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Title: The impact of urban morphology on the building energy consumption and 

solar energy generation potential of university dormitory blocks 

Highlights： 

⚫ Established an analytic workflow for energy use and solar potential at block-scale 

⚫ Evaluated the impact of urban morphology on energy use and solar potential 

⚫ H-shaped block saved 12.25% EUI with the highest energy-saving potential  

⚫ Tower block reduced energy use by 72.05% after the deployment of PV panels 

⚫ Proposed multiple regression models for predicting energy performance by 

morphology 

Abstract: 

Urban morphology is a major factor affecting building energy consumption and 

solar potential in the urban block. The aim of this research was to evaluate the impact 

of urban morphology on both building energy consumption and solar energy generation 

potential for university dormitory blocks in Wuhan. This paper proposed a classification 

method for dormitory blocks, calculated the building energy consumption and solar 

energy generation potential of 55 blocks, and analyzed the correlation between urban 

morphology and three energy performance indicators: Energy Use Intensity (EUI), 

Solar Energy Generation Intensity (SEGI) and Net Energy Use Intensity (NEUI). 

Multiple regression models were used to predict energy performance by urban 

morphological parameters. The results indicate that different block types could lead to 

up to 12.25% difference in EUI, and 35.85% significant difference in building NEUI 

with the deployment of photovoltaic (PV) panels. The EUI is mainly affected by three 
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morphological parameters, which are Average length of block, Shape factor and 

Building density; while the SEGI and NEUI are mainly affected by Average height of 

block, Shape factor and Sky view factor. This study could serve as guidelines for 

planners and policymakers in campus planning and architectural design to improve 

building energy conservation at block-scale. 

Keywords： 

Urban morphology, Block typology, Dormitory block, Energy use intensity, Solar 

potential, Multiple regression model  

 

Nomenclature 

ADB Average depth of block  NZED Nearly-zero energy district 

AHB Average height of block PV Photovoltaic 

ALB Average length of block R value Thermal resistivity 

BD Building density RMSE Root Mean Squared Error 

EUI Energy Use Intensity  SEF Sky exposure factor 

FAR Floor area ratio SEGI Solar Energy Generation Intensity 

GHG Green House Gas SF Shape factor 

GIS Geographic Information System SHGC Solar heat gain coefficient 

HDR Height to depth ratio SVF Sky view factor 

NEUI Net Energy Use Intensity  UWG Urban Weather Generator 

NZEC Nearly-zero energy community   

 

1. Introduction 

The global predicaments of energy scarcity and climate change are ubiquitous 
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challenges confronting all nations. The cities of the world consume about 75% of its 

primary energy and emit 50-60% of the world's Green House Gas (GHG) (UN-Habitat, 

2021). In order to achieve carbon neutrality on a larger scale through reduced energy 

consumption, there is increasing interest in the concept of nearly-zero energy district 

(NZED) (Iturriaga et al., 2021; Amaral et al., 2018) and nearly-zero energy community 

(NZEC) (Suh et al., 2019; Ullah et al., 2021). These approaches focus on the 

intermediate scale between buildings and cities. Two strategies can be employed to 

reduce energy consumption in order to achieve the NZED goal: The first strategy is to 

minimize building energy use. The second strategy involves maximizing the supply of 

clean energy, which can be achieved through using PV panels in urban buildings.  

1.1 Review 

（1） How could energy use be minimized by optimizing urban morphology? 

Research has established that different urban block types exhibit distinct energy 

performance characteristics (Martins et al., 2019; Quan et al., 2021; Xu et al., 2021). 

Scholars have employed different classification methods, such as identifying 

characteristic blocks, to investigate the relationship between urban morphology and 

building energy consumption in various climate zones. Zhang et al. (2019) identified 

six prototypes in a tropical high-density city in Singapore, where it was found that 

Courtyard and Hybrid blocks outperformed Tower and Slab blocks, while Ahmadian et 

al. (2021) analyzed four prototype blocks and found that tunnel-court and pavilion types 

provided the best and worst energy performance, respectively. Other studies have 

classified real urban blocks to explore energy consumption characteristics. In Seoul, Oh 
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et al. (2019) identified 13 block types with energy consumption varying between 11.3% 

and 29.1% with decrease in the U-values of the building wall insulation, while Shi et 

al. (2021) found that L-shaped hospital buildings had the best energy-saving potential 

at a rate of 3.5%. These studies provide evidence that urban topologies significantly 

affect building energy consumption. 

To further explore the reasons for differences in energy consumption among 

different types of blocks, scholars have investigated the relationship between urban 

morphology and building energy consumption (Wang et al., 2021; Quan et al., 2021). 

In terms of climate zones, Leng et al. (2020) analyzed the relationship between urban 

morphological parameters and building heating energy consumption in cold regions in 

China and found that each unit increase in perimeter-to-volume ratio reduced building 

heating energy consumption by 6.76%. Bansal et al. (2022) investigated the relationship 

between building characteristics, urban form, and residential building energy use in 

different local climate zone contexts in Seoul, and the results exhibited that different 

local climate zones significantly influenced building energy consumption and impacted 

the effects of building characteristics on building energy use. These studies confirm that 

the relationship between urban morphology and building energy performance varies in 

different climate zones. To further improve understanding of the complex relationship 

between urban morphology and building energy consumption, new research tools and 

frameworks have been developed, such as multi-objective urban form design 

optimization (Liu et al., 2023) and uncertainty and sensitivity analysis (Prataviera et al., 

2022) for building energy simulations. These studies offer evidence of a significant 
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influence of urban morphology on building energy use, which exhibits divergent 

patterns across various climate zones and cities. (Quan et al., 2021).  

（2） How could solar energy potential be maximized by optimizing urban 

morphology? 

The potential for exploiting solar energy resources in cities is vast (Huang et al., 

2019), and scholars have studied this issue from various perspectives. Sarralde et al. 

(2015) used GIS and python scripts to model 4,718 urban blocks in London, and found 

that solar resources on building roofs and facades have great potential for further 

exploitation. Similarly, Lan et al. (2021) developed an imagery-based model for 

assessing solar potential at block-scale, contributing high accuracy to solar potential 

assessment studies while reducing assessment time. Chen et al. (2022) accurately 

evaluated the solar radiation intensity and total roof area of buildings in Shanghai, 

highlighting the vast potential for solar resources. The above research findings confirm 

the differences in solar potential due to variations in climate and urban morphology 

(Wang et al. 2021). 

To understand the reasons for these differences in solar potential among different 

block types, scholars have explored the relationship between urban morphology and 

solar potential. Fan et al. (2022) found that different climate zones and different urban 

morphologies present different solar potential. Poon et al. (2020) correlated 10 major 

morphological parameters in blocks with the development potential of solar energy 

resources, finding that the Sky exposure factor (SEF) and the Sky view factor (SVF) 

had the strongest correlation with the radiant illuminance of roofs and facades in 
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buildings. Mendis et al. (2020) proposed a method using horizontally inclined PV 

modules integrated into solar shading devices to address the issue of disadvantageous 

inclination and solar heat gains in commercial office buildings in the tropical context 

of Colombo, Sri Lanka. The results indicated that horizontally tilted PV integrated with 

shading strategies on facades can generate nearly 8% more electricity compared to the 

traditional vertical PV facade installations. Ren et al. (2022) developed a three-

dimensional geographic information method to predict dynamic rooftop solar 

irradiance by considering the shading effects of surrounding buildings, finding that the 

urban blocks’ annual solar energy potential was decreased by 35.7% due to the shading 

effect. Research on the influence of urban morphology on solar energy generation 

potential has demonstrated a close link between the two, and defining their relationship 

can help architects and urban planners design and plan sustainable cities more 

effectively. 

It has been previously observed that urban morphology significantly impacts on 

both building energy consumption and solar energy generation potential, with different 

characteristics (Zhang et al., 2019; Quan et al., 2021). However, few studies have been 

conducted on the synergistic impact of urban morphology on building energy 

consumption and solar energy generation potential comprehensively. Accordingly, 

there is a lack of research on corresponding energy conservation planning and 

renewable energy strategies at the block-scale. Such knowledge will play a crucial role 

in promoting energy efficiency and renewable energy use in buildings for urban blocks. 

In particular, existing studies assessing dormitory blocks with specific urban 
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morphology and climates in central China are extremely limited. 

1.2 Research aim and research questions 

This study aims to quantitatively evaluate the impact of urban morphology on 

building energy consumption and solar energy generation potential of university 

dormitory blocks, and to determine which morphological parameters play the greatest 

role in regulating the Energy Use Intensity (EUI) and Solar Energy Generation Intensity 

(SEGI) in the Hot-summer and Cold-winter zone in China. Based on the above 

evaluation, this study then attempts to provide the design strategies and 

recommendations to carry out energy efficiency-oriented campus planning in the future. 

The research aim was to further develop knowledge on the following research questions: 

（1） Does the typology of university dormitory blocks have an impact on building 

energy consumption and solar energy generation potential, and to what extent? 

（2） Which parameters of urban morphology have the most significant influence on 

regulating Energy Use Intensity and Solar Energy Generation Intensity? 

2. Methodology  

2.1. The framework of the study 
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Fig. 1. Framework for evaluating impact of urban morphology on energy performance 

Fig.1 illustrates a technical framework comprising five steps for evaluating the 

impact of urban morphology parameters on solar energy generation potential and 

building energy consumption. 

2.2. Dormitory block typologies   

2.2.1. Cases of urban blocks 

Wuhan is situated at 30°52' north latitude and 114°32' east longitude in central 

China. The region has a north subtropical monsoon climate characterized by cold 

winters and hot summers. The annual sunshine hours range from 1810 to 2100, and the 

annual radiation ranges from 1210.56 kWh/m2 to 1315.32 kWh/m2 (Xu et al., 2019).  
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Fig.2. The distribution of 5 block types in Wuhan  

Wuhan has 84 universities, each with an average of 3-4 dormitory blocks. This 

study focuses on a total of 55 dormitory blocks in Wuhan, which were selected from 

213 existing blocks based on their size (between 100 and 300 meters in length and width) 

and the number of buildings (not less than 3). These dormitory blocks can be 

categorized into 6 types: Slab block, Tower block, U-shaped block, H-shaped block, 

Courtyard block, and Hybrid block. The first five types account for 84.6% of the total 

number of blocks, while the Hybrid blocks are mainly composed of different types of 

buildings, accounting for about 15.4%, which are difficult to study based on spatial 

form. Therefore, this study focuses on the first five types (Table 1). In view of the 

potential variability in building envelope and construction materials over various years 

of construction, this study focuses on the period spanning from the years 2000 to 2020. 

This timeframe is signified by a rapid expansion of higher education in Wuhan, during 
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which a large number of dormitory blocks were constructed to enhance the living 

standards of students. Accordingly, a total of 55 dormitory blocks (Fig.2) were selected 

from 84 universities for this research.  

Table1 

5 types of typical dormitory blocks 

Typology       Model Plan layout Block features 

 

Slab  
  

 

The buildings are in the shape of a slab, 

and the length to width ratio of the 

building is greater than 2. 

 

Tower     
  

 

The buildings are approximately square 

shaped, and the length to width ratio of 

the building is less than 2. 

 

U-shaped    
  

 

The buildings are shaped like a "U", and 

the general U-shaped opening faces east 

or west. 

 

H-shaped  
  

 

The buildings are H-shaped, and the 

general H-shaped openings face east and 

west. 

 

Courtyard  
  

 

The buildings are enclosed on all sides, 

and there is a courtyard in the middle. 

2.2.2. Acquisition of 3D model data 

In this study, the vector data of Wuhan map were downloaded from the official 
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website of OpenStreetMap (OSM), and the OSM file was obtained, which contained 

building contour and height information. The obtained 3D model information was then 

calibrated according to the latest satellite maps and Baidu street view maps for building 

contour, layer number, and height. Finally, the corrected 3D information data was used 

for modeling on the Rhino platform (Table 2). 

Table2 

Models of 55 cases  

Type Models of Cases 

 

 

 

 

Slab block 

 

A1 

 

 

A2 A3 A4 A5 

A6 A7 A8 A9 A10 

A11 A12 A13   

 

 

 

Tower 

block 

 

B1 B2 B3 B4 B5 

B6 B7 B8 B9 B10 

B11 B12    

 

 

U-shaped 

block 

 

C1  C2 C3 C4 C5 

C6 C7 C8 C9 C10 
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H-shaped 

block 

 

D1 D2 D3 D4 D5 

D6 D7 D8 D9 D10 

 

Courtyard 

block 

 

E1 E2 E3 E4  E5 

E6 E7 E8 E9 E10 

2.3. Urban morphological parameters  

Urban morphology is widely used in urban studies, and can be represented in 

different ways with various parameters (Quan et al., 2021). When selecting the 

parameters for this study, it was taken into account that these parameters are generally 

used in urban planning practice and are easily accessible for architects, and that 

different types of parameters are capable of describing the spatial and layout 

characteristics of blocks from different perspectives. Firstly, parameters were selected 

that described the basic morphological characteristics of block buildings: Average 

length of block (ALB), Average depth of block (ADB), Average height of block (AHB) 

and Height to depth ratio (HDR). Secondly, the parameters that reflected the urban 

compactness were selected: Building density (BD), Floor area ratio (FAR) (Wang et al., 

2021). Finally, the parameters that reflected the block spatial characteristics were 

selected: Sky view factor (SVF), Shape factor (SF). 

The 8 urban morphological parameters (Table 3) have been proven to have a 

certain impact on building energy performance through previous studies (Quan et al.,    
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2021; Xu et al., 2021; Wang, et al., 2021). Based on the computational equations for 

the specific parameters, the results of the morphological parameters for dormitory 

blocks were obtained (Table 4).  

Table 3   

Urban morphological parameters 

Table 4  

Results of morphological parameters for dormitory blocks 

Urban morphology  Abbreviation Computational Equation Diagram 

 

Building density  

 

BD 
𝐵𝐷 =

𝐴𝐷

𝑆𝐺
× 100% 

 

 

Floor area ratio 

 

FAR 
𝐹𝐴𝑅 =

𝐴𝐵

𝑆𝐺
 

 

 

Average length  

of block 

 

ALB 
𝐴𝐿𝐵 =

∑ 𝑙𝑖𝑉𝑖
𝑛
𝑖=1

∑ 𝑉𝐵
𝑛
𝑖=1

 
 

 

Average depth 

of block  

 

ADB 
W =

∑ 𝑤𝑖𝑉𝑖
𝑛
𝑖=1

∑ 𝑉𝐵
𝑛
𝑖=1

 
 

 

Average height 

of block  

 

AHB 
𝐻 =

∑ ℎ
𝑖
𝑉𝑖

𝑛
𝑖=1

∑ 𝑉𝐵
𝑛
𝑖=1

 

 

 

Sky view factor 

 

SVF 
𝜑𝑠 =

1

𝜋𝑅2
∫ 𝑐𝑜𝑠 𝜃 𝑑𝑆

𝑆𝑣

 
 

 

Shape factor  

 

SF 
𝑆𝐹 =

𝑆𝐵

𝑉𝐵
 

 

 

Height to depth ratio 

 

HDR 
𝐻𝐷𝑅 =

∑ 𝑎𝑟𝑉𝑖
𝑛
𝑖=1

∑ 𝑉𝐵
𝑛
𝑖=1
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Typology Cases  ALB  ADB  AHB  SVF SF HDR BD FAR 

 

 

 

 

 

Slab 

blocks       

A1 67.05  17.59  18.00  51.09  0.20  1.03  0.32  1.94  

A2 75.09  22.41  18.00  35.86  0.17  0.80  0.46  2.75  

A3 50.68  10.20  18.00  57.43  0.29  1.77  0.23  1.35  

A4 66.00  22.00  18.00  50.73  0.18  0.82  0.41  2.49  

A5 58.35  19.19  18.00  59.67  0.20  0.94  0.35  2.08  

A6 50.83  15.03  18.00  50.47  0.23  1.20  0.35  2.09  

A7 46.14  19.18  18.00  56.05  0.20  0.94  0.28  1.68  

A8 56.81  18.36  18.00  56.53  0.20  0.98  0.30  1.82  

A9 56.51  15.00  18.00  55.28  0.22  1.20  0.31  1.89  

A10 59.11  18.00  24.00  45.56  0.19  1.33  0.36  2.84  

A11  63.19  15.00  18.00  54.37  0.22  1.20  0.33  1.97  

A12 80.00  15.00  18.00  46.70  0.21  1.20  0.38  2.26  

A13 62.27  15.00  18.00  51.69  0.22  1.20  0.34  2.07  

 

 

 

 

 

Tower 

blocks     

B1 21.19  18.49  21.00  54.25  0.23  1.14  0.29  2.03  

B2 31.42  20.87  18.00  53.36  0.21  0.88  0.31  1.87  

B3 19.81  20.87  18.00  55.36  0.24  0.86  0.29  1.74  

B4 24.90  29.49  15.00  60.12  0.20  0.51  0.32  1.61  

B5 24.41  19.02  18.00  64.84  0.25  1.04  0.21  1.26  

B6 18.71  14.94  18.00  71.41  0.30  1.20  0.18  1.10  

B7 35.45  14.16  21.00  57.35  0.25  1.49  0.23  1.62  

B8 13.00  13.00  9.00  69.25  0.42  0.69  0.31  0.92  

B9 33.53  19.06  18.00  61.96  0.22  0.97  0.28  1.69  

B10 40.00  20.00  18.00  59.95  0.21  0.90  0.34  2.04  

B11 36.00  18.00  18.00  61.26  0.22  1.00  0.24  1.42  

B12 36.00  18.00  18.00  64.49  0.22  1.00  0.21  1.27  

 

 

 

 

U-shaped 

blocks   

C1 65.39  8.93  18.00  53.29  0.32  2.02  0.27  1.60  

C2 47.18  17.10  18.00  51.67  0.22  1.07  0.38  2.27  

C3 53.83  20.75  18.00  52.65  0.20  0.91  0.36  2.13  

C4 55.00  20.86  18.00  50.56  0.19  0.89  0.39  2.34  

C5 56.08  16.09  18.00  49.07  0.22  1.12  0.42  2.52  

C6 51.64  17.58  18.00  54.91  0.21  1.03  0.36  2.15  

C7 52.24  17.89  18.00  51.76  0.21  1.01  0.43  2.60  

C8 54.05  17.48  18.00  54.31  0.21  1.06  0.37  2.24  

C9 48.67  16.22  18.00  61.97  0.22  1.14  0.27  1.61  

C10 55.30  17.39  18.00  59.11  0.21  1.05  0.29  1.75  

 

 

 

H-shaped 

blocks 

D1 78.42  17.45  18.00  54.04  0.20  1.05  0.36  2.15  

D2 81.92  16.03  18.00  51.69  0.21  1.15  0.33  2.00  

D3 35.37  14.46  18.00  59.13  0.26  1.26  0.30  1.83  

D4 69.17  17.51  18.00  58.36  0.20  1.03  0.53  3.21  

D5 65.27  17.97  18.00  52.12  0.20  1.00  0.41  2.44  

D6 62.12  17.17  18.00  52.35  0.21  1.06  0.40  2.42  

D7 60.80  16.19  18.00  49.27  0.22  1.11  0.40  2.38  
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D8 69.37  15.94  18.00  52.60  0.22  1.14  0.38  2.30  

D9 80.68  16.04  18.00  53.55  0.21  1.12  0.36  2.14  

D10 85.57  16.26  18.00  58.04  0.21  1.11  0.35  2.12  

 

 

 

Courtyard 

blocks 

E1 71.59  18.06  18.00  41.47  0.20  1.00  0.53  3.16  

E2 57.42  17.39  15.00  50.13  0.23  0.88  0.36  1.79  

E3 48.24  11.65  18.00  51.69  0.28  1.55  0.39  2.34  

E4 54.09  12.02  18.00  53.67  0.28  1.50  0.32  1.94  

E5 27.95  14.45  18.00  51.41  0.27  1.27  0.37  2.20  

E6 29.99  14.34  18.00  49.75  0.27  1.28  0.40  2.39  

E7 64.32  21.41  18.00  55.30  0.19  0.87  0.44  2.62  

E8 56.29  20.92  18.00  54.38  0.20  0.88  0.43  2.59  

E9 31.72  10.65  18.00  59.39  0.31  1.69  0.32  1.93  

E10 48.24  11.65  18.00  51.94  0.28  1.55  0.44  2.63  

2.4. Calculation methods  

In this section, calculation methods were proposed for three energy performance 

indicators: EUI, SEGI and NEUI. For modeling, we selected the Rhino software and 

integrated the toolsets of Ladybug, Honeybee and Butterfly on the Grasshopper 

platform. To conduct simulations, we utilized two simulation engines: EnergyPlus for 

building energy simulation, and Radiance for lighting and solar radiation analysis. It is 

worth noting that the reliability of EnergyPlus and Radiance has been demonstrated in 

previous studies (Zhang et al. 2019; Wang et al. 2021).  
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2.4.1. The calculation method of Energy Use Intensity 

Fig.3. The simulation workflow in Grasshopper 

Building energy consumption is affected by many complex factors. This study 

focused on the impact of urban morphology on building energy consumption. To 

exclude the influence of related factors other than urban morphology, the relevant 

simulation parameters were uniformly set through field investigation, literature and 

related specifications. The simulation workflow used in Grasshopper is shown in Fig.3. 

According to the survey of dormitory buildings, the height of the campus 

dormitory model was uniformly set to 3.6 meters, the window to wall ratio of the 

building was set as 0.22 for the south and north facades, and 0.05 for the east and west 

facades. The windows were 900mm above ground level on each floor and were evenly 

spaced along the facade. The Wuhan epw weather data was utilised, which was 

downloaded from the EnergyPlus website, and represents the typical weather year at 

the location. The setting of the wall envelope was based on the results of field research 

and literature as shown in Table 5.  
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Table 5  

Envelope structure settings for dormitory building model 

Construction type  SHGC   R-Value (m2K/W)  

Roof — 2.67 

Wall — 0.69 

Ground floor — 0.65 

Window 0.284 2.295 

Table 6 

Parameter settings for dormitory building energy simulation 

Parameter  Setting Unit 

Cooling set point 26 oC 

Heating set point 18 oC 

Lighting loads 5  W/m2 

Equipment loads 4 W/m2 

Occupancy 0.04  People/m2 

Air Infiltration rate 0.0003 m³/s·m2 

Mechanical ventilation rate 0.0002 m³/s·m2 

This study selected 9 representative university dormitory blocks in Wuhan to 

conduct field surveys and online questionnaire surveys. The total energy consumption 

includes four types: cooling, heating, lighting and equipment loads. The survey focused 

on the information of occupancy rate, energy use schedule, and heating and cooling 

setting temperature in order to obtain information for the cooling, heating, lighting, and 

equipment loads in these blocks. A total of 1216 questionnaires were collected from the 

survey, and according to these survey results, the parameter settings were established 

and then used for this study, and these are shown in Table 6. 

This study measured the annual monthly electricity consumption data of a 

dormitory block with four buildings in Huazhong University of Science and 

Technology in 2019, and compared these results with the simulation results to confirm 
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the accuracy of the calculation model for dormitory buildings in Wuhan. The simulation 

input parameters for this validation were consistent with Table 5 and Table 6. 

EUI is a crucial indicator in evaluating building energy consumption and is 

calculated by Eq. (2). EUI signifies the amount of energy used per unit of building floor 

area and is commonly employed in the investigation of building energy utilization, 

particularly in simulation research (Quan, et al., 2021; Wang et al., 2021).  

EUI = 
𝐸𝑇

𝐴𝑇
                                       (2) 

EUI—Energy Use Intensity (kWh/(m2·y)) 

ET—Total building energy consumption (kWh/(m2·y)) 

AT—Total building floor area (m2) 

2.4.2. The calculation method of Solar Energy Generation Intensity   

 

Fig.4. The simulation workflow for SEGI 

This study evaluated the effect of urban morphology on the solar energy potential 
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generated by PV panels. However, numerous factors can influence the block-level 

implementation of PV panels. Izquierdo et al. (2008) proposed five levels of solar 

energy potential evaluation, including physical potential, geographical potential, 

technical potential, economic potential, and social potential. Drawing on previous 

research (Xu et al., 2019; Xu et al., 2021), an assessment method was developed, 

accounting for Wuhan's distinct climate and urban morphological characteristics. The 

SEGI was obtained through the block-scale solar calculation method at three levels 

including radiation potential, installation potential and technical potential (Fig.4).   

Firstly, the radiation potential pertains to solar radiation distribution on building 

surfaces, determined by using the Grasshopper platform workflow with a proven high 

accuracy in prior studies (Liao et al., 2019; Xu et al.,2021). The installation potential is 

the effective area of building surfaces suitable for PV panel installation, influenced 

mainly by the installation factor and solar radiation threshold. The installation factor 

was obtained from case surveys, while the threshold value is the minimum radiation 

necessary to achieve PV panel break-even throughout its lifespan. When setting 

polycrystalline silicon PV material and a 25-year life cycle, the radiation threshold is 

466 kWh/(m2·y). Lastly, the technical potential denotes the energy generation 

efficiency of the PV system, primarily affected by PV module efficiency, Integrated 

efficiency factor and Attenuation rate of PV power generation (Table 7). Other 

parameter settings for the solar radiation simulation are shown in Table 8.   

Table 7  

Setting of parameters for technical potential  
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Parameters settings Value Unit 

PV module efficiency 17.87 % 

Integrated efficiency factor 86 % 

Attenuation rate of PV power generation 0.062 % 

Durable years of PV equipment 25 year 

Table 8  

Setting of parameters in the simulation model  

In summary, this study calculated the annual energy production of the PV system 

by Eq. (3). 

𝐸𝑝 = 𝐻𝐴  ×  𝐴𝑝𝑣  ×  𝜂 ×  𝐾 × (1 − 𝑅𝑑)𝑁−1            (3) 

Ep—Annual energy generation of PV equipment (kWh/y) 

HA—Annual accumulated solar radiation on building surface (kWh/y) 

Apv—Available installation area for PV panels (m2) 

η—PV module efficiency (%) 

K—Integrated efficiency factor (%) 

Rd—Attenuation rate of PV power generation (%) 

N—Durable years of PV equipment (y) 

To be consistent with the research on building energy consumption in the block, 

the solar energy potential was calculated based on the unit building floor area. Solar 

energy generation potential is expressed as Solar Energy Generation Intensity (SEGI), 

  Parameters setting Value 

Weather data CHN_Hubei.Wuhan.574940_CSWD 

Simulation period 00:00 on January 1 to 24:00 on December 31 

Measurement point 1 mm above the grid 

Grid size 1m*1m 

Building surface diffuse reflectance 0.2 

Ground surface diffuse reflectance 0.2 
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which is often used to measure the solar energy potential for a building or block (Zhang 

et al., 2019; Xu et al., 2021). It is calculated by Eq. (4).  

SEGI = 
𝐸𝑆

𝐴𝑇
                                     (4) 

SEGI—Solar Energy Generation Intensity (kWh/(m2·y)) 

ES—Annual solar energy generation of PV panels (kWh/y) 

AT—Total floor area (m2) 

2.4.3. The calculation method of Net Energy Use Intensity 

The impact of urban morphology on both building EUI and SEGI can vary 

significantly. In this study, Net Energy Use Intensity (NEUI) was adopted to 

comprehensively evaluate the building energy consumption with PV deployment, 

which is a common measure utilized to reflect the intensity of energy use after the 

integration of renewable energy (Zhang, et al., 2019). It is calculated by subtracting 

solar energy generation intensity from energy use intensity of buildings in a block, and 

reflects the net energy consumption of buildings in a block per year after accounting 

for the solar energy generation potential. It is calculated according to Eq. (5). 

NEUI = EUI - SEGI                                 (5)         

NEUI—Net Energy Use Intensity(kWh/(m2·y)) 

EUI—Energy Use Intensity(kWh/(m2·y)) 

SEGI—Solar Energy Generation Intensity(kWh/(m2·y)) 

3. Results  

3.1. Results of validation 

Fig.5 shows the red line as the measured electricity consumption of the dormitory 
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block in 2019, and the blue line represents the output of the EnergyPlus simulation 

model. It can be seen that there was a good correlation between the measured energy 

consumption and the energy consumption simulated by the model. To validate the 

accuracy of the developed calculation model, this study employed the Root Mean 

Squared Error (RMSE), which produced a value of 0.45. Additionally, the coefficient 

of determination (R2) was calculated, yielding a value of 0.91. These results indicate 

that the simulation model produced accurate results within an acceptable range. 

Fig.5. Comparison of simulated and measured energy consumption 

3.2. Energy Use Intensity  

Fig.6 displays significant variation in EUI values for heating and cooling across 

different case studies, while lighting and equipment EUI remained almost constant. 

Cooling EUI was found to be highest in the Tower block case B6 (12.46 kWh/(m2·y)), 

and lowest in the H-shaped block case D10 (9.19 kWh/(m2·y)) with a difference of 3.27 

kWh/(m2·y), representing a percentage difference of 35.58%. The result of the standard 

deviation amongst the 55 blocks was 0.78 for cooling EUI, however the heating EUI 
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demonstrated even greater variation. The highest and lowest values for heating EUI 

were observed in the tower block case B8 (11.55 kWh/(m2·y)), and the H-shaped block 

case D10 (3.95 kWh/(m2·y)) with a difference of 7.6 kWh/(m2·y), representing a 

percentage difference of 192.4%. The result of standard deviation for heating EUI 

amongst the 55 blocks was 1.77, in contrast to that of 0.78 for the cooling EUI. 

Accordingly, the variance for cooling EUI over the 55 blocks was 0.88, and that for the 

heating EUI was 1.33. The F-Test was carried out for these results, which suggests that 

if the 2 variances are not significantly different, the result will be close to 1 (Bland, 

2015). However, the F-test for the variances of cooling and heating EUI provided a 

result of 1.60, suggesting that there was a greater variation caused in heating EUI than 

cooling EUI due to the effects of block typology. Therefore, the large variation in 

percentage difference and standard deviation when comparing the cooling and heating 

EUI of the blocks, together with the F-test value suggested that the impact of block 

typology on heating EUI was greater than that on cooling EUI.  

Fig.6. The total EUI of 55 blocks 
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Fig.7. The total EUI by typology  

Fig.7 shows distinct variations in the total EUI distribution among the five types. 

On average, the EUI of the Tower block (51.59 kWh/(m2·y)) was significantly higher 

than that of the Slab block (49.26 kWh/(m2·y)), followed by the Courtyard block (48.52 

kWh/(m2·y)), and U-shaped block (46.32 kWh/(m2·y)), and finally the H-shaped block 

had the lowest EUI (45.96 kWh/(m2·y)). The maximum and minimum total EUI values 

differed by 5.63 kWh/(m2·y), indicating a percentage difference of 12.25%. The 

standard deviation result for the five types was 2.06, suggesting significant differences 

in total EUI across different block types. EUI results revealed stratified differences 

among block types, with H-shaped and U-shaped blocks exhibiting higher building 

energy performance. This highlighted the significance of optimizing block types for 

achieving optimal building energy performance. 

3.3. Solar Energy Generation Intensity  
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According to Fig. 8, SEGI values were comparable across the rooftops of five 

block types, whereas significant variations were observed on the facades. The similarity 

of building heights among dormitory blocks resulted in inadequate rooftop shielding. 

Conversely, different block types and arrangements led to distinct facade shielding 

levels and significant SEGI variations. 

Fig. 8. The total SEGI of 55 blocks 

Fig. 9. The total SEGI by typology 

Out of the 55 cases, Tower block B8 stood out as a prominent outlier with 

significantly higher rooftop and facade SEGI values of 36.46 kWh/(m2·y) and 24.95 

kWh/(m2·y), respectively. It should be noted that B8 was a three-story dormitory in 

contrast to the typical six-story ones considered in this study. Since SEGI was measured 
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per unit building floor area, a roof of the same size would yield vastly different results 

for buildings of 6 and 3 floors.  

Fig. 9 indicates that Tower and Slab blocks had significantly higher mean values 

of SEGI at 37.17 kWh/(m2·y) and 32.08 kWh/(m2·y), respectively, in comparison to U-

shaped (28.98 kWh/(m2·y)), Courtyard (28.93 kWh/(m2·y)), and H-shaped (28.40 

kWh/(m2·y)) blocks. The difference in solar energy generation potential between the 

highest Tower block and the lowest H-shaped block was 8.77 kWh/(m2·y), representing 

a percentage difference of 30.88%. The standard deviation amongst the five types was 

3.30, indicating significant differences in total SEGI among them. However, the SEGI 

values of U-shaped, H-shaped, and Courtyard blocks were very similar, likely due to 

the self-shielding effect in the absence of mandatory distance regulations between 

buildings. Conversely, Tower and Slab blocks maintained certain distances from each 

other to comply with regulations, resulting in weaker mutual shading effects. The SEGI 

results revealed that Tower and Slab blocks had substantially greater solar potential than 

the three enclosed block types (H-shaped, U-shaped and Courtyard blocks). This 

underlined the importance of optimizing block types to enhance solar energy generation 

potential. 

3.4. Net Energy Use Intensity  

As shown in Fig.10 and Fig.11, compared to the H-shaped, U-shaped and 

Courtyard block, the Tower blocks exhibited a greater fluctuation range in NEUI. With 

the deployment of PV panels, the order of NEUI from large to small was Courtyard 

block (19.59 kWh/(m2·y)) > H-shaped block (17.57 kWh/(m2·y)) > U-shaped block 
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(17.34 kWh/(m2·y)) > Slab block (17.19 kWh/(m2·y)) > Tower block (14.42 

kWh/(m2·y)). In Fig. 10, the Y-axis exhibited negative values (-10). It was found that 

after the deployment of solar panels in case B8, the NEUI became negative, indicating 

that the solar energy generation potential exceeded the energy use for the block 

buildings. The Tower block exhibited the most significant improvement in energy 

performance, with the lowest NEUI value after the deployment of PV panels. The 

distinct characteristics of the five block types in terms of NEUI further emphasized the 

importance of integrating building energy consumption with solar energy potential. 

Fig.10. The EUI and NEUI for 55 blocks 

Fig. 11. The total NEUI by typology 
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4. Discussion 

This section first discussed the impact of block typology on three energy 

performance indicators: EUI, SEGI and NEUI. To further analyze the reasons for the 

impact, the following discussion analyzed the relationship between urban morphology 

and the above three energy performance indicators. 

4.1. Impact of block typology on building energy performance 

The research analyzed 55 dormitory blocks and found that the potential for energy 

savings at the block level was substantial. The difference in cooling EUI varied by up 

to 35.58% among different blocks, while the difference in heating EUI was even greater, 

up to 192.4%. The results show that the impact of urban morphology on heating energy 

consumption was greater than that of cooling, resulting in a higher variance in heating 

load than cooling load. This aligns with the findings of previous studies, such as Martins 

et al. (2019), who reported that height affected the cooling demand by between 7.3% 

and 8.6%, but that heating demand was affected between 13.6% and 31.2%. 

The average EUI values for the highest (Tower) and lowest (H-shaped) block types 

differed by up to 12.25%. The order of average EUI value of the five blocks from 

greatest to smallest was Tower block > Slab block > Courtyard block > U-shaped block > 

H-shaped block. Zhang et al. (2019) found this same phenomenon where the EUI values 

of Tower blocks and Slab blocks were higher than those of Courtyard blocks in the 

urban context of Singapore. Compared to other block types, Tower blocks exhibited 

lower building density, weaker inter-building shading effect, and higher cooling energy 

consumption in summer. Not only that, they also had the highest SF among all blocks, 
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which means that heat exchange between buildings and the outdoor environment is 

facilitated, resulting in the highest EUI. 

Compared to EUI, the impact of block typology on NEUI exhibited greater 

complexity. Specifically, the Tower and Slab blocks demonstrated the highest EUI, 

whereas the Tower block equipped with PV panels exhibited the lowest NEUI. This 

observation suggests that the Tower block garnered the most substantial gains from 

solar energy generation. The deployment of PV panels in dormitory blocks led to an 

average reduction of 65.0% in EUI. This result was consistent with a study conducted 

by Hachem-Vermette et al. (2019) on a mixed-use community in Canada, which found 

that energy generated by PV panels can replace about 70% of a community's total 

energy use. 

As seen in Fig. 9, the Tower block had more variability in the cases compared to 

the other block types. The possible reasons are as follows. Firstly, the layout of Tower 

blocks is characterized by a greater degree of variability, with a wider range of 

dislocated arrangements compared to other block types. Secondly, the height of Tower 

blocks spans a range of 9 to 21 meters, and this variability has a significant impact on 

the potential solar power availability per unit building floor area. Finally, the variability 

of the SF contributes to the variability of heat exchange between Tower blocks and the 

external environment. Notably, B8, which deviates from the typical pattern of five to 

six floors observed in other blocks, consists of merely three floors. Of significance was 

its negative NEUI value, indicating that the 3-story dormitory block generates more 

solar energy than its energy consumption. These findings suggest that dormitory blocks 
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with three or four floors have considerable potential for achieving net-zero energy 

consumption. 

4.2. Impact of urban morphology on building energy performance 

4.2.1. Correlation analysis between morphological parameters and energy 

performance indicators 

Table 9 presents the correlation between 8 morphological parameters and EUI, 

SEGI, and NEUI. The parameters that exhibited the strongest correlation with EUI were 

ALB and SF, with respective correlations of -0.72 and 0.72. BD, FAR, and SVF 

followed with correlations of 0.71, -0.69, and 0.50, respectively. In a study conducted 

by Leng et al. (2020) on building heating energy consumption in cold regions of China, 

BD and FAR were identified as the most relevant indicators affecting energy 

consumption, consistent with the findings of this study. Furthermore, the results 

indicate that the effects of BD and FAR on building energy consumption are consistent 

across different climate regions in China. 

Table 9 

Results of correlation analysis  

Morphological parameters  EUI SEGI NEUI 

Average length of block (ALB) Pearson correlation coefficient -0.72** -0.46** 0.19 

sig. 0.00 0.00 0.17 

Average depth of block (ADB) Pearson correlation coefficient -0.23 -0.15 0.07 

sig. 0.09 0.27 0.63 

Average height of block (AHB)  Pearson correlation coefficient -0.13 -0.63** 0.74** 

sig. 0.33 0.00 0.00 

Sky View factor (SVF) Pearson correlation coefficient 0.50** 0.64** -0.55** 

sig. 0.00 0.00 0.00 

Shape factor (SF) Pearson correlation coefficient 0.72** 0.78** -0.60** 

sig. 0.00 0.00 0.00 
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Height to depth ratio (HDR) Pearson correlation coefficient 0.15 -0.13 0.25 

sig. 0.26 0.35 0.07 

Building density (BD)  Pearson correlation coefficient -0.71** -0.56** 0.32* 

sig. 0.00 0.00 0.02 

Floor area ratio (FAR) Pearson correlation coefficient -0.69** -0.71** 0.53** 

sig. 0.00 0.00 0.00 

** means the correlation was significant at level 0.01. 

* means the correlation was significant at level 0.05. 

  

Fig. 12. Heat map of correlation results 

Based on the findings presented in Fig.12, the SF exhibited the most significant 

impact on both EUI and SEGI, while also emerging as one of the key morphological 

parameters affecting NEUI. These results highlight the importance of controlling SF 

when designing low-energy dormitory blocks on campus. Specifically, SF serves as a 

ALB ADB AHB SVF SF HDR BD FAR EUI SEGI NEUI

ALB 1.00 -0.03 0.20 -0.56 -0.57 0.06 0.57 0.59 -0.72 -0.46 0.20 ALB

ADB -0.03 1.00 0.00 -0.07 -0.53 -0.86 0.30 0.26 -0.23 -0.15 0.07 ADB

AHB 0.20 0.00 1.00 -0.33 -0.48 0.37 0.06 0.40 -0.13 -0.63 0.74 AHB

SVF -0.56 -0.07 -0.33 1.00 0.53 -0.06 -0.65 -0.71 0.50 0.64 -0.55 SVF

SF -0.57 -0.53 -0.48 0.53 1.00 0.32 -0.67 -0.76 0.72 0.78 -0.60 SF

HDR 0.06 -0.86 0.37 -0.06 0.32 1.00 -0.26 -0.11 0.15 -0.13 0.25 HDR

BD 0.57 0.30 0.06 -0.65 -0.67 -0.26 1.00 0.93 -0.71 -0.56 0.32 BD

FAR 0.59 0.26 0.40 -0.71 -0.76 -0.11 0.93 1.00 -0.69 -0.71 0.53 FAR

EUI -0.72 -0.23 -0.13 0.50 0.73 0.15 -0.71 -0.69 1.00 0.68 -0.32 EUI

SEGI -0.46 -0.15 -0.63 0.64 0.78 -0.13 -0.56 -0.71 0.68 1.00 -0.91 SEGI

NEUI 0.20 0.07 0.74 -0.55 -0.60 0.25 0.32 0.53 -0.32 -0.91 1.00 NEUI

ALB ADB AHB SVF SF HDR BD FAR EUI SEGI NEUI

-1.00 -0.75 -0.50 -0.25 -0.15 0.00 0.15 0.25 0.50 0.75 1.00

Negative correlation(p>-0.05) Irrelevant(p>0.05) Positive correlation(p<0.05)
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critical determinant of the building surface area, which plays a crucial role in mediating 

energy exchange between the exterior environment and interior spaces, as well as 

serving as a platform for the installation of solar PV panels.  

Building height exhibited a weak correlation with EUI and a strong correlation 

with SEGI. There are two factors contributing to the negative correlation between AHB 

and SEGI. Firstly, an increase in building height results in greater mutual occlusion 

between buildings. Secondly, as the unit of SEGI for the current study was defined as 

per unit building floor area, an increase in building height leads to a larger total building 

floor area without a corresponding increase in the main installation areas for solar PV 

panels, such as rooftops. According to previous studies (Zhang et al., 2019; Xia et al., 

2021), the SEGI was found to be more susceptible to the impact of urban morphology 

than the EUI, resulting in the emergence of AHB as one of the most significant 

parameters affecting the NEUI. 

The correlation between the morphological parameters and energy performance 

indicators varied, and different indicators should be considered for block-scale planning 

proposals. Liu et al. (2023) suggest that residential neighborhoods in Hot-summer and 

Cold-winter zone should have a floor area ratio of 1.5 for development intensity control, 

based on energy use and solar energy potential considerations. Energy efficiency 

campus planning in Wuhan, which shares the same climate zone, should adjust 

parameters according to specific building performance requirements. 

4.2.2. Multiple linear regression model to predict building energy performance 

The correlation between individual morphological parameters and energy 
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performance indicators was calculated using a correlation analysis. However, this 

method could not fully explain the combined influence of morphological parameters on 

the energy performance results. To address this, this study conducted a multiple 

regression analysis by selecting morphological parameters with strong correlation 

based on the correlation analysis. The backward selection method was employed in this 

study. Although multiple models can be generated by multiple regression analysis, only 

the morphological parameters retained in the final model that passed the correlation test 

were considered significant. 

Table 10 

Results of multiple regression analysis  

 Regression model Unstandardized 

coefficients 

Standardized 

coefficients 

Sig. Collinear 

statistics 

Adjusted 

R2 

Dependent 

variable 

Independent 

Variable 

B standard 

error 

Beta  VIF   

 

EUI 

(Constant) 50.71 2.48 - - -  

0.69 ALB -0.05 0.01 -0.38 0.00 1.64 

SF 19.36 6.57 0.32 0.01 1.99 

BD -10.72 3.95 -0.29 0.01 1.98 

 

SEGI 

(Constant) 20.75 7.56 - - -  

0.73 SF 68.18 12.71 0.48 0.00 1.62 

SVF 0.28 0.08 0.29 0.00 1.40 

AHB -1.07 0.28 -0.31 0.00 1.31 

 

NEUI 

(Constant) 5.11 6.71 - - -  

 

0.65 

AHB 1.52 0.25 0.56 0.00 1.31 

SVF -0.20 0.07 -0.26 0.01 1.40 

SF -21.59 11.28 -0.20 0.06 1.62 

Table 10 displays the adjusted R2 values of the final regression models of EUI, 

SEGI and NEUI were 0.69, 0.73 and 0.65, respectively, all of which had a good degree 

of fit and statistical significance. The EUI was primarily affected by three 
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morphological parameters, which were ranked according to their degree of influence 

(standardized Beta value): ALB (-0.38) had the most significant effect, followed by SF 

(0.32), and then BD (-0.29). The EUI can be calculated by Eq. (6). 

EUI = 50.71 - 0.05 × ALB + 19.36 × SF - 10.72 × BD          (6) 

According to the results of multiple regression, for the all blocks, the ALB, SF and 

BD had the most significant impact on the total EUI. ALB and BD were found to have 

a negative correlation with EUI. Specifically, with an increase in ALB of 1 unit, 

building EUI decreased by 0.05 kWh/(m2·y), and with an increase in BD of 0.1 units, 

building EUI decreased by 1.07 kWh/(m2·y). On the other hand, SF was positively 

correlated with EUI, and an increase in SF of 0.1 units resulted in an increase in building 

EUI by 1.94 kWh/(m2·y). 

Three morphological parameters significantly impacted the SEGI, ranked by their 

standardized Beta values: SF (0.48) had most significant effect, followed by AHB (-

0.31) and SVF (0.29). Through the backward selection method, 5 multiple models were 

generated, with the final regression model of SEGI achieving a high degree of fit and 

statistical significance, as evidenced by an adjusted R2 value of 0.64. SEGI can be 

calculated by Eq. (7). 

SEGI = 20.75 + 68.18 × SF - 1.07 × AHB + 0.28 × SVF              (7) 

Results from multiple regression showed that SF and AHB had the greatest impact 

on total SEGI for all blocks. AHB had a negative correlation with SEGI, with each unit 

increase resulting in a 1.07 kWh/(m2·y) decrease. On the other hand, SF and SVF had 

a significant positive correlation with SEGI, with an increase of 6.82 kWh/(m2·y) in 
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SEGI for each 0.1 unit increase in SF, and an increase of 0.28 kWh/(m2·y) in SEGI for 

each unit increase in SVF. 

Three morphological parameters significantly impacted the NEUI values, with 

their influence ranked by their standardized Beta values. The AHB exhibited the 

strongest effect (0.56), followed by the SF (-0.26) and SVF (-0.20). NEUI can be 

calculated by Eq. (8). 

NEUI = 5.11 + 1.52 × AHB – 21.59 × SF - 0.20 × SVF                (8) 

Multiple regression results showed that the SF and AHB had the most significant 

impact on NEUI. The AHB had a positive correlation with NEUI, with each unit 

increase resulting in a 1.52 kWh/(m2·y) increase. The SF and SVF had negative 

correlations with NEUI, with a 0.1 unit increase in SF leading to a 2.16 kWh/(m2·y) 

decrease, and each unit increase in SVF resulting in a 0.20 kWh/(m2·y) decrease. 

This study provided compelling evidence for the impact of urban morphology on 

building energy performance indicators such as EUI, SEGI, and NEUI, which exhibit 

significant differences between EUI and NEUI due to the varying degree of influence 

of urban morphology. Xia et al. (2021) reported comparable results in their 

investigation on optimizing building energy consumption and solar potential in 

residential blocks in Hot-summer and Cold-winter zone in China. The research 

demonstrated that solar radiation access was more sensitive to the urban morphology 

variation than energy consumption. Furthermore, the morphological parameters, 

including FAR and BD, exerted significant but distinct effects on performance 

indicators. The findings demonstrate that the SF is a crucial influencing factor for all 
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three performance indicators. Furthermore, solar potential is more sensitive to the urban 

morphology variation than energy consumption. To minimize NEUI, parameter 

adjustments are required to maximize SEGI. Finally, dormitory blocks may require 

tailored urban morphology to optimize building energy performance with or without 

the deployment of PV panels.  

4.3. Limitations  

This study primarily examined the impact of urban morphology on building energy 

consumption and solar energy potential. Building energy consumption is a 

multifactorial phenomenon that is influenced by a range of factors, such as building 

envelope, construction materials, occupancy, and equipment load. To evaluate the 

impact of urban morphology on building energy intensity, these variables must be 

simplified and standardized to assess the singular influence of a variable on energy 

consumption. Future research can aim to refine the types of research subjects further to 

compensate for the imprecision that arises from simplification. 

5. Conclusion 

This study examined the impact of urban morphology on building energy 

consumption and solar energy generation potential in university dormitory blocks 

located in the Hot-summer and Cold-winter zone in China. Five block types were 

classified, and Ladybug and Honeybee simulation tools were used to calculate EUI and 

SEGI. The impact of eight urban morphological parameters on EUI, SEGI, and NEUI 

were evaluated. The findings provided compelling evidence that block topology and 

urban morphology significantly impact energy consumption and solar energy 
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generation potential at the block-scale. According to studies it was found that: 

(1) Block typologies result in significant differences in building EUI, SEGI and NEUI 

of up to 12.25%, 30.88% and 35.85%, respectively.  

(2) H-shaped and U-shaped blocks exhibit better EUI performance than other types, 

while Tower blocks benefit the most from PV deployment, surpassing other types 

with the lowest NEUI. 

(3) SEGI is more sensitive to the urban morphological variation than EUI.  

(4) The primary morphological parameters that affect EUI are ALB, SF, and BD, while 

SEGI and NEUI are primarily influenced by SF, AHB, and SVF. 

(5) The proposed multiple linear regression models can effectively predict EUI, SEGI, 

and NEUI, with a fitting degree of 0.69, 0.73, and 0.65, respectively. 

   The results of this study could serve as guidelines for planners and policy makers 

in campus energy planning and architectural design to improve building energy 

conservation and clean energy policy development at the block-scale. The technical 

framework developed in this study can facilitate effective decision-making, especially 

in conducting feasibility studies in the early stages of campus planning and building 

design. It can be applied to other cities and climate regions to evaluate building energy 

consumption and solar energy generation potential at block-scale, to determine the most 

efficient planning and design solutions suitable for the local environment.  
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Appendix 1 Investigated Personnel Information 

Gender Male (51%), Female (49%) 

Academic degree   Associate’s (12%), Bachelor’s (63%), Master’s (21%), Doctoral (4%) 

Appendix 2 Content of survey questionnaires 

Table A1 

Survey Questionnaire Information 

Building information Year of construction, number of rooms per unit, layout, building type 

Type of energy-using 

equipment 

Cooling: fans, local air conditioner unit, central air conditioning 

Heating: electric heating, local air conditioner unit, centralized heating 

energy use Information  Energy use intensity, energy consumption time 

human behavior 

Information 

Number of days per year indoors, weekday vs weekend occupancy, 

time spent indoors per day 

 

Fig.A1. The investigation result of schedule. 
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