1 Stability recovery performance in adults over a wide age range: A multicentre reliability analysis

2 using different lean-and-release test protocols

Werth, J.^{1,*}, Bohm, S.^{2,3}, Klenk, J.^{4,5,6}, König, M.¹, Sczuka, K.S.⁵, Schroll, A.^{2,3}, Epro, G.¹, MandlaLiebsch, M.², Rapp, K.⁵, Potthast, W.⁷, Arampatzis, A.^{2,3}, Karamanidis, K.¹

5

¹Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank 6 7 University, London, United Kingdom, ²Department of Training and Movement Sciences, Humboldt-8 Universität zu Berlin, Berlin, Germany, ³Berlin School of Movement Science, Humboldt-Universität 9 zu Berlin, Berlin, Germany, ⁴Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, 10 Baden-Wurttemberg, Germany, ⁵Department of Clinical Gerontology, Robert-Bosch-Hospital, Stuttgart, Germany, ⁶University of Applied Health and Social Sciences, Study Centre Stuttgart, 11 12 Stuttgart, Germany, ⁷Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 13 Cologne, Germany

14

15 ***Corresponding author**:

16 Julian Werth

- 17 Sport and Exercise Science Research Centre
- 18 School of Applied Sciences, London South Bank University
- 19 103 Borough Road, London SE1 0AA, United Kingdom
- 20 E-mail: <u>werthj2@lsbu.ac.uk</u>
- 21
- 22 Article type: Original Article
- 23
- 24 **Word count:** 3778

25 Abstract

26 The ability to effectively increase the base of support is crucial to prevent from falling due to stability 27 disturbances and has been commonly assessed using the forward-directed lean-and-release test. With 28 this multicentre study we examined whether the assessment of stability recovery performance using 29 two different forward lean-and-release test protocols is reliable in adults over a wide age range. Ninety-30 seven healthy adults (age from 21 to 80 years) were randomly assigned to one out of two lean angle 31 protocols: gradual increase to maximal forward-lean angle (maximal lean angle; n=43; seven 32 participants were excluded due to marker artefacts) or predefined lean angle (single lean angle; n=26; 33 21 participants needed to be excluded due to multiple stepping after release or marker artefacts). Both 34 protocols were repeated after 0.5 h and 48 h to investigate intra- and inter-session reliability. Stability 35 recovery performance was examined using the margin of stability at release (MoS_{RL}) and touchdown 36 (MoS_{TD}) and increase in base of support (BoS_{TD}). Intraclass correlation coefficients (confidence 37 intervals at 95%) for the maximal lean angle and for the single lean angle were respectively 0.93 (0.89-38 0.96) and 0.94 (0.89-0.97) in MoS_{RL}, 0.85 (0.77-0.91) and 0.67 (0.48-0.82) in MoS_{TD} and 0.88 (0.81-39 (0.93) and (0.80, (0.66-0.90)) in BoS_{TD}, with equivalence being revealed for each parameter between all 40 three measurements (p < 0.01). We concluded that the assessment of stability recovery performance 41 parameters in adults over a wide age range with the means of the forward lean-and-release test is 42 reliable, independent of the used lean angle protocol.

- 43
- 44
- 45

- 47
- 48

⁴⁶ **Keywords:** Stability performance, lean-and-release test, stability recovery stepping, reliability, falls.

49 Introduction

Falls are often caused by stability disturbances and remain a global health issue that majorly affects older but also middle-aged adults and often lead to severe health conditions, or even death (Burns and Kakara, 2018; Peeters et al., 2018; Terroso et al., 2014; Stenhagen et al., 2014). It is therefore important using reliable assessments for the recovery performance after stability disturbances to identify individual deficiencies or to classify the effectiveness of acute or long-term interventions on stability recovery performance.

56 The increase in base of support (BoS) i.e., to control the centre of mass (CoM) within the BoS, is one 57 of the main mechanisms to recover stability after disturbances (Hof, 2007). Stability recovery 58 performance can be determined using the margin of stability concept (MoS; Hof et al., 2005) that 59 provides information about the position of the CoM considering its velocity (extrapolated CoM; X_{CoM}) 60 in relation to the boundaries of the BoS, where the X_{CoM} being outside the BoS represents an instable 61 state of the body, and vice versa. To identify individual deficiencies in stability recovery performance 62 after sudden stability loss in the anterior direction, the lean-and-release test has often been applied on 63 adults over a wide age range (Arampatzis et al., 2008; Carty et al., 2012; 2015; Karamanidis and 64 Arampatzis, 2007; Karamanidis et al., 2008). These studies revealed clear deficits in stability recovery performance along with the inability to recover stability with a single step due to an insufficient (slow 65 66 and low) increase in BoS with ageing. This age-related decline could even be associated to future falls 67 in community-dwelling older adults (Carty et al., 2015; Okubo et al., 2017). Furthermore, the test has 68 been applied to monitor acute effects of muscle-fatigue (Mademli et al., 2008; Walsh et al., 2011) or 69 training interventions (Aragão et al., 2011; Arampatzis et al., 2011; Bohm et al., 2020) on stability 70 recovery performance as well as to examine the inter-task transfer of acquired fall-resisting skills from 71 gait trip-like perturbation training (König et al., 2019).

72 Lean-and-release test protocols often differ depending on the study design. Several studies investigated 73 the maximal lean angle from which one can recover with a single step (Aragão et al., 2011; Arampatzis 74 et al., 2011; Bohm et al., 2020; Hamed et al., 2018). Repeated exposures to sudden stability loss in the 75 anterior direction however seem to lead to immediate improvements in recovery stepping performances (Carty et al., 2012; Ringhof et al., 2019). Even small differences in stepping responses possibly evoked 76 77 by task repetition could affect the ability to recover stability with a single step (Carty et al., 2012) i.e., 78 the criterion to determine the maximal lean angle. Thus, it remains unclear yet whether such protocol 79 is reliable. An alternative protocol is a sudden anterior stability loss from one or more predefined lean 80 angles usually following a few practice trials (Carty et al., 2012; 2015; Karamanidis and Arampatzis, 81 2007; Karamanidis et al., 2008; Mademli et al., 2008). A recent study conducting consecutive 82 exposures to anterior stability loss on young adults from a single lean angle indicated to an appropriate 83 consistency and no day-to-day differences in the increase in BoS and in the MoS measured at 500ms 84 after touchdown (Ringhof et al., 2019). However, the authors revealed less reliability for the assessment 85 of task demand (lean angle) and MoS at the instant of touchdown. When furthermore considering 86 several trial repetitions (intra-session) and the focus on one age group only (young adults), yet it 87 remains unclear whether the assessment of stability recovery performance using only one exposure to 88 sudden stability loss from a predefined lean angle is reliable across adults over a wide age range.

With this multicentre study we asked whether the assessment of main parameters used to determine stability recovery performance i.e., MoS at release, MoS and BoS at touchdown, conducting the leanand-release test is reliable in adults over a wide age range (21 to 80 years; n=97). We separately investigated two lean-and-release test protocols i.e., determination of the maximal lean angle from which a participant is still able to recover stability with a single forward step (maximal lean angle protocol) and a single exposure to stability loss from a predefined lean angle (single lean angle protocol).

96 Methods

97 Participants and experimental design

The study took place at three laboratories (Humboldt-Universität zu Berlin, German Sport University 98 99 Cologne and Robert-Bosch-Hospital in Stuttgart). A total of 97 adults ranging from 21 to 80 years of 100 age were investigated. They were healthy and moderately physical active (e.g., regular weekly 101 exercise). Exclusion criteria were any neurological or musculoskeletal injuries or impairments of the 102 lower limbs limiting movement. After providing written informed consent, participants were randomly 103 assigned to either a maximal lean angle protocol, or a single lean angle protocol (maximal or single for 104 Berlin: *n*=18 or 15; Cologne: *n*=15 or 17; Stuttgart: *n*=17 or 15). Both protocols were repeated once 105 within a single session (Baseline and Post 0.5h) and after two days (Post 48h) to determine intra- and 106 inter-session reliability. At all measurement timepoints, participants wore the same pair of their own 107 non-slippery sports/leisure shoes. The study was approved by the respective local ethical committees 108 (approval numbers for Cologne: 141/2017; Berlin: EA/082/15; Stuttgart: 266/2016MP2) and met all 109 requirements for human experimentation in accordance with the Declaration of Helsinki (World 110 Medical Association, 2013).

111 Figure 1

112 Determination of the maximal forward-lean angle

Participants were always protected by a safety harness connected to an overhead track, allowing for full range of motion in anterior and lateral directions while preventing contact of the body with the ground (except for the feet). While standing on a force plate mounted in front of a second one (1080Hz, 60x90cm, Kistler, Winterthur, Switzerland or 1000Hz, 40x60cm, AMTI, MA, USA: depending on the laboratory) with their feet in parallel at hip-width and flat on the ground, participants were set in a forward-inclined position via an inextensible horizontal cable attached to a belt around the participant's pelvis (Karamanidis et al., 2008; Fig. 1) and at the other end either to a custom-built pneumatic-driven

120 break-and-release system in Cologne (Karamanidis and Arampatzis, 2007), to a wall-mounted rail 121 incorporating a snap-shackle-release system in Stuttgart, or to a wall-mounted electromagnet in Berlin 122 (Hsiao and Robinovitch, 1999). The level of cable attachment differed between laboratories i.e., chest-123 level in Berlin versus level of pelvis/umbilicus in Cologne and Stuttgart. The initial lean angle $(23\pm2\%)$ 124 of body mass for participants \leq 36 years, and 10±2% for \geq 43 years accounting for the task demand in 125 relation to the participants' age; Karamanidis and Arampatzis, 2007; Madigan, 2006) was controlled 126 via a load cell (depending on the laboratory either custom-made 0-1kN, or Megatron 0-5kN; 127 MEGATRON Elektronik GmbH & Co. KG, Munich, Germany) incorporated into the horizontal cable. 128 Without any warning, the cable was suddenly released, randomly between 10 to 30 seconds. The lean 129 angle was increased gradually by 3% if the participants were able to recover stability with a single step 130 as instructed priorly (Karamanidis and Arampatzis, 2007). If the participants needed more than one 131 step or a safety harness support (>20% of body mass determined by a second load cell incorporated 132 into the harness suspension cable, i.e., multiple stepping; Karamanidis et al., 2008; Cyr and Smeesters, 133 2009), this trial was repeated. The measurement was terminated if the participants needed more than 134 one step to recover stability in two consecutive trials. The last lean angle linked to a successful single 135 step recovery was defined as the maximal lean angle. Please note that there were no prior practice trials 136 performed for all measurement time points.

137 Single exposure to stability loss from a predefined forward-lean angle

Safety assumptions, measuring equipment, procedure for the initial placement of the participants and task instructions matched the maximal lean angle protocol (see *Determination of the maximal lean angle* and Fig. 1). Participants were released only from a single predefined lean angle corresponding to $23\pm2\%$ of body mass. The forward-lean angle was chosen according to our previous results showing older adults still being able to recover stability from lean angles of approximately 20% of body mass 143 (Karamanidis et al., 2008). Only at Baseline but not for Post 0.5h and Post 48h, all participants 144 performed three prior practice trials at $20\pm2\%$ of body mass to familiarise with the task.

145 Data collection and processing

146 To quantify stability recovery performance for the two protocols, reflective markers were tracked via 147 an optical motion capture system using ten infrared cameras (120 or 250Hz, depending on the 148 laboratory; Nexus; Vicon Motion Systems, Oxford, UK). The markers defined the foot, shank, thigh, 149 trunk, upper and lower arm, hand, and head (Bierbaum et al., 2013; Fig. 1). Two events were identified 150 for both test protocols: (a) release of the supporting cable determined by a 50% reduction in the leaning 151 force signal provided by the incorporated load cell via a synchronized analogue TTL signal, and (b) 152 foot touchdown of the recovery step determined via the vertical ground reaction force of the second 153 force plate (threshold \geq 5N). The anterior MoS was determined at cable release (MoS_{RL}) and foot 154 touchdown (MoS_{TD}) of the recovery step, calculated in accordance with Hof and colleagues (2005) as 155 the differences between the extrapolated CoM (X_{CoM}) in the anterior direction and the anterior 156 boundary of the BoS (P_{BoS} ; see Fig. 1). Segment masses and CoM locations were calculated based on 157 the data reported by Dempster et al. (1959) and the position of the whole body's CoM in the 3D space 158 was calculated according to Winter (1979), using a custom-made MATLAB script (2020b, 159 MathWorks[®], Natick, MA, USA). The BoS at touchdown (BoS_{TD}) i.e., the distance between the 160 anterior and posterior boundaries of the base of support, was determined using the vertical projection 161 of a heel marker of the trailing foot and the tip of the shoe of the recovery foot, considering the distance 162 of a metatarsal marker to the anterior boundary of the shoe (measured during preparation).

163 Statistics

For both protocols, three measurement trials (Baseline, Post 0.5h and Post 48h respectively) were included. Normality and variance homogeneity of anthropometrics (body height, body mass, body mass index) and the analysed stability control parameters (MoS_{RL} , MoS_{TD} , BoS_{TD}) were checked using

167 the Shapiro-Wilk test and Mauchly's sphericity test (p>0.05). Body heights, body masses and body 168 mass indexes of all participants separated by protocols and centres were statistically compared using 169 separate one-way ANOVAs or Kruskal-Wallis tests, with Bonferroni-adjusted or Mann-Whitney-U 170 *post hoc* tests performed in the presence of significant main effects. Potential differences in all analysed 171 stability control parameters between repeated measurements were examined using separate (for both 172 the maximal and single lean angle protocol) one-way repeated measures analyses of variance 173 (ANOVA) with trials as within-subject factor. In the presence of significant main effects, Bonferroni-174 adjusted post hoc tests for pairwise comparison were performed to locate potential differences. Two-175 way mixed model intraclass correlation coefficients (ICC, absolute agreement, and single measures) 176 over all trials were calculated, with confidence intervals at 95% (Koo and Li, 2016). ICC were defined 177 as "poor" (<0.50), "moderate" (0.50-0.75), "good" (0.75-0.90) and "excellent" (>0.90) to interpret 178 reliability (Portney, 2020). Root mean square errors (RMSE) were computed to determine the average 179 dispersion of the observed trial from the previous one and reported as a range between all trials. To 180 argue for the absence of an effect being large enough to state a significant discrepancy between trials, 181 two one-sided tests (TOST) for equivalence were performed. According to Lakens (2013, 2017), the 182 difference between dependent trial means, and respective confidence intervals at 95%, were tested with 183 a standardised lower (Δ_L) and upper (Δ_U) bound of equivalence based on Cohen's dz that was calculated 184 from current raw data. The level of significance was set at α =0.05. All statistical and non-statistical 185 analyses as well as descriptive computations were performed using SPSS Statistics (v26, IBM, 186 Chicago, IL, USA) and MATLAB (2020b, MathWorks®, Natick, MA, USA).

187 **Results**

188 Maximal lean angle

189 Due to significant marker artefacts during the measurements, data of seven participants were excluded 190 hence 43 participants (19 females; 29 to 77 years) were considered for the statistical analyses. Body 191 height, body mass and body mass index did not significantly differ between the centres (Berlin: 192 172.9 ± 9.3 cm, 75.0 ± 11.6 kg and 25.0 ± 2.9 kg/m²; Cologne: 172.3 ± 13.1 cm, 75.1 ± 15.8 kg and 193 25.0±2.7kg/m²; Stuttgart: 172.9±7.7cm, 77.3±9.4kg and 25.9±2.5kg/m²). Regarding the MoS_{RL}, an 194 excellent ICC of 0.93 (CI₉₅ [0.89-0.96]; Table 1) was computed over all trials, with RMSE ranging 195 between 3.3 and 5.1cm. Although the TOST at 95% confidence revealed an effect statistically different 196 from zero for the MoS_{RL} between Baseline and Post 48h (Fig. 2), there was no significant difference 197 when using a one-way ANOVA, neither between Baseline and Post 0.5h or Post 0.5h and Post 48h 198 (Fig. 3). Moreover, TOST showed statistically significant (p < 0.01) equivalence between all pairs of 199 trials. Furthermore, there were no significant differences in the MoS_{TD} between all trials, showing good 200 ICC of 0.85 (CI₉₅ [0.77-0.91]), RMSE ranging between 4.9 and 7.1cm, and significant equivalence 201 (p<0.001). Good reliability (ICC of 0.88; CI₉₅ [0.81-0.93]) was also revealed for the BoS_{TD} whilst an 202 absence of significant differences, with RMSE ranging between 7.4 and 8.4cm, and statistical 203 equivalence (p < 0.001) between all trials.

204 Table 1

205 Figure 2

206 Figure 3

207 Single lean angle

Data of ten participants could not be analysed appropriately and were excluded from the statistical analysis. Only body mass but neither body height nor body mass index of the included 41 participants (15 females; 22 to 70 years; Berlin: 172.2±6.7cm, 68.7±9.2kg and 23.1±1.9kg/m²; Cologne:

211 175.7 ± 8.1 cm, 79.8 ± 11.8 kg and 25.8 ± 2.6 kg/m²; Stuttgart: 172.4 ± 7.0 cm, 80.9 ± 19.2 kg and 212 27.1 ± 5.4 kg/m²) significantly differed between Berlin and both Cologne (*p*=0.020) as well as Stuttgart 213 (p=0.020). Please note that 13 out of 15 adults (61-70 years) required multiple steps during the single 214 lean angle protocol at all measurements. Thus, those data were non-statistically observed and excluded 215 from further processing as we investigated continuous variables which are affected differently between 216 single and multiple stepping responses. When considering the data of adults (21 to 60 years; n=26) 217 who were able to successfully recover stability with a single step, there were no significant differences 218 in MoS_{RL} between all trials (Fig. 4), with an excellent ICC of 0.94 (CI₉₅ [0.89-0.97]; Table 1) and 219 RMSE ranging between 1.8 and 2.3cm. The MoS_{TD} neither differed between all trials, showing a 220 moderate ICC of 0.67 (CI₉₅ [0.48-0.82]) and RMSE ranging between 5.1 and 6.8cm. The BoS_{TD} 221 showed good reliability (ICC of 0.80; CI₉₅ [0.66-0.90]), with no differences between all trials and 222 RMSE ranging between 6.7 and 8.2cm. For MoS_{RL}, MoS_{TD} and BoS_{TD}, TOST revealed significant 223 (p<0.01) equivalence between all trials (Fig. 5). We furthermore observed 13 out of 15 older adults 224 who were not able to recover stability with a single step from the single pre-defined lean angle (single 225 lean angle protocol) in all trials revealing an overall consistency of recovery stepping behaviour i.e., 226 multiple stepping.

227 Figure 4

228 *Figure 5*

229 Discussion

In this multicentre study we examined whether the assessment of stability recovery performance parameters in adults over a wide age range is reliable if conducting a maximal forward-lean angle approach as well as a single exposure to sudden anterior stability loss from a predefined lean angle. For both lean angle protocols, we revealed statistically appropriate consistency and equivalence with the absence of any relevant differences in all analysed parameters. The results indicate that the lean-

and-release test is a reliable assessment to potentially identify individual deficiencies or to classify the

236 effectiveness of acute or long-term interventions on stability recovery performance.

237 Maximal lean angle

238 With the MoS_{RL} considered as the main criterion, the maximal lean angle protocol has often been used 239 as a standardised assessment method to identify age-related deficiencies or intervention effects on 240 stability performance. Previous studies reported an improved stability performance in older adults 241 following several months of stability and/or strength training (more negative MoS_{RL} ranging on average 242 from 2.8 to 6.6cm at post compared to pre intervention) i.e., they were able to successfully recover 243 stability with a single step from a more inclined and unstable position (Arampatzis et al., 2011; Bohm 244 et al., 2020; Hamed et al., 2018). The current study revealed excellent reliability (ICC of 0.93) for the 245 MoS_{RL} in adults over a wide age range (29 to 77 years), with lower differences (1.1cm on average) 246 compared to the intervention studies, and overall significant equivalence between all trials. This 247 strengthens the outcomes of previous findings demonstrating differences, indicating that those were 248 caused by the conducted intervention rather than biased by task adaptation or drawbacks related to the 249 reliability of measurements.

250 We terminated a measurement after two consecutive failures of single step recovery occurred. 251 Respectively, some participants might have learned due to task repetitions (Carty et al., 2012; Ringhof 252 et al., 2019) with the same lean angle. However, we demonstrated excellent reliability in the MoS_{RL} 253 using the same procedure for all measurements indicating that the identified individual maximal lean 254 angle can be postulated as an ultimate task demand to test recovery performance in a reliable manner. 255 This was further supported by good consistency (ICC ranging from 0.85-0.88), non-significant 256 differences and equivalence between all trials revealed for the stability performance at touchdown 257 (BoS_{TD} and MoS_{TD}) i.e., the ability to recover stability from similar maximal lean angles at all trials 258 always came along with similar step lengths and control of the CoM in relation to the BoS. Thus, we state that using the maximal lean angle protocol is a reliable assessment to determine the maximalcapability of stability recovery performance in adults over a wide age range.

261 Due to low and unequal sample sizes of and between different age groups we did not consider an age-262 related contribution to the reliability results for the maximal lean angle protocol. However, when 263 pooling all participants above 43 years (n=22) according to the chosen single lean angle protocol that 264 accounted for a lower initial task demand for such age cohorts, we found significant (p < 0.001) and 265 good ICC for all analysed parameters (range between 0.86 and 0.90). Moreover, for this sub-pool of 266 adults above 43 years we revealed an average RMSE over trials of 6.3cm in the MoS_{TD}, that was similar 267 to the average error between trials of all participants under 36 years (6.7cm; n=21). Thus, we believe 268 that pooling all participants for the analyses did not cause a bias related to the current reliability and 269 that age had no relevant effect on the main outcomes of the current study.

270 Single lean angle

271 Our results revealed excellent reliability in the MoS_{RL} and overall equivalence, indicating that the lean 272 angle was effectively controlled across all trials (mean and RMSE on average for all trials: -18.6cm 273 and 2.0cm). It is important to note that the standard deviations of the MoS_{RL} were rather high (on 274 average for all trials: 5.8cm) assuming a higher inter-subject variability potentially caused due to 275 heterogeneous body configurations (body height may influence MoS_{RL}). However, since body heights 276 were homogenous between the participants, the high standard deviation can rather be explained by 277 laboratory-related differences in the attachment level of the supporting cable and incorporated load cell 278 respectively i.e., a more proximal attachment (level of umbilicus or higher) required the participant to 279 lean more forward and led to lower values in the MoS_{RL}. Such a higher demand on stability recovery 280 performance caused mostly all older adults (n=13 out of 15; 61 to 70 years) failing to recover stability 281 with a single step during the single lean angle protocol in all trials. Nevertheless, since all younger and 282 middle-aged adults were able to recover with a single step, the demand seemed to be appropriate for 283 these age populations and furthermore the assessment was highly reliable. In contrast to our findings, Ringhof and colleagues (2019) recently revealed poor between-session reliability for the demand on stability recovery performance (measured in degrees) following exposure to stability loss from a single predefined lean angle (15% of body mass) in young adults. These results may be difficult to compare with the current outcomes as we used a different parameter for the task demand i.e., MoS. However, when considering that the MoS_{RL} is mainly used to interpret the demand on stability recovery performance, we confirmed this was reliably assessable among adults over a wide age range.

290 Since the single lean angle protocol requires a constant demand on stability recovery performance 291 within each execution (i.e., a pre-defined MoS_{RL}), the MoS_{TD} and BoS_{TD} have commonly been used as 292 the main criteria to determine stability performance. A recent study indeed showed an improved 293 stability performance (MoS_{TD}) after a single trial repetition in younger and middle-aged adults, without 294 any prior practice trials performed at Baseline (ΔMoS_{TD} on average for both age-groups: 3.8cm, 295 p < 0.01; RMSE: 7.8cm; = 27; König et al., 2019). In contrast to those findings the current study did not 296 reveal significant differences between the means of all trials in the MoS_{TD}, particularly of Post 0.5h 297 versus Baseline (ΔMoS_{TD} : 0.4cm, with a comparably lower RMSE of 5.1cm on average respectively). 298 This could be explained mainly by the constant BoS_{TD} between trials revealed in the current study. As 299 our participants performed three practice trials prior to the Baseline measurement, we cannot confirm 300 the absence of task adaptations which might have been occurred due to immediate task repetition 301 during Baseline. But we proved the current protocol to be a reliable assessment approach without 302 performing any further practice trials prior to Post 0.5 and Post 48h. Yet a control group is required 303 essentially to exclude bias caused by rapid adaptation due to consecutive repetition of a novel stability 304 task (König et al., 2019).

305 The different levels of cable attachment i.e., chest versus umbilicus versus pelvis, led to different 306 stability demands according to one standardised percentage of body mass. Thus, it might have caused 307 a drawback to determine reliability of the single lean angle protocol and stability performance in older 308 adults in a standardised manner. However, although their demand on stability (MoS_{RL} on average for 309 all trials: -20cm; n=15) might have contributed to an inability to recover stability with a single step, 310 multiple stepping was observed to be consistent during all trials for 13 out of 15 older adults, indicating 311 to no functionally relevant learning due to task repetition and hence to a reliable assessment of stability 312 performance that has previously been shown to predict future falls (Carty et al., 2015). Nevertheless, 313 to overcome any influence of different cable-attachments we postulate considering the initial state of 314 body configuration with the means of the MoS instead of relying solely on the percentage of body mass 315 for the assessment of stability recovery performance using a single lean angle approach. 316 We concluded that the assessment of stability recovery performance parameters in adults over a wide

317 age range using the forward lean-and-release test is reliable, independent of the used lean angle 318 protocol. Our results further strengthen the use of an exposure to stability loss from a single predefined 319 lean angle, as this protocol being less time-consuming and less demanding could especially be 320 beneficial to test stability recovery performance in clinical settings.

321 **Conflict of interest statement**

322 All authors hereby declare no known financial and personal relationships with other people or 323 organisations that could inappropriately have influenced or biased the current manuscript.

324 Acknowledgments

325 This multicentre study was financially supported by the Bundesministerium für Bildung und Forschung326 (BMBF).

327 **References**

Aragão, F.A., Karamanidis, K., Vaz, M.A., Arampatzis, A., 2011. Mini-trampoline exercise related to
mechanisms of dynamic stability improves the ability to regain balance in elderly. Journal of
Electromyography and Kinesiology 21(3), 512-518.

331 Arampatzis, A., Karamanidis, K., Mademli, L., 2008. Deficits in the way to achieve balance related to

- mechanisms of dynamic stability control in the elderly. Journal of Biomechanics 41, 1754-1761.
- 333 Arampatzis, A., Peper, A., Bierbaum, S., 2011. Exercise of mechanisms for dynamic stability control
- increases stability performance in the elderly. Journal of Biomechanics 44(1), 52-58.
- 335 Bierbaum, S., Peper, A., Arampatzis, A., 2013. Exercise of mechanisms of dynamic stability improves
- the stability state after an unexpected gait perturbation in elderly. Age 35, 1905–1915.
- Bohm, S., Mandla-Liebsch, M., Mersmann, F., Arampatzis, A., 2020. Exercise of dynamic stability in
- the presence of perturbations elicit fast improvements of simulated fall recovery and strength in older
- adults: A randomized controlled trial. Frontiers in Sports and Active Living 2, 52.
- Burns, E., Kakara, R., 2018. Deaths from Falls Among Persons Aged ≥ 65 Years United States, 2007–
- 341 2016. Morbidity and Mortality Weekly Report 67, 509-514.
- 342 Carty, C.P., Cronin, N.J., Lichtwark, G.A., Mills, P.M., Barrett, R.S., 2012. Mechanisms of adaptation
- 343 from a multiple to a single step recovery strategy following repeated exposure to forward loss of
- balance in older adults. PLoS One 7(3).
- 345 Carty, C.P., Cronin, N.J., Nicholson, D., Lichtwark, G.A., Mills, P.M., Kerr, G., Cresswell, A.G.,
- 346 Barrett, R.S., 2015. Age and Ageing 44(1), 109-115.
- 347 Cyr, M.A., Smeesters, C., 2009. Maximum allowable force on a safety harness cable to discriminate a
- 348 successful from a failed balance recovery. Journal of Biomechanics 42, 1566-1569.
- 349 Dempster, W.T., Gabel, W.C., Felts, W.J., 1959. The anthropometry of the manual work space for the
- 350 seated subject. American Journal of Physical Anthropology 17, 289–317.
- 351 Hamed, A., Bohm, S., Mersmann, F., Arampatzis, A., 2018. Exercises of dynamic stability under
- 352 unstable conditions increase muscle strength and balance ability in the elderly. Scandinavian Journal
- 353 of Medicine & Science in Sports 28(3), 961-971.
- 354 Hsiao, E.T., Robinovitch, S.N., 1999. Biomechanical influences on balance recovery by stepping.
- 355 Journal of Biomechanics 32(10), 1099-1106.
- Hof, A.L., 2007. The equations of motion for a standing human reveal three mechanisms for balance.

- 357 Journal of Biomechanics 40(2), 451-457.
- Hof, A.L., Gazendam, M.G.J., Sinke, W.E., 2005. The condition for dynamic stability. Journal of
 Biomechanics 38(1), 1-8.
- 360 Karamanidis, K., Arampatzis, A., 2007. Age-related degeneration in leg-extensor muscle-tendon units
- 361 decreases recovery performance after a forward fall: compensation with running experience. European
- 362 Journal of Applied Physiology 99, 73-85.
- 363 Karamanidis, K., Arampatzis, A., Mademli, L., 2008. Age-related deficit in dynamic stability control
- 364 after forward falls is affected by muscle strength and tendon stiffness. Journal of Electromyography
- and Kinesiology 18(6), 980-989.
- König, M., Epro, G., Seeley, J., Potthast, W., Karamanidis, K., 2019. Retention and generalizability of
- 367 balance recovery response adaptations from trip-perturbations across the adult lifespan. Journal of
- 368 Neurophysiology 122, 1884-1893.
- 369 Koo, T.K., Li, M.Y., 2016. A guideline of selecting and reporting intraclass correlation coefficients for
- 370 reliability research. Journal of Chiropractic Medicine 15(2), 155-163.
- 371 Lakens, D., 2013. Calculating and reporting effect sizes to facilitate cumulative science: a practical
- 372 primer for t-tests and ANOVAs. Frontiers in Psychology 4, 863.
- 373 Lakens, D., 2017. Equivalence tests: a practical primer for t tests, correlations, and meta-analyses.
- 374 Social Psychological and Personality Science 8(4), 355-362.
- 375 Mademli, L., Arampatzis, A., Karamanidis, K., 2008. Dynamic stability control in forward falls:
- 376 postural corrections after muscle fatigue in young and older adults. European Journal of Applied
- 377 Physiology 103(3), 295-306.
- 378 Madigan, M.L., 2006. Age-related differences in muscle power during single-step balance recovery.
- Journal of Applied Biomechanics 22(3), 186-193.
- 380 Okubo, Y., Schoene, D., Lord, S.R., 2017. Step training improves reaction time, gait and balance and
- 381 reduces falls in older people: a systematic review and meta-analysis. British Journal of Sports Medicine

- 382 51(7), 586-593.
- 383 Peeters, G., van Schoor, N.M., Cooper, R., Tooth, L., Kenny, R.A., 2018. Should prevention of falls
- 384 start earlier? Co-ordinated analyses of harmonised data on falls in middle-aged adults across four
- 385 population-based cohort studies. PLoS one 13(8), e0201989.
- Portney, L.G., 2020. Foundations of Clinical Research: Applications to Evidence-Based Practice. FA
 Doci
- 387 Davis.
- Ringhof, S., Arensmann, A., Stein, T., 2019. Reliability of measures of dynamic stability for the assessment of balance recovery after a forward loss of balance. Gait and Posture 71, 261-266.
- 390 Stenhagen, M., Ekström, H., Nordell, E., Elmståhl, S., 2014. Accidental falls, health-related quality of
- 391 life and life satisfaction: a prospective study of the general elderly population. Archives of Gerontology392 and Geriatrics 58, 95-100.
- 393 Terroso, M., Rosa, N., Marques, A.T., Simoes, R., 2014. Physical consequences of falls in the elderly:
- a literature review from 1995 to 2010. European Review of Aging and Physical Activity 11, 51-59.
- 395 Walsh, M., Peper, A., Bierbaum, S., Karamanidis, K., Arampatzis, A., 2011. Effects of submaximal
- 396 fatiguing contractions on the components of dynamic stability control after forward falls. Journal of
- 397 Electromyography and Kinesiology 21(2), 270-275.
- 398 Winter, D. A., 1979. Biomechanics of Human Movement. Ontario: Wiley.
- 399 World Medical Association, 2013. WMA Declaration of Helsinki ethical principles for
- 400 medical research involving human subjects. JAMA 310(20), 2191.

401 **Table 1**: Intraclass correlation (ICC) coefficients with 95% confidence intervals (CI₉₅) and range of root mean square errors (RMSE; in cm) 402 for margin of stability at release (MoS_{RL}) and at touchdown (MoS_{TD}) as well as the base of support at touchdown (BoS_{TD}) between the 403 measurements (Baseline, Post 0.5h and Post 48h) for the maximal and single lean angle protocols (*n*=43 and *n*=26 respectively).

		Maximal lean angle (n = 43)		Single lean angle (n = 26)	
	Measurements	ICC [Cl ₉₅]	RMSE (cm)	ICC [Cl ₉₅]	RMSE (cm)
	Baseline vs. Post 0.5h	0.96 [0.93-0.98]	3.3	0.95 [0.90-0.98]	1.8
MoS _{RL}	Post 0.5h vs. Post 48h	0.93 [0.88-0.96]	4.0	0.95 [0.90-0.98]	1.8
	Baseline vs. Post 48h	0.90 [0.81-0.94]	5.1	0.92 [0.84-0.97]	2.3
MoS _{td}	Baseline vs. Post 0.5h	0.85 [0.74-0.92]	6.0	0.70 [0.43-0.85]	5.1
	Post 0.5h vs. Post 48h	0.90 [0.83-0.95]	4.9	0.66 [0.38-0.83]	5.1
	Baseline vs. Post 48h	0.80 [0.66-0.89]	7.1	0.66 [0.39-0.83]	5.8
BoS _{TD}	Baseline vs. Post 0.5h	0.91 [0.83-0.95]	7.4	0.82 [0.63-0.91]	6.7
	Post 0.5h vs. Post 48h	0.88 [0.78-0.93]	7.8	0.80 [0.61-0.91]	7.3
	Baseline vs. Post 48h	0.85 [0.74-0.92]	8.4	0.78 [0.57-0.89]	8.2