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A B S T R A C T   

The interlocks between smart product platforming (SPP) powered by Artificial Intelligence (AI) and Generative 
AI, big data analytics, and machine learning are still in their infancy. Modern technology-driven SPP promotes 
personalized product design and manufacturing suited to support environmentally friendly products for the 
circular economy. In this study, we develop a framework pertaining to the interlinks between SPP, big data 
analytics, machine learning, and the circular economy. To test our framework, we apply structure equation 
modeling based on data collected from more than 200 automotive industry professionals operating in China. Our 
results demonstrate that SPP and big data analytics are the central determinants for manufacturing environ-
mentally friendly products, ultimately promoting circular economy applications. SPP plays a pivotal role in 
innovative product design and in facilitating the relevant manufacturing procedures. Big data analytics signifi-
cantly feed into SPP applications. Machine learning and flexibility in SPP perform moderating roles in 
strengthening environmentally friendly outcomes. The mediating role played by SPP between big data analytics 
and environmentally friendly products for the circular economy is partially encouraging. As SPP powered by AI 
and Generative AI is an emerging phenomenon, our study contributes to this new knowledge dimension. We 
conclude this paper by discussing the theoretical and practical implications of our study, its limitations, and 
directions for future research.   

1. Introduction 

Product platforming emphasizes the manufacturing of a family of 
products based on a common platform while adopting feature flexibility 
and optimizing the available resources to meet emerging customer de-
mand (Jalali et al., 2022; Zhang, 2015). Smart product platforming 
(SPP) utilizes contemporary technology to control the related opera-
tions. SPP identifies the common interlocks between a firm’s offerings, 
its ecosystem actors, and its personalized products and services (Hil-
bolling et al., 2021; Jalali et al., 2022). Artificial intelligence (AI), big 
data analytics, and machine learning are powerful tools for SPP. These 

technologies interlinked with Industry 4.0 are revolutionizing product 
processes and manufacturing arenas (Gong et al., 2021; Guo et al., 
2021). The applications of generative artificial intelligence (GAI)— 
which are also called large language models (LLMs)—inherited with big 
data analytics (i.e., large volumes of unstructured and structured data) 
and machine learning (e.g., supervised and reinforcement learning) 
have simultaneously provided opportunities and created digital 
disruption (Akhtar et al., 2023; Gozalo-Brizuela and Garrido-Merchan, 
2023; Wang et al., 2023). GAI tools like ChatGPT and DALL-E signifi-
cantly increase productivity, enhance work quality, and refine ideas for 
product design innovation, providing the prospect of substituting hard 
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work with smart work (Noy and Zhang, 2023; Zhu and Luo, 2022). This 
AI-driven substitution, combined with original human thinking, could 
be the key to personalized product design and related manufacturing, 
supporting environmentally friendly products for the circular economy, 
and thus reducing waste and consumption. Numerous complex tasks 
that require specific knowledge and technology underpin the successful 
execution of each part of the product design and manufacturing pro-
cesses, which are effectively facilitated by two-way communication and 
a problem-solving approach involving GAI and human beings (Hettiar-
achchi et al., 2022; Wang et al., 2023). GAI, which also helps to create 
novel ideas and designs benefiting contemporary customers, produces 
significantly higher scores compared to human-generated ideas (Joosten 
et al., 2024). GAI is believed to have the potential to enhance “gross 
domestic products by 7%” and to replace “300 million jobs of knowledge 
workers”; as such, it simultaneously provides opportunities and chal-
lenges that need to be investigated (Feuerriegel et al., 2024, p.111). 

Despite the research conducted to understand the interlinks between 
traditional AI/big data analytics and performance outcomes (e.g., 
Akhtar et al., 2023), addictive technology and the circular economy 
(Hettiarachchi et al., 2022), and product platforming and customer 
needs (Jalali et al., 2022; Zhang, 2015), how SPP powered by AI and 
GAI—and fueled by big data analytics and machine learning—is linked 
to environmentally friendly products for the circular economy remains 
unclear. The research emerging in this domain could revolutionize the 
design and manufacturing industry. Although the industrial implications 
of GAI have hitherto remained unaddressed, its ability to generate 
complex texts, answer specific questions, and write code suited to build 
and design human-friendly interfaces has surprised many professionals 
(Wang et al., 2023). The concept of generating AI-based design is 
evolving (Zhu and Luo, 2022). In 2022, ChatGPT (Chat Generative 
Pre-trained Transformer) booted this domain when it recorded more 
than 100 million active users in just a few months after its release (Wu 
et al., 2023). Although GAI models present many advantages—such as 
saving time, enhancing innovation, and improving quality—they should 
be used with care, as the accuracy of any specific knowledge and in-
formation involved may be questionable. It is also important to carefully 
address how the questions are asked, as the models may not be trained to 
obtain specific technical information. Additionally, the reliability of the 
online resources used by GAI models and the related ethical issues are 
important (Wang et al., 2023; Bartlett and Camba, 2024). 

Simpson et al. (2014) posited that industry decision-makers are more 
involved in designing a platform, defining the characteristics of a suc-
cessful one, and assessing how it measures up against its competitors. 
Therefore, a significant number of firms are investing considerable time 
and resources into the creation of product platforms and the associated 
product ranges. Saporiti et al. (2023) identified 18 key challenges and 
proposed a set of countermeasures suited to solve the problems of smart 
platforms. However, little empirical evidence has hitherto been pro-
vided in relation to SPP impacts on firm performance (Bai et al., 2020), 
the circular economy and environmental aspects notwithstanding 
(Awan et al., 2021; Batista et al., 2023; Wang et al., 2023). As the cir-
cular economy makes steady progress in sustainability domains 
(Agrawal et al., 2019; Hettiarachchi et al., 2022), a limited number of 
recent studies conducted in relation to the circular economy have 
examined SPP interlinks. For instance, Lim et al. (2020) recognized the 
importance of reusable and transparent digital-physical systems capable 
of situational recognition and self-correction to enhance engineering 
product lifecycles. The latest studies have found that GAI is emerging 
and has the potential to be used as a tool for the design process, rather 
than as one for final designs (Bartlett and Camba, 2024). The design 
principles should include responsibility, mental models, trust and reli-
ability, generative variability, and co-creation. This helps to explore the 
ideas and then optimize them (Weisz et al., 2024). As it involves aspects 
of originality, copyrights, and ethical issues, GAI should be used care-
fully and responsibly (Bartlett and Camba, 2024). The algorithms used 
in GAI could enable the optimization of processes, compared to 

traditional design ones. However, the integration of human factors is 
vital to make GAI more effective and innovative (Demirel et al., 2024). 
GAI, which generally provides cost-effective production and 
manufacturing processes, also facilitates design (Soldatos, 2024). 
Although these emerging studies are providing the fundamentals needed 
to understand the captivating benefits of GAI, the connections and 
specifics between GAI, SPP, and the circular economy for environment 
sustainability are still evolving. 

In the literature, advanced technologies and the circular economy for 
environmental sustainability are still disconnected (Nascimento et al., 
2019). Most such literature has been focused on advanced technologies, 
the circular economy, and environmental sustainability, either inde-
pendently or in combination. Kristoffersen et al. (2021) examined the 
lump sum of business analytics technology for circular economy 
implementations. Liu et al. (2023) studied the role played by integrated 
manufacturing systems in the adoption of circular manufacturing. In 
their review of the literature on circular supply chains, Gunasekara et al. 
(2023) found that there is currently a lack of a nuanced view of the role 
played by product design in manufacturing in the circular economy 
context in relation to environmental imperatives. In response to the 
recent calls made for further research to be conducted on digitalization 
in a sustainability context and to complement the underexamined role of 
product design in the circular economy (Gunasekara et al., 2023), along 
with emerging relevant directions on GAI and AI (Bartlett and Camba, 
2024; Rashid et al., 2024; Soldatos, 2024; Weisz et al., 2024), we pro-
vide a nuanced view of SPP powered by AI and GAI—and fueled by big 
data analytics and machine learning techniques—examining the direct 
and indirect effects of these advanced technologies for environmentally 
friendly personalized product design and manufacturing for the circular 
economy. Our study is among the first to consider such interlinks in the 
digital-enabled circular economy context through personalized product 
design and manufacturing. 

Given the persistence of inconclusive findings pertaining to in-
terlinks, contradictory thoughts, and challenges, there is a need for more 
research to be conducted on the use of GAI for personalized product 
design and manufacturing, big data analytics, machine learning, and 
environmentally friendly products for the circular economy, particularly 
in regard to SPP. First, we contribute by developing a theoretical 
framework that borrows concepts from product platforming (Jalali 
et al., 2022; Zhang, 2015), GAI/AI (Akhtar et al., 2023; Wang et al., 
2023; Soldatos, 2024), and by examining their impacts on the 
manufacturing of environmentally friendly products for the circular 
economy (Akhtar et al., 2018; Hettiarachchi et al., 2022; Wang et al., 
2023). As SPP powered by AI and GAI for creative product design and 
related manufacturing was a crucial theme of our study, we scrutinized 
the interplay between SPP and environmentally friendly products for the 
circular economy. Second, although big data analytics, machine 
learning, and flexibility in SPP play fundamental roles in supporting GAI 
and generating useful and practical content for industrial applications, 
few empirical studies have hitherto been conducted on the links between 
GAI applications for personalized product design and manufacturing, 
big data analytics, machine learning, and environmentally friendly 
products for the circular economy. We thus developed new relative 
measures and constructs suited to be utilized by future studies. We 
advanced such measures and constructs using comprehensive statistical 
procedures and with the involvement of practitioners from the auto-
motive industry. Finally, we analyzed the implications of our framework 
for business practitioners. 

This paper is organized as follows. Section 2 provides a background 
understanding of SPP, product families, GAI, and the circular economy. 
The relationships between the underlying constructs to develop the 
hypotheses and relevant theoretical framework are also presented. In 
Section 3, the methodological procedures—including measurements, 
respondent characteristics, data collection, and analyses—are provided. 
Section 4 reveals the key results against our set of hypotheses. In the 
final section, the discussion and conclusion—including a summarization 
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of the key findings, theoretical and practical implications, research 
limitations, and directions for future research—are provided. 

2. Literature review 

2.1. Smart product platforming and product families 

Smart product platforming is interlinked with the development and 
implementation of technological components or subsystems that are 
shared across multiple products, production lines, and product features. 
To optimize the utilization of the system, smart platforms are utilized for 
the manufacturing of multiple products (Meyer et al., 2018; Van den 
Broeke et al., 2018). The types of platforms are characterized by their 
functional abilities in relation to production, along with the custom-
ization options available for each category of products (Van den Broeke 
et al., 2018). The emergence of Industry 4.0—one of the pillars of which 
is aimed at integrating cyber-physical connectivity to boost smart 
manufacturing platforms—suggests state-of-the-art technologies such as 
big data analytics and machine learning as a green technology (Vinuesa 
et al., 2020) with digital-to-physical transfer capabilities in enhancing 
materials efficiency, reducing life cycle impacts, and enabling greater 
engineering functionality in product platforms and relative supply 
chains (Fatorachian and Kazemi, 2020). Scholars have provided a rich 
literature on the technological feasibility, highlighting the merits of 
Industry 4.0 technology in delivering real-time communication and 
collaboration with ecosystem actors both within and outside production 
systems, which open up opportunities for the smooth flow of the ma-
terials and components pertaining to the diverse products within a 
family. The current literature, thus, encourages the examination of the 
opportunities and challenges presented by the technological character-
istics of Industry 4.0 on SPP within product families (Raj et al., 2020). 
Smart product platforming connects devices and systems, enabling 
real-time data exchange between the different products manufactured 
within a family. Zhang et al. (2020) proposed an evaluation method 
suited to the design and manufacturing of affordable customized prod-
ucts with shorter lead times through the integration of information 
drawn from sales, products, and production configuration. Weng et al. 
(2020) posited that artificial intelligence (AI) and the robotic capabil-
ities afforded by Industry 4.0 will enable companies to analyze the large 
volumes of data generated by product family components, enhancing 
the optimization of production processes. For instance, smart sensors 
installed in manufacturing equipment can provide insights into the 
production process, improving efficiency, quality, and affordability 
across a product family. By creating digital replicas of physical products 
or processes, a smart product platform can facilitate efficient develop-
ment and testing. 

2.2. Generative artificial intelligence, the circular economy, and interlinks 

GAI is a domain of AI that utilizes generative models capable of 
learning patterns or drawing insights from large volumes of input data 
(called training data) and then generating new data based on such 
learning. In other words, it draws upon any available data (e.g., big data) 
and the ability to mimic human intelligence and uses trained models and 
algorithms to generate outputs (e.g., text-based answers, images or their 
reciprocals, audio clips, and videos). GAI can also provide data for 
training and can use machine learning to improve model performance. 
GAI provides trained solutions interlinked with machine learning. Big 
data (e.g., large texts) are fed to machine learning models to produce 
outcomes that depend on what users ask. Consequently, GAI applica-
tions bring innovation, creativity, and efficiency to selective tasks, 
including image generation from text or vice-versa (e.g., creative arts 
and 3D product designs), text generation from text (e.g., answers to 
manufacturing-related questions), audio outputs from text (e.g., music 
and voice), video from texts (e.g., movies and video clips), codes from 
text (e.g., R/VBA for analysis and the development of AI-driven 

PowerPoint slides) (Gozalo-Brizuela and Garrido-Merchan, 2023; Sætra, 
2023; Wu et al., 2023). 

Traditional AI performs allocated tasks interlinked with a predefined 
set of rules and relative datasets; the key being that it does not generate 
any new ideas or content. On the other hand, as an emerging subfield of 
(traditional) Al, GAI creates new ideas and content interlocked with 
learning from data. In other words, (traditional) AI uses data to make 
predictions while GAI generates new ideas and data or content (Forbes, 
2023). GAI is linked to computational techniques that can generate 
ostensibly new and profound content; e.g., scripts, visuals, and audio 
from training datasets (Feuerriegel et al., 2024). According to Cooper 
and McCausland (2024), AI is a predictive technology that reduces the 
cost of predictions due to its higher efficiency in terms of time and ac-
curacy, whereas GAI assists in the exploration of creative solutions and 
can be very useful in combination with human creativity. GAI is linked 
with LLMs that have exceptional capabilities to handle complex tasks 
and provide solutions based on user requirements (Joosten et al., 2024). 
This distinction between AI and GAI is aimed at aiding the examination 
of their integrations in our constructs and relative applications. 

Over the last couple of years, LLMs have been the subject of 
increasing attention. ChatGPT, one of the most popular examples of an 
LLM, is an automatic artificial intelligence-generated content (AIGC) 
model. The public version of ChatGPT, which was released toward the 
end of 2022, recorded 100 million active users in just a few months. 
Such LLMs (ChatGPT; Make-A-Video) use powerful advancements in 
technology, efficiency in computational power, and deep networks with 
various trained parameters. ChatGPT can even reject tasks that are not 
appropriated, and it can remember previous ones (Wu et al., 2023). 

To perform the tasks they are assigned, AIGC models/LLMs draw 
useful information and insights from information and large datasets and 
generate outputs (Gozalo-Brizuela and Garrido-Merchan, 2023; Sætra, 
2023; Wu et al., 2023). This recently developed (and still emerging) 
domain represents a new dimension of organizational information pro-
cessing theory (OIPT), which emphasizes how organizations access 
information/data and process them for effective operational or supply 
chain activities (see Cegielski et al., 2012, for more information on 
OIPT) that can impact their operational and managerial level work 
(Korzynski, et al., 2023). Developments related to big data and AI 
enhance data and information processing capabilities, strengthening 
OIPT and its implications. Ultimately, OIPT-associated advancements 
strengthen performance and sustainable manufacturing to achieve 
environmental goals (Rashid et al., 2024). Additionally, GAI substan-
tially increases productivity (Feuerriegel et al., 2024). These aspects 
fueled by big data and analytics empower organizations to process more 
complex data (e.g., unstructured data) for their operational and 
manufacturing activities. In our study, we found that SPP powered by AI 
and GAI leads to the production of more environmentally friendly and 
personalized products for the circular economy. In this regard, organi-
zations use any actionable insights drawn from big data and analytics to 
enhance their data and information processing capabilities, eventually 
promoting OIPT applications. Our finding thus directly contributes to 
OIPT and its constituents. 

The circular economy is a multifaceted societal concept pertaining to 
rebuilding and reframing the economy in relation to sustainable growth 
by promoting environmental stewardship (Valenzuela and Böhm, 2017). 
In the traditional one-way process pertaining to the ‘take, make, dispose’ 
manufacturing method, material resources are disposed of in landfills or 
incinerators, meaning that their economic value is not fully exploited. As 
opposed to a linear system, the circular economy is a production and 
consumption manufacturing method suited to enable organizations to 
improve their resource utilization, efficiency, and productivity via a 
circular system (Awan et al., 2021). Advanced innovations play a critical 
role in reducing any environmental impacts by transforming the existing 
materials into desirable environmentally-friendly designed products for 
net zero goals (Abdul-Hamid et al., 2022). This can be achieved by 
planning the utilization of resources with the integration of a 
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digital-enabled circular economy at the early stages of product design, 
extending the lives of the products for which the materials are sourced 
and remanufacturing new products from secondary raw materials 
through the loop. However, challenges remain in regard to the following 
question: “how can designers or design teams come up with truly sustainable 
or circular innovations if the current manufacturing methods only lead them 
to optimize what is already there?” (Den Hollander et al., 2017:518). We 
aim to contribute to this domain by adopting a new lens of advanced 
innovations by drawing on how big data analytics—with their higher 
predictive accuracy in regard to environmentally friendly products 
supported by GAI-driven design and manufacturing—could unlock cir-
cular economy potentials, along with other interlinks with machine 
learning applications. 

Big data-driven decisions are getting increasing attention because, 
due to dynamic market trends and the depletion of natural resources, 
businesses are being forced to use and manage such resources more 
sustainably. Furthermore, businesses are held responsible in regard to 
adopting eco-efficient practices and engaging in eco-efficient activities 
that have a high economic value and take social considerations into 
account while still dealing with operational activities. The resource- 
based view of sustainable competitive advantage, which provides the 
means for this approach, deals with how firms create value for their 
customers. Furthermore, it also posits that firms can achieve sustainable 
competitive advantages by developing and exploiting strategic resources 
that are valuable, rare, inimitable, and non-substitutable. In our 
research, the applications of GAI and big data analytics are strategic 
resources for SPP, contributing to the new dimensions of OIPT that can 
be used to develop environmentally friendly automobiles. SPP-based 
systems, which can carry out knowledge-intensive work faster than 
human beings, add a strong cognitive level to a firm’s processes and 
operations. With SPP, GAI can be used to create new automobile designs 
that are more efficient and environmentally friendly. Big data analytics 
provide avenues suited to enforce new firm capacities by collecting and 
analyzing real-world data to support SPP. Furthermore, the literature 
identifies big data analytics as a critical factor for the adaptability and 
responsiveness of dynamic ecosystems inherited in SPP. Big data ana-
lytics performed through machine learning techniques are used to 
identify patterns in consumer behaviors and other stakeholder data that 
may be used to develop new environmentally friendly automobiles. SPP 
devises long-term goals that turn into improved firm performance 
through value creation, innovation, and competitiveness. Big data ana-
lytics and machine learning feed insights to the GAI mode that supports 
SPP, which then ultimately generates more value and productivity 
(Akhtar et al., 2023; Hilbolling et al., 2021; Jalali et al., 2022; Noy and 
Zhang, 2023). 

Therefore, SPP powered by AI and GAI is valuable because it can help 
firms devise new products that are more environmentally friendly. It is a 
rare resource because not all firms have the technical capabilities 
needed to use these technologies (Akhtar et al., 2023; Dubey et al., 
2019). It is also difficult for competitors to copy due to its unique usage 
in processes or operations. Moreover, it is non-substitutable as no other 
resources can provide the same benefits. Smart IT-based initiatives and 
projects establish high-performance benchmarks suited to enhance 
manufacturing capabilities in the era of screen and digitization through 
innovation-driven production techniques (Li, 2018; Liu et al., 2020). 
Additionally, Industry 4.0 technologies can be crucial in reducing any 
negative effects and assisting decision-makers in making decisions and 
taking the measures best suited to deal with any difficult and uncertain 
situations (Zamani et al., 2022). For instance, machine learning algo-
rithms are used to analyze large volumes of data and to identify patterns 
that are useful to improve the design and performance of environmen-
tally friendly products. Machine learning applications can be utilized to 
improve the accuracy of GAI models to support SPP. Under the OIPT 
umbrella, we argued that the use of SPP can help firms develop forms of 
personalized product design and manufacturing suited to lead to envi-
ronmentally friendly products for the circular economy. 

To summarize, although it provides important insights into effi-
ciency and optimization outcomes, the current literature on SPP suffers 
from the limitations discussed above. The mechanisms that trigger SPP 
for the circular economy remain unclear. Our research was aimed at 
empirically investigating how advanced technologies—such as big data 
analytics and machine learning applications—can be applied alongside 
SPP powered by AI and GAI to advance extended product platforming in 
addressing the challenges of the circular economy. The adoption of 
advanced Industry 4.0 applications helps in enabling better-informed 
decision-making concerning the development of products suited to 
meet customer needs. Furthermore, data-driven applications within the 
circular economy context involve analyzing consumer consumption 
patterns for recycling. Such activities—which involve tracking con-
sumer behaviors—help to predict resource usage in production plan-
ning. The accuracy of such predictions is enhanced by leveraging past 
historical data, further optimizing product lifecycles and resource allo-
cations for sustainability within SPP and supporting the circular econ-
omy concept. Our research was aimed at advancing the current 
literature by postulating that Industry 4.0 technologies such as AI, GAI, 
big data analytics, and machine learning represent digital developments 
necessary for SPP within product families. These technologies connect 
manufacturing to data analytics and flexible automation, ultimately 
enhancing efficiency, agility, and customization, thus unlocking circular 
economy opportunities for companies developing diverse and environ-
mentally friendly products. 

2.3. Hypotheses development 

2.3.1. Big data analytics and environmentally friendly products for the 
circular economy 

The analysis of large structured and unstructured datasets (called big 
data analytics) ultimately provides several environmental bene-
fits—such as material efficiency and reduced energy consumption—that 
support the circular economy’s goals (Akhtar et al., 2018; Nascimento 
et al., 2019). The trends and patterns gleaned through big data analytics 
are used to improve production and operational activities. Big data 
analytics provide relevant insights for firms that operate in dynamic and 
fast-paced industrial environments in which timely and informed 
decision-making is crucial (Wamba et al., 2017; Yin et al., 2022). 

As a result of conscious evolution, human beings have started to 
think about the preservation of their surroundings and, in a wider 
context, the planet. In this era, such consciousness enables human beings 
to think about environmental preservation, resource conservation, 
climate change, air quality, waste and pollution reduction, fossil fuel 
depletion, and a sustainable economy (Akhtar et al., 2018; Zhang and 
Hou, 2022). These practices are integrated into environmentally 
friendly initiatives, which are the subject of the 12th United Nations 
Sustainable Development Goal. This goal addresses sustainable con-
sumption and production patterns that are in line with environmentally 
friendly product development. Offering ‘green’ or ‘sustainable’ auto-
mobile options is a requirement of our times. Such automobiles, which 
are designed to have minimal negative impacts on the environment 
through their reduced carbon footprints, specifically address concerns 
related to air pollution, greenhouse gas emissions, and the depletion of 
natural resources. 

Applications of big data analytics (ABDAs) are technical resources 
suited to enhance firms’ manufacturing capabilities through innovation- 
driven production techniques and designs (Li, 2018; Bag et al., 2021). 
ABDAs supply precise and timely supply network insights suited to assist 
in the incremental improvement and transformation of operational 
models (Roden et al., 2017). The advantage of ABDAs is their capacity to 
deliver in-depth insights for superior decision-making and the ability to 
adjust strategies appropriately (Bag et al., 2021). On the other hand, 
automobile manufacturing firms are acting ‘eco-responsibly’ by offering 
environmentally friendly products designed and manufactured with a 
minimal negative impact on the environment. International 
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expectations and policies, local government policies, automotive in-
dustry rules and regulations, independent entities’ pressure, and 
customer awareness are forcing automobile firms to produce environ-
mentally friendly products. This pressure started to manifest itself over 
the last decade, as the 2014 Intergovernmental Panel on Climate Change 
(IPCC) proposed specific environmentally friendly practices to be 
adopted by the automotive and other industries—e.g., improving energy 
efficiency in new processes and technologies, promoting efficient ma-
terials and products, and recycling (IPCC, 2015). ABDAs are currently 
aiding in the manufacturing of environmentally friendly cars by 
enabling the implementation of design optimization (Lepenioti et al., 
2020), simulation and modeling (Mǐsić and Perakis, 2020), supply chain 
optimization, and effective material selection and delivery (Jahani et al., 
2023). 

To summarize, firms usually gather information from historical 
performance, customer feedback drawn from an online presence on 
social media/apps/websites, sensor readings taken during the 
manufacturing stages, the actual usage/operation of product designs, 
simulations of various aspects of the manufacturing process and the final 
product, materials characteristics, and the environmental impact of a 
product. Such information—in the form of insights drawn from big 
data—can provide a path to the design and manufacture of automobiles 
with minimum environmental impacts throughout their entire life-
cycles, including their operational and eventual disposal stages. There-
fore, the integration of ABDAs into the development and operation of 
automobiles can contribute to a more holistic and conscious approach to 
environmentally friendly production. Through the power of big data 
analytics, automobile manufacturers can make better-informed de-
cisions, optimize processes, and drive innovation with the ultimate goal 
of reducing their products’ environmental footprints. Ultimately, the 
sensible and timely use of big data analytics in the manufacturing of 
environmentally friendly automobiles can help to attain a competitive 
advantage. Hence, we formulated the following hypothesis. 

H1. Applications of big data analytics aid in promoting environmen-
tally friendly products for the circular economy. 

2.3.2. Big data analytics and smart product platforming powered by AI and 
GAI 

Big data acts as fuel for AI and GAI because it provides all the inputs 
required to learn and get useful and actionable insights, which ulti-
mately power SPP. Digital initiatives establish clear objectives and 
performance benchmarks suited to enhance industrial capabilities (Liu 
et al., 2020; Geyer, 2023). Munir et al. (2022) posited that ABDAs enable 
firms to make timely decisions that provide a wide range of benefits 
toward sustainability in the market. Also, AI is better capable of per-
forming tasks that typically require a human presence. ABDAs and GAI 
make large datasets and data streams valuable, relevant, and actionable 
for task precision and efficiency. SPP powered by AI and GAI can play a 
pivotal role in supporting data-driven decision-makers in taking actions 
appropriate to tackling challenging situations (Akhtar et al., 2023; Hil-
bolling et al., 2021; Jalali et al., 2022; Wang et al., 2023). Budhwar et al. 
(2023) found that the quality of GAI output relies on that of the input it 
receives (e.g., big data quality), considering both the training data it has 
been exposed to and the prompts provided by users to describe the task 
they want accomplished. This training yields the capacity to deal with 
big datasets to identify patterns and models and to make predictions or 
classifications about certain phenomena. GAI understands and reads any 
big data patterns, analyzes them, and creates a new or unique version of 
a product or output. 

The sheer volume and complexity of the available large datasets have 
made it challenging for manufacturers to extract useful data and 
generate actionable insights. This is where GAI is useful because it 
represents a transformative solution suited to deal with data overload in 
machine manufacturing (Geyer, 2023). AI, GAI, and big data work 
shoulder to shoulder to enhance product quality and its related 

developments, ultimately supporting SPP (Gong et al., 2021; Guo et al., 
2021; Soldatos, 2024). Geyer (2023) stated that, in relation to the 
adoption and use of AI technologies to manage large datasets, GAI al-
gorithms can learn from historical data and can provide useful infor-
mation for operations. Thus, big data analytics powered by AI and GAI 
fuel SPP. Big data helps AI to operate effectively for new product design 
and development (Bartlett and Camba, 2024; Cooper and McCausland, 
2024). According to the literature, there is a connection between these 
two underlying concepts. Big data processing provides the foundation 
for SPP systems that eventually add human intelligence (i.e., learning, 
comprehending, and suggesting innovative designs hidden in the data) 
to derive smart manufacturing processes and personalized automobile 
design inherited in SPP. We therefore made the following hypothesis. 

H2. The applications of big data analytics encourage smart product 
platforming powered by artificial intelligence and generative artificial 
intelligence. 

2.3.3. Smart product platforming powered by artificial intelligence and 
generative artificial intelligence and the circular economy 

Smart production platforming is the result of intense competition 
and the intent to fulfill the needs of sensitive customers (Hilbolling et al., 
2021; Jalali et al., 2022; Lee et al., 2015). Lee et al. (2015) proposed 
that, in the component stage, sensory data are transformed into infor-
mation, enabling the cyber-twins of components to capture time records 
and self-predict. In the next stage, machine data are combined with 
component information to monitor and generate machine cyber-twins, 
enhancing self-comparison. Finally, in the third stage (production sys-
tem), aggregated knowledge ensures self-configurability, self--
maintainability, and optimized production planning for seamless and 
efficient factory operation. These stages increase the efficiency and 
effectiveness of the product optimization process, supercharge devel-
opment cycles, and create a more sustainable ecosystem, supporting 
environmentally friendly products for the circular economy (Hettiar-
achchi et al., 2022; Wang et al., 2023). It is changing the way vehicles 
are designed, manufactured, and maintained, leading to cost reduction, 
improved efficiency, and sustainability (Yu et al., 2022). 

Jalali et al. (2022) suggested that smart platform-based development 
becomes increasingly attractive when there is a greater disparity in the 
quality preferences among market segments, and heightened sensitive 
customer demand for the specific features of a market segment. AI 
inherited in SPP is being used in the automotive industry for various 
kinds of decision-making, such as access control through facial recog-
nition and the analysis of road conditions. From the perspective of our 
study, AI/GAI is a viable option to be used in designing automobile parts 
or to be integrated into a product family. Previous research has stated 
that product family design is an effective strategy to provide variety at a 
reduced cost (Simpson et al., 2014). Product family design commonality 
is intentional and is derived from the specific product platform (Simpson 
et al., 2014). Product family design targets a variety of different market 
segments despite involving high numbers of common ‘elements’ (e.g., 
components, modules, subsystems, fabrication processes, and assembly 
operations) (Pirmoradi et al., 2014). Moreover, product family design 
also helps to propose and produce different product designs and con-
figurations (e.g., Shafiee et al., 2022; Zhang et al., 2020). 

Specific AI and GAI applications—which include automated 
replenishment, autonomous vehicles, automotive insurance, predictive 
maintenance, and supply chain optimization—are part of SPP and help 
to expand the product family of automobiles. According to Birlasoft 
(2022), GAI and AI are not just an option but a necessity for car man-
ufacturers to stay competitive. It added that they enable predictive 
vehicle maintenance, real-time quality control, process optimization, 
and the development of functional vehicle prototypes. This ultimately 
helps to produce environmentally friendly products for the circular 
economy (Hettiarachchi et al., 2022; Wang et al., 2023). In light of this 
discussion, we argued that SPP is revolutionizing the automotive 
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industry’s efficiency and effectiveness by reducing costs and making it 
more sustainable. Hence, we proposed the following hypothesis. 

H3. Smart product platforming powered by artificial intelligence and 
generative artificial intelligence leads to environmentally friendly 
products for the circular economy. 

2.3.4. The mediating role of smart product platforming 
The literature (e.g., H1, H2, and H3) supports the important role 

played by SPP in the manufacturing of environmentally friendly prod-
ucts for the circular economy, and the presence of multiple interlocks 
between ABDAs and SPP. In today’s rapidly evolving technological 
landscape, the integration of SPP and the development of environmen-
tally friendly products have become central to strengthening sustain-
ability through SPP. The overarching goal of SPP powered by AI and GAI 
is to identify areas in which the interlocks between ABDAs and envi-
ronmentally friendly products for the circular economy can be improved 
at the design and production levels by making informed decisions, 
optimizing processes, and developing eco-conscious product 
offerings—a route to a sustainable economy and to new innovative 
business models that maximize societal and environmental benefits 
(Akhtar et al., 2023; Hettiarachchi et al., 2022; Hilbolling et al., 2021; 
Wang et al., 2023). Del Giudice et al. (2021), Hilbolling et al. (2021), 
and Jamali et al. (2020) posited that one of the key advantages of SPP is 
its ability to capture real-time data from connected devices and sensors 
embedded within products. The pertinent collected data are fed into a 
unified platform, enabling firms to continuously assess the 
eco-friendliness of their products, identify areas for improvement, and 
connect and manage various aspects of a product’s lifecycle—from 
design and development to manufacturing and distribution. 

Furthermore, SPP enhances the efficiency of product development 
and customization aimed at meeting sensitive customer demands. The 
valuable information and insights provided by SPP can be used to tailor 
products suited to meet specific environmental preferences and market 
demands. Moreover, SPP offers greater transparency in the supply chain, 
enabling companies to make informed and timely decisions pertaining 
to sourcing and materials. With SPP, businesses can trace the origins of 
raw materials, assess their environmental impact, and select eco-friendly 
alternatives. This level of transparency is not only aligned with the 
principles of sustainability but also enables companies to meet the 
growing demand for environmentally responsible products (e.g., Cen-
tobelli et al., 2022; Jalali et al., 2022; Hilbolling et al., 2021). The 
mediating role played by SPP is crucial in bridging the ABDAs and the 
development of environmentally friendly products for the circular 
economy. This synergy empowers businesses to harness the full poten-
tial of data-driven insights and translate them into tangible, sustainable 
product offerings. We thus suggested the following. 

H4. Smart product platforming powered by artificial intelligence and 
generative artificial intelligence plays a mediating role between the 
applications of big data analytics and environmentally friendly products 
for the circular economy. 

2.3.5. The moderating role of machine learning 
Machine learning techniques—which are applied to large volumes of 

structured and unstructured data collected from different sources such 
as smart devices, sensors, and websites—have many operational and 
production applications in relation to strengthening performance out-
comes. These applications have the potential to moderate the relation-
ship between big data applications and environmentally friendly 
products, strengthening the circular economy. This is because machine 
learning, as an Industry 4.0 application, assists in the accurate predic-
tion of patterns that can be utilized to better understand the processes 
and to make pertinent data-driven decisions suited to improve outcomes 
(Akhtar et al., 2023). Nascimento et al. (2019) investigated how In-
dustry 4.0 technological applications strengthen the circular economy 
for manufacturing firms, including the reuse and recycling of products. 

Machine learning applications possess the ability to identify patterns in 
data, improve, make decisions based on a set of performance criteria, 
and optimize the relative outcomes (Gambella et al., 2021). As a result, 
machine learning applications enhance reliability and provide insights 
according to specific customer requirements, helping firms to leverage 
the information to develop and implement environmentally friendly 
products or circular economy practices. Furthermore, with the help of 
pre-determined machine learning algorithms measured based on per-
formance metrics, designers can refine design schemes according to 
customers’ environmental preferences learned from the data and inte-
grated with historical data matched with product sales, market demand, 
and user characteristics. As such, designers can devise products that 
make use of recycled materials, and sustainable manufacturing pro-
cesses that unlock the circular economy. Therefore, in line with this 
reasoning, we hypothesized. 

H5. Machine learning applications play a moderating role between the 
applications of big data analytics and environmentally friendly products 
for the circular economy. 

2.3.6. The moderating role of flexibility 
Flexibility signifies a firm’s responsiveness in terms of adapting, 

changing, and adjusting to new knowledge and product features. Flex-
ibility in SPP ultimately assists in tackling any uncertainty and 
enhancing customization as per customer demand (Hilbolling et al., 
2021; Jalali et al., 2022; Suh et al., 2007). Flexible product platforming 
provides operational advantages in terms of, inter alia, reducing risk, 
customizing, and counteracting any productivity obstacles (Van den 
Broeke et al., 2018). To achieve the circular economy, firms need to 
align sustainability value across their production lines by integrating 
flexibility in their manufacturing. 

However, environmental regulations or requirements may differ 
across the value chain and evolve. To comply with updated environ-
mental standards without having to engage in any significant overhaul, 
firms strive to anticipate future needs and establish plans for the adap-
tation and modification of technological components or subsystems in 
the platform. At the same time, flexibility provides a solution to SPP with 
enhanced modular components without the need to replace entire 
product units when initial designs do not meet some circular economy 
requirements or customization. Flexibility in SPP enables firms to adjust 
their sustainability features or recycling materials to bring them more in 
line with customer demands than they would as a result of any ample 
generated unstructured solutions. In this way, firms simulate and opti-
mize the behaviors of different products within product families, thus 
reducing any unnecessary production actions in relation to circular 
economy goals. Flexibility ultimately enhances the effectiveness of SPP 
by enabling adjustment or adaptation to resources with a low environ-
mental impact and to technological solutions that minimize waste and 
increase product lifecycles for easy disassembly and recycling, promot-
ing flexible manufacturing concepts (Sarkar and Bhuniya, 2022; Kulak 
et al., 2016). Thus, we present our final hypothesis and, in Fig. 1, we 
depict the graphical representation of our hypotheses. 

H6. Flexibility in smart product platforming plays a moderating role in 
the production of environmentally friendly products for the circular 
economy. 

3. Methodology 

3.1. Research approach and context 

For our research, we took a quantitative approach and adopted a 
cross-sectional survey design to examine the relationship between the 
variables and constructs. Creswell and Clark (2017) suggested that 
quantitative research supports investigators in collecting data from a 
large sample population to investigate specific questions. Hair Jr et al. 
(2016) also posited that quantitative research is appropriate for the 
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testing of hypotheses and theories, and for exploring the relationships 
between constructs. We measured all variables measured based on pri-
mary data collected through a self-administered online survey. 

The context for our study was the Chinese automotive manufacturing 
industry, which is actively contributing to the development of eco- 
friendly products for the circular economy. China’s automotive 
manufacturing, which ranks among the country’s top ten industries, is a 
significant contributor to its economic growth (Yu et al., 2022). Ac-
cording to the latest figures published by the China Association of 
Automobile Manufacturers (CAAM, 2023), Chinese automakers pro-
duced 27.02 million units in 2022, marking a 3.4% growth from the 
preceding year and leading the world (being ranked number 1 in terms 
of EV production units and sales). Concurrently, sales increased by 2.1%, 
to 26.86 million units. The substantial scale of production recorded 
within the automotive sector offered a rich ground to investigate the 
challenges faced by Chinese automobile businesses, including the ap-
plications of SPP powered by AI and GAI, flexibility in SPP, applications 
of big data analytics, machine learning applications, and eco-friendly 
products for the circular economy. 

3.2. Participants, data, and common method bias 

Table 1 presents our research participants’ characteristics. To gather 
diverse perspectives from a sizeable dataset, we selected multiple 
managers associated with the automotive industry. 

Before distributing our survey questionnaire, we obtained our po-
tential respondents’ consent. We chose our participants through pur-
posive sampling, adhering to the following inclusion criteria: (i) being 
top and middle-level managers with relevant knowledge and practice, 
and (ii) being employed in relevant operations, production, product 
design, data/analytics, and IT departments. Following the exclusion of 
any non-viable responses, our final useable sample size was 206 out of 
1,000, generating a response rate of 20.6%. 

We used two methods to assess the quality of our data. First, to test 

for non-response bias—as proposed by Armstrong and Overton (1977)— 
we performed an independent t-test in which we compared our first 
respondents and last 20 respondents on all variables. The results 
confirmed that there was no significant variance between the early and 
late respondent subsamples, thus indicating the absence of non-response 
bias. Second, to examine the potential presence of common method bias 
in the data, we took the marker variable approach. In our study 
framework, we included an unrelated variable (organizational culture) 
for correlational analysis (Lowry and Gaskin, 2014; Simmering et al., 
2015). We found the correlational values to range from low (MV >

Fig. 1. Relationships among the underlying constructs.  

Table 1 
Demographic profiles of the respondents.  

Individual 
Demographics  

Frequency Percentage 
Rounded 

Gender Male 162 79 
Female 44 21 

Subtotal  206 100 
Junior college 15 7 
Bachelor 119 58 
Master’s or above 72 35 

Subtotal  206 100 
Job Title Product design 

managers 
84 41 

Manufacturing 
managers 

42 20 

Operation managers 27 13 
IT/Analytics 
managers 

36 18 

CEO/COO/CTO 8 4 
Others 9 4 

Subtotal  206 100 
Experience 3–5 years 55 27 

6–10 years 116 56 
11 years and more 35 17 

Subtotal  206 100 
Total  206 100  
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EFPCE = 0.028) to moderate (MV > ABDA = 0.59), corroborating a low 
likelihood of any common methods bias. Additionally, we addressed 
common bias at the questionnaire design and survey execution stages by 
adopting an affective survey design strategy. This strategy involved 
avoiding double-barreled questions and not using negative and complex 
statements. We also included multiple respondents with different 
operational levels. 

3.3. Instruments and procedures 

Based on a comprehensive literature review, we identified the rele-
vant concepts and measures of variables to use in our study. We oper-
ationalized all variables as multi-item measures and adapted them to 
suit our study context, namely the Chinese automotive manufacturing 
sector. To ensure the accuracy of our data and prevent any possibility of 
instrument misspecification, we incorporated screening questions into 
our questionnaire. In collecting the primary data for our variables, we 
used a five-point Likert-type scale in which 1 stood for strongly disagree 
and 5 for strongly agree. We also submitted our constructs to compre-
hensive statistical procedures by performing exploratory factor analyses 
and establishing reliability and validity [e.g., composite reliability (CR), 
and average variance extracted (AVE)]. 

We measured the degree of AI/GAI used in personalized product 
design and product manufacturing processes. This was a two- 
dimensional, second-order construct in which personalized product 
design indicated the degree to which the teams employed GAI to develop 
personalized product designs. Moreover, the product manufacturing pro-
cess referred to the degree to which the teams took an AI approach to the 
manufacturing processes. Both dimensions involved four items. We 
measured personalized product design using scales suggested by Zhu and 
Luo (2022) and Ghoreishi and Happonen (2020) and product 
manufacturing processes using those devised by Hyunjin (2020) and 
Leoni et al. (2022). We found the internal consistency of the respective 
variables’ scales to be 0.786 and 0.875. To measure flexibility in SPP, we 
adopted guidelines from previous studies (Sarkar and Bhuniya, 2022; 
Van den Broeke et al., 2018), and found internal consistency to be 0.891. 
The applications of big data analytics (ABDAs) variable referred to the 
efficient utilization of the latest data analysis techniques and contem-
porary technologies to extract valuable real-time information from large 
datasets. This helps in developing and implementing business strategies 
suited to support operations and fulfill customer requirements. We 
measured this variable by means of five items from Awan et al. (2022). 
We found the internal consistency of the construct to be 0.839. 

The machine learning applications variable (MLA) referred to the 
application and integration of machine learning technology in produc-
tion and operations to enhance firms’ decisions and operational out-
comes. This variable was measured utilizing five items from Leoni et al. 
(2022). We found the internal consistency of the construct to be 0.882. 
The environmentally friendly products for the circular economy variable 
reflected the utilization of sustainable and recycled resources to produce 
eco-friendly products. It involved the assimilation of sustainable prac-
tices in production processes and product design to achieve a firm’s 
sustainability objectives. We measured it using eight items from Katsi-
keas et al. (2016) and Awan et al. (2021). We found the internal con-
sistency of this construct to be 0.889. To summarize, we found that all 
internal consistency values for our constructs fell above the minimum 
recommended threshold of 0.70, demonstrating the reliability of our 
constructs (Akhtar et al., 2018; Hair et al., 2021). The details of our 
constructs and items are given in Appendix A. 

4. Results 

4.1. Measurement model results, validity, and reliability 

To ensure the effectiveness of systematic measurements, it is crucial 
to assess the key factors of validity and reliability (Kuehnl et al., 2019). 

We evaluated convergent validity through loadings, Cronbach’s alpha, 
composite reliability (CR), and average variance extracted (AVE). Hair 
Jr et al. (2016), recommended an acceptable minimum loading value of 
0.60. Moreover, AVE values have been recommended to fall above 0.5, 
as this helps gauge the relationship within the construct (Wang et al., 
2023). Our findings yielded loading values greater than 0.6. We also 
found our CR and Cronbach’s alpha values to significantly exceed the 
minimum recommended threshold of 0.70. Furthermore, we found our 
AVE values for the constructs to exceed the minimum threshold of 0.50. 
We thus found our measurement model results to meet all the criteria 
recommended for the key factors of validity and reliability. We per-
formed the HTMT test as a more robust method to assess discriminant 
validity by measuring the ratio of correlation among the constructs 
(Rönkkö and Cho, 2022). The maximum threshold for HTMT is 0.85 
(Hair et al., 2021). We found our results for all the constructs to fall 
below such a threshold. Therefore, we found the constructs in our model 
to demonstrate sufficient discriminant validity, with each differing from 
the others. The details of these assessments and their values are listed in 
Table 2 and Fig. 2. 

4.2. Structural model and hypothesis results 

As recommended by Hair et al. (2019) and Akhtar (2018), we 
adopted standardized procedures to report our results and to test our 

Table 2 
Results of confirmatory composite analysis.  

Construct Factor 
Loadings 

Cronbach’s 
Alpha 

CR AVE HTMT 

Smart product platforming powered by GAI and AI 
Personalized product design 
SPPAI1 0.790 0.786 0.791 0.543 <0.85 
SPPAI2 0.712     
SPPAI3 0.775     
SPPAI4 0.741     
Product manufacturing process 
SPPGAI5 0.752 0.875 0.889 0.685 <0.85 
SPPGAI6 0.892     
SPPGAI7 0.774     
SPPGAI8 0.863     
Flexibility in smart product platforming 
FSPP1 0.766 0.891 0.896 0.672 <0.85 
FSPP2 0.841     
FSPP3 0.876     
FSPP4 0.755     
Applications of big data analytics 
ABDA1 0.735 0.839 0.857 0.613 <0.85 
ABDA2 0.778     
ABDA3 0.821     
ABDA4 0.805     
ABDA5 0.782     
Machine learning 

applications  
0.882 0.887 0.585 <0.85 

MLA1 0.756     
MLA2 0.787     
MLA3 0.719     
MLA4 0.897     
MLA5 0.861     
Environmentally 

friendly products for 
circular the economy  

0.889 0.903 0.702 <0.85 

EFPCE1 0.825     
EFPCE2 0.864     
EFPCE3 0.886     
EFPCE4 0.746     
EFPCE5 0.873     
EFPCE6 0.817     
EFPCE7 0.752     
EFPCE8 0.788     

(n = 206). 
Legend: CR (composite reliability), AVE (average variance extracted), HTMT 
(hetero-trait-monotrait ratio of correlations). 
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hypotheses for the structural model. We found ABDAs (H1) to be in a 
statistically significant direct relationship with EFPCE. Hence, we found 
H1 to be supported. Table 3 provides the β and t-values for all the un-
derlying hypotheses. Furthermore, as a result of our hypotheses’ testing, 
we found a significant direct relationship between ABDAs and SPP, thus 
confirming H2. The outcomes were also found to indicate a significant 
direct relationship between SPP powered by AI and GAI and EFPCE; 
thus, H3 was found to be supported. We took a forward statistical 
approach to test these relationships—which we found to be consistently 
significant in all four models—with control variables (e.g., organiza-
tional age and size). We performed a mediation analysis following 
Rungtusanatham et al. (2014). The SPP intervention in Model 
4—compared to Model 1—exhibited t-values reduced from 6.616 
(highly significant) to 3.188 (significant), demonstrating partial support 
for H4. 

Finally, we took the product indicator approach employed by Ng and 
Chan (2020) to analyze the moderating effects of ML and FSPP, 
respectively. Our results were found to demonstrate that MLA has sig-
nificant moderation effects on the association between ABDAs and 

EFPCE. Moreover, our results were also found to indicate that FSPP 
exerts statistically significant moderation effects on the association. To 
provide a visual interpretation of the relationship described in H5 and 
H6, we plotted a graphical representation. As shown in Figs. 3 and 4, a 
high presence of machine learning and flexibility in SPP enhances 
EFPCE. Last, the results of the fit indices, as reported in Table 3, show 
that all indicator values, including R2, χ2/df, RMSEA, CFI, TLI, and IFI, 
are well past the acceptable threshold for fit values, indicating a good fit. 

5. Discussion and conclusion 

Our findings emphasize how SPP powered by AI and GAI, big data 
analytics, and machine learning interact in personalized product design 
and manufacturing, leading to environmentally friendly products for the 
circular economy. Our findings support the underlying constructs that 
are the key determinants in enabling the production of environmentally 
friendly products and strengthening circular economy implementations. 
The use of SPP with inherited flexibility and advanced technology—such 
as AI, GAI, big data analytics, and machine learning—plays a major role 
in effective and creative product design, consequently facilitating the 
related manufacturing processes. 

5.1. Theoretical and practical implications 

SPP powered by AI and GAI is an emerging field that strongly con-
tributes to the dimensions of sustainability (Hettiarachchi et al., 2022; 
Wang et al., 2023). In particular, GAI came to the forefront in 2022, 

Fig. 2. The second-order construct of SPP powered by AI and GAI.  

Table 3 
Models, structural results, and fit indices.  

Constructs/ 
Hypothesis 

Model 1 Model 2 Model 3 Model 4 

ABDA→EFPCE ( 
H1) 

0.541 
(6.616***) 

0.314 
(4.236***) 

0.273 
(3.479***) 

0.206 
(3.113**) 

ABDA→SPP (H2) – 0.459 
(5.347***) 

0.467 
(4.551***) 

0.559 
(6.662***) 

SPP→EFPCE (H3) – – 0.503 
(6.001***) 

0.373 
(4.758***) 

ABDA→ SPP 
→EFPCE (H4) 

– – – 0.216 
(3.188**) 

MLA x 
ABDA→EFPCE ( 
H5) 

– – – 0.265 
(3.468**) 

FSPP x 
SPP→EFPCE ( 
H6) 

– – – 0.225 
(3.226**) 

R2 0.295 0.375 0.410 0.496 
χ2/df 1.766 1.421 1.285 1.011 
RMSEA 0.088 0.061 0.054 0.039 
CFI 0.911 0.959 0.963 0.979 
TLI 0.898 0.931 0.952 0.970 
IFI 0.911 0.959 0.963 0.975 

n = 206. 
Note: statistically significant at p < 0.01 (***), and at p < 0.05 (**). Fig. 3. Moderation effect of machine learning applications.  
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when ChatGPT hit the market (Wu et al., 2023). GAI models provide 
great opportunities to learn theoretical concepts both effectively and 
efficiently. Open AI could be one of the best tools for the creation and 
development of knowledge. These models involve an interplay between 
big data analytics, machine learning, algorithms, AI, and GAI, providing 
a comprehensive understanding of interdisciplinarity and related ap-
plications (Akhtar et al., 2023; Gozalo-Brizuela and Garrido-Merchan, 
2023; Sætra, 2023). Designing products and facilitating their 
manufacturing using GAI can benefit the operational community and 
improve work productivity (Noy and Zhang, 2023). Flexibility in SPP is 
also important for the manufacture of environmentally friendly products 
for the circular economy, as it helps to facilitate the creation of closely 
related product families and achieve optimal results (Sarkar and Bhu-
niya, 2022; Van den Broeke et al., 2018). 

Big data, analytics, machine learning, AI, and GAI work jointly to 
support information and data processing operations to the end of 
achieving mutual goals in SPP and contributing to OIPT (Feuerriegel 
et al., 2024; Rashid et al., 2024). In particular, GAI has recently changed 
the game for SPP, with these joint technologies supporting it and ulti-
mately promoting personalized product development. This assists in 
upscaling the circular economy for a better future. However, ethical 
issues related to the use of GAI should also be considered. The respon-
sible use of GAI is crucial to address ethical issues and users need to 
understand the related obligations (Bartlett and Camba, 2024). Uni-
versities and schools should also play a role in educating new genera-
tions in regard to their responsibilities pertaining to the use of 
technology. Governments, particularly those of advanced countries, 
could also introduce new laws and regulations aimed at ensuring that 
groups and forces use such technologies responsibly. 

From a practical standpoint, SPP with GAI models enables expo-
nential timesaving. It assists in obtaining specific information and in-
sights more quickly than search engines. If properly implemented with 
good user input, it also assists in improving the quality of work, ulti-
mately enhancing productivity. Although managers can input detailed 
and specific questions, SPP/GAI cannot replace human intelligence, 
which features originality in thought and action in improving opera-
tional business procedures, whereas SPP/GAI/AI depends on user inputs 
to generate outcomes. For instance, designers can insert specific criteria 
(e.g., sustainable, sporty look, size, type) for car designs, and GAI can 

then generate an image. Designers can then add their originality and 
creativity by using iterative procedures to execute the final designs 
assisted by SPP. GAI/SPP is thus used as a process tool/platform. 

The benefits of SPP are not devoid of practical challenges for man-
agers. The security of the data inputted by users/managers is at risk 
when they operate on open AI/GAI platforms. Organizations and their 
employees thus need to be very careful when using them. They could 
develop their own AIGC models, but the required in-house expertise 
could challenge this approach. The skills required to use such models in 
the workplace are also challenging. Not all employees are IT-savvy, and 
the relatively traditional culture of some of them could hinder the 
workplace development and usage of SPP. However, in the long run, 
organizations could train their employees and invest in GAI/SPP to 
promote sustainability and circular economy concepts interlinked with 
contemporary technologies and SPP. 

5.2. Limitations and future research 

Our study is not devoid of limitations. Very few empirical studies 
have addressed the underlying topics and their links with environmen-
tally friendly products for the circular economy, which is still in its in-
fancy. We thus borrowed the literature on SSP from GAI/AI/ 
interdisciplinary domains and its links with other underlying constructs. 
This offers valuable opportunities for future research to be based on our 
study while implementing the findings of other domains. For example, 
future research could focus on conducting case studies in different in-
dustries such as banking, retail, and IT. More studies could also be 
conducted in manufacturing. Although we did follow comprehensive 
methodological procedures, we did not make any causal claims. 
Furthermore, SPP may yet become more intelligent; thus, researching 
product platforms and their families could further benefit the business 
community and employees by enabling them to work smarter, rather 
than harder, reducing any unnecessary extra efforts, increasing their 
productivity, and bringing greater innovation at work with better sus-
tainable outcomes. While we addressed our research questions with data 
collected from Chinese manufacturing firms, future research could 
consider samples drawn from other regions and countries. The nexus of 
the digital-led circular economy for sustainability is still in its infancy, 
particularly concerning the interlinks with contemporary technology 
like GAI; future studies could thus consider further unpacking the in-
terlocks in SPP and promoting sustainability dimensions. 
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Constructs Brief item descriptions 

Smart product platforming powered by GAI and AI: 1) personalized product designs 
and 2) product manufacturing processes  

1) Our product design team applies GAI [e.g., ChatGPT,] to develop personalized product 
design concepts.  

2) Our product design team uses GAI-based product design innovation for personalization.  
3) Our product design team employs GAI for personalized product design identification.  
4) Our product design team utilizes GAI to upgrade our product designs as per customer 

requirements.  
5) Our product manufacturing team integrates AI-based solutions to improve related 

manufacturing processes.  
6) We consider AI to be our major strategy for product-related manufacturing innovation.  
7) We use AI in our manufacturing processes to optimize product characteristics (e.g., 

product strengthening and material balancing).  
8) We use robotic process automation in our manufacturing processes. 

Flexibility in smart product platforming  1) We are flexible in our product family design  
2) We are flexible in our product family manufacturing procedures  
3) Our product platforming is flexible to adopt operational changes  
4) We continuously update our product platform to align it with the latest technology 

Applications of big data analytics  1) We apply big data analytics in our operations  
2) The use of big data analytics is part of our business strategy.  
3) We extensively employ big data analytics in our operations.  
4) Big data analytical applications provide us with insights suited to understanding specific 

customer requirements.  
5) Our top management encourages us to apply insights drawn from unstructured data for 

better customer solutions. 
Machine learning applications  1) We apply machine learning-based analytics in our operations.  

2) We integrate machine learning techniques in our analyses.  
3) We encourage our teams to adopt machine-learning techniques.  
4) We implement insights drawn from deep learning applications.  
5) We use insights drawn from neural networks. 

Environmentally friendly products for the circular economy  1) Our products integrate recyclable materials for environmental benefits inherited in the 
circular economy  

2) We use environmentally friendly resources in our products for the promotion of the 
circular economy.  

3) We use recycled materials in our products to promote the circular economy  
4) We perform lifecycle analyses to assess the impact of our environmentally friendly 

products on the circular economy.  
5) Our environmentally friendly products help us to support our circular economy strategy.  
6) Our products’ reusability is a key part of our circular economy strategy.  
7) Our circular economy guidelines enable us to produce durable environmentally friendly 

products.  
8) Our circular economy directions drive our products to achieve our net-zero goals for an 

environmentally friendly future.  
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