………………(4) 

H is the hypothesis, and K is the evidence [147]. 

2.2.4.9 Modelling of Federated Learning Smart Farm Network    

According to the authors in [ 149], by increasing the buffer size for Unspecified BitRate 

(UBR) or available bit rate (ABR) traffic, the random loss for a high bandwidth-delay 

product network can be reduced since increasing the buffer size reduces the loss 

probability for the end-to-end link. This loss is lower than the inverse square of the 

bandwidth-delay product. The authors in [150] discuss that the buffer regulation 

algorithm can achieve stability and ensure good performance in a cellular network 

experiencing bandwidth congestion. They acknowledge that the Prop rate algorithm can 

achieve a low computational overhead compared with other algorithms such as CUBIX, 

Verus, and bandwidth-delay product-based approach algorithms in a mobile cellular 
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network. It can be inferred that the Prop rate algorithm can resolve congested uplink 

problems because it works with a one-way-delay approach. 

According to the authors in [151], Federated Learning is the evaluation of models in a 

decentralised platform where the communication cost is reduced because only the 

updated weights of the local models are sent to the server. It can be inferred from their 

research that the Long short-term memory models considered for the federated Learning 

network have been five times faster in achieving prediction values than the centralised 

network. 

The authors in [152] discuss that the training of the secure Multi-party Computation 

(SMPC), FL Homomorphic encryption and FL without encryption indicated that the FL 

homomorphic encryption scenario has been able to achieve convergence in less than one 

(1) second while the SMPC converged in fifteen (15) seconds and the FL platform without 

encryption converged at twenty-four (24) seconds. It can be inferred that applying 

Homomorphic encryption to an FL network improves its convergence. 

The authors in [153] discuss that their efforts to reduce the communication cost of the 

network considered. They introduced the federated sparse compression (FSC) algorithm, 

which reduced the communication cost of the FL network. It can be inferred from their 

research that better generalisation and prediction have been achieved by using the 

CapsNet to train data in edge devices. 

The authors in [154] used the content popularity prediction of privacy-preserving (CPPPP) 

scheme based on federated learning and Wasserstein generative adversarial network 

(WGAN) to improve the cache hit ratio and resolve the data leakage during model training 

in an FL platform. It can be inferred that the transmission time using the FL scheme for 

caching has been reduced. 
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The authors in [155] has used FL to analyse chest X-ray images, the federated averaging 

models have been able to classify the infected lungs and healthy lungs from the image 

datasets. It can be inferred that their proposed model has reduced the bias in the 

prediction models because it combines all the updated weights and features of the 

various edge node models.  

The authors in [156] discuss that using Federated averaging + CNN + MobileNet models 

for the classification of breast cancer images has improved the classification accuracy of 

breast cancer detection using the federated averaging +CNN model. It can be inferred that 

their model classification results outperformed other centralised network models. 

The authors in [157] discuss that they have resolved the slow convergence of Mobile edge 

nodes using Federated Learning for heterogeneous nodes. Their research results 

outperformed the existing centralised network in resource usage, learning accuracy, and 

convergence speed. 

It can be inferred from [148,149,150] that increasing the bandwidth within a link 

increases the bandwidth-delay product and reduces the congestion.  

The research of [151,152,153,154,155,156] discusses that using FL platforms improves 

model convergence, and the FL model outperforms the centralised network. 

Figure 15 shows the architecture of the Modelling of the Federated Smart Farm Network. 



36 
 

 

Figure 15: Architecture of the Modelling of Federated Learning smart farm network. 

The modelling of the federated learning smart farm network is investigated. The server in 

a federated network receives local model update weights, a network of several queues 

received at the server ingress. This research evaluates these networks of queues and the 

impact of the network of queues on the Federated Learning smart farm network. The 

Bandwidth delay product (BDP) is the product of the bandwidth capacity and the round-

trip time taken by the queue within the link. A Testbed has been set up, allowing the 

researcher to capture several data such as the network's Traffic speed (TS) and round-trip 

time (RTT). This dataset has been used to model the Smart farm network using the 

federated Averaging algorithm. The performance metric investigated is the smart farm 

network's bandwidth-delay product (BDP). The performance of the aggregate, base and 
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classical machine learning models for the bandwidth-delay product (BDP) has been 

investigated, and the predictions of the combined and classical models have been analysed. 

[148] discuss that the Bandwidth delay product-constrained application protocol (BDP-

CoAP) algorithm can handle throughput and minimize the retransmission rate better than 

the constrained application protocol (CoAP) and congestion control algorithm (CoCoA+) 

algorithm. It invariably eradicates unresponsive background traffic and ensures stability 

within a dynamic traffic network. 

The testbed setup using the GNS3 emulator was used to evaluate the diverse traffic 

within the network. The BDP has been analysed using the federated learning edge node 

models, and the aggregate model and a comparison of the combined model and the 

classical machine learning model have been considered. It can be inferred that the 

combined model converges faster than the edge node models and the centralised 

machine learning network model. The higher the BDP is the faster convergence is 

achieved. The high BDP has impacted the network positively. From the experimentation, 

it is shown that the Federated Learning global model converge after eight (8) epochs. The 

classical machine learning model converges after twenty epochs (20), indicating that the 

Federated Learning model converges faster than the classical centralised machine 

learning model. An in-depth comparative analysis of the centralised, decentralised and 

edge node models is investigated using the BDP as a performance metric for a smart farm 

network. 

2.3 Technologies 

2.3.1. Sensors used in smart farms 

Water stress levels in crop leaves have been detected using sensors [25], which has 

allowed researchers to investigate how water affects the health of the crops. The EM4325 

UHF chip is one of the many chips installed inside these sensors [25].  
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According to [26], the smart stick sensor transmits soil moisture parameters from the soil 

to the IoT devices for analysis. The DHT11 and DS18B20 are some of the sensors used for 

data collection in smart farming. These sensors have enabled researchers to collect data 

within the smart farm for various analyses. 

2.3.2. Unmanned Aerial Vehicles (UAV) in smart farming 

Deep Learning has been used for segmenting and identifying vegetation, crop image 

classification, detection of disease, and weed using sensors and cameras installed on 

UAVs [27].  Their research discusses that UAVs have used deep learning to predict crop 

yield and crop counting. Smart farm data has been captured from imaginable heights 

using UAVs. UAVs can capture and collect smart farm images and animal voice data, but 

these data processing challenges require further investigation. 

 

Figure 16. Network architecture for a smart farm using drones. 
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UAVs enable farmers to collect data from edge nodes, beaconing, shunting of connected 

nodes, and localization of cluster heads. Some UAVs have developed 3D models using the 

images captured from the analysis and weed mapping, yield estimation, disease 

detection, crop spraying, and crop growth monitoring. Figure 16 depicts the network 

architecture of a UAV collecting data from sensors installed within the smart farm. The 

authors in [28] discuss that UAVs can be deployed to a smart farm to resolve transmission 

connectivity challenges using the LoRa protocol. The UAVs can connect the edge nodes 

and base station, but their network design has not been implemented for heterogeneous 

edge nodes. The authors in [29] discuss the relationship between the features of images 

of the thermal and spectra data from a smart farm. It can be inferred from their work that 

the UAV's flight height impacts the accuracy of the crop images collected. The Red, Blue, 

Green and near-infrared (RGB_NR) bands achieved optimal accuracy. They list the 

Agdrone, which can fly at an altitude of 400 feet and cover 600-800 acres in 60 minutes, 

and the DJI matric 100 with double battery capacity with 40 minutes additional flight 

duration compared with other UAVs. It has GPS incorporated within it. Some UAVs, such 

as the Agras MG-1-DJI, can carry 10KG of liquid over an area of 4000 – 6000 m2, the DJI 

T600 can capture 4K video images and the EBEE SQ is used for early monitoring of crops 

to maturity stage, Lancaster 5 precision Hawk is used for capturing climatic parameters, 

SOLO AGCO is used for precision image capturing. It can be deduced that UAVs have 

enhanced smart farming by capturing high-precision images, weed spraying and effective 

monitoring of smart farms.  

2.3.3. Internet of Things 

 The authors in [30] discuss that incorporating IoT in smart farms enables the exchange of 

information between the sensors and the devices. It can be deduced that intelligent IoT 

devices reduce crop loss and maximise the farmer’s profits annually, improve the quality 
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of the crops, boost farm harvest, and reduce the risk of pesticide poisoning humans and 

animals through the crops. Still, they did not mention how IoT can protect farm crops 

during adverse weather conditions. Their research iterated that IoT deployment in smart 

farms will scare away wild animals and birds using low-frequency ultrasound devices 

within the farm. 

IoT implementation enables farmers to detect infestation on their crops [31] through 

image processing techniques, but how their model will handle new disease outbreaks has 

not been discussed. MapReduce and Hadoop IT framework, big data, and wireless sensor 

architecture can affect image processing performance within a smart farm network [32]. 

It can be deduced from [30, 31, 32] that the deployment of IoT within a smart farm can 

boost crop quality and quantity, but the data security concerns such as data validity, 

integrity, and trust still exist, recovery, data reliability, access control, data encryption, 

data attacks and data prediction. This research addresses the data security concerns by 

building models using Federated learning algorithms which provide data privacy during 

the training of the models because the algorithm allows for data evaluation without the 

server having access to the raw data but uses only the updated weights from the edge 

nodes to aggregate the combined model. 

2.3.4. Artificial intelligence 

 According to [35], the movement and location of farm animals within the farm can be 

monitored using AI. The data captured helps to understand the pattern of the animal’s 

movement using machine learning models, which enable the farmer to know if an 

attacker has entered the farm vicinity. The authors in [36] discuss that federated learning 

(FL) models have been used to evaluate unbalanced, non-Independent Identical 

distributed (non-IIDD) data using mini batches. This technique has reduced network 
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communication costs. FL models send their edge nodes' updated weight to the server for 

aggregation without sharing their raw data with the server. 

Deploying IoT, UAVs, and Robots has a high cost to implement in a smart farm, while 

sensors are cheap to purchase. Some limitations identified in using IoT, UAVs, Robots, and 

sensors within a smart farm are shown in Table 2 

Table 2:  Comparing Sensors, UAVs, IoT & Robots in Smart Farms [84]. 

Properties [sensors] [UAVs] [IoT] [Robots] 

High transmission speed  N Y [28,84] N/A Y [32] 

Provide connectivity where no 
internet is available  

N Y [28] N N 

Cover a long range of distance for 
data transmission 

N Y [28] N/A N/A 

Mobility within the farm  Y [84] Y [35] N/A Y [35] 

High processing power  N N N/A Y [32] 

Analyze data aggregate  N N N/A Y [32] 

High security in the transmission of 
data  

N Y [8,84] Y [31] N/A 

Run out of power over time.  Y [8,84] Y [35] N/A N/A 

The psychological effect on Livestock  Y [8,84] Y [8,84] N/A N/A 

Low cost of deployment  Y [8,84] N N N 

   Yes = Y, No = N, N/A = Not Applicable. 

2.3.5 Fog computing 

A distributed computing technique that empowers network devices at various levels of 

network hierarchy with storage and computational capacities is referred to as Fog. The 

Fog devices are equipped with intelligence, enabling them to determine the devices that 

require resources from the cloud to meet networking demands for real-time reduced 

latency services ranging from smart traffic monitoring, live streaming, e-health 

applications, and smart farming analytics [ 37]. 

The authors in [38] discussed that a Fog computing system with centralised network 

architecture experiences low latency and improved performance when connected with 

sensors. 
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Fog computing has been defined by [39] as the computing technology linking IoT devices 

and the cloud. It provides computing, inter-networking, management and storage of data 

on the network nodes. They discussed that it had enabled computing systems to monitor, 

measure, analyze, process, control, and help IoT devices in speedy decision-making within 

the network. Figure 17 shows a fog computing network with identified functions such as 

monitoring, measuring, storage, communication, and industries where it is used, namely, 

agriculture, oil & gas, construction, finance, etc. 

 

 
Figure 17: Fog computing 

 
Latency issues can be reduced by replicating network activities such as data analysis and 

monitoring close to the IoT devices or client [40]. 

Some devices require a lot of resources to transmit their data to the cloud and experience 

high energy consumption during the transmission. This energy consumption can be 

minimised with a fog server [41]. Figure 17 shows a Fog computing architecture. 
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Many IoT devices used in enterprise networks have challenging security issues. The 

introduction of fog servers (Mist servers) has been used to monitor neighbouring gadgets’ 

security conditions and minimise security concerns [42]. 

The Haze server has been used as a fog server to resolve time-sensitive applications and 

minimise idleness and inertia within the network. It has been used in different sectors, 

such as smart city deployment, smart Grid systems, and autonomous vehicles. Still, it will 

be good to apply it to heterogeneous IoT smart farm networks [43].  

There have been many developments in computing technologies, such as cloud 

computing, the Internet of Things, mobile edge computing, and fog computing. However, 

a recent paradigm of Dew computing synchronises two Dew servers located at different 

remote sites without an internet connection. Edge devices can connect via the cloud 

master copy repository within the dew server and browse local online pages. The dew 

domain scheme and redirection enable remote mapping connectivity between dew 

servers [44]. 

The introduction of fog computing to IoT devices within various networks has greatly 

improved IoT-based applications' efficiency. The fog brings the computing resources close 

to the IoT devices and reduces the energy requirement of the IoT devices. However, when 

the computational resources at the fog nodes are limited, the tasks are offloaded to the 

cloud, and determining the time to offload the task is of great concern [45].  

2.3.6 Edge computing 

Edge computing is a platform where data computation is executed close to the data 

source. This minimizes the latency within the network and improves the data processing 

time due to the proximity of the data source to the data computation. With edge 

computing, the data are not sent to the cloud for processing. This lowers latency and 

improves data privacy within a network [46]. 
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It has been discussed in [47] that dataset analysis and evaluation can be executed within 

proximity to the dataset location using edge computing technologies. Their research has 

mentioned that bandwidth usage can be lowered drastically through edge technologies 

where the dataset is not sent to the remote cloud. They further stated that this 

technology creates additional hops within the network, and edge computing network 

resources can be unreliable sometimes.  

According to the authors in [48], Edge computing minimizes security concerns because 

the datasets are close to the data source, which enables it to satisfy geographical 

regulations. 

The authors in [49] discussed that edge computing has been used for network 

computation. They used it to minimize the computing and network resources for 

migrating data applications from the cloud to the edge in real time. 

The authors in [50] discussed that edge computing improves real-time computational 

processes. Edge computing technology minimizes the network and computing resources 

needed to move the data to the cloud for analysis. 

2.3.7 Multi-access Edge Computing (MEC) 

The authors in [51,52) discussed that the storage and computing capacity has been 

reduced for computational operations due to Mobile edge computing devices, which have 

limited capacity compared with the cloud. They suggest that a collaborative edge-local-

cloud technology should be used to improve users’ Quality of experience (QoE) in MEC.  

The authors in [53] discussed that mobile edge cloud computing has been used to resolve 

latency challenges in Audio and visual reality (AR/VR), autonomous driving, and electronic 

health systems. However, the MEC resources seem less effective than the cloud 

resources. However, their paper illustrates that the MEC, mobile devices and cloud 
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collaboration will address the high latency challenges. Still, the heterogeneous 

architecture of the collaboration affects the performance of the implementation.  

Clients or users in a network experience delays when they are queued to use or share 

resources from the cloud or edge server designated to provide resources for their 

operation. The authors in [54] proposed the stochastic user allocation algorithm to help 

users or client nodes access these resources for efficient performance by reducing queue 

delays and latency costs since their proposed optimization algorithm assigns users for 

provisioning without asking for arrival or departure details. 

Resource allocation in edge computing is an area of concern. According to [55], using 

their proposed destination-oriented directed Acyclic graph (DODAG) algorithm approach, 

they were able to decide the optimal node for each step and task flow. Their proposed 

algorithm has been able to address the subsystem's quality-of-service (QoS) 

requirements. It has been able to predict task completion and task arrival time for 

datasets across multiple devices. 

It has been discussed in [56] that edge computing is an abstract pattern of computing that 

has moved cloud computing resources to the internetworked edge devices. This has 

brought network resources close to the end users. This computing paradigm has reduced 

latency and bandwidth usage within the networks. Privacy and security concerns have 

been minimized with this technology. 

According to the authors in [57], the time delay and energy consumption cost reduction 

within a MEC network can be achieved by offloading part of the task to the mobile edge 

device and the other part offloading to the MEC server for processing. They believe 

prioritizing the high-priority task to the MEC server, which has a high computing capacity 

compared with the mobile edge device, will reduce the computing delay within the 

network. 
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The authors in [58] discussed that a profit maximization multi-round auction (PMMRA) 

technique has increased the number of users served by a MEC since their suggested 

algorithm has gotten more capacity for resources within an MEC network. 

The Robust-oriented edge Application deployment (READ) has been used to maximize the 

MEC servers’ coverage and equally minimize the latency within the network for a 

constrained optimization scenario where they proved the NP-hardness, for which the 

approximation ratio is better than K=2, which is a constant, irrespective of the number of 

servers considered [59]. 

 The decentralised learning-based edge node grouping algorithm has been used to reduce 

backhaul congestion and latency and improve edge capacity. This is achieved by the 

multiple edge nodes cooperatively serving one user and giving the user a better 

experience. Their solution has achieved 96.99% of the Oracle benchmark [60]. 

2.3.8 Cloud computing 

Joseph Carl Robnett Licklider invented the cloud computing paradigm in the 1960s while 

working on the ARPANET project. Cloud computing terminology grew tremendously in 

2006 during an industrial conference where Eric Schmidt, the Google CEO, mentioned the 

terminology. Subsequently, the AWS S3, a product of Amazon for providing web services, 

influenced the growth of the awareness of cloud computing in the same year [61]. 

CompuServe 1983 introduced file storage on disks, and in 1994, AT&T introduced the first 

online storage for personal and corporate customers into the market. However, users 

more readily accepted cloud computing in 2007 when Dropbox was introduced via AWS. 

Other Technological companies released their cloud computing brands, Google released 

its version in 2008, and Azure, a product of Microsoft, was released in 2010. In 2011, IBM 

launched its cloud platform. Cloud computing has evolved from file storage to a 

technology that offers file computation [61]. 
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Figure 18: Evolution of the cloud computing 

Some of the services offered using cloud technologies are Platform as a service (PaaS), 

Software as a service (SaaS) and Infrastructure as a service (IaaS) [62]. Figure 18 shows 

the evolution of cloud computing since the 1960s.  

SaaS offers customers all the software they need for their operations. They do not have to 

buy or install any software or hardware. They do not worry about maintenance or 

upgrade of the software; they only pay for what they use, and the software comes with 

the latest upgraded versions. This service gives everyone the affordability to use software 

that, in the past, could be accessed by large enterprise networks within the industry. The 

infrastructure as a service provides All the hardware for the customers, such as servers, 

storage, and networking. However, the developers must install the software they require 

for their operations, such as database servers, web servers, operating systems, etc. 

The PaaS is a cloud service for developers to run, develop and manage their applications 

in the cloud. They do not require servers, storage, networking, operating systems, 

middleware, or databases because the service (PaaS) runs on top of the IaaS. Examples 

are Heroku, Microsoft Azure App Service, Google App engine, etc. 

Cloud computing has enabled their customers to offer improved performance services, 

fulfilment of service level agreements, reduction in the cost of its operations, better 
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security within their network provisioning, and collocation services within their data 

centres. 

Many research publications exist on cloud computing, cloud adoption [63], cloud 

application [64], cloud security [65], cloud architecture [66], cloud provisioning [67], and 

cloud orchestration [62]. 

A publication by [61] 2010 highlighted the technique of migrating an Information 

Technology enterprise network to the cloud, such as IaaS. We see further work by [68], 

which discussed using cloud technologies for video surveillance to improve the 

surveillance images for better analysis. It can be inferred from the existing publications 

that using the cloud has reduced the cost of operations and improved real-time data, 

voice, and video processing.   

2.4. How climate change affects smart farms 

 The climate affects crop colouration [69]. The authors discuss that reduced daily 

temperature can cause brown patches, indicating the effect of climate change on crops. 

Their research mentions the smart surface sensing system for monitoring crop vegetation 

indices and Leaf Area Index (LAI). Still, this solution cannot be used to monitor multiple 

sites simultaneously. 

The Latitude of locations can influence some crops' flowering time [70], as seen in winter 

wheat growing. They affirmed that higher longitude positively influences the winter 

wheat crop's flowering. Still, their research did not inform us of the effect of excess water 

conditions within the farm on the winter wheat crop. It can be inferred that climate 

affects the evapotranspiration rate within the farm since crops lose more water in hot 

weather.  

  



49 
 

2.5 Challenges and Issues of smart farming 

 The authors in [72] have expressed concerns about the communication protocol used for 

interaction within the smart farms. These protocols were effective for only short-distance 

coverage areas.  

It can be inferred from [21, 22] that the IoT devices attached to the farm animals were 

battery-operated, causing the data transmission to last for a few hours.  

Smart farm networks currently experience latency, data privacy, reliability, Quality of 

service and security [17]. Climatic parameter detection is another challenge smart farm 

networks face [30]. Smart farms network transmit data from the edge nodes to the server 

and from node to node [36]. A high communication cost is involved in the transmission 

link, and researchers need to investigate this challenge further. [32] narrates the security 

concerns about data transmission within a smart farm network. Disease infestation in a 

farm can adversely affect the harvest. These diseases have been detected early to reduce 

poor harvest using machine learning models [20]. 

Recent publications show crops lose water via evapotranspiration due to high 

temperatures and adverse climatic conditions [74, 75]. Tables 3–4 depict the identified 

challenges in smart farm networks. These include disease detection, animal behavioural 

patterns, and leaf water loss. The identified gaps provide opportunities for future 

research.  
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 Table 3:  Comparing IoT challenges in smart Agriculture (Part 1) [84] 

Properties [1] [14] [15] [23] [24] [25] 

Control actuators Y N N N N N 

Detection of weather conditions N Y N N N N 

Preventive measures using IoT Y N Y Y N Y 

Architecture N N N N N Y 

Reduce communication Cost N N N N Y N 

Quality of service N N N Y Y Y 

Lightweight encryption for IIoT  Y N N N N N 

Failure detection Y N N N N N 

prediction for IIoT Y N N N N N 

Data reliability Y N N N N N 

Access control in IIoT Y N N N N N 

Cyber-attacks in IIoT Y N N N N N 

Management of IIoT designs and 
software 

Y N N N N N 

Trust in IIoT Y N N N N N 

      Yes = Y, No = N, N/A = Not Applicable.   

Table 4:  Comparing IoT challenges in smart Agriculture (Part 2) [84] 

Properties [4] [28] [5] [6] [7] [8] 

noise filtering capacity Y N N N N N 

faster detection rate for crop 
disease 

Y Y N N N N 

Reduced the time of diagnosis of 
animal illness. 

Y Y N N N N 

Enhanced Data Transmission N N Y N N N 

monitor the movement of the 
animals within and outside the 
farm 

N N Y Y N N 

determine the animals’ attitude 
and behavioural pattern 

N N Y Y N N 

Monitor health changes among the 
animals. 

N N Y Y N N 

Colour, Shape from the 3D sensor N/A N/A N/A N/A Y N/A 

   Yes=Y, No=N, N/A= Not Applicable 

2.6 Cloud-based IoT smart farming 

 AI solutions have been used to improve farming strategies [80]. The GeoFarmer solution 

has enabled farmers to share their experiences with other stakeholders, and the solution 

comprises Interactive Voice Response (IVR), which allows the farmers to interact with 

agricultural partners using smartphones. The solution enables Agricultural experts to 
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support farmers through the application. Farmers can share information with other 

farmers, but uneducated farmers cannot use the solution. 

Table 5: Comparing the Advantages of IoT Cloud-based Smart Agriculture in Related 
Works [84] 

Properties [4] [28] [5] [6] [7] [8] [15] [23] [24] [26] 

Better segmentation of crop 
spot edges 

Y N N N N N N N N N 

identification and separation 
of plant disease in fast 
computational time 

N N N N N N Y N N N 

The algorithm automatically 
identifies the health and 
welfare of animals. 

N Y N N N N N N N N 

A wireless neck collar 
connected to the farm animals 
for data transmission 

N N Y N Y N N N N N 

Sea-lice counting and 
crowding control in fish 
farming to enhance fish 
farming. 

N N N Y N N N N N N 

RGB-D sensor used for 
harvesting sweet pepper by 
cutting the peduncle 

N N N N Y N N N N N 

Monte Carlo simulation was 
used to determine the best 
harvest age of a coconut. 

N N N N N Y N N N N 

Evaluation of the near-surface 
air temperature data sets 
from the ERA-Interim (ERAI) 

N N N N N N N N N Y 

AI in edge computing used to 
monitor the movement 
and the location of the 
animals on a farm 

N N N N N N N Y N N 

FL is used to handle user 
equipment and edge nodes for 
unbalanced and non-
independent Identical 
Distributed (non-IDD) data 
successfully. 

N N N N N N N N Y N 

Yes=Y, No=N, N/A= Not Applicable 
 
[81] discusses that animals on the farm defecate as they move within the farm, and the 

animals carry these excretes with their hoof, causing soil compaction and pollution of the 

water table via the soil, which can cause E. coli disease within the farm vicinity. It can be 
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inferred that static animal feeders are more suitable for reducing disease outbreaks 

within the farm. 

MapReduce, Machine learning models can be used for smart farm data analysis [82], and 

the data encryption approach reduces the data size for transmission. They further narrate 

that challenges exist, such as security, data privacy, hardware heterogeneity, service level 

agreement among smart farming industry players, network latency, and data reliability. 

Table 5 shows the advantages of the cloud-based smart farming methodology and IoT. It 

can be inferred that AI solutions have enabled crop monitoring within the smart farms to 

take minimal time, and training of smart farm data can be done using decentralised and 

centralised machine learning models. 

2.7 Application of machine learning to Agriculture 

Diseases, old agricultural practices, poor farm management strategies, and lack of AI 

know-how for early crop disease identification are reasons for poor quality crops and 

harvest [77,78]. AI solutions have been used to determine rice dimensions, according to 

[79]. Their research has an error rate of one and a half per cent (1.5%) compared to the 

manual technique. [79] discusses that by using smart IoT mat devices, farmers can 

monitor the weights of their pigs. These devices allow the farmers to capture the pig’s 

gestation period and monitor the health of the pigs and their piglets within the womb, 

this solution has been useful for monitoring pregnant pigs to avoid miscarriages, but they 

have not tested this AI solution on other animals to ascertain its tolerance by other farm 

animals. The application of ML models has allowed farmers to monitor their farm 

actuators and data remotely. With the Application Programming Interface (API) 

deployment within the smart farm network, soil moisture, climatic parameters, and crop 

growth rate can be captured using the architecture. A comparison of the federated, 

unsupervised and supervised machine learning methodology is shown in Table 6.  
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Table 6:  Comparing Federated, Unsupervised & Supervised Machine Learning Techniques 
in a Smart Farm [84]. 

 Supervised 
Learning [77] 

Unsupervised 
learning [78] 

Federated Learning 
[138,139] 

Disease detection Y N Y 

Detection of Ripening of fruits  Y N Y 

Tiny grain size calculation Y Y Y 

Monitoring of animal gestation 
period, weight, gait 

Y N/A Y 

Usage in edge devices Y Y Y 

Training of dataset remotely N N Y 

Reduction of network latency N N Y 

Data privacy and security N N Y 

   Yes=Y, No=N, N/A= Not Applicable 
 

 

Figure. 19: Cloud-based IoT Architecture for agriculture 
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Figure 19 shows a cloud-based ML architecture that can be deployed using Keras, 

TensorFlow, and TensorFlow lite libraries for centralised or decentralised smart farm 

network data analysis. 

2.8. Discussion 

AI technologies have been used to boost smart farm production. These include using 

UAVs, monitoring farm animals’ health and movement, and analysing farm images 

ranging from crops and farmlands to improve irrigation systems within the farm. The 

application of technology to agriculture has boosted farm produce and empowered the 

farmers and their stakeholders. Still, these laudable merits have also brought some 

challenges, such as security and privacy concerns, data governance, and lack of change in 

culture by the stakeholders to accept the IoT system innovation [8,31, 84].  

The technological devices used in smart farms have limited computational power and 

cannot analyse the volume of data collected within the farm. So farm devices connected 

to livestock to monitor their movement and body parameters use batteries, which run 

out of power within hours of usage. Using the devices connected to this livestock 

psychologically affects these animals [8]. Since Technology in agriculture generates 

enormous volumes of data, analysing these data is of concern because the edge devices 

deployed in the farms cannot analyse the Big data generated [32]. Transferring these data 

to the cloud gives the stakeholders security concerns because intruders can intercept the 

data and cause a privacy breach within the smart farm network [31]. The farms are 

located outside the metropolitan environment where internet infrastructure is poor, 

which causes high transmission and connectivity issues [28,32]. There is a need to encrypt 

the IoT data in the farms, and the prediction of outputs of farm produce cannot be 

achieved using machine learning models because the farm devices have low resource 
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capacities [1]. It can be inferred from [23,24,25] that the quality of service within smart 

farm networks is still a challenge. 

Research is ongoing on improving the speedy detection of animals’ health while they are 

ill and faster disease detection using technology [4,28]. When the livestock is pregnant, 

there is great concern about their behavioural pattern, which can influence how they are 

fed and treated within the farm. Current research publications are still addressing these 

concerns [5,6].  
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Chapter 3 Data and Data Preprocessing 

 
3.1 Hydroponic Dataset from the University of Peloponnese. 
 
The University of Peloponnese (UP) in Greece studied hydroponic systems, specifically 

Floating, Aggregate, Aeroponic, and Nutrient Film Techniques (NFT). Data have been 

collected from these four systems, comprising various features related to the growth of 

Onion crops [158]. The dataset includes the following numerical features: days after 

transplant, temperature (oC), water consumption (Litres), number of leaves (NL), nitrogen 

content (mg/g), phosphorus content (mg/g), potassium content (mg/g), calcium content 

(mg/g), magnesium content (mg/g), sulphur content (mg/g), sodium content (mg/g), and 

onion bulb diameter (mm). The dataset consists of 64 rows and 12 columns. 

The dataset was pre-processed using the scikit-learn library in Python. Missing values 

have been identified, and normalization techniques have been applied to handle these 

missing values. In addition, the dataset has been cleaned to address inconsistencies and 

remove duplicate entries. 

The scikit-learn library has been employed to split the dataset into training and testing 

samples. The training samples accounted for Eighty per cent (80%) of the total 

population, while the remaining Twenty per cent (20%) was allocated for testing. The 

developed models have utilised the training samples to learn the patterns and 

relationships between the dataset's independent and dependent variables. The testing 

samples have been used to evaluate how well the model generalised to unseen data, 

assessing its performance in real-world scenarios. The K-Fold cross-validation from the 

scikit library has been used to evaluate the dataset to prevent overfitting of the model. 

The performance of the trained model has been assessed based on its ability to generalise 

to unseen test samples and forecast its performance on real-world datasets. This 
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evaluation has provided insights into the model's effectiveness in handling unseen data 

and making accurate predictions.  

3.2 Amaranthus Viridis Dataset 

Amaranthus Viridis crops have been grown in the floating hydroponic smart farm at 

London South Bank University. The dataset collected from this farm includes images of 

the crop's leaves and numerical variables related to climatic parameters and crop growth 

rate. The dataset consists of 62 rows and seven columns. 

The images of the leaves were captured using a Raspberry Pi camera. These images were 

pre-processed and classified into two categories: healthy and infected. The classification 

was based on the colouration of the leaves, with completely green leaves considered 

healthy and leaves with yellow colouration marked as infected. One Thousand and fifty-

three (1053) image dataset was analysed. The Amaranthus Viridis images have been split 

into Seven Hundred and Twenty-Nine (729) for training of Healthy images, One Hundred 

and Sixty-Seven (167) for training of infected images, One Hundred and Forty-Five (145) 

for testing of Healthy images and Twenty (20) for testing of infected images. 

For the image data, the scikit-learn library in Python was used to read and process the 

images. The images were resized to 256x256 pixels to ensure uniformity in size across the 

dataset. Normalization was applied by dividing the pixel values by 255, which helped 

improve the model's convergence during training. To enhance training, the images were 

flattened as a preprocessing technique. Finally, the images were saved in the Joint 

Photographic Expert Group (JPEG) format. 

The dataset also includes numerical data related to the crop's growth rate. This data 

consists of 62 rows and seven columns. Pre-processing was performed using the scikit-
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learn library to handle missing values and check for inconsistencies and duplications 

within the dataset. 

Cross-validation techniques from the scikit-learn library were employed during the data 

training. Specifically, k-fold cross-validation was utilized, where the dataset was split into 

K (in this case, K=5) folds. The dataset has been split using the Scikit Learn Python library 

for training and testing. Eighty per cent (80%) has been used for training, and Twenty per 

cent (20%) has been used for testing. This process was repeated for different training and 

testing set combinations to ensure a robust evaluation of the model's performance. 

The dataset was effectively prepared for training and testing the models by employing 

cross-validation and pre-processing techniques, enabling accurate analysis and 

predictions of the Amaranthus Viridis crop's growth rate. 

3.3 Multi-labelled Smart Farm Dataset Used for Federated Learning Classification  

The dataset was collected from [145]. It consists of independent variables such as 

temperature, humidity, the potential of hydrogen (pH), and rainfall, while the dependent 

variables are rice, maize, and chickpea. 

The Python scikit-learn library has been used for the preprocessing of the dataset. Missing 

values within the dataset were addressed through normalization techniques. Data 

cleaning procedures were applied to handle duplicates and inconsistencies within the 

dataset. 

One-hot encoding was performed using the Python library for the dependent variables 

(rice, maize, and chickpea). This encoding assigns numerical values to each category, with 

rice being assigned a value of 1, maize a value of 2, and chickpea a value of 3. 
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The dataset was then split into Eighty per cent (80%) for training and Twenty per cent 

(20%) for testing using the scikit-learn library. This split aims to train the model on most 

of the dataset and evaluate its performance on the remaining portion. 

To further enhance the model's performance and prevent overfitting, cross-validation 

techniques from the scikit-learn library were applied. The value of K for the multi-labelled 

smart farming dataset classification model was set to 5. This means that the dataset was 

divided into five subsets, and the model was trained and tested on different combinations 

of these subsets. This approach provides insight into how well the model can generalize 

to new, unseen data. 

By utilising these preprocessing techniques, including missing value handling, data 

cleaning, one-hot encoding, dataset splitting, and cross-validation, the dataset was 

prepared for training and testing a model that can effectively classify the crops (rice, 

maize, and chickpea) based on the given independent variables (temperature, humidity, 

pH, and rainfall).   

3.4 Dataset for Modelling of Federated Learning Smart farm network   

The dataset for the modelling of the Federated Learning smart farm network has been 

collected through network emulation using the GNS3 networking tool. The independent 

variables in the dataset include traffic speed and round-trip time (RTT), while the 

dependent variable is the Bandwidth Delay Product (BDP). Each edge node has a dataset 

with 144 rows and two columns for the independent variables, while the dependent 

variable (BDP) has a single column with 144 rows. 

To ensure efficient execution during training, the dataset's matrices of independent 

variables have been reshaped using a Python function to adjust the cross-product matrix 

of the variables. The scikit learn library in Python has been utilized to split the dataset into 



60 
 

training and testing samples. The training samples comprise Eighty per cent (80%) of the 

total population, while the remaining Twenty per cent (20%) is allocated for testing. 

The developed models leveraged the training samples to learn the patterns and 

relationships between the independent and dependent variables within the dataset. The 

testing samples were used to evaluate how well the model generalized to unseen data, 

assessing its performance in real-world scenarios. 

The dataset has been remotely accessed using the Duet platform, facilitating connectivity 

between the edge nodes and the server [159]. The Federated Learning evaluation has 

been conducted without the global model having direct access to the raw dataset located 

at the edge nodes. Instead, each edge node trained its dataset using a base model and 

sent the updated weights to the server. The server then aggregated the updated weights 

from multiple edge nodes and distributed the combined global model back to the edge 

nodes for further training their local models. This iterative process continued until the 

model achieved convergence. 

The effectiveness of the model's generalisation capabilities has been assessed by 

evaluating the performance of the trained model on unseen test samples and forecasting 

its performance on real-world datasets. 

3.5 Limitations of the Dataset Used 
The datasets from the smart farms are time series datasets, which indicate they have 

been collected over a time frame. The climatic parameters, the crop height, leaf length, 

leaf width and the number of days of transplant have been collected daily. The other 

limitation of the smart farming dataset is that the crops are harvested within a time 

frame. For instance, the Amaranthus Viridis crop has been harvested by week eight (8) of 

the transplant because the crop has matured for harvesting, leaving the crop beyond 

eight (8) weeks. It will not be suitable for consumption again. This impacts the volume of 
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the dataset collected, resulting in the collection of a small volume of the dataset. Some 

Machine Learning models require a large volume of the dataset for training to determine 

the pattern within the dataset, so smart farming can generate a small volume of datasets 

from the cultivation of the crops, especially vegetables, which are harvested within a few 

months of cultivation. 
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Chapter 4 Analysis of Hydroponic Systems Data Using Machine Learning Algorithms. 
4.1.1 Linear regression 

The prediction of a dependent variable from one or several sets of variables can be 

referred to as Linear regression [109]. Regression calculation depicts the relationship 

between the labels and independent variables. It can be seen in Equation (5), the 

outcome and independent variable relationship,  

H = f(d, c) ………………..………………...................................................................(5)  

Where H is the dependent variable, d is the independent variable, and c is an unknown 

value, as discussed in [109]. 

Regression can be represented in a single or multivariate format. This is seen in equations   

(6 & 7), respectively. 

H = a + Qd + p  ….….……………………..................................................................(6) 

H = a + Q1d + Q2d + …+ Qnd +   p ………………………...........................................(7) 

where a and q are coefficients, and p is the error observed in the regression analysis  

[109, 159]. In this research work, the independent variables include days after transplant 

(days), Temperature(oC), water consumption (Litres), NL, Nitrogen (mg/g), Phosphorus 

(mg/g), Potassium (mg/g), Calcium (mg/g), Magnesium (mg/g), Sulphur (mg/g), Sodium 

(mg/g) while the dependent variable is the Onion Bulb diameter (mm) 

 4.1.2 XGBoost 

The XGBoost algorithm optimises the model's objective function while regularising the 

model. It is a Gradient boosting algorithm that inserts the negative gradient of the loss 

function in iterations continuously to achieve optimisation [110]. 



63 
 

∑ 𝐿(𝑊𝑖 , 𝐵𝑖)𝑚
𝑖=1 +

1

2
σγ2 …….…………………………………..…………………………………..(8)  

where γ is the output value [110, 158]. 

The first part is the loss function, and the second part is the regularisation of the tree. The 

XGBoost Algorithm optimises the model by minimising the loss function to make 

predictions. 

4.1.3 Deep Neural Network 

DNN comprises neurons. They have input, hidden and output layers. The outcome of the 

DNN has been achieved by optimising the bias and weights [111].                                    

𝑦𝑖 = ϕ(∑ 𝐻𝑡
𝑛−1
𝑖=0 𝑊𝑡𝑚 + 𝑏) ……………………….…………………………………………….(9) 

where yi is the output of the neuron, Wtm is the neuron’s weights, n is the number of 

weights, Ht is the neuron’s inputs, b is the bias of the neuron, and phi (ϕ) is the 

activation function [111, 158]. 

4.2 Methodology 

Nutrient Film Technique (NFT), Aeroponic (AER), Aggregate (AG) and Floating hydroponic 

systems have been used to grow Onion crops at the Department of Agriculture, University 

of Peloponnese (UP), Greece. The crops have been grown for Ninety-two (92) days after 

transplant. The Number of Leaves (NL), water consumption, Temperature, Nitrogen, 

Phosphorus, Potassium, Calcium, Magnesium, Sulphur and Onion Bulb Diameter (OBD) 

are the variables obtained from the dataset provided by the university [89]. 

In the Department of Agriculture, University of Peloponnese (UP), Kalamata, Greece, the 

onion crop has been planted using the AG, AER, Floating, and NFT hydroponic systems. A 
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series of raw data have been collected for 92 days after transplant (DAT) from the nursery 

to the hydroponic systems.  

This research aims to use machine learning models to evaluate the hydroponics datasets 

from the UP, Kalamata, Greece. The model’s dataset analysis results will be compared 

with their baseline results. The independent features are days after transplant (days), 

Temperature(oC), water consumption (Litres), Number of Leaves (NL), Nitrogen (mg/g), 

Phosphorus (mg/g), Potassium (mg/g), Calcium (mg/g), Magnesium (mg/g), Sulphur 

(mg/g), Sodium (mg/g) while the OBD (mm) is the label.  

The temperature has been recorded using Celsius (oC), and water intake by the crop has 

been calculated by taking the dry weight of the Onion and the weight after heating the 

Onion in the oven. NL was obtained by counting the leaves, and DAT is the recorded days 

after the crop was transplanted from the nursery.  

The data have been trained using Federated split Learning, XGBoost, DNN, and Linear 

regressor models. Loss during epoch training and Mean Square Error has been considered 

as performance metrics for each model from the training of the dataset. The dataset has 

been split into Eighty per cent (80%) for training, and Twenty per cent (20%) for testing 

the dataset using the Python Scikit learn library. A batch size of 32, an epoch of 100, the 

relu activation function, and the Adam optimizer have been used to evaluate each 

hydroponic system using the Deep Neural Network model. The dataset has been 

normalised using the scikit Learn Standard Scaler library.  
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4.3 Results 

4.3.1 Analysis of Onion Bulb Diameter Using Deep Neural Network  

Table 7 depicts the results of evaluating the DNN model on the Floating, NFT, AER, and AG 

hydroponic systems. Floating, AER, NFT, and AG systems have produced Losses of 0.13, 

0.73, 0.13, and 0.34, respectively. It can be inferred that the Floating and NFT hydroponic 

systems have outperformed the other systems since their Loss values are the lowest at 

0.13 for each. This model is learning our dataset very well in the Floating system. Using 

the DNN model for training, the AG has been the system with the fastest computational 

time of 25 milliseconds, while the Floating, AER and NFT systems used a computational 

time of 30 milliseconds, 28 milliseconds, and 27 milliseconds respectively.  

Table 7: Deep Neural Network Models Hydroponic systems results for the Onion crop. 

 AER AG Floating NFT 

Loss    0.73 0.34 0.13 0.13 

Mean Squared Error (MSE)  0.73 0.32 0.13 0.13 

Test Loss  2.47 4.39 1.77 5.43 

Test Mean Squared Error (MSE)  2.47 4.39 1.77 5.43 

computational time (milliseconds)  28 25 30 27 

The DNN model does not capture the relationship between the actual and predicted OBD. 

The Analysis of the four Hydroponic systems datasets from the University of Peloponnese, 

Kalamata, Greece, which has been Normalized using the Python scikit learn library, 

generalised very well with the dataset. There have been no overfitting or underfitting 

indications from the four hydroponic system dataset evaluations, as seen in Figures 20, 

21, 22, and 23. The optimal performance has been achieved with the Floating and NFT 

hydroponic based on the lowest Mean Square error achieved, as shown in Table 7, which 

should be considered for OBD using the DNN model. It can be inferred that implementing 

K Fold cross-validation to the DNN model and suitable batch size, using a relu activation 

function, has enabled the DNN models to generalise properly without learning the noise 
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& idiosyncrasies of the dataset in learning the data and produced no overfitting when 

evaluated on the testing dataset which the model has not seen before. 

 
Fig.20: Onion crop MSE from the  
 AER DNN model    

 
Fig.21: Onion crop MSE from the  
AG DNN model    
   

 
Fig.22: Onion crop MSE from the 

Floating DNN model 

 
  Fig.23: Onion crop MSE from the    

NFT DNN model                                                

Figures 20, 21, 22 and 23 show the AER, AG, Floating and NFT DNN model Mean Square 

Error and Testing Means Squared Error, respectively. Implementing the K-Fold cross-

validation has enabled the model to generalise very well and reduced overfitting to close 

to Zero (0) or negligible value, as can be seen from the DNN figures 20, 21, 22 and 23.  

4.3.2 Evaluation of the Onion Bulb Diameter (OBD) Using Linear Regression Model 

The OBD has been trained using the simple Linear regressor model on the four considered 

hydroponic systems. Figures 24, 25, 26 and 27 depict the prediction for AER, AG, FL, and 

NFT hydroponic systems, respectively. OBD (mm) has been considered as the dependent 

variable, and Sodium (mg/g), Nitrogen (mg/g), Sulphur (mg/g), Number of Leaves (NL), 

days after transplant (days), Magnesium (mg/g), water consumption (Litres), Potassium  
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Fig.24: Onion crop Baseline against Linear 

Regression diameter predictions 
for AER system 

 
Fig.25: Onion crop Baseline against  
Linear Regression diameter predictions  
for AG system 
 

 
Fig.26: Onion crop Baseline against Linear 
Regression diameter predictions for the 
Floating system 

 
Fig.27: Onion crop Baseline against  
Linear Regression diameter predictions 
 for NFT system 

 

 (mg/g), Temperature(oC), Calcium (mg/g), and Phosphorus (mg/g) are the independent 

variables. The farmer can forecast the OBD before planting the crop using the automated 

system. With this automated system, the farmer can manually predict the OBD for days 

not recorded by the research team, such as predicting the OBD for the 50th day after the 

transplant. The predicted OBD using the AER system is 30mm, as shown in Figure 24. 

Taking the predicted OBD for the 70th day after transplant, as depicted in Figure 24, the 

OBD value is 90 mm by the automated system. This helps the smart farmer determine his 

harvest and invariably predict his profit from the cultivation while other conditions 

remain favourable. The NFT system outperformed the AER, AG, and Floating systems 

using the linear regression model. The regression model fits very well and generalises the 

dataset for each system. Still, the NFT is the optimal system using the regressor model 
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since most of the predicted Onion Bulb diameter values match almost the entire original 

Onion Bulb diameter values, as shown in Figure 27.  

Table: 8: The Linear Regression Results for the Hydroponic systems 
 AER AG Floating NFT 

Mean Square Error 9.89 14.7 0.47 2.08 

R-Square (R2) 0.99 0.98 0.92 0.99 

From Table 8, the AER and NFT hydroponic systems have produced the highest Coefficient 

of the determinant (R2) of 0.99 values, while the floating hydroponic system produced the 

lowest R2 value. The Floating hydroponic system produced the lowest mean square error 

of 0.47, while the AG system produced the highest MSE values of 14.7. 

It has been observed that during the data preprocessing and evaluation of the AER and 

AG hydroponic dataset from the University of Peloponnese that it has been possible to 

implement K Fold cross-validation and Scikit Learn standard Scaling for Normalisation of 

the dataset and to allow the model to generalise very well on the dataset, but a different 

scenario has been observed for the Floating and NFT hydroponic systems dataset, 

implementing both K Fold cross-validation and scikit learn standard scaling technique, the 

dataset Analysis produced negative R-square results and over seven hundred (700) value 

for the Mean square errors. The Floating and NFT hydroponic system data has been pre-

processed and evaluated using only the scikit Learn standard scaler for this analysis, and 

the MSE results obtained from the analysis are single digit and positive R2, this indicates 

the diversity in the dataset received from the University of Peloponnese, Kalamata, 

Greece. 

 4.3.3 Analysis of Onion Bulb Diameter using XGBoost model 

The Extreme gradient Boosting model has been used to Evaluate the dataset for each 

hydroponic system, and the co-efficient of the determinant (R2) has been produced for 

the AER, Floating, AG, and NFT systems. 
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Table 9: XGBoost models results for Onion crop grown in the hydroponic system.  

 AER AG Floating NFT 

MSE    4.43  6.52  1.75  3.13 

R2 value   0.996 0.994  0.868  0.995 

computational time (milliseconds)  750  797 656  844 

The dataset has been pre-processed using the scikit Learn standard scaler library and K-

Fold cross validation where the K value is Five (K=5) and the Mean Square Error and co-

efficient of determinant (R2) values obtained are shown in Table 9. The Floating 

hydroponic system produced the lowest Mean Square Error of 1.75, while the AG 

hydroponic system produced the highest Mean Square Error of 6.52. The lowest R2 of 

0.868 has been obtained from the Floating hydroponic system, while the AER hydroponic 

system produced the highest R2 of 0.996.  

It can be deduced from Table 9 that the AER hydroponic system outperformed the other 

hydroponic systems using the XGBoost model for analysis, with an optimal R2 of 0.996 

which is higher than the R2 of NFT, Floating and AG with R2 values of 0.995, 0.868, 0.994 

respectively.  

The XGBoost predicted Onion Bulb Diameters are shown in Figures 28, 29, 30 and 31. The 

NFT predicted values have the highest matches with the original OBD values, as shown in 

Figure 31. Only three data points did not match the original OBD values. The AER, AG, and 

Floating hydroponic systems have more original OBD data points, which did not match 

the predicted OBD values. Smart farming practitioners and academics can consider the 

NFT hydroponic system based on this research as optimal using the XGBoost algorithm for 

predicting the OBD. The predictions of the XGBoost models from the hydroponic systems 

are very close to their original values. These predictions indicate a strong correlation 

between the independent and dependent variables of OBD. The XGBoost model is a good 

fit for evaluating the hydroponic system, and the optimal R2 result has been obtained 

from the AER hydroponic system. 
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Fig.28: XGBoost OBD predictions from the 
AER system  

 
Fig.29: XGBoost OBD predictions  
from the AG system 

 
Fig.30: XGBoost OBD predictions from the 
Floating system 

 
Fig.31: XGBoost OBD predictions  
from the NFT system 

It can be inferred from Figure 32 that the Floating hydroponic system R2 results using the 

XGBoost produced the lowest R2 values of 0.868 when compared with the R2 values of 

both the Linear Regressor and XGBoost Models. In contrast, the AER hydroponic system 

produced the highest results values of 0.996 from comparing the R2 values of both. 

 

Figure 32: Comparison of the R2 for the Linear Regressor and XGBoost Models for the 
Onion Crop 
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the Linear Regressor and XGBoost Regressor models. At the Department of Agriculture, 

UP, they have manually compared the four hydroponic systems’ co-efficient of 

determinants. Still, this system has automated the R2 values using the Linear regressor 

and the XGBoost models.  

4.4.1 Classification of the Amaranthus leaves using Convolutional Neural Network 

The CNN model trained One thousand and fifty-three (1,053) images. The data have been 

split into training and testing datasets. The Amaranthus leaves images used for the 

training have been in two categories: Healthy and infected. The model has been used to 

classify the Amaranthus image leaves.  

One Thousand and fifty-three (1053) image dataset has been analysed. The Amaranthus 

Viridis images have been split into Seven Hundred and Twenty-Nine (729) for training of 

Healthy images, Hundred and Sixty-Seven (167) for training of infected images, One 

Hundred and Forty-Five (145) for testing of Healthy images and Twenty (20) for testing of 

infected images. 

4.4.2 Results from the Amaranthus leaves images Evaluation using CNN, KNN and SVM 
models. 

The Decision tree model has matched only Ninety-two per cent (92.45%) of the original 

Amaranthus images within the predicted leaves images, which is the lowest accuracy 

from the CNN, SVM, and K-NN models considered. The CNN model produced the highest 

accuracy of Ninety-Eight per cent (98.85%), as shown in Table 10.  

Table 10: Comparison of the Accuracy of Amaranthus Viridis Images 

 CNN SVM K-NN Decision Tree 

Accuracy (%) 98.85 95.28 92.92 92.45 

It can be inferred from Figure 33 that the confusion matrix has matched Ninety-seven 

(97%) and Eighty-five (85%) per cent of the Healthy and infected Amaranthus Leaves 

image datasets, respectively. Fifteen per cent of the Healthy Amaranthus leaves have 
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been classified as infected, and Three per cent of the infected leaves have been classified 

as Healthy using the normalised Decision Tree Model.  

 
Figure 33: Decision Tree confusion Matrix for Amaranthus Viridis 

Using the Normalised K-Nearest Neighbour Models for the confusion matrix as shown in 

Figure 34, the model has been able to classify One hundred (100) and Sixty-three (63) per 

cent of the Healthy and infected Amaranthus Viridis image datasets, respectively. No 

infected Amaranthus Viridis image data has been wrongly classified as Healthy, while 

Thirty-seven (37) per cent of the Healthy Amaranthus Viridis has been wrongly classified 

as infected.  

 

 
Figure 34: KNN confusion Matrix for Amaranthus Viridis 

The Support Vector Machine Model confusion matrix, as shown in Figure 35, has 

classified Ninety-Eight (98%) and Eighty-Five (85%) per cent of the Healthy and infected 
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Amaranthus Viridis image datasets, respectively. Only Two (2%) per cent of the infected 

Amaranthus Viridis image data has been wrongly classified as Healthy. Fifteen (15%) per 

cent of the Healthy Amaranthus Viridis has been wrongly classified as infected.  

 
Figure 35: SVM confusion Matrix for Amaranthus Viridis 

 
The Convolutional Neural Network Model has been used to analyze the Amaranthus 

Viridis image dataset. The model has been able to classify the healthy and infected 

images by producing an accuracy of over Ninety Eighty per cent (98.85%) for the training 

dataset, as shown in Figure 36 and after learning the pattern in the training dataset, it 

produced an accuracy of Ninety-Eight (98%) for the unseen data which is the testing 

Amaranthus Viridis image dataset. It can be inferred that the model has been able to 

learn the pattern of the dataset using the training dataset, which shows the model's 

efficiency.  

  

Figure 36: CNN Accuracy for Amaranthus 
Viridis Crop 

Figure 37:  CNN Loss for Amaranthus 
Viridis Crop 
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It can be inferred from Figure 37 that the Model produced a Loss of 0.10 while evaluating 

the training dataset and a Loss of 0.13 during the evaluation of the testing dataset. This 

implies that the CNN model generalizes very well and has been able to learn the 

Amaranthus Viridis image dataset and efficiently analyze the unseen image dataset in the 

testing image dataset.             

The Decision Tree Model has been used to evaluate the Amaranthus Viridis image 

dataset, and Figure 38 shows the model's performance. It achieved an accuracy of about 

Ninety-four per cent (94%) on unseen Amaranthus Viridis images.  

      

  

Figure 38: Amaranthus Viridis Decision 
Tree Accuracy  

Figure 39: Amaranthus Viridis K-Nearest 
Neighbour Accuracy 

 
The K-Nearest Neighbour Model has been used to evaluate the Amaranthus Virdis image 

dataset. The model achieved an accuracy of Ninety-two per cent (92%) 

Figures 36, 38 and 39 show the Amaranthus images training and testing Accuracy using 

the CNN, Decision Tree, and K-Nearest Neighbour models, respectively.  

It can be inferred from Table 10 that the CNN model outperformed the SVM, Decision 

Tree and KNN models. The CNN model generalized very well with no overfitting 

experienced during its evaluation of the image dataset, as shown in Figure 36, the other 

models have been pre-processed using the K Fold cross-validation and normalised using 

the scikit standard scaler library, but their accuracies output has been lower than the CNN 

model, for this research the CNN produced the optimal performance for the Analysis of 

the Amaranthus Viridis image dataset. 
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4.5 Machine Learning Analysis of Amaranthus Viridis Crop growth rate  

[127] discuss that crop growth is directly proportional to the change in the weight of the 

crop and inversely proportional to the change in time and Area of the Land where it is 

cultivated. 

Growth rate (g day -1) =
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑤𝑒𝑖𝑔ℎ𝑡(𝑤2−𝑊1)

𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒(𝑇2−𝑇1)
 [127]………………………..………..7 

Where W2 is the weight of the crop at Time T2, and W1 is the weight of the crop at time T1 

According to [128], they discuss in their paper that crop spacing can influence the crop 

growth rate and, invariably, crop yields. 

The authors in [129] discuss that climatic parameters can affect the crop yield for winter 

camelina, a crop grown in the United States of America. Camelina sativa is a member of 

the Brassicaceae family, a crop used as a source of oil for biofuels, also consumed by 

humans and animals. The crop produces a high yield during the fall and a very poor yield 

when planted in September before winter. 

From [127, 128, 129], it can be inferred that climatic parameters can influence the crop 

growth rate. 

4.5.1 Methodology 

Amaranthus Viridis crop has been planted within the Suitelab smart farm. Amaranthus 

Viridis has been chosen because the harvest time is within eight weeks, and it has a 

shallow root system, which is suitable for the floating hydroponic equipment procured by 

the Suitelab. The XGBoost algorithm has been considered for classifying the Amaranthus 

Viridis crop growth rate due to the algorithm’s ability to classify datasets with high 

accuracy values. The XGBoost model trains the weak classifiers’ data separately and 

combines all the weak classifiers to form a stronger classifier, which the algorithm uses 
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for the final prediction values. The XGBoost model does not rely on specific parameters of 

the dataset before they embark on training the dataset, which makes them suitable for 

our research. The model is reliable for handling noise and outliers within a dataset. The 

floating hydroponic system is connected to a Raspberry Pi Internet of Things device, 

configured to collect climatic and image datasets from the Amaranthus crop growing in 

the hydroponic system. The following parameters have been collected and recorded from 

the Amaranthus crop: days after transplant, length of leaves, the width of the leaves, 

number of leaves per day, and crop height. These were the independent variables, and 

the crop growth rate was the dependent variable. The dataset has been pre-processed, 

and the Scikit learn python library has been used to split the dataset into eighty per cent 

(80%) for training and twenty per cent (20%) for testing. The Theil-Sen, Quantile, Decision 

Tree, K-Neighbour, XGBoost, and Support Vector regressors have been used to evaluate 

the crop growth rate of Amaranthus Viridis. The crop growth rate dataset is numerical. It 

is suitable for regression analysis. The regressor has been used to obtain the determinant 

of co-efficient (R2), the mean squared error of the dataset. 

4.5.2 Results 

From Figure 42, it can be inferred that the XGBoost Boosting algorithm has the highest 

predicted Amaranthus Viridis Crop growth rate of 4.4 g/day while the decision tree model 

has produced the lowest crop growth rate of 4.0 g/day, as shown in Figure 44. 

From Table 11, it can be inferred that the Lowest Coefficient of the determinant (R2) has 

been achieved from the Support Vector Regressor with 0.982. At the same time, the K-

Neighbour Regressor produced the highest R2 of 0.995 value. It can be inferred that the R2 

determines the goodness of fit of the Amaranthus Viridis crop growth rate and the Leaf 

height, leaf width, days of transplant, and leaf length. The R2 of the Amaranthus Viridis 

measures how far the predicted crop growth rates are from the mean.  
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Table 11: Comparison of the Co-efficient of determinants for the Amaranthus crop growth  

 XGBoost Support 
vector 
Regressor 

Decision 
Tree 
regressor 

K-
Neighbour 
Regressor 

Theil-Sen 

regressor 

Quantile 
Regressor 

Co-efficient of 
Determinant 
(R2)  

 0.987 0.982 0.988 0.995 
 

0.988 0.987 

Mean 
squared error  

0.02 0.03 0.018 0.01 0.02 0.019 

The XGBoost, Support Vector, Decision Tree, K-Neighbour, Theil-Sen and Quantile 

Regressors models all have high R2, which indicates the original crop growth rate values 

are very close to the predicted values, which can be referred to as the line of best fit.       

The Mean squared error (MSE) has been used as a performance metric for the 

Amaranthus Viridis crop growth rate. It is the square of the average difference of the crop 

growth rate for each model considered. It can be inferred that The K-Neighbour Regressor 

model produced the lowest MSE of 0.01. In contrast, the Support Vector Regressor 

produced an MSE of 0.03, resulting in a high R2 for the K-Neighbour regressor, showing 

the minimal variance of the original crop growth rate to the predicted crop growth rate. It 

can be inferred from Figure 43 that the XGBoost model has the highest predicted 

Amaranthus Viridis crop growth rate. In contrast, the Decision Tree Regressor model has 

the lowest predicted Amaranthus Viridis crop growth rate, as shown in Figure 44. It can 

be inferred that the convergence of the Support vector regressor model for the crop 

growth rate was very poor, which affected the co-efficient of the determinant, making 

the predicted values far from the best line of fit or predicted Amaranthus Viridis crop 

growth rate.  
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Fig. 40: KNeighbour Crop 
Growth rate predictions 

Fig. 41: Support vector 
Regressor Crop Growth 
rate predictions 

Fig. 42: XGBoost Crop 
Growth rate predictions 

   

Fig. 43: Quantile Regressor 
Crop Growth rate 
predictions 

Fig. 44: Decision Tree Crop 
Growth rate predictions 

Fig. 45: Theil-Sen Regressor 
Crop Growth rate 
predictions 

 
Figures 40, 41, 43, and 45 show the predictions of the K-Neighbour, Support Vector, 

Quantile and Theil-Sen Regressors crop growth rate, respectively. 

4.5.3 Discussion 

The DNN model has been used for training the dataset in the four hydroponic systems, 

Floating and NFT system with an MSE value of 0.13 each outperformed the AG and AER 

systems with MSE values of 0.34 and 0.73 respectively, indicating that the Floating and 

NFT system dataset has been well fitted to the DNN model and able to learn the data 

pattern more than the noise within the dataset. 

The optimal R2 has been achieved using the XGBoost model from the dataset of the AER 

system with a value of 0.996. It outperformed the NFT, Floating, and AG systems with R2 
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of 0.995, 0.868, and 0.994, respectively. The high R2 indicates the XGBoost has fit very 

well with the dataset and matches the predicted OBD with the True OBD values.  

MSE values of 4.43, 6.52, 1.75, and 3.13 have been obtained for the AER, AG, Floating and 

NFT, respectively. The Floating outperformed the AER, AG, and NFT systems in fitting the 

XGBoost models to their dataset. 

The XGBoost Learned the data pattern very well from each hydroponic system, but 

optimal performance for the AG data has been achieved.  

This research has shown that using the developed models, farmers can predict their 

Onion Bulb diameter before commencing the planting of their crop and invariably 

forecast their profits from the harvest. This research has predicted the OBD for daily 

values, which the Department of Agriculture, UP could not determine manually. 
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5.0 Chapter 5 Smart Farming Analysis Using Federated Averaging Algorithm 

5.1 Analysis of Onion Bulb Diameter using Federated Split Learning 

According to the authors in [34], Federated Split Learning (FSL) is a platform where the 

server aggregates the local updated weights of the edge nodes within the decentralised 

network. The local weights are split into two, and the last layer or cut layer updated 

weights are sent to the server for aggregation. The server does not see the raw dataset of 

the local edge nodes throughout the training. This research used the Federated Split 

Learning model to evaluate the four hydroponic systems' Onion Bulb diameter (OBD). 

Splitting the local weights into two parts reduces the computational time of training the 

local weights since only one part of the updated weights is sent to the server for 

aggregation. The bandwidth usage on the link is reduced compared with the situation 

when the total updated local weights are sent to the server for aggregation. This process 

also reduces the latency of the network. It has been obtained from the training of the FSL 

models, using the Adam and Stochastic Gradient Descent (SGD) optimizers for hyper 

tuning while different Learning rates (LR) values range from zero (0) to one (1) has been 

used. The AER hydroponic system has been hyper-tuned with the SGD and Adam 

optimizer using 0.01, 0.1, 0.000000 LR and optimal convergence was obtained using the 

Adam optimizer and LR of 0.1. Attempts made to increase or decrease these LR values 

caused overfitting of the model and poor convergence.  

 
Fig. 46: AER Loss using Adam 
optimizer, LR=0.0000001 

 
Fig.47: AER Loss using Adam Optimizer, 
LR=0.1 
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Figures 46, 47 and 48 show the AER performance using LR of 0.0000001, 0.1 and 

0.0000001, respectively. The Adam optimizer has produced optimal convergence since it 

combines the Adagrad and RMSProp algorithms for handling the spare gradients for the 

noisy dataset. 

Figures 49 and 50 indicate the performance of the AG hydroponic system when hyper-

tuned using the Adam and the SGD optimizers with LR values of 0.01 and 0.0000001. The 

AG system achieved optimal convergence using the LR value of 0.01 and the Adam 

optimizer, other LR values were considered, and this caused overfitting of the model for 

the AG system. 

 
Fig.48: AER Loss using SGD optimizer, 
LR=0.0000001 

 
Fig.49: Loss (Adam optimizer,  
LR=0.01) for the AG system  

The dataset from the Floating hydroponic system has been evaluated using the Adam and 

SGD optimizer with LR values of 0.000001 and 0.01. Figure 51 shows that the optimal 

convergence has been achieved using the Adam optimizer and LR values of 0.01 with an 

epoch value of 25 iterations while using the SGD optimizer for the Floating system 

dataset, convergence has been achieved with an LR value of 0.000001 after 50 epoch 

iterations as shown in Figure 52, it can be inferred that the Adam optimizer using LR value 

of 0.01 has converged better than the SGD optimizer since it combines the Adagrad and 

RMSProp algorithm for achieving its local minima.  
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Further analysis has been conducted using the dataset from the NFT hydroponic system. 

LR values of 0.01 & 0.000001 with Adam & SGD optimizer have been used to achieve 

convergence for the NFT system. Figure 53 shows that the Adam optimizer achieved  

convergence after 150 epochs using an LR value of 0.01 but an extremely high loss value 

of 20,000.   

 
Fig.50: Loss (SGD optimizer, 
LR=0.0000001) for AG system  

 
Fig.51: Loss (Adam optimizer, 
 LR=0.01) for the Floating system  

 
Fig.52: Loss (SGD optimizer, LR=0.000001) 
for Floating system  

 
Fig.53: Loss (Adam optimizer,  
LR=0.01) for NFT system  

 
Fig.54: Loss (SGD optimizer, LR=0.000001) 
for NFT system 

 

Figure 54 achieved convergence after 50 epochs with LR values of 0.000001, and a Loss 

value of 40,000 has been achieved. It can be deduced that the NFT dataset did not fit the 

FSL model very well, and this research affirms that the FSL should not be used for 

evaluating the NFT system dataset from the University of Peloponnese (UP). These high 

Loss values indicate overfitting. The model has been hyper-tuned with several LR 
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parameters. Still, the experimentation indicates the NFT dataset is noisy, which 

converged poorly since hyper-tuning and changing the optimizer did not improve the 

convergence. The model has been learning more about the noise within the dataset.  

The Floating hydroponic system has outperformed the AER, AG, and NFT when evaluated 

using the FSL model. It achieved the best optimal convergence from the four hydroponic 

systems considered using the Adam optimizer, with LR values 0.01 within 25 epochs of 

training. 

5.2 Federated Averaging Algorithm Classification 

5.2.1 Methodology  

This section applies Federated learning models to the smart farming dataset. The federated 

learning model provides privacy for the data owner since the dataset is evaluated without 

the data leaving the data owner’s location. This provides privacy, and the network latency 

is reduced. The crop type is predicted from the dataset, which comprises climatic data as 

independent variables and uses three classes of crops as the dependent variables. The 

climatic features of the data that have been considered are temperature, humidity, the 

potential of hydrogen (pH), and rainfall. At the same time, the following crops are the 

dependent variables: rice, maize and chickpea. A testbed using PySyft, Pytorch and Syft 

libraries has been used for the emulation. 

The use of categorical variables has been explored in the smart farming dataset, and the 

evaluation of the developed model within a federated learning network to produce 

predictions of the type of crops as labels while using climatic parameters as independent 

variables. 

In this research, we analyse the climatic data and crop data. These climatic parameters 

have been considered independent variables, while the crop type is the label.  
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We will use the federated learning platform to predict the crop types from the climatic 

parameters in the federated learning platform. This research contributes to knowledge by 

applying the federated Learning algorithm to smart farming where crop types are predicted 

from climatic variables, which are used as independent variables and the crop types as 

labels with all evaluations performed without having access to the raw data. 

Edge devices have been used to capture data processed or transmitted to the cloud or 

server for analytics to ascertain decisions in various sectors. 

The data used for this research include climatic features, namely temperature, humidity, 

the potential of hydrogen(pH), and rainfall, which are the independent variables, and the 

labels are rice, maize, and chickpea. The classes in the dataset, namely chickpea, rice, and 

maize, are equally distributed. This implies that the dataset is balanced. The dataset has 

been split into 80% for training and 20% for testing using the sci-kit learn library [110]. 

Several Learning Rates (LR) values ranging from zero (0) to One (1) have been used for the 

evaluation of the dataset. It was observed that the LR values ranging from 0.01 to 0.09, 

0.001 to 0.009, 0.0001 to 0.0009, 0.00001 to 0.00009, 0.000001 to 0.000009 produced the 

same convergence pattern, LR values from 0.00000001 to 0.00000009 has been used in the 

experimentation. Still, the model did not converge, and these LR values have been dropped 

for consideration in the experiment. Each federated node has the same labels and 

attributes since we are exploring homogeneous edge nodes where all the edge nodes have 

the same attributes and features. 

The research experiment aims to investigate the prediction of a particular crop from a class 

of crops using climatic data as the independent features from the dataset. In contrast, the 

crop types are the labels from the dataset. This has been achieved using a hyper tuned 

federated averaging algorithm model. The Duet is a decentralised platform where the edge 

nodes’ data reside at the edge nodes, and the data scientist remotely trains the dataset 
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without seeing the data. It allows the edge nodes to control what manipulation can be 

executed on its dataset. This research duet platform is running on our testbed using the 

PySyft library.  

The Testbed has been set up using a Linux machine, using Jupyter Notebook. The data 

scientist and the data owner could interact via the duet platform. The Data owner is the 

custodian of the data, and these scenarios can be scaled up for production. First, the data 

owner establishes the connection using the duet server and waits for the Data scientist to 

connect to the data owner via the duet server. Once a connection is established, the data 

owner (edge device) then proceeds to train its dataset and sends its local updated weights 

to the server or data scientist, the updated global model is then sent back to the edge 

devices for a repeat iteration, and this process continues until the model converges. 

An emulation of the network has been set up using the GNS3 tool to test the Federated 

Learning model for a smart farming dataset. Climatic data with independent variables such 

as temperature, humidity, pH, and rainfall have been used as the independent variables. 

At the same time, three crops, namely rice, maize, and chickpea, were considered the 

dependent variable; the results are shown in Table 12. 

5.2.2 Results and Discussion 

The dataset with independent variables of temperature, humidity, pH, and rainfall and 

dependent variables of rice, maize, and chickpea has been evaluated using the Binary 

Relevance (Gaussian NB), Classifier chain (Gaussian NB) and Label Power (Gaussian NB) 

model in the test bed setup within the Jupyter Notebook and the following results have 

been obtained for each in Figures 55. 



86 
 

The Binary Relevance Gaussian NB, classifier chain (Gaussian NB) and Label power 

(Gaussian NB) produced an accuracy of 80%, 75%, and 80%, respectively, as seen in       

Figure 55. 

The Binary Relevance and classifier chain Gaussian naïve Bayes model has been used to 

evaluate the multi-labelled dataset. Table 12 shows the result, the binary relevance 

Gaussian NB and label powerset Gaussian NB model both produced a harmonic mean of 

0.97 and an Accuracy of 0.80. The Binary relevance Gaussian NB and Label powerset 

Gaussian NB has been able to use the sample averages of each instance of the multi-

labelled dataset to produce a harmonic mean of 0.97, and both models could only match 

80% of the predicted multi-labelled variables to the original labels of the dataset. 

The Classifier Chain Gaussian NB model produced an accuracy of 75%, as seen in Table 12, 

which indicated it has been able to match only 75% of the predicted labels with the original 

dependent variables of the dataset. The F1-score of 0.76 has been achieved by the model, 

showing that the ratio of the product of the precision and recall to the sum of the precision 

and the recall values from the model during evaluation is 0.76 only. The model considers 

the sample average since the dataset considered is a multi-label, and each of the sample 

averages for each instance is used during evaluation to produce the harmonic mean of the 

model. 
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Figure 55: Comparison of the Centralised and Decentralised Machine Learning Models 

Table 12: Comparing a multi-labelled dataset's centralised and decentralised Model 
classification. 

 Binary 
relevanc

e 
(Gaussia

n NB) 

Classifier 
Chain 

(Gaussia
n NB) 

Label 
powerse

t 
(Gaussia

n NB) 

Federated Averaging Model 

 f1-score f1-score f1-score f1-score 
LR=0.00
1, SGD 

optimize
r  

F1-score 
LR=0.01, 

SGD 
optimize

r 

F1-score 
LR=0.00
1, Adam 
optimize

r 

F1-score 
LR=0.01, 

Adam 
optimize

r 

0 0.97 0.76 0.97 0.48  0.77 0.91 0.91 

1 0.97 1.00 0.97 0.8 0 0.46 0.82 0.50 

2 0.86 0.89 0.95 0.00  0.95 0.95 0.73 

Accurac
y 

0.80 0.75 0.80 0.23  0.77 0.90 0.73 

macro 
avg 

0.96 0.93 0.97 0.19  0.73 0.90 0.73 

weighte
d avg 

0.96 0.94 0.97 0.19  0.73 0.90 0.73 

Table 12 compares the results obtained from the research using the federated learning and 

centralised models to predict the crop type using climatic parameters as independent 

variables and crops as labels.   
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The model hyperparameters have been tuned to obtain various results. The learning rate 

hyperparameters range from zero (0) to One (1), and different values of learning rates 

between zero (0) and one (1) have been considered for hyper tuning of the models, more 

so different optimizers such SGD and Adam has been considered based on previous 

research by [143]. Using an SGD optimizer, a learning rate of 0.001 and a Computational 

time of 0.00013 seconds were obtained during the model's training. An Accuracy of 23% 

has been obtained while the predicted crop was rice, implying the model has been learning 

more of the noise within the dataset, resulting in high errors since its loss values are also 

high, as can be seen in Figure 56. It can be inferred that using the SGD optimizer and a 

learning rate of 0.001, only 23% of the predicted labels were matched with the original 

labels in the dataset after the training, which indicates the SGD optimizer at this learning 

rate produced a poor accuracy and failed to match the predicted classes with the original 

labels. Figures 56 and 57 show the loss value decreasing during the model's training using 

stochastic gradient descent (SGD) optimizer, with a learning rate (LR) of 0.001 and 0.01, 

respectively. 

 
Figure 56: Loss using SGD optimizer, 
Learning rate=0.001 

 
Figure 57: Loss using SGD optimizer, 
Learning rate=0.01 

From the results obtained, as shown in Figure 56, a minimum Loss of 1.096 has been 

obtained from the evaluation of the model, and Figure 57 has produced a minimum loss 

value of 0.7. The federated learning model produced an F1 score of 0.48, which is the 

harmonic mean, that’s the reciprocal of the arithmetic means using the SGD optimizer with 
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an LR of 0.001, as shown in Table 12. It can be inferred that the SGD optimizer function, 

when a learning rate of 0.001, converged poorly to its local minima. Further hyper-tuning 

of the model parameters has been conducted with the SGD optimizer but with a different 

learning rate value of 0.01. The results in Table 12 indicate that only 77% of the predicted 

labels matched the original labels of the classes of chickpea, which is the predicted crop, 

using this optimizer and LR value. A harmonic mean (F1-score) of 0.77 has been obtained 

using the SGD optimizer and LR value of 0.01, which performs better than the initial 

learning rate considered earlier. It can be inferred that the federated learning model has 

converged to its local minima much faster, which improved its performance when 

compared with the other optimizers and Learning rates used. 

A different optimizer function, namely the Adam optimizer, is considered for the hyper-

tuning of the model using an LR value of 0.001. The predicted class has matched the original 

values with a percentage of 90%, which indicates a good performance of the accuracy 

metric, and a harmonic mean (f1-score) of 0.91 has been achieved, as shown in Table 12. It 

can be inferred that the model has converged very fast, which enabled it to reach its local 

minima, thereby improving its performance with a 0.91 harmonic mean (F1-score) value 

and accuracy of Ninety per cent (90%). 

Further analysis using the Adam optimizer with a learning rate of 0.01, the hyper-tuning of 

the model, the predicted class has a match with the original values with a percentage of 

73% and harmonic mean (F1-score) of 0.91, which indicates good performance of accuracy 

metric. It can be inferred that the model dropped its accuracy metric from the previous 

value using the 0.001 learning rate when a learning rate of 0.01 is considered but has 

maintained the F1 score. It can be inferred that the model using the Adam optimizer and a 

learning rate of 0.01 achieved a lower accuracy of 0.73 compared with the accuracy of 0.90 

when a LR of 0.001 has been used because the model began to learn more noise within the 
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dataset while converging to its local minima as shown in table 12. The dataset contained 

three (3) classes in the dependent variables. During each hyper-tuning with different 

optimizer functions and learning rate parameters, it has been observed that chickpea was 

the predicted crop, indicating the federated learning model, without seeing the raw 

dataset, has been able to match a higher percentage of the crop with its original values. 

 
Figure 58: Loss using Adam optimizer, 
Learning rate=0.01 

 
Figure 59: Loss using optimizer=Adam, 
Learning rate=0.001 

Figure 58 depicts a minimum loss value of 0.6, and the loss started to converge appreciably 

after 100 iterations. However, from Figure 59, the loss has started to converge appreciably 

after 20 iterations and eventually converged at 0.1, which is a better improvement than 

the other initial learning rate of 0.001, 0.01 for SGD optimizer and a learning rate of 0.001 

for the Adam optimizer. It can be inferred that with the learning rate of 0.001 using the 

Adam optimizer, the federate learning model has reached its local minima, although its 

training time at this learning rate has been increased, as shown in Figure 58. The initial 

training iteration converges after 100 iterations. However, in Figure 59, its training iteration 

is over 200. This implies the model has begun to learn the noise in the dataset, and it causes 

overfitting and generalising poorly. This research results confirm the efficiency of the Adam 

optimizer from the hyper-tuning of the model's parameters. It can be inferred that the 

Adam optimizer converges better than the SGD optimizer. This confirms that federated 

learning models reach their local minima at low learning rates and use high training time 

to converge. The dataset used for this experiment was obtained from [145]. 
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5.3 Modelling of Federated Learning Smart Farm Network    

5.3.1 Methodology 

The GNS3 tool has been used to emulate the network, shown in Figure 15. The architecture 

has 3 tier layers. The generated data have been sent to the second-tier layer, which 

contains the Mobile Edge Computers (MEC). The data have been trained at the MEC, and 

the local updates have been sent to the server. The server aggregates all the various models 

from the respective edge nodes, creating a global model that the server sends to the 

various edge nodes to update its local model with the new global weights for its next 

iteration. The traffic has been generated using the ostinato installed in the GNS3 emulator 

tool. The ostinato generates packets with different capacities, such as one (1) packet per 

second, five (5) packets per second, or Ten (10) packets per second. These packets have 

been sent to the server node via the Fast Ethernet adapter interface of the edge nodes. 

Some Assumptions considered in the Modelling of the Federated Learning Smart 

Network. 

1. The Arrival of the local model from the edge nodes is independent of each other and 

discrete events. 

2. The Arrival rate of the local models follows the Poisson distribution. 

3. The inter-arrival rate time is independent, and we assume the service rate is said to 

be exponentially distributed. 

4. Let  𝑏𝑖 represent the effective bandwidth of the  𝑖𝑡ℎ node. 

5. Let  𝑑𝑖 represent the effective delay of the  𝑖𝑡ℎ node. 

6. Let  B𝑊𝑒𝑓𝑓 represent the effective bandwidth at the aggregate server. 

7. Let D𝐿𝑒𝑓𝑓 represent the effective delay at the aggregate server. 
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           ……………………………………………………………………………………..(9) 

    ………………………………………………………………………………………..(10) 

B𝑊𝑒𝑓𝑓 = min(𝐵𝑠,  𝐵𝑖)     

𝐷𝐿𝑒𝑓𝑓  =  (𝐷𝑠, 𝐷𝑖) 

The Bandwidth delay product (BDP) can be calculated as follows; 

BWeff  ×  DLeff = ∑ min(Bs ,  Bi)
n
i=1  ×  Ds  ∑ Di

n
i=1     

= (∑ min(Bs ,  ∑ bi
jk

j=1 )n
i=1  x Ds  ∑ min

j
(di

j
)n

i=1 )……………………………………………………………(11) 

5.3.2 Time complexity 

The Big O notation is used to determine the time complexity of the Model. 

The iteration        𝐻 = 𝑛 ÷ 2𝐻                ………………………………………………………………………..(12) 

            Taking the iteration to equal 1, 

                  1 = 𝑛 ÷ 2𝐻 

            Therefore,  𝑛 = 2𝐻 

            taking the log of both sides of the equation 

                 log 𝑛 = 𝑙𝑜𝑔2𝐻                      

        Log 𝑛 = 𝐻 × 𝑙𝑜𝑔22,      𝑤ℎ𝑒𝑟𝑒   𝑙𝑜𝑔22 = 1 

  Log 𝑛  =   𝐻   

From the model developed, the Big O notation for the modified FedAve algorithm is O(n). 

it can be inferred that the time complexity for the modified model is in order of n, O(n). 
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5.3.3 Results and Discussion 

From the GNS3 emulated network architecture, the following results have been obtained. 

  

Figure 60: Pairwise Plot of the Bandwidth Delay Product. 

It can be inferred from Figure 60, which shows the univariate distribution of the TS, RTT 

and BDP. It can be inferred that there is a positive correlation between traffic speed and 

the BDP. It can be inferred that the chart depicts the density probability function of the 

variables. The RTT shows a bi-modal distribution indicating two variations of the RTT having 

peak values, and the RTT is skewed to the right, implying the RTT mean values are more 

than the median values in the dataset. The BDP and TS both show they have a single mode, 

indicating that a single sample of the dataset population represents the mean, and the 

probability density for the TS and BDP are skewed to the left, indicating the mean for TS 

and BDP are less than the median of the dataset. 
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From Figure 60, it can be deduced that the correlation between the BDP and round-trip 

traffic speed & round-trip time is very poor, and a high volume of noise is shown in their 

correlation. The two regression charts in Figure 60 indicate that the correlation between 

BDP and round trip time, round trip time and BDP are very weak. They both produce 

different regression charts that have not matched points between the originals and the 

prediction in the regression charts within Figure 60. This indicates that round-trip time has 

a minimal influence on the BDP, and traffic speed also has a minimal influence on round-

trip time. 

The kernel density estimate indicates that the round-trip time is bi-modal while the traffic 

speed and BDP are unimodal. This implies the round trip time has two peak values with the 

greatest distribution. In contrast, the BDP and traffic speed have single values with the 

greatest distribution, representing the peak value within the BDP dataset. It is very 

important to note that Figure 60 shows the pairwise plot to express the correlation 

between the variables, and it cannot be conclusive evidence of the entire relationship 

between the traffic speed, round trip time and BDP within the dataset. Further analysis is 

carried out on the BDP dataset using the federated and classical machine learning models. 

To further substantiate our analysis of the BDP dataset and support our analysis, a heatmap 

has been developed, as shown in Figure 61. The heatmap gives numerical values to the 

strength of the correlation between the variables in the BDP product dataset. The highest 

value is one, indicating a strong correlation between the variables, and zero (0) indicates a 

weak correlation between the variables. It can be inferred from Figure 61 that the 

correlation value between Traffic speed and round-trip time has a value of 0.042, 

substantiating which confirms that the correlation indicated in Figure 60 between the two 

variables is very poor. The correlation value between round-trip time and the BDP has a 

value of 0.18, which is higher than the correlation value of round-trip time and traffic speed 
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but also shows a poor correlation between the two variables. The correlation values 

between the BDP and traffic speed have a correlation value of 0.99, which is extremely 

high, indicating the Traffic speed within a smart farm federated learning network can 

influence the BDP values within the smart farm network. The diagonal values show the 

correlation of each to itself, which all give the value of one (1).  

 

Figure 61: Heat map correlation of the Bandwidth-delay Product 

The evaluation of the Federated Learning model for the edge nodes, aggregated model and 

classical linear model all converge at different epoch values. 

From Figures 62 to 86, it can be observed that the edge nodes converged at different loss 

values, as can be seen in the diagrams. As seen in Figure 87, the classical machine model 

converged after 20 epochs, indicating the classical machine learning model converged at a 

slow rate compared with the combined federated learning model. The Aggregated 

Federated Learning model chart, as seen in Figure 87, converged after Thirty (30) epochs 

and the combined model did not fluctuate or indicate any overfitting during the 
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aggregation of the local weight updates, which is reflected in its ability to match a high 

proportion of the predicted BDP values with the original BDP values as shown in Figure 88. 

Figure 62: Loss of edge 
node1 of BDP network 

Figure 63: Loss of edge 
node2 of BDP network 

Figure 64: Loss of edge 
node3 of BDP network 

Figure 65: Loss of edge 
node4 of BDP network 

Figure 66: Loss of edge 
node5 of BDP network 

Figure 67: Loss of edge 
node6 of BDP network 

Figure 68: Loss of edge 
node7 of BDP network 

Figure 69: Loss of edge 
node8 of BDP network 

Figure 70: Loss of edge 
node9 of BDP network 

Figure 71: Loss of edge 
node10 of BDP network 

Figure 72: Loss of edge 
node11 of BDP network 

Figure 73: Loss of edge 
node12 of BDP network 

Figure 74: Loss of edge 
node13 of BDP network 

Figure 75: Loss of edge 
node14 of BDP network 

Figure 76: Loss of edge 
node15 of BDP network 

Figure 77: Loss of edge 
node16 of BDP network 

Figure 78: Loss of edge 
node17 of BDP network 

Figure 79: Loss of edge 
node18 of BDP network 
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Figure 80: Loss of edge 
node19 of BDP network 

Figure 81: Loss of edge 
node20 of BDP network 

Figure 82: Loss of edge 
node21 of BDP network 

 
Figure 83: Loss of edge 
node22 of BDP network 

Figure 84: Loss of edge 
node23 of BDP network 

Figure 85: Loss of edge 
node24 of BDP network 

Figure 86: Loss of edge 
node25 of BDP network  

Figure 87: Loss of Combine 
model of BDP network  

Figure 88: Loss of classical 
machine learning model of 
BDP network  

It can be observed that a high portion of the predictions is very accurate with the original 

BDP values. This indicates that the aggregated model can combine the individual edge node 

models and produce an acceptable prediction of the BDP. This is shown in Figure 89, where 

a plot of the predictions against the original BDP values is shown. It can be inferred that the 

Federated Learning model can predict a high proportion of the BDP original values. The 

research investigates the predictions of the classical model, as shown in Figure 90, where 

a low proportion of the original values accurately match the original BDP values. It can be 

observed from Figures 89 & 90, that the aggregated model of the Federated Learning 

platform has been able to predict a high proportion of the original values of the original 

BDP values, and most of the predicted BDP values are an accurate match of the original 

BDP values.  
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Figure 89: Prediction versus Original 
Aggregate model of BDP network 

 
Figure 90: Prediction versus Original 
Classical model of BDP network 

Figures 89 and 90 show that the Aggregated model produce a better performance of the 

predictions of the BDP model compared to the original BDP values. It can be inferred that 

high BDP causes faster convergence, when the bandwidth capacity is high within a smart 

farm link. For rural farms where internet connectivity is challenging, this can reduce the 

financial expenditure on internet provision for a metered link. The faster convergence 

indicates the congestion within the link has been overcome due to the high BDP. 
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6.0 Chapter 6 Conclusion and Future Work 

6.1 Summary 

Amaranthus Viridis is a vegetable crop produced by many countries, grown and harvested 

within eight weeks. The crop has been grown on a floating hydroponic system in the  

SuiteLab of the Computer Science and Informatics Division of London South Bank 

University. Six hundred watts of sodium light has been used for the crop and a compound 

fluid fertilizer containing Nitrogen, Phosphorus, Potassium, and other trace elements. The 

Amaranthus crop has been planted in a nursery for two weeks using a wool rock to 

provide a solid platform for germinating seeds. After that, it was transferred to the 

floating hydroponic systems for another six weeks before harvesting the crop. 

The IoT device connected with the DHT11 sensors collect climatic data within the 

hydroponic farm. The images of the Amaranthus Viridis leaves have been captured with 

the Raspberry Pi while the crop grows. The crop height, leaves length and width 

parameters have been collected while the crop was growing. The images dataset 

collected has been analysed using the CNN, SVM, Decision Tree, and KNN algorithm 

models. The CNN has outperformed the other algorithms for analysing the Amaranthus 

Viridis image dataset. Other algorithms considered for the Amaranthus Viridis Crop 

growth rate analysis are Theil-Sen Regressor, Decision Tree Regressor, K-Neighbours 

Regressor, Support Vector Regressor, Quantile Regressor, and XGBoost Regressor. The 

Classifier chain Gaussian Naïve Base, Label powerset Gaussian Naïve Base, Binary 

relevance Gaussian Naïve Base and the Federated Averaging algorithm have been used to 

analyse the Multi-class smart farming dataset. An in-depth comparative analysis has been 

done using Deep Neural Network, Linear regression, XGBoost regressor, and Federated 

Split Learning for the Smart farming dataset from the University of Peloponnese, 

Kalamata, Greece. 
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6.2 Research Outcome. 

This section summarises the research outcome for this thesis. 

A detailed survey of the recent publications on smart farming to identify existing 

challenges. Review of the crop and Livestock production and post-harvesting has been 

carried out. The following parameters, the namely computational power of systems, 

counting and crowd control, devices operated by batteries, holding cost, transport cost, 

the demand of the market, and the psychological effect, have been considered to 

ascertain their influence on smart farming [84].  Various sensors have been used in smart 

farms, and their contributions have enabled farmers to collect climatic parameters within 

the farm. Unmanned aerial vehicles have been explored, and the valuable contributions 

they bring to the farming industry through spraying fertilizers, herbicides, and monitoring 

of farmlands, to mention a few. 

IoT, Artificial intelligence, and machine learning concepts have been investigated, as well 

as their impact on smart farming. Their introduction into agriculture has revolutionised 

how farmers monitor their animals, grow their crops, and process their produce faster 

and in large volume. These techniques have boosted food production [84]. Machine 

learning models have been used to evaluate centralised and decentralised smart farm 

networks. This enabled the farmers to forecast crops and animal production for the 

future based on existing farm capacity, climatic conditions, and other infrastructural 

facilities. Despite the laudable contributions of the use of technologies in the farming 

industry, many challenges have been identified that impede the progression of farmers, 

such as data privacy, governance, security, and refusal of acceptance of Information 

Technology by farmers to automate their farms. Other challenges include low-powered 

edge devices and improved ML models to address new disease detection in the farms 

[84].  
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All over the world, farmers experience a high volume of wastage of farm products or 

meager harvests. This is due to poor storage facilities, crop disease outbreaks within the 

farms, poor seed quality used for farming, unsuitable land for planting crops, and lack of 

technological facilities for farming, especially in developing countries [84]. Using 

professional farming practices, Intelligent IoT devices, and alternative farming mediums 

such as hydroponic systems, the farmers will be able to meet the food demand by the 

populace and industry and furnish academic and non-academic practitioners with reliable 

information for their research.   

6.2.1 Analysis of Hydroponic Systems Data Using Machine Learning Algorithms 
 
The Deep Neural Network (DNN), Linear regression, XGBoost, and Federated Split 

Learning models have been used to evaluate the Onion Bulb Diameter (OBD) dataset 

collected at the University of Peloponnese, Kalamata, Greece. The dataset contained the 

following independent variables Temperature(oC), water consumption (Litres), Number of 

Leaves (NL), Nitrogen (mg/g), Phosphorus (mg/g), Potassium (mg/g), Calcium (mg/g), 

Magnesium (mg/g), Sulphur (mg/g), sodium (mg/g) are the independent variable. At the 

same time, the OBD has been considered the dependent variable. The results indicated 

that the Aeroponic (AER) hydroponic system predicted OBDs were very close in values to 

the original OBDs, inferred from the high coefficient of determinant values produced. In 

contrast, the Floating hydroponic system predicted OBDs have been far from the original 

OBD, as seen in the value of the coefficient of determinant value produced from the 

XGBoost model. This is indicated in Figure 31 [158]. 

Linear regression, Deep Neural Network, XGBoost, and Federated Split Learning 

algorithms have been employed to analyse the Onion Bulb Diameter (OBD) dataset 

provided by the University of Peloponnese, Kalamata, Greece.  
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Dataset from four different hydroponics systems: Aggregate (AG), Aeroponics (AER), 

Floating and Nutrient Film Technic (NFT).  Evaluating the four hydroponics systems using 

the XGBoost algorithm. It has been inferred that the Floating hydroponic system achieved 

the lowest Mean Square Error (MSE) of 1.75 to obtain convergence, while the NFT, AG, 

and AER have an MSE of 3.13, 6.52 and 4.43, respectively. The DNN algorithm has also 

been considered for evaluating the AER, AG, Floating, and NFT. The Floating and NFT 

hydroponic system converged with the lowest MSE of 0.13 each. The AG and AER 

hydroponic systems converged using the DNN model with MSE of 0.34 and 0.74, 

respectively. 

The Floating hydroponic system produced the lowest MSE of 0.47, while the AER, AG, and 

NFT produced MSE of 9.89, 14.7 and 2.08, respectively, using the Linear Regression 

algorithm.  

The Linear regression algorithm has been used to predict the OBD for the AG, AER, 

Floating and NFT hydroponic systems. The NFT system predicted OBDs are the closest to 

the original OBD, as shown in Figure 27, when compared with the predicted values of the 

AER, AG, and Floating hydroponic systems [158]. 

A comparison of the R2 of the AG, AER, Floating and NFT hydroponic systems has been 

carried out, and the AER hydroponic system using the XGBoost model produced the 

highest R2, as shown in Figure 32. 

The computational time of the AG, AER, Floating and NFT hydroponic systems have been 

investigated using the XGBoost model, and it can be observed that the Floating 

hydroponic system converged with the lowest computation time of 656ms. In contrast, 

the AER, AG and NFT converged with 750ms, 797ms, and 844ms, respectively. 
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6.2.2 Machine Learning Analysis of Amaranthus Viridis Image Dataset 

The images of Amaranthus Viridis leaves have been evaluated using the Convolutional 

Neural Network (CNN), Decision Tree classifier, Support Vector classifier (SVC) and K-

Nearest Neighbours (KNN) algorithm.  

The CNN, Decision Tree classifier, Support Vector classifier (SVC) and K-Nearest 

Neighbours (KNN) evaluation of the Amaranthus Viridis leaves images achieved the 

following accuracies of 98.85%, 92.45%, 95.28% and 92.92% respectively. The accuracy is 

the percentage of the predicted images that match the original images.  

The Amaranthus Viridis crop growth rate has been trained using Support Vector 

regressor, Theil-Sen, Quantile, K-Neighbours, Decision Tree, and XGBoost Regressors. It 

can be inferred from the experimentation that the K-Neighbours model has produced the 

highest coefficient of determinant with a value of 0.995. The predicted Amaranthus crop 

growth rate from the K-Neighbours model is very close to the original crop growth rate 

values as expressed from the coefficient of the determinant of the K-Neighbours model. 

In contrast, the predicted crop growth rate from the Support Vector Regressor model 

with a value of 0.982 has been the lowest R2 obtained from the analysis.   

6.2.3 Smart Farming analysis using Federated Averaging Algorithm 

The Federated Split Learning (FSL) model has been used to evaluate the AG, AER, Floating 

and NFT hydroponic systems. Hyper tuning the parameters of the Federated Split 

Learning models using different optimizers, such as Stochastic Gradient Descent (SGD) 

and Adam optimizers, with different learning rate values ranging from 0.0000001 to 0.1. It 

may be inferred that the Floating hydroponic system obtained optimal convergence with 

a learning rate of 0.01 using the Adam optimizer, as shown in Figure 51. It implies that the 

Floating Hydroponic system FSL model was not learning the noise in the dataset and 
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achieved convergence within a very short time without overfitting during the dataset 

training [158]. 

The Label powerset Gaussian Naïve Base, Binary Relevant Gaussian Naïve Base, Classifier 

Chain Gaussian Naïve Base algorithm has been used to evaluate the climatic parameters 

to predict the crop type for a smart farm within a centralized network. The Label 

powerset Gaussian Naïve Base, Binary Relevant Gaussian Naïve Base, and Classifier Chain 

Gaussian Naïve Base algorithm have been able to match the predicted crop with the 

original crop with an accuracy of 80%, 80%, and 75%, respectively. The ratio of the 

precision and recall of the product to the sum of the recall and precision for the Label 

powerset Gaussian Naïve Base, Binary Relevant Gaussian Naïve Base, and Classifier Chain 

Gaussian Naïve Base obtained are 0.97, 0.97, and 0.76, respectively. It can be inferred 

that the Binary Relevant Gaussian Naïve Base and Label powerset Gaussian Naïve Base 

models produced a higher Harmonic Mean from the evaluation of the centralized 

network. 

The Federated learning Averaging model has been used to evaluate the Multi-labelled 

smart Farming dataset. The model has been hyper-tuned using different optimizers such 

as SGD and Adam, and learning rates ranging from Zero (0) to One (1) value. The 

Federated averaging model using the SGD optimizer and learning rate of 0.001 matched 

the least amount of the predicted crop type to the original crop type values with a value 

of Twenty-three per cent (23%). In comparison, the optimal matching of the predicted 

crop types with the original crop type values has been achieved using the Adam optimizer 

with a learning rate of 0.001 with a value of 90%. 

A harmonic mean is the consideration of the recall and precision product ratio to the sum 

of the recall and precision. It can be inferred that the optimal harmonic mean has been 

obtained from the hyper-tuned model using the Adam optimizer and a Learning rate of 
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0.001 with a value of 0.91. In contrast, the least harmonic mean of 0.48 has been 

produced using the SGD optimizer and LR value of 0.001. From the centralised and 

decentralised network models, it can be inferred that the decentralised network model 

using the federated averaging model has produced a better convergence without having 

access to the raw dataset than the centralised network model [160]. 

6.2.4 Modelling of Federated Learning Smart Farm 

The Modelling of the smart farm federated learning network has been investigated using 

the GNS3 tool for experimentation. It has been observed that the decentralised network 

using the federated Learning model converged much faster than the centralised classic 

machine learning model using the bandwidth-delay product as performance metrics. This 

result indicates that the Federated learning model, which trains its dataset without access 

to the raw dataset, has converged much faster than the classical machine learning model.  

The BDP can be concluded as having a higher correlation with the traffic speed than the 

round-trip time within a smart farm federated learning network. This confirms that a smart 

farm federated learning network will converge faster when the traffic speed within the 

network is very high from this research experimentation.  

A Model has been developed for the Federated Learning Smart Farm Network. The 

Bandwidth Capacity and round-trip time (RTT) for the smart farm network have been 

considered, and it can be observed that there exists a correlation between the Bandwidth 

delay product (BDP) and the traffic speed (TS) of the link within a smart farm with a 

correlation value of 0.99 as shown in Figure 61. A comparison of the convergence 

performance for the local, classical, and aggregate models has been carried out for the 

smart farm network. It can be inferred that the local models converge poorly, as seen in 

Figures 62 - 86.  
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The combined model has matched a higher portion of the predicted BDP with the original 

BDP values. This is seen in Figure 89, while Figure 90 shows the poor matching of the 

predicted BDP values with the original BDP values for a classical model. It can be inferred 

that the decentralised, federated learning model for a smart farm network has 

outperformed the classical centralised model in matching the predicted values to the 

original values of the BDP [160]. 

6.3 Further work 

The effect of parallel learning algorithm models to AER, AG, NFT, and Floating hydroponic 

systems should be investigated. Academic researchers can use this work as an insight into 

findings on hydroponic systems. Still, other features may be considered to see the impact 

of features such as Artificial light, the micro-nutrients (μg/g dry weight), and some 

climatic parameters on the Onion crop Bulb diameter within the chosen hydroponic 

systems. A comparison of the performance of the Federated Split Learning model, 

Federated Averaging model and classical machine learning models for the AER, AG, 

Floating and NFT hydroponic systems can be investigated to predict the OBD for each of 

the hydroponic systems. 

Further investigation can be explored to determine the prediction of OBD for the AER, 

AG, Floating, and NFT hydroponic systems using the Huber and Transformed Target 

regressor algorithm. 

 The vision Transformer algorithm can be considered for future evaluation of the 

Amaranthus leaves images while considering the CNN as benchmarks from the results of 

this research.  An in-depth comparative analysis of the Random Forest, CatBoost, and 

XGBoost algorithms of the Amaranthus Crop growth rate should be explored. 

The application of a software-defined network within a federated Learning platform to 

reduce the Latency of a smart farm network should be considered for further analysis. 
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Onion Bulb Diameter DNN code 
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Onion Bulb Diameter XGBoost code  
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Onion Bulb Diameter Split Learning model code for Data scientist 
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Onion Bulb Diameter Split Learning model code for Data Owner 
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Smart Farming Analysis using Federated Averaging Algorithm
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Bandwidth delay product for smart farm 
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Bandwidth Delay Product edge node 1 code 
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Bandwidth Delay product edge node 2 
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AMARANTHUS VIRIDIS CLASSIFICATION 

 

import numpy as np  
import cv2 
import glob 
import os 
import matplotlib.pyplot as plt 
import string 
from mlxtend.plotting import plot_decision_regions 
from mpl_toolkits.mplot3d import Axes3D 
from sklearn.decomposition import PCA 
from sklearn.preprocessing import StandardScaler 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.tree import DecisionTreeClassifier  
from sklearn.model_selection import train_test_split, cross_val_score 
from sklearn.utils.multiclass import unique_labels 
from sklearn import metrics 
from sklearn.svm import SVC 
from sklearn.model_selection import cross_val_score,KFold 
 
#print(os.listdir("C:/Users/igone/Downloads/Amara/")) 
dim = 100 
def getYourAmaranthus(Amaranthus, data_type, print_n=False, k_fold=False): 
    images = [] 
    labels = [] 
    val = ['Train', 'Test'] 
    if not k_fold: 
        path = "C:/Users/igone/Downloads/Amara/" + data_type + "/" 
        for i,f in enumerate(Amaranthus): 
            p = path + f 
            j=0 
            for image_path in glob.glob(os.path.join(p, "*.jpg")): 
                image = cv2.imread(image_path, cv2.IMREAD_COLOR) 
                image = cv2.resize(image, (dim, dim)) 
                image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) 
                images.append(image) 
                labels.append(i) 
                j+=1 
            if(print_n): 
                print("There are " , j , " " , data_type.upper(), " images of " , 
Amaranthus[i].upper()) 
        images = np.array(images) 
        labels = np.array(labels) 
        return images, labels 
    else: 
        for v in val: 
            path = "C:/Users/igone/Downloads/Amara/" + v + "/" 
            for i,f in enumerate(Amaranthus): 
                p = path + f 
                j=0 



161 
 

                for image_path in glob.glob(os.path.join(p, "*.jpg")): 
                    image = cv2.imread(image_path, cv2.IMREAD_COLOR) 
                    image = cv2.resize(image, (dim, dim)) 
                    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) 
                    images.append(image) 
                    labels.append(i) 
                    j+=1 
        images = np.array(images) 
        labels = np.array(labels) 
        return images, labels 
     
def getAllAmaranthus(): 
    Amaranthus = [] 
    for Amaranthus_path in glob.glob("C:/Users/igone/Downloads/Amara/train/*"): 
        Amaranthus = Amaranthus_path.split("/")[-1] 
        Amaranthus.append(Amaranthus) 
    return Amaranthus 

 

Amaranthus = ['Healthy' , 'infected'] #Binary classification 
 
#Get Images and Labels  
X_t, y_train =  getYourAmaranthus(Amaranthus, 'Train', print_n=True, k_fold=False) 
X_test, y_test = getYourAmaranthus(Amaranthus, 'Test', print_n=True, k_fold=False) 
 
#Get data for k-fold 
X,y = getYourAmaranthus(Amaranthus, '', print_n=True, k_fold=True) 
 
#Scale Data Images 
scaler = StandardScaler() 
X_train = scaler.fit_transform([i.flatten() for i in X_t]) 
X_test = scaler.fit_transform([i.flatten() for i in X_test]) 
X = scaler.fit_transform([i.flatten() for i in X]) 
There are  729   TRAIN  images of  HEALTHY 
There are  167   TRAIN  images of  INFECTED 
There are  145   TEST  images of  HEALTHY 
There are  20   TEST  images of  INFECTED 
 
# Perform k-fold cross-validation 
kf = KFold(n_splits=5, shuffle=True, random_state=42) 
 
 
for train_index, test_index in kf.split(X): 
    X_train, X_test = X[train_index], X[test_index] 
    y_train, y_test = y[train_index], y[test_index] 
     
    # Fit the model on the training data 
    #classifier.fit(X_train, y_train) 
 
#SVM 
model = SVC(gamma='auto', kernel='linear') 
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model.fit(X_train, y_train)  
y_pred = model.predict(X_test) 
precision = metrics.accuracy_score(y_pred, y_test) * 100 
print("Accuracy with SVM: {0:.2f}%".format(precision)) 
 
#K-NN 
model = KNeighborsClassifier(n_neighbors=5) 
model.fit(X_train, y_train) 
y_pred = model.predict(X_test) 
precision = metrics.accuracy_score(y_pred, y_test) * 100 
print("Accuracy with K-NN: {0:.2f}%".format(precision)) 
 
#DECISION TREE 
model = DecisionTreeClassifier() 
model.fit(X_train,y_train) 
y_pred = model.predict(X_test) 
precision = metrics.accuracy_score(y_pred, y_test) * 100 
print("Accuracy with Decision Tree: {0:.2f}%".format(precision)) 
Accuracy with SVM: 95.28% 
Accuracy with K-NN: 92.92% 
Accuracy with Decision Tree: 94.81% 

 

 
score_train=[] 
score_test=[] 
 
for i in range(1,10): 
    dtree_md = DecisionTreeClassifier(max_depth=i) 
    dtree_md.fit(X_train,y_train) 
     
    score_train.append(dtree_md.score(X_train,y_train)*100) 
    score_test.append(dtree_md.score(X_test,y_test)*100) 
     
score_train_array=np.asarray(score_train) 
score_test_array=np.asarray(score_test) 
plt.figure(figsize=(10,6)) 
plt.plot(range(1,10),score_train_array,color='black', label="Training_accuracy") 
plt.plot(range(1,10),score_test_array,color='red',label="Testing_accuracy") 
plt.title("Decision Tree Accuracy of Amaranthus Viridis Crop") 
plt.legend() 
plt.xlabel('max_depth') 
plt.ylabel('Accuracy%') 
plt.show() 
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accuracy_train = [] 
accuracy_test = [] 
 
for i in range(1,15):   #check all possible values for 1 to 15 
    k_nn = KNeighborsClassifier(n_neighbors=i) 
    k_nn.fit(X_train,y_train) 
    pred_i = k_nn.predict(X_test) 
    accuracy_train.append(k_nn.score(X_train,y_train)*100) 
    accuracy_test.append(k_nn.score(X_test,y_test)*100) 
     
accuracy_train_array=np.asarray(accuracy_train) 
accuracy_test_array=np.asarray(accuracy_test) 
     
plt.figure(figsize=(10,6)) 
plt.plot(range(1,15),accuracy_train_array, label='Training_Accuracy', color='green') 
plt.plot(range(1,15),accuracy_test_array, label='Testing_Accuracy', color='brown') 
plt.legend() 
plt.title("k-Nearest Neighbour Accuracy of Amaranthus Viridis Crop") 
plt.xlabel('K') 
plt.ylabel('Accuracy%') 
 
plt.show() 
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tree = DecisionTreeClassifier() 
tree = tree.fit(X_train,y_train) 
y_pred = tree.predict(X_test) 
 
#Evaluation 
precision = metrics.accuracy_score(y_pred, y_test) * 100 
print("Accuracy with Decision Tree: {0:.2f}%".format(precision)) 
cm , _ = plot_confusion_matrix(y_test, y_pred, classes=y_train, normalize=True, 
title='Normalized Decision Tree confusion matrix') 
plt.show() 
Accuracy with Decision Tree: 94.81% 

 

knn = KNeighborsClassifier(n_neighbors=2) 
knn.fit(X_train, y_train) 
y_pred = knn.predict(X_test) 
#Evaluation 
precision = metrics.accuracy_score(y_pred, y_test) * 100 
print("Accuracy with K-NN: {0:.2f}%".format(precision)) 
cm , _ = plot_confusion_matrix(y_test, y_pred, classes=y_train, normalize=True, 
title='Normalized KNN confusion matrix') 
plt.show() 
Accuracy with K-NN: 91.98% 
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svm = SVC(gamma='auto', kernel='linear', probability=True) 
svm.fit(X_train, y_train)  
y_pred = svm.predict(X_test) 
 
#Evaluation 
precision = metrics.accuracy_score(y_pred, y_test) * 100 
print("Accuracy with SVM: {0:.2f}%".format(precision)) 
cm , _ = plot_confusion_matrix(y_test, y_pred,classes=y_train, normalize=True, 
title='Normalized SVM confusion matrix') 
plt.show() 
Accuracy with SVM: 95.28% 

 

 

Amaranthus Viridis Crop growth Rate 

import catboost as ctb 
import lightgbm as lgb 
import matplotlib.pyplot as plt 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from sklearn.ensemble import GradientBoostingRegressor 
from sklearn.datasets import make_regression 
from sklearn.ensemble import AdaBoostRegressor 
from lightgbm import LGBMRegressor 
from catboost import CatBoostRegressor 
from xgboost import XGBRegressor 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import r2_score 
from sklearn.metrics import accuracy_score, mean_squared_error 
from sklearn.metrics import  mean_absolute_error 
from sklearn import datasets 
from sklearn import metrics 
 
plt.style.use("ggplot") 

 
#Load the Amaranthus dataset collected from the Suitelab Smart Farm 
dataset = pd.read_csv("Amaranthus_growth_rate_A.csv") 
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X = dataset.iloc[:,:-1].values 
y = dataset.iloc[:,5].values 
 
#splitting of the Dataset using Sklearn library in ratio  
#of 20% for test and 80% for training 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 

 
#KNeighbors Regressor 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.model_selection import KFold 
from sklearn.metrics import mean_squared_error, r2_score 
import numpy as np 
 
# Generate some random data for demonstration 
#np.random.seed(42) 
#X = np.random.rand(100, 1) * 10 
#y = 2 * X[:, 0] + np.random.randn(100) 
#Load the Amaranthus dataset collected from the Suitelab Smart Farm 
dataset = pd.read_csv("Amaranthus_growth_rate_A.csv") 
X = dataset.iloc[:,:-1].values 
y = dataset.iloc[:,5].values 
 
#splitting of the Dataset using Sklearn library in ratio  
#of 20% for test and 80% for training 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 
# Create a k-nearest neighbors regressor object 
knn = KNeighborsRegressor(n_neighbors=5) 
 
# Perform k-fold cross-validation 
kf = KFold(n_splits=5, shuffle=True, random_state=42) 
mse_scores = [] 
r2_scores = [] 
 
for train_index, test_index in kf.split(X): 
    X_train, X_test = X[train_index], X[test_index] 
    y_train, y_test = y[train_index], y[test_index] 
     
    # Fit the model on the training data 
    knn.fit(X_train, y_train) 
     
    # Predict on the test data 
    y_predd1 = knn.predict(X_test) 
     
    # Calculate evaluation metrics 
    mse = mean_squared_error(y_test, y_predd1) 
    r2 = r2_score(y_test, y_predd1) 
     
    # Append scores to the lists 
    mse_scores.append(mse) 
    r2_scores.append(r2) 
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# Calculate the average scores 
avg_mse = np.mean(mse_scores) 
avg_r2 = np.mean(r2_scores) 
 
# Print the evaluation metrics 
print("Average Mean Squared Error:", avg_mse) 
print("Average R-squared:", avg_r2) 
print("Predictions:",y_predd1) 

Average Mean Squared Error: 0.030173333333333347 
Average R-squared: 0.9854849186801763 
Predictions: [0.68 0.92 1.34 1.76 1.9  2.18 2.68 4.08] 
 
#Support Vector regressor evaluation 
from sklearn.svm import SVR 
from sklearn.model_selection import KFold 
from sklearn.metrics import mean_squared_error, r2_score 
import numpy as np 
 
#Load the Amaranthus dataset collected from the Suitelab Smart Farm 
dataset = pd.read_csv("Amaranthus_growth_rate_A.csv") 
X = dataset.iloc[:,:-1].values 
y = dataset.iloc[:,5].values 
#splitting of the Dataset using Sklearn library in ratio  
#of 20% for test and 80% for training 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 
# Create a support vector regression object 
svr = SVR(kernel='rbf') 
 
# Perform k-fold cross-validation 
kf = KFold(n_splits=5, shuffle=True, random_state=42) 
mse_scores = [] 
r2_scores = [] 
 
for train_index, test_index in kf.split(X): 
    X_train, X_test = X[train_index], X[test_index] 
    y_train, y_test = y[train_index], y[test_index] 
     
    # Fit the model on the training data 
    svr.fit(X_train, y_train) 
     
    # Predict on the test data 
    y_predd2 = np.round(svr.predict(X_test),decimals=2) 
     
    # Calculate evaluation metrics 
    mse = mean_squared_error(y_test, y_predd2) 
    r2 = r2_score(y_test, y_predd2) 
     
    # Append scores to the lists 
    mse_scores.append(mse) 
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    r2_scores.append(r2) 
 
# Calculate the average scores 
avg_mse = np.mean(mse_scores) 
avg_r2 = np.mean(r2_scores) 
 
# Print the evaluation metrics 
print("Average Mean Squared Error:", avg_mse) 
print("Average R-squared:", avg_r2) 
print("Predictions:",y_predd2) 

Average Mean Squared Error: 0.030533055555555542 
Average R-squared: 0.9854818451456568 
Predictions: [0.68 0.9  1.3  1.76 1.92 2.1  2.68 4.16] 
 
#XGBoost regressor evalution 
import xgboost as xgb 
from sklearn.model_selection import KFold 
from sklearn.metrics import mean_squared_error, r2_score 
import numpy as np 
import pandas as pd 
 
#Load the Amaranthus dataset collected from the Suitelab Smart Farm 
dataset = pd.read_csv("Amaranthus_growth_rate_A.csv") 
X = dataset.iloc[:,:-1].values 
y = dataset.iloc[:,5].values 
#splitting of the Dataset using Sklearn library in ratio  
#of 20% for test and 80% for training 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 
# Create XGBoost regression object 
xgb_reg = xgb.XGBRegressor(objective='reg:squarederror') 
 
# Perform k-fold cross-validation 
kf = KFold(n_splits=5, shuffle=True, random_state=42) 
mse_scores = [] 
r2_scores = [] 
 
for train_index, test_index in kf.split(X): 
    X_train, X_test = X[train_index], X[test_index] 
    y_train, y_test = y[train_index], y[test_index] 
     
    # Fit the model on the training data 
    xgb_reg.fit(X_train, y_train) 
     
    # Predict on the test data 
    y_predd3 = np.round(xgb_reg.predict(X_test),decimals=2) 
     
    # Calculate evaluation metrics 
    mse = mean_squared_error(y_test, y_predd3) 
    r2 = r2_score(y_test, y_predd3) 
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    # Append scores to the lists 
    mse_scores.append(mse) 
    r2_scores.append(r2) 
 
# Calculate the average scores 
avg_mse = np.mean(mse_scores) 
avg_r2 = np.mean(r2_scores) 
 
# Print the evaluation metrics 
print("Average Mean Squared Error:", avg_mse) 
print("Average R-squared:", avg_r2) 
print("Predictions:",y_predd3) 

Average Mean Squared Error: 0.019916668936614073 
Average R-squared: 0.9864553845971022 
Predictions: [0.8 1.1 1.5 1.9 2.1 2.2 2.7 4.4] 
 
from sklearn.linear_model import QuantileRegressor 
from sklearn.model_selection import KFold 
from sklearn.metrics import mean_squared_error, r2_score 
import numpy as np 
 
#Load the Amaranthus dataset collected from the Suitelab Smart Farm 
dataset = pd.read_csv("Amaranthus_growth_rate_A.csv") 
X = dataset.iloc[:,:-1].values 
y = dataset.iloc[:,5].values 
#splitting of the Dataset using Sklearn library in ratio  
#of 20% for test and 80% for training 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 
# Create a quantile regression object 
quant_reg = QuantileRegressor() 
 
# Perform k-fold cross-validation 
kf = KFold(n_splits=5, shuffle=True, random_state=42) 
mse_scores = [] 
r2_scores = [] 
 
for train_index, test_index in kf.split(X): 
    X_train, X_test = X[train_index], X[test_index] 
    y_train, y_test = y[train_index], y[test_index] 
     
    # Fit the model on the training data 
    quant_reg.fit(X_train, y_train) 
     
    # Predict on the test data 
    y_predd4 = np.round(quant_reg.predict(X_test),decimals=2) 
     
    # Calculate evaluation metrics 
    mse = mean_squared_error(y_test, y_predd4) 
    r2 = r2_score(y_test, y_predd4) 
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    # Append scores to the lists 
    mse_scores.append(mse) 
    r2_scores.append(r2) 
 
# Calculate the average scores 
avg_mse = np.mean(mse_scores) 
avg_r2 = np.mean(r2_scores) 
 
# Print the evaluation metrics 
print("Average Mean Squared Error:", avg_mse) 
print("Average R-squared:", avg_r2) 
print("Predictions:",y_predd4) 

Average Mean Squared Error: 0.01980833333333333 
Average R-squared: 0.9875787354776486 
Predictions: [0.71 0.92 1.29 1.73 1.87 2.06 2.83 4.06] 
 
from sklearn.kernel_ridge import KernelRidge 
from sklearn.model_selection import KFold 
from sklearn.metrics import mean_squared_error, r2_score 
import numpy as np 
from sklearn.tree import DecisionTreeRegressor 
from sklearn.model_selection import KFold 
from sklearn.metrics import mean_squared_error, r2_score 
import numpy as np 
 
dataset = pd.read_csv("Amaranthus_growth_rate_A.csv") 
X = dataset.iloc[:,:-1].values 
y = dataset.iloc[:,5].values 
 
#splitting of the Dataset using Sklearn library in ratio  
#of 20% for test and 80% for training 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 
# Create a Decision Tree Regression object 
tree_reg = DecisionTreeRegressor() 
 
# Perform k-fold cross-validation 
kf = KFold(n_splits=5, shuffle=True, random_state=42) 
mse_scores = [] 
r2_scores = [] 
 
for train_index, test_index in kf.split(X): 
    X_train, X_test = X[train_index], X[test_index] 
    y_train, y_test = y[train_index], y[test_index] 
     
    # Fit the model on the training data 
    tree_reg.fit(X_train, y_train) 
     
    # Predict on the test data 
    y_predd5 = np.round(tree_reg.predict(X_test),decimals=2) 
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    # Calculate evaluation metrics 
    mse = mean_squared_error(y_test, y_predd5) 
    r2 = r2_score(y_test, y_predd5) 
     
    # Append scores to the lists 
    mse_scores.append(mse) 
    r2_scores.append(r2) 
 
# Calculate the average scores 
avg_mse = np.mean(mse_scores) 
avg_r2 = np.mean(r2_scores) 
 
# Print the evaluation metrics 
print("Average Mean Squared Error:", avg_mse) 
print("Average R-squared:", avg_r2) 
print("Predictions:",y_predd5) 

Average Mean Squared Error: 0.018805555555555565 
Average R-squared: 0.9876609164265139 
Predictions: [0.6 0.9 1.3 1.9 1.9 2.1 2.5 4. ] 

 
from sklearn.linear_model import TheilSenRegressor 
from sklearn.model_selection import KFold 
from sklearn.metrics import mean_squared_error, r2_score 
import numpy as np 
 
dataset = pd.read_csv("Amaranthus_growth_rate_A.csv") 
X = dataset.iloc[:,:-1].values 
y = dataset.iloc[:,5].values 
 
#splitting of the Dataset using Sklearn library in ratio  
#of 20% for test and 80% for training 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) 
# Create a Theil-Sen Regression object 
theil_sen_reg = TheilSenRegressor() 
 
# Perform k-fold cross-validation 
kf = KFold(n_splits=5, shuffle=True, random_state=42) 
mse_scores = [] 
r2_scores = [] 
 
for train_index, test_index in kf.split(X): 
    X_train, X_test = X[train_index], X[test_index] 
    y_train, y_test = y[train_index], y[test_index] 
     
    # Fit the model on the training data 
    theil_sen_reg.fit(X_train, y_train) 
     
    # Predict on the test data 
    y_predd6 = np.round(theil_sen_reg.predict(X_test),decimals=2) 
     



172 
 

    # Calculate evaluation metrics 
    mse = mean_squared_error(y_test, y_predd6) 
    r2 = r2_score(y_test, y_predd6) 
     
    # Append scores to the lists 
    mse_scores.append(mse) 
    r2_scores.append(r2) 
 
# Calculate the average scores 
avg_mse = np.mean(mse_scores) 
avg_r2 = np.mean(r2_scores) 
 
# Print the evaluation metrics 
print("Average Mean Squared Error:", avg_mse) 
print("Average R-squared:", avg_r2) 
 
 
# Print the evaluation metrics 
print("Average Mean Squared Error:", avg_mse) 
print("Average R-squared:", avg_r2) 
print("Predictions:",y_predd6) 

Average Mean Squared Error: 0.01382416666666666 
Average R-squared: 0.9925642221775035 
Average Mean Squared Error: 0.01382416666666666 
Average R-squared: 0.9925642221775035 
Predictions: [0.76 0.96 1.39 1.87 2.03 2.15 2.69 4.1 ] 
 
fig, axes = plt.subplots(2, 3, figsize=(15, 10)) 
 
# First subplot 
ax = sns.lineplot(x=y_test, y=y_predd1, label='KNeighbour Regressor', color='cyan', 
ax=axes[0, 0]) 
ax.set_title('KNeighbour Regressor') 
ax.set_xlabel('Actual crop growth rate values (cm)', color='g') 
ax.set_ylabel('Predicted crop growth rate values (cm)', color='g') 
 
# Second subplot 
ax1 = sns.lineplot(x=y_test, y=y_predd2, label='Support Vector Regressor', color='blue', 
ax=axes[0, 1]) 
ax1.set_title('Support Vector regressor') 
ax1.set_xlabel('Actual crop growth rate values (cm)', color='g') 
ax1.set_ylabel('Predicted crop growth rate values (cm)', color='g') 
 
# Third subplot 
ax2 = sns.lineplot(x=y_test, y=y_predd3, label='XGBoost Regressor', color='black', 
ax=axes[0, 2]) 
ax2.set_title('XGBoost Regressor') 
ax2.set_xlabel('Actual crop growth rate values (cm)', color='g') 
ax2.set_ylabel('Predicted crop growth rate values (cm)', color='g') 
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# Fourth subplot 
ax3 = sns.lineplot(x=y_test, y=y_predd4, label='Quantile Regressor', color='green', 
ax=axes[1, 0]) 
ax3.set_title('Quantile Regressor') 
ax3.set_xlabel('Actual crop growth rate values (cm)', color='green') 
ax3.set_ylabel('Predicted crop growth rate values (cm)', color='green') 
 
# Fifth subplot 
ax4 = sns.lineplot(x=y_test, y=y_predd5, label='Decision Tree Regressor', 
color='orange',ax=axes[1, 1]) 
ax4.set_title('Decision Tree Regressor') 
ax4.set_xlabel('Actual crop growth rate values (cm)', color='g') 
ax4.set_ylabel('Predicted crop growth rate values (cm)', color='g') 
 
# Sixth subplot 
ax5 = sns.lineplot(x=y_test, y=y_predd6, label='Theil-Sen Regressor', color='yellow', 
ax=axes[1, 2]) 
ax5.set_title('Theil-Sen regressor') 
ax5.set_xlabel('Actual crop growth rate values (cm)', color='g') 
ax5.set_ylabel('Predicted crop growth rate values (cm)', color='g') 
 
# Adjust spacing between subplots 
fig.tight_layout() 
 
# Display the figure 
plt.show() 

 
 

  


