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Abstract

This paper uses a series of models to illustrate one of the fundamental processes of model building – that of enrichment and elaboration.  The paper describes how a problem context is given which allows a series of models to be developed from a simple initial model using a queuing theory framework.  The process encourages students to think about the assumptions being made within their models and how these assumptions may be relaxed to produce an enriched model.
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Introduction

Since the 1960s there has been a call for schools and colleges to enliven the teaching of mathematics at all levels (primary, secondary and tertiary) by engaging students with the application of mathematics and with mathematical modelling (Pollak, 1969).  The reasons why we might want to explore the use of models and modelling in mathematics teaching are primarily twofold:  firstly, the use of mathematics and models in other contexts including ‘real world’ problems can have the effect of generating motivation among students for the learning of mathematics and can help “… support and consolidate their concept formation, sense making and experience of meaning in and of mathematics.” (Niss, 2012, p.50);  secondly, the application of mathematics as a tool to help in the understanding and analysis of problems in other contexts is an activity which has value in its own right and helps to strengthen the idea of mathematics as an enabling subject that underpins many other subject areas (Niss, 2012).  Furthermore, it has been suggested that in addition to improving learning in mathematics the process of mathematical modelling can help educators understand the mathematical and logical thinking that pupils undertake as they seek to build models and therefore can be a useful window into the mathematical thought processes of the student (Jacobini & Wodewotzki, 2006;  Kang, 2012; Tekin et al, 2012; Park et al, 2013).  
Many education systems around the world have now embraced the reality of a knowledge-based workforce with access to large amounts of information recognising that learning needs to be owned by students who are equipped to construct knowledge and structure their learning not only while in education but as they move through employment as well (Jessop, Fairclough & Wodak, 2008; Eric, 2009; Kasworm, 2011, Holzer 2012). Kaiser (2005) argues that “It is insufficient to simply impart competencies for applying mathematics only within the framework of school curriculum.  Instead more mathematics teaching should deal with examples from which

· Students understand the relevance of mathematics in everyday life, in our environment and for the sciences,

· Students acquire competencies that enable them to solve real mathematical problems including problems in everyday life, in our environment and in the sciences.” (pp. 99-100)

Kaiser further argues that the use of reality based modelling problems are gaining greater significance in helping students to gain these competencies and in exposing students to the quite complex translation that must be made from real world to the mathematical world.  The development of modelling and problem solving skills are emphasised as key tools with which students can shape their learning and fashion mental models of the world around them. Indeed, the development of skills using mathematical modelling can start at a very early age (English & Watters, 2005).
There are, however, issues to be overcome.  Mathematical modelling requires that the modeller has a good grasp of the mathematical components to be assembled in the model (although of course models can be built with just the basic arithmetical operators and a rudimentary knowledge of algebra) as well as some knowledge of the context area within which the model is being built (Galbraith, 2008).  The latter can be overcome to some extent by restricting areas of application to real life problems with which most students would already have some familiarity. The difficulty that arises with mathematical modelling is that it is not a skill that comes easily to every student.  It is a craft that needs to be worked on and not all students find it immediately clear how to go about producing a model.  To help with this a number of authors have provided descriptions of the modelling process (Noble, 1982; Blum & Ferri, 2009; Perrenet & Zwaneveld, 2012) but of course this process view of modelling does not necessarily help students to understand how to undertake each step in the process i.e., with the ‘art’ of modelling.  An example of such a process view is given in Figure 1.
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Figure 1: Suggested Modelling Process (Stillman, Galbraith, Brown & Edwards, 2007)

Stillman (2012) describes how a key part of the modelling process is the movement from B to C and that this “bottleneck” as it has become known remains “…a major teaching and research priority” (p. 909).
Stillman (2012) has developed an emergent framework for helping to identify where student blockages could occur during the various transitions described in Figure 1, for example “making simplifying assumptions” (transition 1) or “making relevant assumptions” (transition 2).  While this is helpful in alerting teachers to potential blockages, how we teach students to overcome these blockages from a pragmatic modelling viewpoint is unclear. Furthermore, Powel and Baker (2011, p50) comment that “Very little has been written on the craft aspects of modelling, whether in business or science.”   
In an attempt to find ways to work through these student blockages,  educators have begun to explore pedagogic approaches  appropriate to the teaching of mathematical modelling particularly in relation to developing in students some of the skills exhibited by experienced modellers.  Cochran (2009) presents an excellent survey of pedagogy in the field of management science (a subject domain in which modelling is a fundamental part and often undertaken by non-specialists) in which he identifies a clear movement towards active learning on the part of students.  By taking an active learning approach he maintains that students can take ownership of their own learning and that such an approach “...should improve student comprehension, retention, critical thinking and problem solving skills, and intellectual confidence/self reliance.” (Cochran, 2009, p166).  Such an approach to teaching requires the use of modelling cases and projects (both small and large scale) and that students are equipped with the skills of model building if they are to be able make any headway on the case specifications provided.  Powell and Willemain (2007) explore the experience of novice modellers and describe how their own teaching of modelling now downplays the acquisition of technical skills and discussion of principles in favour of the provision of modelling heuristics - developed as helpful rules of thumb about good modelling practice. Rather than just present student with a modelling process diagram, they focus on the development of a particular set of skills designed to allow novice students to gain traction on a modelling problem:

· Problem framing (eg, influence diagrams, working backwards).

· Model hygiene (tools for building efficient and effective models).

· Prototyping (building a series of increasingly complex and insightful models).

· Parameterization (developing relationships with meaningful inputs).

· Sensitivity analysis (varying inputs and model structure).

· Scenario analysis (developing interrelated sets of decisions that tell a story).

· Generating insights (translating model behaviour into terms useful for managers).

In trying to expose students to the craft of mathematical modelling we can draw on the experiences of those who are experts in mathematical modelling and who also have a feel for the ways in which novice modellers can be taught.  One of the first and most sympathetic set of heuristics (sympathetic in terms of offering genuine pragmatic help and guidance to model builders) is to be found in “On the Art of Modelling” (Morris, 1967) an article which seeks to give practical help and advice on the process.  Although more than 40 years old, the paper is still relevant and those who are interested in teaching mathematical modelling or in developing modelling skills for themselves.  Subsequent authors who have written about mathematical modelling have referred to Morris’s paper (Pidd, 1999; Powel & Baker, 2011).
One of the key themes that Morris highlights is that modelling should embody two looping processes.  The first describes how model building begins with a simple model which is then enriched as unrealistic assumptions are relaxed.  This is the process of “enrichment or elaboration”.  As Morris says: “The process of model development may be usefully viewed as a process of enrichment or elaboaration.  One begins with very simple models, quite distinct from reality, and attempts to move in evolutionary fashion towards more elaborate models which more clearly reflect the complexity of the actual management situation.” (Morris, 1967, p.B-709).  At the same time, under the second looping process, the modeller should be careful to ensure that the model remains tractable and, indeed, solvable. In relation to solving the model, Morris makes a useful observation that the novice modeller may consider analogy as a useful starting point for modelling.  This means examining the problem situation to see if it has similarity with a problem solved previously through the development of a model, or examining the situation to see if it suggests a standard model form which has already been analysed and well understood.  

This second looping process can act as a brake on the first. As enrichment and elaboration increases the extent to which the model reflects reality they also invariably increase mathematical complexity and this cannot be at the expense of the modeller’s ability to obtain a solution.  So by starting with a tightly constrained and perhaps simplistic view of the problem situation a model may be constructed relatively quickly and, so long as the students are clear about the assumptions they have made in its production, can be improved by enrichment and elaboration as advocated by Morris.  It should be noted here that the relaxation of assumptions does not necessarily imply their removal all together, but that they become less restrictive.  For example a fixed value may be allowed to vary, an assumed linear relationship between two variables allowed to become nonlinear, or a regular patter of arrivals allowed to become random.
Morris’s ideas have been reflected in the work of others.  Some authors refer to Morris when describing the results of empirical research on modelling (see for example Willemain, 1995) or models designed for specific purposes or problems.  For example, Pritsker (1997) specifically use enrichment and elaboration as a stage in the model development process for performance enhancement of a manufacturing system. 

Others have discussed model building in general and have described the more practical aspects of modelling.  Pidd (1999) proposes six principles of modelling which acknowledge the looping processes of Morris: “(1) Model simple; think complicated. (2) Be parsimonious; start small and add. (3) Divide and conquer; avoid megamodels. (4) Use metaphors, analogies, and similarities. (5) Do not fall in love with data. (6) Model building may feel like muddling through.” (p.121). 
Powell (1995) advocates the use of a prototype to just get a working model down on paper and similarly Powel and Baker (2011, p46) describe a number of modelling heuristics that they argue would help in the design and use of models.  These include “1. Simplify the problem. 2. Break the problem into modules. 3. Build a prototype and refine it. 4. Sketch graphs of key relationships ...”.
The examples cited above make similar suggestions to “start small and add” (Pidd, 1999) and “Build a prototype and refine it” (Powel & Baker, 2011) without really illustrating how this could practically be done.
This paper describes a series of models based on queuing theory that have been used in the classroom setting to introduce students to practical model development and  in particular to the process of enrichment and elaboration.  The approach exemplifies the idea of active learning and, rather than tease out specific skills for development as listed above (Powell and Willemain, 2007), encourages active participation by students in the looping process described by Morris.  In this way students are exposed to many of the skills listed by Powell and Willemain but within the context of a single modelling case embodying active learning.  Furthermore the idea of setting the modelling within a single framework of connected models gives students a first-hand illustration of how we may “start small and add” or “Build a prototype and refine it”.  Thus key heuristics for overcoming the modelling bottlenecks are demonstrated to students in a structured way.

I have used these models with a wide variety of students ranging from postgraduate students studying decision sciences and information management who have some modelling experience to undergraduate students studying courses in information technology, business decision support and  management science who have none.  All students would have a GCSE in mathematics at grade C or above and most would have a UK A level qualification in a quantitative subject.  For those that do not, some supplementary mathematics support is available.  Some students will already be familiar with elements of queuing theory (usually students taking a course in management science) but most will not be so the development of queuing models is conducted alongside the modelling work since the solution processes are similar for each model.  
The paper does not report on original educational research and neither is it a philosophical discussion on an epistemology for mathematical modelling.  Rather it recognises the blockages identified by Stillman (2012) and given that an agreed epistemology for mathematical modelling does not yet exist (Flegg et al., 2013), suggests how, in my experience,  students may be exposed to the process of modelling from a pragmatic viewpoint using a real world problem setting.  The models described are used to illustrate the use of analogy, model enrichment through the relaxation of assumptions and consideration of model tractability.  Thus both looping processes are exposed to the students.  With this limited set of objectives in mind I have found it beneficial to refer back to the original paper of Morris in working with students and to use his ideas as they were originally described.
The context of the problem is that of describing the circulation of books in an academic library from the library shelf to users and back to the library shelf again.  The mathematics used is not beyond what would be taught at ‘A’ level in the UK and involves the summation of finite and infinite geometric series and standard algebraic manipulation of equations.
Queuing Theory

Queuing theory is the name given to a branch of management science that deals with the growth and decline of queues that occur when people, or generally customers, queue for a service.  Although the average rate at which customers arrive and are served are generally assumed constant, it is the random variation in individual service times and arrivals that cause queues to grow and dwindle.  Modelling these random (stochastic) processes allows us to predict average waiting times, queue length and so on.  Generally queues are described according to a number of characteristics.  How many servers there are for the queue and the average service rate for each server, the average arrival rate for customers, the queue discipline (how customers are selected from the queue) which is generally first-in-first-out but could be some other priority based method, and the size of the potential customer population.  Different models have been developed to deal with variations in these parameters and for differing statistical distributions of service times and patterns of customer arrival.
My choice of queuing theory as a modelling framework has three main advantages.  Firstly, there is a range of models that vary in complexity.   The simplest is with a single server and a first-in-first-out queue, fixed (deterministic) service times and a stochastic arrival process for customers.  The simplest models also assume an infinite population of potential users.  Further models have been developed that allow for random arrivals and service times, multiple servers and queues and queue disciplines that are not first-in-first-out.  Yet more complex still are models that apply to networks of queues with general service time and arrival rate distributions.  The underpinning theory and examples of applications for these models are well described in the management science literature (see for example Camm & Evans, 1996).
Secondly, using the analogy of a queue to represent the circulation of books allows modelling to begin relatively quickly with these standard models and the class can focus on the assumptions being made and their interpretation within the context of the problem.  Enrichment and elaboration of the model allows students to move to a more realistic but more complex queuing model so that the trade-off between the relaxation of assumptions and mathematical complexity can be appreciated.
Thirdly, the more complex models still have analytic solutions available to students until a level of complexity is reached such that approximate solution methods are required.  Again these solution processes are well described in standard texts so that the emphasis on teaching and learning is on the two looping processes and the importance of assumptions rather than on the development of solution processes.

The illustrative examples below show how models may evolve with students.  Depending on the time available for teaching aspects of modelling, students may be guided to work through the enrichment and elaboration process for themselves, or the tutor can use the models more formally as examples of how models may develop. The sequence of models given below is one that I have found useful when I (as tutor) am taking the lead in model development.  In modules where students have time to work on their own or in groups then the modelling can go along different paths (within the framework of queuing theory) depending on how assumptions are considered. However model 1 is a very common starting point for work with my students.   

Problem Description

In a little more detail, the problem that I give to students is that of an academic library which contains a number of books that have been recommended to a large class studying a particular topic.  The class is large enough, and the books of sufficient importance so that there is demand for the books over a long period of time (perhaps an entire academic year).  Two particular decisions of importance in setting the operating policies of an academic library relate to the length of the loan period in operation for these books and the number of copies of each title that should be provided (the duplication policy).  These two decisions are, of course, related to a certain extent since in times of financial stringency many librarians will use a reduction in the loan period as a surrogate for providing extra copies since with a reduced loan period the book should then circulate more quickly to a wider group of customers.  In the limit, extremely popular texts are placed in the reserve section so that the loan period is effectively reduced to zero.  Many academic libraries actually use a combination of different loan periods (even for copies of a single title) so that maximum book usage is ensured across the collection.
The problem is to build a model that will allow some analysis of the effect of changing the duplication policy and/or the loan period.  My teaching experience suggests that an immediate response by many students is to suggest a simulation model (perhaps using a spreadsheet) and indeed simulation has been used with some success by researchers in this area (one of the earliest and most comprehensive simulation studies was that of  Buckland, 1972) but in order to get students thinking about analytical mathematical models computer simulation is not permitted at this stage.  This is because the development of a simulation model (and the use of associated software) requires the development of modelling skills relating specifically to simulation modelling and would detract from the desired focus of model development and assumptions.     
As previously mentioned, Morris (1967) makes a number of suggestions for starting out on the modelling process.  One is to use the power of analogy – to see if our current situation is like any other that we might already have modelled or that we understand well.  Other suggestions are to try and capture particular instances of the situation being modelled and see what they might suggest about model form, assumptions etc., to try to think practically about the process being modelled and then, if possible, begin to establish some notation and describe obvious relationships using the notation.  
In the models that follow, we will let B be the number of books in the collection with b representing the number on loan at any time so that (B – b) will be on the ‘shelf’.  We let L be the loan period (in weeks) and C is the number of copies available of each title.
Model 1
Students are encouraged to begin by considering the simplest situation in which we  have  just a single copy of a single title that has been recommended to a class. We assume that the title is a core text book so that we might expect continuing high levels of demand during the year so that even if a class member has borrowed the book once, he/she will still return for further borrowing attempts.  Visualisation of potential borrowers (we shall call these customers) arriving at the library, the library books moving off the shelf to be read and then returned to the shelf suggests that (if simulation is ignored) a stochastic process such as queuing theory could provide a useful framework for the model, where the ‘service’ provided to the customer is having possession of the book.  In fact, some of the earliest mathematical analysis of library systems has been conducted using these types of model (much of the earliest reported work was by Morse, 1968, 1979) and such models are in still in use today for optimising library performance (Orlic & Marinovic, 2012).  Students will sometimes suggest a purely deterministic model at this stage in which student arrivals are completely regular as is borrowing time.  This is shown to be too simplistic since no queue will ever build up if the service rate is faster than the arrival rate of customers.  On the other hand the queue will just grow without limit if the service rate is slower than the arrival rate.   Students are encouraged to consider a more general framework allowing random processes of which their suggestion is more of a special case.  
Modelling can begin simply by considering a single title with one copy and proceed to model how it might move between library shelf and customer.  In the models that follow, a conventional queuing theory analysis is used (many management science or operational research text books will contain the basic theory, such as Camm & Evans, 1996) and the state of the system represents the number of customers in the system.  Pn represents the probability of the system being in state n. In the case of this first model, state 0 represents no customers in the system and the book on the shelf, state 1 represents one customer in the system and the book out on loan. Customers who arrive to find the book on loan will just leave and try again another time. If, using queuing theory terminology and standard notation, the average arrival rate of customers to borrow the book is  and the average service rate is  = 
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then the state diagram in this simple model is:


To find a steady state solution to this queue we equate the average flow from each state into the other giving  P1 = P0 from which we get P1 = 
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These equations could be derived from first principles or, since the analysis of queues is well understood, just taken as standard queuing theory results (Anderson et al., 2012).  Now, there are a number of queue statistics that can be calculated from the Pn one of which is the average number of customers in the system and this is given, for an n state model, by:

S
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In the simple two state model, S = P1 would be interpreted as the average proportion of time the book is on loan and 1-S as the average proportion of time it is available on the shelf.  In all the models that follow, the analysis will follow the same format but only the state transitions and final results will be presented.
A question to ask at this stage is what would be the interpretation of  and  in this case?  The average rate of customer demands per week,  will depend on the size of the class to whom the book was recommended, their propensity to use the library, their determination to borrow a book if initially unsuccessful, the value of the book to the borrower etc.  This would be a further modelling exercise to consider at a later stage but initial models would be tested with values of  representing high, medium or low demand.  The average rate at which books are returned to the shelf per week,  will depend on the loan period and the number of books on loan so that in general with b books on loan this would, on average, be 
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per week on the assumption that the average borrower returns the book on time.
This model considers only a single title with just one copy available and customers are unable to make a reservation if it is not available.  In these respects it is clearly inadequate but we can at this stage note some of the other assumptions.  Firstly, students are asked to interpret the assumptions of queuing models within the context of this problem.  For example, will arrival and service rates really be random?  What other patterns are likely?  Will customers observe the loan period L in all circumstances even if it is short?  What is the nature of the calling population?  With a finite class size recommended to read the book a finite calling population model might be used but the assumption about the nature of the book being a core text book allows us to assume repeat visits by customers (even if they have borrowed successfully already) and so an infinite calling population model may be used which makes analysis a little easier.  Secondly, students are asked to think about the structure of the model in the context of the problem and list the assumptions that might later be relaxed.  In this case we have, for example, allowed only one copy of one title to be modelled and customers have not been allowed to place a reservation if it is not available.  We now proceed to enrich the model by relaxing some of these assumptions.
Model 2

We now consider allowing customers to place a reservation for the single copy book if it is not available.  This, in queuing theory terms, is equivalent to allowing a queue to build up at the service desk waiting for book returns although this is a virtual rather than physical queue.  When reservations have been placed for a book these are serviced by the library in the order in which they have been made, as and when the copies of the book are returned to the library.  That is to say we can assume a first-in-first-out queue discipline.  The state model would now be:


 


In this case state 0 represents no customers in the system so the book would be on the shelf, state 1 would be one customer having borrowed the book, state 2 would represent one customer with the book and another queuing (having made a book reservation) and so on.  As before,  would be 1/L.

For a steady state solution we adopt the same approach as for model 1 and equate the average flow between each pair of connected states so that P1 = P0 , P2 = P1 and so on.  Again we note that 
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.  Note also that P0 is the probability that the book is available on the shelf.
Now, changing the model to allow a queue to build has permitted reservations to be made for the book but in the model we are assuming that the queue can go on building indefinitely i.e. there is no limit on the number of reservations made.  In reality, customers realise that if they see on the library issue system that there are already many reservations for the book then they are unlikely to place a reservation themselves.  This leads to a further enrichment of the model.
Model 3

We now describe a model in which there will be a limit to the number of reservations that may be made.  In other words, once a certain number of reservations are observable on the library system then no further reservations will be made until the queue is reduced below this maximum size.  In reality, the situation would not be as rigid as this as some customers would be more persistent than others so we might expect the value of  to reduce as the queue gets longer rather than to remain constant but with strictly limited queue capacity.  The state transition diagram would be:




In this model, with N customers in the system there will be N-1 reservations and this is the maximum that can be allowed.  Using exactly the same model solution process but noting that we have to sum a finite rather than infinite series we get P0 = 
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Students are asked at this stage to note the fact that with N=1 this model reduces to model 1 so that 
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Having now established a model in which book borrowing and reservations are allowed we turn our attention to the issue of providing more than a single copy of the title.

Model 4

We return to model 2 and now consider allowing C copies to be available together with book reservations.  The analogy here with queuing theory is to allow multiple servers to service the queue, all working at the same average rate (1/L).  The state diagram will be similar to that for model 2, but we interpret the states differently so that state i represents i books out on loan and no reservations for 
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and thereafter the states represent C copies on loan and i-C reservations for i > C.  Also, the value of  will now be related to the number of copies out on loan so that, specifically, 
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Now the calculation of P0 is more difficult and we start to get issues with the tractability of the model.  In fact we can still analytically solve this model so that,

P0 = 
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and a little further calculation gives the average number of reservations as:
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Students are encouraged to play with each of these models so that for example in this last model they can assess the effect of changing the loan period, L, and the number of copies, C, for a given arrival rate of customers to see what effect this has on the availability of the book (defined for convenience as the average number of copies on the shelf) and length of the reservations queue.  This would best be achieved using a simple spreadsheet to undertake the calculations and plot results.
Further Enrichment and Elaboration
At this point, students begin to see the limitations of this particular modelling approach since trying to embellish the models further by, say, enhancing model 3 to allow multiple copies begins to produce models that are difficult to solve analytically for a steady state solution.  However this is not to say that the modelling exercise stops at this point.  Even with these simple models there are further refinements that can be made by considering changes to some of the queuing assumptions.  For example, students can assess different arrival patterns conforming to other than the standard random process if they feel that student demands are not generally random.  Queuing theory results for general arrival and service process are available in the literature. See for example Anderson et al. (2012). Also, for heavily demanded core text books, the likelihood is that returns to the library will be tightly clustered around the loan period expiry time (assuming an effective fines policy!) so that the return mechanism becomes almost deterministic and regular rather than random.

In terms of the structure of the models, students have taken these basic models further to look at how one might model a title for which some copies are held in the long loan collection and with some copies in the short loan collection.  This now moves the modelling towards simple queuing networks where there is one queue process for each collection with different server speeds (relating to the different loan periods) and customers will select which queue they join on arrival, or move to the short loan queue if they are unsuccessful with the long loan borrowing process.  Analytically, these queuing systems may be solved under certain conditions (see for example the earlier work of Jackson, 1963, and Gordon and Newell, 1967) but for more complex networks it may be necessary to use approximate solution methods (for example Chandy et al, 1975).  At this point Morris’s two looping processes conflict.  The modeller needs to decide on the utility of the most recent model for which an analytical solution exists.  If it sufficient to make the model a useful decision aid then perhaps no further enrichment or elaboration is necessary.  If further refinement is required then perhaps an heuristic solution process could be considered or perhaps the use of a simulation of the network. In my view the latter poses additional problems since as well as being mathematically unsatisfactory, simulation requires some additional skills in deciding run lengths, statistical validity of results etc.  
Finally, students are asked to consider how they might now go about modelling a collection of B titles recommended to a class of students, as was the original specification.  Some will use the queuing theory framework again while others will use a different model form.  

During my time teaching mathematical modelling I have used other modelling frameworks to explore the library scenario.  These have included the large family of stock control models that have been developed within management science (where books are demanded and re-stocked as they leave and are returned to the library) and also the many population dynamics models (where the book population – the ‘prey’ – is diminished by students acting as ‘predators’ and replenished by the reproductive capacity of the prey population – the book return rate). However I have found the queuing theory family of models the most intuitive and readily accessible for students new to the modelling process.
Conclusion

Kaiser (2005) argues for the use of reality based modelling problems that help students to gain competencies in solving the problems they will meet in everyday life, in our environment and in the sciences.  The development of modelling and problem solving skills are emphasised as key tools with which students can shape their learning and fashion mental models of the world around them.  Modelling has two key components that need to be addressed: the first of building the right model; and the second of building the model right.  The former relates to conceptualising a model that is appropriate for its purpose and adequately represents the problem situation, while the latter requires the completed model to be mathematically precise in representing the conceptualisation and to have been analysed and solved correctly.  Key to both components is the identification and treatment of assumptions.

This paper has illustrated the use of a simple problem from library management to demonstrate the process of model building to students.  In particular it highlights the identification of assumptions and model development through enrichment and elaboration.  The problem used is one of a number that have provided novice modellers with some experience in model development in a setting where a number of possible approaches are possible.  The paper has described a number of related models which differ in their assumptions and mathematical complexity.  Although the models have been described in some detail the purpose of the modelling sessions is not to teach the models, but to teach the modelling process.  Specifically that part of the modelling process engaging with model assumptions and associated with transitions 2, 3 and 7 of Figure 1.  That said, there is always a possibility that the models become the focus rather than the modelling process.  Recognising that simply substituting numbers into previously developed models teaches very little about model building, the focus of the learning consistently returns to assumptions.  As Morris states in his conclusion “A (much more) useful introductory device is to present a simple model and ask for enrichments in specific directions.” (Morris, 1967, p.B-716).  This can be achieved with this family of models.

Although we have only looked briefly at the different queuing theory models that might be adopted here students are given, prior to these exercises, some grounding in the process of model building and the importance of listing and exploring assumptions made within the context of the problem.  This is particularly important when, as in this case, we are dealing with a modelling framework that has a number of assumptions already encased within it that must be examined.  These must not be overlooked and students often have similar problems when using statistical methods without paying due regard to the underlying statistical assumptions that are made, but sometimes not made explicit (Hahn & Meeker 1993).

One of the advantages of using a well understood modelling framework such as queuing theory is that underlying assumptions are well known and discussed in the literature and that, equally as important, results such as average queue lengths, waiting times etc. have known formulae for each model variation.  This means that students can obtain results from their enriched models relatively quickly by hand calculation or using a spreadsheet.  Research (Flegg, Mallet & Lupton, 2013) describes how this ability to practice with and use a model is an approach adopted by students in learning about new models and so is to be encouraged and facilitated.
Subsequent to the modelling work described in this paper students undertake modelling work in small groups using further real problem scenarios but using the same principles that have been illustrated by these queuing models.  Thus these models form part of the students’ first immersion into the modelling world before they then go on to develop further models for themselves.  
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