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ABSTRACT

The thermal expansion of saline ice is accompanied by the migration of liquid brine through
porous space in the ice. Two previous models of this thermal expansion, proposed by
Malmgren (1927) and Cox (1983), assume, respectively, zero and infinite permeability of
saline ice by liquid brine. In the present paper theoretical investigations, based on Darcy’s
law, are used to describe thermo-elastic waves in saline ice, generated as the ice surface
warms or cools. Characteristics of these thermo-elastic waves are analyzed for different
values of the permeability of sea ice by brine, including zero and infinite values. The model
matches known behaviour with these extreme permeabilities, and extends this understanding
to sea ice with finite, non-zero permeability.

INTRODUCTION

When the temperature varies, sea ice expands and contracts. The volumetric thermal
expansion coefficient of pure ice is constant across all temperatures up to melting, at
approximately 1.58x10*C™". In this paper, we evaluate thermal expansion of sea ice by
treating it as a permeable pure ice matrix enclosing pockets of saline water (brine). When the
sea ice warms, the ice matrix melts. Since water (or brine) is denser than ice, this melting
leads to a local reduction in volume. This in turn leads to a local pressure variation, which can
drive brine through the ice. A full understanding of thermal expansion must therefore account
for the permeability of the ice matrix to brine.

Two previous estimations of the thermal expansion of sea ice are known from the literature.
For the purposes of this paper, they can be considered as two extremes on a continuum of ice
permeability.

1) Malmgren, 1927, proposes a model in which all brine is contained within the sea ice: this
is equivalent to an impermeable ice matrix. Under this assumption, the thermal expansion
coefficient of ice is constant and positive at low temperatures, but as the ice approaches 0°C,
ice melts and contributes to the brine volume, leading to an overall contraction with
increasing temperature.

2) Cox, 1983, suggests that brine is free to move within the ice matrix, and thus has no effect
on the thermal expansion. The thermal expansion coefficient of sea ice, says Cox, is constant
and uninfluenced by the presence of brine.

Malmgren assumes zero permeability, while Cox assumes infinite permeability. Laboratory
Experiments on thermal expansion performed with fiber optic FBG sensors (Marchenko et al,



2012-2014) have demonstrated values of the coefficient of thermal expansion lying between
the values determined by the formulas of Malmgren and Cox.

In this paper, we consider a half-space of sea ice forced by a small temperature change at its
upper surface. The permeability of sea ice to brine is explicitly modeled. We investigate the
migration of temperature and pressure waves into the ice, and the variations in sea ice
constituency.

We note that sea ice frequently contains air pockets alongside the brine. In this paper we do
not account for air migration through the ice and brine. However, the analysis including air
follows a similar line to the analysis presented here, and we plan to present this in future
work.

MODEL EQUATIONS

The proposed model relies on conservation of mass, momentum, energy and salinity. We

present equations describing these balances in turn.

Mass balance
The mass balance equation for sea ice is formulated as follows

90,/ 0t +V-(0,v,v, + ovy,)=0, V=(3/x,0/9y,8/ oz), (1)
where ¢ is the time, x, y, and z are the spatial coordinates, ps;, p» and p; are the densities of sea
ice, brine and pure ice, and v, and v; are the velocities of the brine and ice. Volumetric
concentrations of pure ice (v;) and brine (v;) satisfy the condition

v,+v, =1, ()
and the sea ice density is determined by the formula

Psi =PV + PV (3)

where the densities of brine and pure ice are known functions of the temperature 7 and
pressure p which will be introduced later.

The mass balance of the brine trapped in the ice is formulated as
a(pbvh )/ it +V: (prbe ) =0, 4)

where the source or sink of the brine O, due to the ice melting or brine refreezing is
determined by the formula

O, =-p,0v,/ot. (5)
From (1), (4) and (5) the mass balance of the pure ice follows:

a(pivi )/ It +V- (pivivi ) =0, (6)



Momentum balance
The brine is interpreted as a viscous liquid with the coefficients of isothermal compressibility
(K») and thermal expansion (o) determined by the formulas

K, =p,/(0p,/dp).@, =-p;'op, /T . (7)

The velocity of the brine is given as a sum of the ice velocity and the brine velocity relative to
the ice:

V=V, 4V, @8)
The momentum balance of the brine is given by Darcy’s law:
ViVi = =Kyitty VP ©)

where ki, is the permeability of sea ice by brine, u;=1.8-107 Pa-s is the dynamic viscosity of
brine, and p is the brine pressure.

The permeability of saline ice by brine is determined by the formula

kg, = ksi,boeISM ) (10)
where the coefficient kg »=10"" m® characterizes ice permeability at low values of liquid
brine content (Zhu et al, 2006). The dependence of the permeability &, on the liquid brine
content v, is shown in Fig. la.

The ice is considered as a thermo-elastic material where internal stresses are formed due to
the pressure in the brine and due to external stresses applied at the boundaries. It is assumed
that ice deformations caused by thermal changes are so slow that inertial effects of elastic
wave propagation can be ignored. At the same time ice deformations are fast enough to ignore
creep effects in the ice. Therefore, equations of static equilibrium based on Hook’s law are
used:

2uv,V-g, -Vp, =V(pr), o, =2ue,, (1)
-p,=Ke, -Ka,(T-T,), K=A+2u/3, (12)

where p; is the ice pressure, 0, and €, are the deviators of ice stresses and ice strains, & is the
trace of the ice strains, A, u and K are the elastic constants of ice, o; is the volumetric
coefficient of thermal expansion of ice, and 7) is a reference temperature. The factor v; in
formula (11) takes into account a reduction of the shear modulus due to the ice porosity.
Numerical values of the shear modulus, the bulk modulus, and the coefficient of thermal
expansion are given by the formulas

u=38GPa, K=88GPa, a,=1.58-10" °C". (13)



Energy balance
The energy balance is given by the heat transfer equation

(pc) dT/dt-p,Lov,/ot=V- (AVT)-Kv,a(T-T,)V-v, +2v, e, -e,, (14)

where the material derivative is expressed by the formula d/d=""/""t+vv,'V, and the
coefficients of specific heat capacity and thermal conductivity are calculated by the formulas

<IOC>S,- = PV + OpCyVys Ay = AV, + Ay, (15)

Here ¢, and ¢, are the specific heat capacities, 4, and A, are the thermal conductivities of
ice and brine, L; is the latent heat of ice, and e, represents the strain rates of the brine. The
second term on the left hand side of equation (14) describes the latent heat rate due to the
brine freezing or ice melting. The last two terms on the right hand side of equation (14) are
related to the heat produced due to the thermal expansion of ice and due to viscous energy
dissipation in the brine.

Further it is assumed that the specific heat capacity and thermal conductivity of brine are

equal to the specific heat capacity and thermal conductivity of water. The specific heat
capacities and thermal conductivities of ice and water are given by the formulas

¢, =423kl/(kg'C), ¢, =2.12kl/(kg"C), A, =0.58 W/(m°C), A =2.24 W/(m°C). (16)
The latent heat of ice is equal to L, =333.4kJ/kg.

Salt balance
The equation of salt balance is written in the form

a(pbahvb )/ at+v'(pbabvb Vh)= 0, (17)

where 0y is the brine salinity. The term p,0V5, is equal to the mass of salt per unit volume of
sea ice. The term p,0,V3V}, is equal to the salt flux.

State equations
The brine density pj is calculated with the formula (Schwerdtfeger, 1963)

Py = p,1+S5), (18)

where p,,~=1000 kg/m’ is the water density and S is the fractional salt content of the brine. The
fractional salt content S is calculated from the condition of thermodynamic equilibrium

S=al, a=-1.82-102C", T>-82°C. (19)

where the temperature 7 is calculated in Celsius degrees. Salinities of brine and sea ice are
determined by the formulas

0, =8/(1+S8), 0, =v,p,0,/p,. (20)



COEFFICIENT OF THERMAL EXPANSION IN A MODEL WITH ZERO
PERMEABILITY OF ICE BY BRINE

From formulas (8) and (9) it follows that v,=v; when the permeability of sea ice by brine is

zero (ks »=0). The equation of mass balance (1) and equation of salt balance (17) are reduced

to the forms

00,/ t+V-(p,v,)=0, d(p,0V,)/ t+V-(p,0,v,V,)=0. (21)

From (21) it immediately follows that sea ice salinity determined by the second formula in
(20) satisfies the equation

do, /dt=0,d/dt=0/0t+v,-V, (22)

meaning that the sea ice salinity is conserved. In this case from formulas (2) and (3) and the
second formula in (20), the sea ice density is expressed as follows

(l_va)p[7piab . (23)
o,p, +(0,-0,)p,

IOSi =

From the first equation (23) it follows that the coefficient of thermal expansion of sea ice can
be calculated with the formula

a, =-p,dp,/dT. (24)

If the dependence of ice density on temperature is specified by the formula p=p;o(1-a;T),
where ;=917 kg/m’, then formula (24) gives the coefficient of thermal expansion derived by
Malmgren (1927).

THERMO-ELASTIC WAVES IN SALINE ICE

We now investigate the response of the sea ice to temperature changes without the assumption
of zero permeability. If the temperature of the upper surface of an ice sheet changes, then
these temperature changes propagate down into the ice sheet, over time and with damping.
Stresses due to these temperature changes also propagate, and, in the case of sea permeable
ice, may cause brine migration. This complicated interplay is modelled in this section of the
paper. It is assumed that the steady state of a saline-ice-filled half space x >0 is described by
the following characteristics

T=T,,vV,=V,,V,=V,, V;,=V,=0,¢,=0, p=p,=0,0,=0. (25)

Let us consider deformations of a saline ice half-space (x>0) initiated by small temperature
variations around 7=7j at x>0

T=T,+0T, 0T = A, cosax, x=0, (26)

where A7 is the amplitude and w is the frequency of the temperature wave at the ice surface.



We investigate the evolution of saline ice characteristics caused by periodical variations of the
temperature at the surface described by formula (26) and assume that the saline ice
characteristics are represented as follows

X =X, +0X. (27)

Each component of vector X represents some characteristic of the saline ice, and each
component of vector 6X represents a perturbation of the ice characteristic near its value at the
steady state specified by vector X according to the formulas

Xo = (Z),P = Oapi = O,VbO,ViO,Vix = 0)9 oX = (éT,@,épi,ﬁvb,évi,évix) (28)

where the last term gives the velocity of the ice in the x-direction. A set of equations used for
the investigation of the temporal and spatial evolution of 60X is specified further in the case
when all variables depend only on the time ¢ and spatial coordinate x. Substitution of Darcy’s
laws (9) into equations (4) and (17) and linearization leads to the equations

0T o oV AoV, 0’
(/Obo,r o * Oro,p ot )Vbo * Pso o L+ O ot + PyVp00€u = Vo P (29)
d6T ddp IOV 9’6
((pbab )O,T o + (/Obah )o,p ?)Vbo * Pp0Oho Tb + Py0050V50% = Oyo7 50 PN (30)

The difference of equation (30) and equation (29) multiplied by o,, gives
PioV000,r0T = P3040V (31

Here and afterwards we use the designations

> (.)Op=i.)

k.
, , 0e, =V, 7, _ Pooltsivo (32)
X=X, op

()= (0 =2

Y

X=X, xub
The heat transfer equation (14) is written after linearization as follows
(pc) 98T /9t = LSV, | 3t = A0 ST | 6. (33)

Components of the deviators of strain and stresses in the ice are expressed by the formulas

290u, 1 9u, ddu,
0¢, . =§W’ dedw =0, . = _5 wat éadw = dsd,xz = 5£d,yz =0, o¢,, = P (34)
4u 0du, 2u 0du,
oo, . = 3 o 5adw =d0,_. = "3 T éad,xy =do, . = 5ad,yz =0

where du, is the x-component of the displacement vector du. The ice velocity
5le=/\(6ux)//\t‘



The equations of static equilibrium (11) and Hook’s law (12) are differentiated with respect to
time and written in the form

2uv,de, . —ddp,; /ot =v,,ddp/dt, (35)
—-ddp,/ dt =Kée,, —-Ka,00T' / it , (36)

where dejn= (0€4x)/” tand deu=" (Oew)/ ™ t.
Equation (2) is written in the form
ov,+ov, =0. (37)

Equations (29), (31), and (35) - (37) form a closed system describing the evolution of the
vector 0X specified by the second formula (28). We consider the solution in the form

OX =Re|Ac ) || A=(4,,4,,4,,4,,4,,4,). (38)
Substitution of (38) in equations (31) and (33) leads to the dispersion equation
w=ik* | X7, Xyl = </OC>S,-0 - pbovboal:(;abo,TLi' (39)

Substitution of (38) into (29), (31), (35)-(37) leads to

] V. O
A, =iwAd,, A, =A, =0, 4, = —%(0@ +%)Ar, (40)
Ap = apTAT 5 Api =0(4uv,a, _3VboapT)AT ; (41)
K A, £:0(2,0,) 0.1 = PO,
=4 3K’apT=ApT1’ApT,1= 00T )or ~ Pro bO’T+3C¥l-H,
Uvy + pT,2 PLi0P %50

A = ik*y, _ Prop  3vy0

pT,2 :

DPVeo Lo K

Ay 1s the amplitude of the ice displacement u,. The term proportional to ppo, in the
expression for A,r» is important only when the brine is compressible. State equation (18)
assumes an incompressible model for the brine.

From Hook’s law it follows that the diagonal components of the stresses, d0i., 00;, and 0.
are expressed by the formulas

so =3V k|2 ko, d0 =0, =[x )3 g or. (42)
3 ox . 3 ox

Substituting formulas (38) and (40) into (42) we find the amplitudes of ice stresses A, Ay
and 4.,



_Yro GBK-2uv,,)A4, -ouv,,a,K4,

- (43)
4uv,, +3K

Ape =VyoA,, 4,, =4

The first formula (43) shows that the amplitude 4.,. of the normal stress do;, at the ice surface
x=0 is proportional to the amplitude A4, of the pore pressure. The normal stress at the ice
surface appears due to the hydrostatic pressure at the bottom of thin brine layer expelled from
the ice. When the pore pressure increases the thickness of the liquid layer also increases and
the pressure at the ice surface grows. A decrease of the pore pressure causes suction of brine
into the ice from the liquid layer, decreasing of the liquid layer thickness and decreasing of
the pressure at the ice surface.

From formulas (40) and (41) follows that 4, and 4, tends to infinity when A,7,=0. In this
case the dispersion equation describes pressure waves propagating in sea ice without
temperature variations, i.e. when 47=0 and kA4,,=-3i0vy4,,

w=ik/X,, X, =L Prop 3”’0‘9). (44)
Yoo\ Pro K

There is a resonance between the temperature waves and the pressure waves when both of the
dispersion equations (39) and (44) are satisfied. The critical value of the sea ice permeability
by brine when resonance occurs is found from equations (39) and (44)

K : lubvbollsio(pbo,ppb_(; +3v,0K™)

X (45)
si,b,cr _
<,0c>si0 - pbovboab(;abo,TLi

Let us compare the wave numbers of the temperature and the pressure waves of the same
frequency w for large and small values of the sea ice permeability £, 5, which is related to the
coefficient ¥, by the last formula (32). From dispersion equation (39) it follows that the wave
number of the temperature waves doesn’t depend on the sea ice permeability. From dispersion
equation (44) it follows that the wave number of the pressure waves tends to infinity when the
ice permeability tends to zero and vice versa. Thus the pressure waves are very short and
can’t penetrate into the ice when the sea ice permeability is low. When the ice has high
permeability the pressure waves are long and can penetrate into the ice over large distances.
Limit values of the sea ice permeability 4, ;=0 and k;;,=N are associated with the models of
Malmgren (1927) and Cox (1983).

NUMERICAL ESTIMATES

It is helpful at this stage to try to quantify some of the effects determined by the previous
equations. In numerical estimates the formula of Frankenstein and Garner (1967) is used to
specify liquid brine content as a function of sea ice temperature and salinity

Vio =0 (48. 1837, + 0.532]. (46)

Thick lines in Fig. 1b show the critical values of the sea ice permeability by brine kg p,cr
calculated from formulas (45) and (46) with different salinities of sea ice oy calculated with



formula (20). The resonance between the pressure waves and the temperature waves is not
possible.
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Figure 1. Sea ice permeability k; 5 versus liquid brine content (a). Critical values of the sea ice
permeability kg5 versus the temperature constructed with different sea ice salinities (b).

The ratio of the displacement amplitude to temperature amplitude id,/Ar characterizes
vertical displacement of the surface due to periodical changes of the surface temperature of
1°C with period T.=2s/w. The imaginary unit i shows the phase shift of /2 with respect to the
temperature phase. Figure 2 shows the ratio i4,,/Ar versus the mean temperature of the ice 7
calculated for the wave period 7.=1 h and different values of the ice salinity. The graphs in
Fig. 2a are calculated using the permeability of sea ice determined by formula (10), and the
graphs in Fig. 2b are calculated with zero permeability (Malmgren’s model). Numerical
estimates show that graphs in Fig. 2a are practically not changing when the permeability
increases, i.e. the graphs in Fig. 2a also represent Cox’s model. The main difference between
Fig. 2a and Fig. 2b is that the graphs in Fig. 2b extend into the range of negative values of
id,/Ar , 1.e. in the range of relatively high temperatures the ice surface displaces in different
directions in the models of Malmgrem and Cox. This property has been observed in
experiments.

The ratio of the pore pressure amplitude to temperature amplitude o,7=A4,/Ar characterizes the
variation of the pore pressure in the brine due to periodical changes of the surface temperature
of 1°C with period 7.=2/w. Figure 3 shows the ratio o,,r versus the mean temperature of the
ice T calculated for the wave period 7.=1 h and different values of the ice salinity. Graphs in
Fig. 3a and Fig. 3b are calculated using the same values of the permeability of sea ice as Fig.
2a and Fig. 2b. Fig. 3b shows much higher absolute values of the pore pressure in comparison
to Fig. 3a, and very little dependence on sea ice salinity. Negative values of o,7 in Fig. 3b
show that the pore pressure increases when the temperature decreases and vice versa. The
explanation of this is that ice melts around brine pockets when the temperature increases, and
brine refreezes in the brine pockets when the temperature decreases.

The ratio of the ice pressure amplitude to temperature amplitude A4,/Ar characterizes the
variation of the ice pressure due to the periodical changes of the surface temperature of 1°C
with period 7.=27/w. Figure 4 shows the ratio o7 versus the mean temperature of the ice Tj
calculated for the wave period 7.=1 h and different values of the ice salinity. The graphs in
Fig. 4a and Fig. 4b are calculated using the same values of the permeability of sea ice as Fig.
2a and Fig. 2b. Fig. 4a and Fig. 4b show similar absolute values of the ice pressure, and very
different dependencies of the ice pressures on the sea ice salinity. In Cox’s model the ice
pressure increases with the temperature decrease and vice versa (Fig. 4a), while in
Malmgren’s model the direction of the ice pressure changes depends on the ice temperature



Tp. If the ice temperature is low then Malmgren’s model shows the same changes in the ice
pressure as Cox’s model. If the ice temperature is high enough the pressure and temperature
variations have the same direction. There are critical values of the ice temperature depending
on the ice salinity when the pressure amplitudes are equal to zero.

id /A pm/C i, /A, p/°C.

8§ T 6 5 4 3T.C 8§ T 6 5 4 3T
a) b)

Figure 2. The ratio of the displacement amplitude to temperature amplitude iA4,./Ar versus the

temperature calculated with the sea ice permeability determined by formula (10) (a) and with

zero permeability (b).
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Figure 3. The ratio of the pore pressure amplitude to temperature amplitude o,,7=A4,/Ar versus
the temperature calculated with the sea ice permeability determined by formula (10) (a) and
with zero permeability (b).
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Figure 4. The ratio of the ice pressure amplitude to temperature amplitude o,7=4,/4Ar versus

the temperature calculated with the sea ice permeability determined by formula (10) (a) and

with zero permeability (b).



CONCLUSIONS

A thermodynamic model of saline ice taking into account thermal changes, phase changes and
liquid brine migration in the porous space is formulated and basic equations are derived. The
brine migration is described by Darcy’s law in the model. It is shown that the coefficient of
thermal expansion of sea ice given by the new model is similar to the coefficient of thermal
expansion derived by Malmgrem (1927) when the sea ice permeability by brine tends to zero.
In the case when the sea ice permeability is not zero the ice salinity is not constant and
thermal behavior of sea ice depends on the permeability.

We have investigated the characteristics of thermal deformations of a sea ice half-space
caused by periodical changes of the surface temperature, and analyzed the dependence of
these characteristics on the sea ice permeability. It is shown that the displacement and
pressure characteristics of the ice caused by temperature waves are practically similar for
infinite permeability of sea ice by brine (Cox, 1983) and for the values of sea ice permeability
observed in experiments (see, e.g., Zhu et al, 2006). The displacement and pressure
characteristics of temperature waves calculated with Cox’s and Malmgren’s models are very
different. The transition between the models occurs at very low permeabilities (=107m?).
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