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Abstract— The Horopter is the set of points in space which
project to the same image points in the two cameras of a
stereo vision system. Modern proofs are given for many of
the classical results about the Horopter. Some of these rely on
another classical construction, the quadratic complex of lines
joining successive points. A modern derivation of this is also
given. In particular the circumstances in which the image of the
Horopter can degenerate is discussed in some detail. Finally,
these ideas are extended to the case of optical flow where there
is a single camera observing the velocities of points in space.

I. INTRODUCTION

In binocular or stereo vision, using a pair of identical
cameras, the points in space which produce image points
in both cameras with the same image coordinates lie on
a curve known as the Horopter. This term seems to have
been introduced by Franciscus Aguilonius in the second of
his six books in optics in 1613, however the term was used
differently there.

In modern times the horopter was first studied by
Helmholtz in his “Handbuch der Physiologischen Optik” in
the mid 1800s [4]. It is Helmholts who is responsible for the
main results of the geometry of the Horopter, for example,
in general the Horopter is a twisted cubic curve.

These ideas seem to have been first discussed in the
computer vision literature by Maybank in [9] in connection
with ambiguous surfaces. Later the ideas where used by
Ronda et al [10] for calibrating cameras.

On the other hand Opthalmologists have been interested
in Horopters for much longer and still publish papers in this
area, for example [13].

A slightly different problem with the same solution con-
cerns a single camera subjected to a rigid-body motion.
Clearly, the points in space which do not appear to have
moved in the image, lie on the Horopter.

In this work the Horopter is studied using some ideas from
line geometry. In particular, another old construction (though
not quite as old): the complex of lines from successive points.
If we join all points in space to their images under a given
rigid-body motion, the set of lines we get lie in a quadratic
line complex.

The connection between these two constructions is ex-
plored and modern proofs are given for many of the prop-
erties of these varieties. In particular the cases in which the
Horopter can degenerate are found.

Finally, the infinitesimal case is considered, this has ap-
plications to optical flow.

J.M. Selig works for the Faculty of Business, Computing and Information
Management, London South Bank University, London SE1 0AA, U.K.
seligjm@lsbu.ac.uk

In the next section a very brief introduction is given to
line geometry. This serves to fix notation, a fuller account
of the subject can be found in several places, most recently
perhaps [7] or [12].

II. LINE GEOMETRY

Classical line geometry is the study of all lines in 3-
dimensional space. The set of all possible lines in space
forms a four dimensional variety known as the Klein quadric.

To see this we introduce the Plücker coordinates of a line.
Let p1 = (x1, y1, z1)T and p2 = (x2, y2, z2)T be the
position vectors of a pair of points. The line joining them has
direction p1 − p2 and moment p1 × p2. The six quantities
here are the Plücker coordinates of the line, they can be
written as a 6-vector,




p01

p02

p03

p23

p31

p12




=




x2 − x1

y2 − y1

z2 − z1

y1z2 − z1y2

z1x2 − x1z2

x1y2 − y1z2




.

This will be written in the partitioned form,
(

p1 − p2

p1 × p2

)
=

(
ω
v

)
.

The advantage of this parameterisation of lines is that if a
different pair of (distinct) points are chosen on the line the
Plücker coordinates only change by an overall multiplicative
factor. Hence, these 6-vectors should be thought of as ho-
mogeneous coordinates in a 5-dimensional projective space
P5. Not every point in P5 represents a line, only those which
satisfy the homogeneous quadratic relation ω · v = 0. The
points satisfying this equation form a 4-dimensional subspace
in P5 usually called the Klein quadric. The 2-plane of points
in the Klein quadric satisfying ω = 0 do not represent lines
in space, they are called infinite lines.

Notice that the equation for the Klein quadric could have
been written,

(ωT , vT )
(

0 I3

I3 0

) (
ω
v

)
= 0,

where I3 is the 3 × 3 identity matrix. In the following the

matrix
(

0 I3

I3 0

)
will be denoted Q0. For two lines l1 and

l2 we can form the symmetric product,

lT1 Q0l2 = ω1 · v2 + v1 · ω2.

This product is invariant under the action of the group
of rigid-body motions. That is its value will be the same if



both lines are subjected to the same rigid-body motion or if
the product is evaluated in different orthogonal coordinate
systems. Geometrically its value is given by the product of
the perpendicular distance between the lines times the sine
of the angle between them. The product is zero if and only
if the lines meet or are parallel. Two lines which satisfy
lT1 Q0l2 = 0 are said to be reciprocal.

There is another invariant product on the lines,

lT1 Q∞l2 = (ωT
1 , vT

1 )
(

I3 0
0 0

) (
ω2

v2

)
= ω1 · ω2.

This matrix
(

I3 0
0 0

)
, will be denoted Q∞. This is known

as the Killing form and represents the cosine of the angle
between the lines.

The intersection of the Klein quadric with a hyperplane
in P5 forms a 3-dimensional set of lines called a linear line
complex. The lines in the linear line complex l satisfy a
linear equations of the form,

zT Q0l = 0

where z is a fixed 6-vector, not necessarily a line. Such
vectors will be called screws here.

A quadratic line complex is the intersection in P5, of the
Klein quadric with a degree 2 hypersurface also called a
quadric. The lines l, lying in in a quadratic line complex
satisfy a quadratic equation,

lT Kl = 0

where K is a symmetric 6×6 matrix. See [5] for much more
on the subject of line complexes.

III. A QUADRATIC LINE COMPLEX

Suppose that p1 is a point in space, now we subject this to
a rigid-body motion. The original point will be transformed
to a new position,

p2 = Rp1 + t. (1)

In general, these two points will be different and so it will
be possible to produce a line through both points, see Fig.
1. As p1 ranges over all points in space, keeping the rigid
transformation fixed, we obtain a family of lines. It is well
known that this family of lines comprise a quadratic line
complex, see [2, chap.3 §3]. Here a different derivation
is given, one which leads directly to a coordinate free
description of the 6× 6 symmetric matrix of the complex.

Begin by assuming that the finite screw motion is about a
line l through a rotation angle θ and with a pitch h. That is
a rotation by θ about l followed by a translation of θh/2π
along l. Without loss of generality we can assume that, p1 =
(d, 0 0)T and

l =
(

λk
0

)
, (2)

where d is the perpendicular distance of p1 from the screw
axis l, k is the unit vector in the z-direction and λ is a
non-zero constant with λ2 = lT Q∞l. Generality is not lost

because it is always possible to bring the axis and point into
this configuration using a suitable rigid transformation. After
the rigid motion we have,

p2 =




d cos θ
d sin θ
θh/2π


 . (3)

Hence the line joining p1 and p2 will have Plücker coordi-
nates proportional to,

s =
(

p1 − p2

p1 × p2

)
=




d(1− cos θ)
−d sin θ
−θh/2π

0
−dθh/2π
d2 sin θ




. (4)

Although the above has been computed using a particular
values for the axis l and point p1, if we compute invariant
quantities linking l and p1 the results will not depend on
this particular position. We could subject the line and point
to a rigid transformation and the results would be the same.
The possible invariants involving l and s are,

lT Q∞s = −θhλ/2π, lT Q0s = d2λ sin θ

and
sT Q∞s = 2d2(1− cos θ) + θ2h2/4π2.

We can use these results to eliminate d, the only quantity
specific to p1. We must be a little careful here since s is only
proportional to the line joining p1 to p2, if we ensure that the
expression we produce is homogeneous in the components
of s then this will not matter. It is easy to see that such an
expression is given by,

(lT Q∞s)2 − λ2sT Q∞s
(lT Q0s)(lT Q∞s)

=
4π(1− cos θ)

θh sin θ
=

2π tan(θ/2)
h(θ/2)

.

(5)
The quantity h(θ/2)/2π tan(θ/2) will be abbreviated to

q following Parkin and Hunt’s quasi-pitch or ‘quatch’, [6].
So the above equation can be written as,

(lT Q0s)(lT Q∞s) + q
(
λ2(sT Q∞s)− (lT Q∞s)2

)
= 0. (6)

The symmetric matrix K, of the quadratic complex can be
seen to be,

K = qλ2Q∞ − qQ∞llT Q∞ +
1
2
Q0llT Q∞ +

1
2
Q∞llT Q0.

(7)
Now, we may assume that the l is a general line, and we

can write it as,

l =
(

ω
v

)
,

with ω ·v = 0, then the symmetric matrix K can be written,

K = q

(
(ω · ω)I3 − ωωT 0

0 0

)
+

1
2

(
ωvT + vωT ωωT

ωωT 0

)
,

(8)
where λ2 has been replaced with lT Q∞l = ω · ω.

Now it is well known that there is a correspondence
between 3-vectors and 3 × 3 anti-symmetric matrices. For



Fig. 1. A Line From the Complex of Lines from Successive Points.

example the anti-symmetric matrix corresponding to ω =
(ωx, ωy, ωz)T is,

Ω =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 .

From this we have that, Ωp = ω × p for and vector p.
Given two anti-symmetric matrices X and Y corresponding
to vectors x and y respectively, it is easy to verify the
following relation; XY = yxT − (x · y)I3. This can be
used to write the symmetric matrix K as,

K = q

(−Ω2 0
0 0

)
+

1
2

(
ΩV + V Ω Ω2 + I3

Ω2 + I3 0

)
. (9)

Since lines lie on the Klein quadric any multiple of Q0 can
be subtracted from K without effect, so the symmetric matrix
of this quadratic line complex can be written,

K = q

(−Ω2 0
0 0

)
+

1
2

(
ΩV + V Ω Ω2

Ω2 0

)
. (10)

Notice that transformations with the same axis and quatch
produce the same quadratic complex of lines.

If we let p0 be an arbitrary point in space then the lines
in the complex through p0 form a quadric cone with vertex
p0. To see this observe that the lines passing through the
point p0 have the general form,

(
u

p0 × u

)
=

(
I3

P0

)
u,

where u is an arbitrary non-zero vector, representing the
direction of the line. Substituting this into the quadratic
complex (10), gives a quadratic equation for u,

uT
(
− 2qΩ2 + ΩV + V Ω + ΩP0 − P0Ω

)
u = 0, (11)

so the set of possible directions u, for the lines through p0

lie on a conic.

IV. THE HOROPTER

As mentioned in the introduction above there are two
related problems here. In one problem there is a single
camera and the objects undergo a rigid motion g. So consider
a ‘pinhole’ camera with optical centre located at p0. The set
of points p such that p and g(p) = Rp+t produce the same
image point form the Horopter. Clearly this means that p0, p
and g(p) will be co-linear.

The original problem is concerned with stereo vision.
Here we have two cameras with optical centres p0 and
g−1(p0) = RT p0 − RT t. If an image point is p then it
lies on the Horopter if p − p0 and g(p − g−1(p0)) =
g(p) − p0 lie in the same direction. Clearly this is the
same problem as the one above however notice that if we
actively transform the objects by a transformation g, the
corresponding transformation of the cameras will be by the
inverse g−1. Sometimes it is easier to think of this problem in
terms of stereo vision and sometimes in terms of a motion of
space, both views will be referred to freely in the following.

Notice that the model of the camera being used here is
very simple. The points in the image are represented by
lines through the optical centre of the camera. To produce
actual coordinates for the image plane it would be enough
to distinguish one of these lines as the optical axis of the
camera. However, it is not necessary to do this here.

The set of all lines joining p and g(p) form the quadratic
line complex described above. The lines which also pass
through the point p0 form a quadric cone with vertex p0, as
we have also seen. Now we can also consider the points p
and RT p − RT t = g−1(p). The lines through these points
lie on a quadric cone with vertex g−1(p0) associated with
the quadratic line complex for the rigid transformation g−1.
This is simply the rigid transformation of the original cone
by the inverse of the transformation under consideration. It
also contains the Horopter, but it is also easy to see that the
line joining the vertices of the two cones p0 and g−1(p0),
also lies in both cones. This line joins the two optical centres
and is usually called the epipolar line.

Two quadric cones intersect in a degree four curve in



general. Here we see that the intersection contains a line,
hence the quartic is not irreducible, the residual curve must
be a cubic. When this cubic curve is irreducible it will
necessarily be a twisted cubic, that is a rational normal cubic
curve, [3, Chap. I].

A simple consequence of this construction is that the
image of the Horopter, that is its projection to the image
plane of either camera, will be a conic curve given by (11).

Another way to view the Horopter is as the intersection
of three quadrics. The condition that the points p0, p and
g(p) should be co-linear can be stated as,

(p− p0)× (Rp + t− p0) = 0. (12)

This vector equation contains three quadratic equations in the
components of p. From this equation it is easy to see that
the points p = p0 and p = RT p0 − RT t lie on all three
quadrics and hence on the Horopter. That is, the Horopter
passes through the optical centres of the cameras and so the
epipolar line is a chord.

A defining property of the twisted cubic curve is that it
can be parameterised by cubic polynomials, see for example
[11, Chap. XII]. A parameterisation for the Horopter can be
found as follows. To begin with the position vectors of points
will be written as,

p̃ =
(

p
1

)
, p̃0 =

(
p0

1

)

and so forth. This is so that the homogeneous representation
of the group can be used, that is g(p) will be represented
by Gp̃ where,

G =
(

R t
0 1

)
.

Equation (12) can be written as,

λ(p̃− p̃0) = µ(Gp̃− p̃0), (13)

introducing parameters λ and µ. Rearranging this equations
we obtain,

(µG− λI4)p̃ = (µ− λ)p̃0. (14)

Now, think of the components of the vectors as homogeneous
coordinates, that is think of space as a subset of projective
space P3 with coordinates p̃T = (x : y : z : w). In
these homogeneous coordinates multiplication by a common
fact has no effect, so we can ignore factors like (µ − λ)
and det(µG− λI4). The cubic parameterisation can then be
written,

p̃ = Adj(µG− λI4)p̃0, (15)

where Adj denotes the adjugate of the matrix, that is the
transposed matrix of cofactors. Since the cofactors of a 4×4
matrix are 3× 3 determinants the elements of the adjugate,
and hence the coordinates of p̃, are indeed cubic functions of
the parameters λ and µ. Notice that the optical centres of the
two cameras are given by the parameter values µ = 0, λ 6= 0
and µ 6= 0, λ = 0.

V. CUBICAL ELLIPSES

Up to projective transformations there is just one twisted
cubic curve. However, if we are only interested in rigid-body
transformation the twisted cubic curves can be classified
according to how they meet the plane at infinity and the
circle at infinity, [14], [15].

It can be shown that the Horopter meets the plane at
infinity at three points, one real and a pair of complex
conjugate points. To see this we can choose coordinates in
space so that p0 is located at the origin and the x-axis is
aligned with the axis of the rotation matrix R. Writing pT

as (x, y, z) and re-introducing the variable w to make the
equations homogeneous, (12) becomes,




x
y
z


×







1 0 0
0 cos θ − sin θ
0 sin θ cos θ







x
y
z


 + w




tx
ty
tz







=




0
0
0


 , (16)

where θ is the rotation angle of the transformation and tx, ty
and tz are the components of the translation vector. Setting
w = 0 will give the intersections of the Horopter with the
plane at infinity. The equation above becomes,

p×Rp = 0. (17)

This obviously has three solutions corresponding to the three
eigenvectors of R. The real solution is pT = (1, 0, 0) cor-
responding to the axis of the rotation, the complex solutions
are pT = (0, 1, i) and pT = (0, 1, −i) where i is the
imaginary unit. Further the complex solutions clearly lie on
x2+y2+z2 = 0, the imaginary circle at infinity. These results
do not depend on the choice of coordinate frame so will
be true in general. Hence the Horopter is a special cubical
ellipse [15].

It is well known that such a curve must lie on a circular
cylinder. Moreover, this circular cylinder must lie in the
net of quadrics (12). A particular quadric in this net can
be selected by taking the scalar product of (12) with a
constant vector. To make things a little easier, let p0 be the
origin of coordinates now, and use the constant unit vector
ω corresponding to the rotation axis of R,

ω · p× (Rp + t) = −pT Ω(Rp + t) = 0, (18)

where Ω is the 3 × 3 anti-symmetric matrix corresponding
to ω, as above. The rotation matrix R can be written,

R = I3 + sin θΩ + (1− cos θ)Ω2, (19)

using the well known Rodrigues formula. This leads to,

sin θ
(
pT Ω2p

)
+ pT Ωt = 0, (20)

since Ω and Ω3 = −Ω are anti-symmetric. To see that this
quadric is indeed a circular cylinder choose coordinate such
that ω is aligned along x-axis. The quadric now becomes,

− sin θ(y2 + z2) + zty − ytz = 0. (21)



Clearly this is a circular cylinder with, axis given by the line
y = −tz/2 sin θ, z = ty/2 sin θ and radius (t2y+t2z)/4 sin2 θ.

The screw axis of the motion lies on this cylinder, sup-
pose a is a point on the screw axis. The effect of the
transformation on such a point will be, g(a) = Ra + t =
a + (θh)/(2π)ω, that is a translation along the screw axis
by (θh)/(2π) where h is the pitch of the screw. Substituting
this into the equation for the cylinder (18) gives,

aT Ω(Ra + t) = a · (ω × (a +
θh

2π
ω)

)
= 0. (22)

Since this vanishes identically, all points on the screw axis
lie on the cylinder. The screw axis is in fact tangent to the
Horopter at infinity and hence is the asymptote for the curve,
see Fig.2.

VI. SINGULARITIES

As mentioned above, the image of the Horopter in either
of the cameras is a conic. However, this conic can be
degenerate. This can happen in two possible ways. Either
the motion g is such that the Horopter itself degenerates.
Alternatively, the optical centre of the camera may be located
at a point where the conic degenerates. Recall that the conic
is determined by the 3× 3 symmetric matrix,

M = −2qΩ2 + ΩV + V Ω + ΩP0 − P0Ω,

see (11) above. The conic will be degenerate if det(M) =
0. This determinant will be a function of the rigid-body
motion g and the coordinates of the optical centre p0. If
the Horopter itself is degenerate then det(M) will vanish
for all possible values of p0. Again here we can choose a
coordinate system to simplify our computations, suppose we
choose a coordinate frame whose origin is located on the
screw axis of the motion, this will make the anti-symmetric
matrix V vanish. Further we can choose the x-axis of our
coordinate system to be aligned with the screw axis of the
motion, so that,

Ω =




0 0 0
0 0 −1
0 1 0


 , and P0 =




0 −z y
z 0 −x
−y x 0


 ,

is the position of the optical centre.
In this coordinate frame the determinant becomes,

det(M) = 2q(y2 + z2). (23)

For a general quadratic line complex this determinant
would be a quartic in the coordinates of p0, representing
a degree four surface in space usually know as the Kummer
quartic surface, [5, Chap. VI]. In special cases, this surface
degenerates to four planes, such a quadratic line complex
is called a tetrahedral line complex. In the case under
consideration we see that, for non-zero q, the complex is
tetrahedral, the four singular planes being given by y = iz,
y = −iz and the plane at infinity counted twice. The finite,
complex conjugate planes intersect in the real line y = z = 0
which is just the screw axis of the motion. That is, for any
rigid-motion the image of the Horopter will be degenerate if

the optical centre of the cameras lie on the screw axis of the
motion.

If the quatch q, of the motion is zero then the Horopter
itself will be degenerate. Since q = h(θ/2)/2π tan(θ/2),
this can happen if the pitch h, of the motion is zero or if the
angle θ = ±π.

When h = 0 the motion is a pure rotation. Now the
rotation axis is part of the Horopter, since if a lies on the
rotation axis Ra + t = a and so Ra + t − p0 = a − p0

satisfying (12). The residual curve will be a conic, in fact a
circle since it meets the circle at infinity in a pair of complex
conjugate points. This circle has a long history in the study of
binocular vision dating back to the early 1800s, it is known
as the Vieth-Muller circle.

If the rotation angle is ±π then the cameras are facing
in opposite directions and we don’t expect to see anything.
Mathematically, the Horopter in this case contains a line
at infinity, the residual curve is a hyperbola in the plane
containing the two optical centres and the screw axis of the
motion.

The final case to consider is when the motion is a pure
translation, this has not been considered so far since in this
case the pitch is usually said to infinite. However, it is easy
to see in this case that the Horopter is no longer a curve but
consists of all the points on the plane at infinity.

VII. OPTICAL FLOW

A closely related problem concerns optical flow. The
optical flow is an approximation to the projection of an object
point’s velocity onto the image plane of a single camera. So
now we are dealing with infinitesimal motions rather that
finite motions as above. It is reasonable to ask which points
in space have velocities that cannot be detected in the image.
The velocities of these points will be directed along the line
joining the point to the optical centre of the camera. Again
the these points form a twisted cubic. The velocity of point
p will be ω×p+w where now ω is the angular velocity and
w is the linear velocity of the origin. Using homogeneous
coordinates we get an equation very similar to (13),

λ(p̃− p̃0) = µSp̃, (24)

where,

S =
(

Ω w
0 0

)
,

is the instantaneous velocity screw of the motion. So by the
same argument as above,

p̃ = Adj(µS − λI4)p̃0, (25)

gives a rational cubic parameterisation of the curve. This
twisted cubic curve shares many properties of the Horopter,
for example since Ω has the same eigenvectors as the
corresponding rotation matrix R = eΩ, this twisted cubic
is also a cubical ellipse lying on a circular cylinder.

In this situation we can also find a quadratic complex of
lines. Take a point p, now construct the line through this
point aligned with velocity of the point ω×p + w. The set



Fig. 2. The Horopter lies on a Circular Cylinder with the Screw axis as Asymptote.

of all such lines for each point in space form a quadratic line
complex. This can be seen by following the argument given
in section III above. The symmetric matrix of the complex
is therefore,

K = h

(−Ω2 0
0 0

)
+

1
2

(
ΩV + V Ω Ω2

Ω2 0

)
, (26)

where
(

ω
v

)
is the axis of the motion’s infinitesimal screw.

That is, where w = v + hω and V is the anti-symmetric
matrix corresponding to v in the usual way.

Notice that this is same matrix as for a finite motion but
with the quatch q replaced by the pitch h. Of course the
factor of 1/2 is irrelevant since the equation for the complex
is homogeneous. This shows us that the image of the twisted
cubic is again a conic in general.

VIII. CONCLUSION

Although much of this work is well known it has been
presented using modern Lie group theory and a little alge-
braic geometry. This makes it more accessible to a modern
audience and links it with other modern work in this area.

However, there are some new observations, for example
in section VI the circumstances in which the Horopter and
its image degenerate are studied. The novelty here is that it
is clear that these are the only ways in which these curves
can degenerate.

In section III it was observed that motions with the
same axis and quatch produce the same quadratic complex.
This means that such motions cannot be distinguished by
observing the images of their Horopters whatever camera
position is chosen.

The quadratic line complexes introduced in section III
appears in other guises in Kinematics. It is the set of
lines which are reciprocal to their images under a rigid-
body motion and also the intersection of planes with their
images under a rigid-body motion, [2, Chap.3]. The complex
described in section VII can be thought of as the limiting

case of the first complex as the rigid-body motion tends to
an infinitesimal screw motion. It also appears as the complex
of Helitangent lines introduced by Jack Phillips, [8, Chap.
11].

Twisted cubic curves also turn up in other places in
Kinematics. In a continuous rigid motion points which are
instantaneously at inflection points of their trajectories form
a twisted cubic curve, [1].

In future work it is intended that more of this fascinating
geometry can be explored and it applications to robotics
uncovered.
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