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Abstract: Sustainable Development Goals were established by the United Nations General Assem-
bly to ensure that everyone has access to clean, affordable, and sustainable energy. Third-generation
biodiesel derived from algae sources can be a feasible option in tackling climate change caused by
fossil fuels as it has no impact on the human food supply chain. In this paper, the combustion and
emission characteristics of Azolla Pinnata oil biodiesel-diesel blends are investigated. The multi-ob-
jective response surface methodology (MORSM) with Box-Behnken design is employed to decrease
the number of trials to conserve finite resources in terms of human labor, time, and cost. MORSM
was used in this study to investigate the interaction, model prediction, and optimization of the op-
erating parameters of algae biodiesel-powered diesel engines to obtain the best performance with
the least emission. For engine output prediction, a prognostic model is developed. Engine operating
parameters are optimized using the desirability technique, with the best efficiency and lowest emis-
sion as the criteria. The results show Theil’s uncertainty for the model’s predictive capability (Theil’s
U2) to be between 0.0449 and 0.1804. The Nash-Sutcliffe efficiency is validated to be excellent be-
tween 0.965 and 0.9988, whilst the mean absolute percentage deviation is less than 4.4%. The opti-
mized engine operating conditions achieved are 81.2% of engine load, 17.5 of compression ratio,
and 10% of biodiesel blending ratio. The proposed MORSM-based technique’s dependability and
robustness validate the experimental methods.

Keywords: biofuel; algae; third generation biodiesel; emission; alternative fuel; modeling; optimi-
zation

1. Introduction

The United Nations General Assembly (UNGA) created the Sustainable Develop-
ment Goals (SDGs) in 2015. They are a collection of 17 linked global objectives. By 2030,
the SDGs are supposed to create an “outline for a better and more sustainable future for
everybody.” The Sustainable Development Goals (SDGs) were created to replace the Mil-
lennium Development Goals, which were in force until 2015 [1]. One such SDG is Sustain-
able Development Goal 7 (SDG 7 or Global Goal 7). The organization’s mission is to
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“ensure that everyone has access to affordable, reliable, contemporary, and sustainable
energy.” People’s well-being, as well as economic progress and poverty alleviation, are all
dependent on access to energy. Five goals must be fulfilled by 2030 to achieve the net-zero
emissions target [2]. Diesel engines are widely utilized in off-grid energy production, ag-
riculture, industrial, land transportation, and maritime transportation. It is recommended
due to its reliability, low initial cost, simple maintenance, and higher energy conversion
efficiency [3]. Their exhaust, on the other hand, comprises hazardous greenhouse gases
(GHGs). GHGs are the primary cause of climate change, resulting in global warming, er-
ratic weather patterns, soil fertility loss, and the submergence of low-lying islands. GHGs
also contribute to air pollution, which has negative health consequences. The majority of
emerging countries, such as India, are heavily reliant on fossil fuel imports. Indeed, fossil
fuel consumes a significant percentage of the country’s gross domestic product. With the
use of alternative energy sources, this dual-faced problem of GHGs and imports may be
significantly minimized. Biodiesel, producing gas, and natural gas are examples of alter-
native fuels that may be utilized in a diesel engine [4].

Biofuel research has received significant attention over the last few decades, and re-
searchers have been investigating a variety of feedstocks. Biofuels are generally classified
into three generations. First-generation biofuels include edible oils, bio-alcohols, biogas,
biodiesel, solid biofuels, etc. These 1st generation biofuels make use of simple techniques
to convert sugar, edible oil, and animal fats into fuel. These 1st generation biofuels have
caused disagreement among environmentalists. If biofuels are preferred over food sup-
plies, the food problem will worsen. Secondly, these 1st generation biofuels also have the
limitations of net total energy loss, e.g., ethanol production requires more energy than it
produces, hence resulting in a total energy loss. These 1st generation biofuels also promote
deforestation and create a scarcity of water in some regions [5]. According to the WHO,
bio-crops should be best used for meeting food supply rather than as a fuel source. These
problems with 1st generation biofuel motivate researchers to focus on other alternatives
to biofuel. This led to the development of next-generation biofuels that fall under 2nd
generation biofuel and are generally produced from nonedible crops. The 2nd generation
biofuel includes vegetable oils, bio-hydrogen, bio-alcohols, bio-methanol, and/or biogas
sourced from the non-edible feedstock. These second-generation biofuels, however, have
certain drawbacks. These biofuels require specific processing to convert feedstock to eth-
anol, have a poor yield, and can increase deforestation and water scarcity, much as feed-
stock cannot be used to make biodiesel [3,6].

Researchers are working hard to develop better, more sustainable, and efficient ways
to reduce the fuel problem due to the limits of 2nd generation biofuels. As a result of these
tireless efforts by scientists and researchers, 3rd generation biofuel has been developed.
Algae-derived biofuels are included in this third-generation biofuel [7,8]. The use of algae
as a fuel was first proposed by German scientists Harder et al. in 1942, and following
WWII, different countries across the world began to investigate this subject. Algae micro-
organisms have two key characteristics, according to researchers. For starters, algae may
create an oil that can be utilized to make a variety of biodiesel and gasoline. Furthermore,
it may be genetically engineered to directly generate anything from ethanol and butanol
to gasoline and diesel fuel [9,10]. In 2021, Jacob et al. [11] presented findings on biodiesel
synthesis from microalgae, highlighting its viability and shedding some light on future
bioenergy, particularly for I.C. engine applications. Because of their tiny form, third-gen-
eration microalgae feedstock culture and fuel production provide long-term and eco-
nomic benefits. Each process in the manufacture of microalgae biodiesel, such as growth,
harvesting, and extraction, may be improved to eliminate the variables impacting produc-
tion [12]. Optimized microalgae biodiesel blends may be used to obtain optimum engine
maps by calibrating engine parameters during stationary or dynamic engine tests. Several
studies have been reported on microalgae-based biodiesel synthesis.

Mubarak et al. [13] utilized Salvinia Molesta sourced algal biodiesel blends to power
a diesel engine B20 (20% biodiesel + 80% neat diesel) blend performed best among other
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blends as the Brake Thermal Efficiency (BTE) was 29.5% and the minimum brake specific
fuel consumption (BSFC) was 0.3081 kg/kWh. When compared to diesel, the CO2, CO,
unburnt hydrocarbon, NO, and smoke emissions were reduced by 3.38%, 14%, 20.83%,
12.86%, and 10.99%, individually. B20 can therefore be utilized as a diesel engine alterna-
tive fuel. Subramaniam et al. [14] used algal biodiesel to power a diesel engine in various
proportions (such as 10%, 20%, 30%, 40%, and 100%). The 20% biodiesel blends performed
best to improve thermal efficiency and reduce smoke, H.C., CO, and PM emissions. Other
emissions, such as nitrogen oxide and carbon dioxide, were found to be marginally higher.
Nautiyal et al. [15] used biodiesel made from Spirulina Platensis algae to run a diesel en-
gine. As the amount of biodiesel in the fuel mix is raised, carbon monoxide (C.O.), hydro-
carbon (H.C.), and smoke emissions are lowered considerably. At maximum load, H.C.
emission decreased from 0.06 g/kWh with diesel to 0.04 g/kWh with B100, while smoke
emission decreased from 0.7% with diesel to 0.6% with B100 while NOx emissions in-
creased substantially.

Extensive and repetitive experimental investigations to map the effects of any
new/alternative/ different additions on binary or ternary fuel mixes are expensive in terms
of fuel cost, man-hours, machine hours. Improved statistical-mathematical approaches
and greater computer power can aid in the conservation of these limited resources and
the expense of experimental research. Artificial intelligence/data-driven techniques for
multi-objective optimization, such as Taguchi L9 orthogonal array (T.A.) [16], particle
swarm optimization (PSO), response surface methodology (RSM) [17-20], Gene expres-
sion programming (GEP) [21,22], and artificial neural network (ANN) [22,23], have been
successfully implemented for diverse engineering applications. By deducing a mathemat-
ical expression between controlled input parameters and their responses, these ap-
proaches are utilized to create output prediction models. Once the predictive model is
built, it may be used to optimize engine operating parameters for maximum output. To
establish a robust predictive-optimized model, the findings may be validated via lab-
based tests. Bietresato et al. [24] successfully employed the RSM to optimize the perfor-
mance of a biodiesel-bioethanol-diesel powered tractor engine. RSM demonstrated strong
prediction abilities and produced interesting results. The use of the RSM revealed that the
fuel composition has a significant impact on engine performance. The corresponding
mathematical models have a good level of fit (R2>0.90 for both mechanical and environ-
mental outputs) and prediction abilities.

As such, the third-generation biodiesel is considered a suitable replacement for older
generation biodiesels. Even though there are a few publications on the impacts of utilizing
microalgae biodiesel in I.C. engines, it requires comprehensive investigations under di-
verse conditions. It has also been noted that not enough research has been done to enhance
the performance and minimize emissions of a diesel engine running on algae biodiesel
blends. Furthermore, the use of intelligent optimization techniques like multi-objective
response surface methodology (MORSM) to forecast and optimize the operating parame-
ters of an algal biodiesel-powered engine has not been well studied in the literature. As a
consequence, MORSM is being used in this study to investigate the interaction, model
prediction, and optimization of the operating parameters of algae biodiesel-powered die-
sel engines to obtain the best performance and emission characteristics.

2. Materials and Methods
2.1. Setup for the Test

The current study employed a contemporary computerized engine test setup with a
small variable compression CI engine (single-cylinder four-stroke), similar to those exten-
sively used in diesel generator sets or irrigation pumps. The test engine was a water-
cooled type provision of varying compression ratio. The test bench had the provision for
engine loading unit (eddy current type), cooling water, and fuel supply measuring units.
The engine load can be varied by the knob provided on the control panel, as it controls
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the electric current to a dynamometer. The cooling water flow rate to the engine as well
as dynamometer was measured with two rotameters installed on the test bench. A piezo-
electric type pressure sensor was used to monitor the pressure within the engine cylinder,
and a thermocouple unit was used to detect the exhaust gas temperature near the engine
exhaust outlet. A five-gas exhaust testing unit was used for emission measurement. The
test engine setup’s complete characteristics are provided in Table 1. An orifice meter in an
airbox was used to measure airflow, while a glass burette on the test bench was used to
monitor fuel flow. A strain gauge with a loading unit was used to measure engine load,
while a crank angle encoder was used to monitor engine speed. Figure 1 depicts a sche-
matic representation of the test setup and loading unit.

Fuel
= Exhaust gas analyzer
Air Exhauys ;
)
Charge amplifier
Air Box with orifice meter O ]
&)
Diesel engine
Eddy current dynamometer
: l
Signal Converter Data acquisition and analysis

Figure 1. Schematic diagram of the experimental setup.

Table 1. Technical indices, test set up.

Parameter Specification
Engine type and make Variable compression ratio, Kirloskar
Loading unit Eddy current dynamometer type
Dynamometer cooling Water
Size and capacity 87.5 x 110 mm, 661 cm?
Engine Compression ratio 12-18
Power rating 3.5 kW @ 1500 rpm
Load sensor Strain gauge type
Temperature measurement Thermocouple type k, and RTD
Water flow measurement Two rotameters
Airflow measurement Orifice meter with air box

2.2. Test Fuel

The diesel used in the present investigation was sourced from an Indian oil fuel sta-
tion located in Delhi. The biodiesel was prepared from the algal oil (Azolla pinnata) con-
taining rich fatty acids using an established transesterification process [14,25]. One mole
of triglyceride when reacted with an alcohol converts fatty acid into mono-alkyl esters
(methanol). This entails reacting with methanol in the presence of an acid catalyst to trans-
form the acquired lipids into ester. The molar ratio of alcohol to oil determines conversion
efficiency, which determines biodiesel yields. In the present experiment, a 6:1 methanol
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to oil ratio is used, with 10 mL of H2SOs reacting at 65 °C for 40 min in a magnetic stirrer.
The extract was then left to separate overnight in a separating funnel after full conversion.
Three layers of the extract were created. Impurities and glycerin make up the bottom layer
of the separating funnel. The top layer was made entirely of biodiesel. The properties of
prepared biodiesel are listed in Table 2.

Table 2. Fuel characteristics.

Characteristics Unit Diesel Algal Biodiesel
Pour point °C -18 -13
Density (15 °C) kg/m3 834 863
Cloud point °C x12
LCV MJ/kg 43.62 41.14
Cetane index -- 49 55
Fire point, °C °C 76 146
Kinematic viscosity, @ 20 °C cST 3.51 491

2.3. Design of Experiment and Data Collection

The multi-objective response surface methodology (MORSM) was employed in the
current study. MORSM is a set of statistical and mathematical approaches for fitting mod-
els and evaluating engineering issues in which the dependent parameter is governed by
a large number of independent factors(s) [26]. In comparison to traditional approaches, it
can extract the most information from the fewest number of experimental tests. As a re-
sult, resources, time, and effort are saved. The MORSM method [27] can be shown as in
Equations (1) and (2).

Itx= fy,y2) +0 1)

wherein, x= o+ f1y1+ fy, +0 @)

“u 1

The response factor “x” is reliant on the controllable variables “y1” and “y2” in this
case. The experimental inaccuracy is indicated by the letter “0”. Both (first- and second-
order) models are relevant up to this point. Equation (3) demonstrated that the linear re-
sponse might be maximized using a first-order model with an independent tendency. The
coefficient of regression is denoted with fo, f1, and pe.

On the other hand, the second-order approximation is utilized for approximating
two-variable functions that include the inactivity of two independent components. It may
be stated as per Equation (3).

x= Bo+ Pryr+ Bryy + Prayi+ Baz¥i+ Przyiy. + 0 3)

This study’s major objective was to develop a prediction model and improve engine
operating parameters to save cost, time, and exertion. As a result, the Box-Behnken (B.B.)
design was selected since it required fewer tests than the central composite design (CCD)
[28,29]. The engine load, compression ratio, and blending ratio were chosen as control
variables. The brake thermal efficiency, brake-specific fuel consumption, NOx, CO2, and
PM were selected as response variables. Table 3 shows the design matrix, which includes
experimental runs, control variables, and response variables.
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Table 3. Design matrix considering the control factors and response variables.
Control Factors Response Variables
Run Particulate
Engine Compre.ssion Ra- Blertding Ra- BTE (%) BSFC CO: (2/kWh) Matter NOx (ppm)
Load (%) tio tio (%) (g/kWh) & (&/kWh) PP
5 25.00 17.50 10.00 21.21 400.39 1259.63 0.23 574.80
11 62.50 16.50 50.00 24.13 372.59 1051.33 0.36 872.20
13 62.50 17.50 30.00 25.99 437.40 1341.93 0.37 889.20
9 62.50 16.50 10.00 26.33 252.10 955.36 0.34 763.30
10 62.50 18.00 10.00 26.42 253.40 993.24 0.35 761.20
17 62.50 17.50 30.00 26.01 438.00 1342.00 0.35 758.20
15 62.50 17.50 30.00 26.0 437.30 1341.81 0.36 798.10
4 100.00 18.00 30.00 33.45 283.94 870.99 0.44 1825.10
8 100.00 17.50 50.00 31.46 302.04 852.18 0.47 1718.40
6 100.00 17.50 10.00 34.25 268.47 844.54 0.50 1925.10
16 62.50 17.50 30.00 26.09 437.50 1341.90 0.36 788.40
2 100.00 16.50 30.00 32.15 268.38 823.24 0.41 2215.10
3 25.00 18.00 30.00 20.33 418.53 1320.81 0.22 427.60
14 62.50 17.50 30.00 26.08 437.40 1341.93 0.36 672.10
7 25.00 17.50 50.00 18.51 547.44 1544.72 0.23 431.90
1 25.00 16.50 30.00 20.30 422.74 1296.93 0.18 398.20
12 62.50 18.00 50.00 25.33 393.33 1109.84 0.38 715.30

The engine data for MORSM analysis were obtained using lab-based trials following

the run sequence prescribed by the design matrix. To stabilize the lubrication and cooling
systems, the engine was driven for 30 min, then the data were recorded. As prescribed by
B.B. design, the engine data were collected at three engine load settings of 25%, 62.5%,
and 100% at three different engine compression ratios as 16.5, 17.5, and 18. These different
settings of compression ratios and engine loads were used to test three different algal bi-
odiesel blends, viz. B10 (10% algal biodiesel + 90% diesel), B30 (30% algal biodiesel + 80%
diesel), and B50 (50% algal biodiesel + 50% diesel). The mean values of all the data read-
ings were taken for data analysis after they were measured three times to reduce uncer-
tainty in data measurement.

2.4. Experimental Uncertainty Analysis

To increase the accuracy of the results, an uncertainty analysis of experimental data
was performed. Changing ambient circumstances, state of measuring device, calibration
status, the technique of reading measuring instruments, and most importantly, human
error all contribute to experimental error or uncertainty. For each instrument, methodical
and arbitrary uncertainties were calculated for three reiterations (1 = 3). The overall un-
certainty of engine response variables was calculated using the root mean square ap-
proach [30,31]. The total uncertainty was calculated using Equation (4), where U stands
for total uncertainty and Azi, Azs, Azs, ...Azn denotes residuals in measurement for param-
eters z1, 22, z3, ....zo. Table 4 shows the proportion of uncertainty for several parameters.

- |(By )Z(A”A )Z(A”A )Z e )2 @
= a7, Zy 97, Z, 975 Zz ) +.o. oz, Zy




Energies 2021, 14, 5968

7 of 23

Table 4. Experimental uncertainties parameters.

II:/: :::::; Range Accuracy Uncertainty
Load 0-50 kg +1 kg +0.02%
Temperature 0-900 °C +°C +0.15

Speed 0-10,000 rpm 10 rpm 1%

Fuel flow 1-30 cc #0.1 cc +0.5%
CO: 0 to 20% by volume +0.03 Vol% +0.2%
PM 0 to 20,000 ppm +0.01 Vol% +0.2%
NO« 0 to 5000 ppm #1 ppm #0.1%

Calculated Parameter Uncertainty
BTE - - *1.2%
BSEC - - +0.8%
BP - -- +1.12%

2.5. Development of Predictive Correlation

The BTE, BSFC, and various emission characteristics can be denoted as a function of
engine load, blending ratio, and compression ratio using second-order response surfaces.
MORSM was also utilized to create a prediction regression model.

2.5.1. Analysis of Variance (ANOVA)

The influence of numerous experimental factors on the observed outcome of an ex-
periment is enumerated using ANOVA. The ANOVA starts by computing the effects on
each component and any possible interactions [32]. The second stage in ANOVA is to de-
termine the significance of these effects. Under the various experimental conditions, the
well-known F-test is utilized on the premise that the measurements are normally distrib-
uted with the same variance. The ANOVA for all response variables was carried out in
the present work. The ANOVA output for BTE and BSFC s given in Table 5. ANOVA
outcomes for emission characteristics are listed in Table 6. Multiple regression analysis
was used to build the prediction models, as shown in Equations (5)—(9).

Table 5. ANOVA outcomes for BTE and BSFC models.

Parameter BTE BSFC
Model -Value -Value
Source F-Value f’rob >F F-Value £rob >F
Model 338.01 <0.0001 118,697.6 <0.0001
X-Load 302.83 <0.0001 38,195.36 <0.0001
Y-CR 0.8640 0.0305 17,479.06 <0.0001
Z-BR 9.66 <0.0001 16,066.81 0.0001
XY 0.4918 0.0807 6.02 0.8877
XZ 0.0026 0.8873 3219.428 0.0116
YZ 0.1292 0.3305 8.928853 0.8635
X2 1.86 0.0054 789.8411 0.1373
Y2 0.0044 0.8531 21,803.59 <0.0001

72 0.4987 <0.0001 8240.282 0.0010
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Table 6. ANOVA outcomes for COz2, PM, NOxmodels.

Parameter CO2 PM NO«
Model p-Value p-Value p-Value
Source F-Value Prob >F F-Value Prob > F F-Value Prob >F

Model 8.377 x105  <0.0001 0.122003 <0.0001  5.116x10°  <0.0001
X-Load 4.889 x10>  <0.0001 0.077988 <0.0001  4.295x10°  <0.0001

Y-CR 3528.00 0.0633 0.003078 0.0107 33,741.53 0.1039
Z-BR 29,047.49 0.0004 5.8 x10-5 0.6499 5538.13 0.4737
XY 11.11 0.9050 7.46x107  0.9586 62,972.26 0.0379
XZ 19,243.24 0.0013 0.000183 0.4276 1018.57 0.7549
YZ 273.90 0.5585 2.69x105  0.7563 11,852.69 0.3047
X2 29,036.73 0.0004 0.00224 0.0215 7.076 x 105 <0.0001
Y2 1.2 x10° <0.0001 0.001057 0.0827 55.36 0.9418
Z2 75157.45 <0.0001 0.002092 0.0248 3442.60 0.5694

BTE =+9.966 — 0.099L + 1.62CR - 0.2038BR + 0.0122 L x CR - 0.000034L x BR + 0.012CR x BR

®)
+0.00047L2- 0.066 CR2 - 0.000860BR?
BSFC =-43766.45 - 0.61L + 5108.42CR + 10.07BR + 0.043L x CR - 0.038L x BR
(6)
+0.096947CR x BR ~ 9.74E-003L2 - 148.07CR2 - 0.11BR?

CO2=-102759 + 4.39L + 12012.42CR + 19.65BR — 0.058LxCR - 0.0925LxBR

@)
+0.537CR x BR - 0.059L.2— 347.74CR? - 0.334BR?
PM =-9.97587 +0.0057L + 1.148CR + 0.000244BR — 0.0000149L x CR

©)

—-0.000009L x BR —0.000168CR*BR —-0.000164L2 - 0.033CR?+ 5.57E-005BR>

NOx=-2171.06 +59.12L + 33.36CR + 65.2BR - 4.34L x CR - 0.022L x BR - 3.53CR x BR

©)

+0.291.2 + 7.46CR2 - 0.072BR?
Herein,

CR = compression ratio, L = Engine load (%), and BR = blending ratio (%).

2.5.2. Predictive Model Evaluation Using Statistical Indices

Statistical techniques were used to evaluate the robustness of developed MORSM
models for various outputs. R-squared (R?) was computed for the prediction model to
assess the percent variance in the response variables. It has a value between 0 and 1 [33].
The R? value near to one indicates that the created model adequately describes the varia-
bility of the response variables around its mean. The Nash-Sutcliffe coefficient of effi-
ciency (NSE) was also determined for the developed models since it is a better indication
than the R? due to the responsiveness of the variances between observed and model-pre-
dicted means [31]. The model prediction accuracy is calculated using the mean absolute
percentage deviation (MAPD) [34]. The difference between model-determined and exper-
imental values was assessed using the root mean square error (RMSE). The standard for-
mulae Equations (10)—(12) were used to compute these statistical performance measures
[31,35].
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MAPD = 100 Xio ™ Xip (10)
n i=1l X
o xi )’
NSE = |1 - {72‘1("“’ xi) }| (11)
i1 (xip—y)
2
e j [~ x)’] )
n

where xio and xip denote observed and model predicted values, respectively. The'y and n
are the mean of observed value and population count of data, respectively.

2.5.3. Model Uncertainty Measurement

The present study employs Theil’s U1 and U2 as metrics for assessing the accuracy
and quality of a prediction model. The value of Theil’s Ul, as expressed in Equation (13),
and U2, as expressed in Equation (14), values close to 1 indicate a weak prognostic model,
whereas values near to zero suggest a robust model. [30].

n o 2
Theil's U1 = J“—) (13)

Z?=1 ( xiu)z

\/[% (o = xip )|
JGz] + [fzt]

Theil’'s U2 =

(14)

3. Results and Discussion

Experimentation data were used to model and optimize the engine operating param-
eters. The goal was to obtain the best combustion results with the least emissions. For
parameter optimization, the desirability method was employed. To evaluate the robust-
ness and efficacy of the developed models, we employed error analysis and model uncer-
tainty. A good model should have minimal error and uncertainty while also having a
strong correlation between observed and projected values. The effects of engine load,
compression ratio, and algal biodiesel blending ratio on engine combustion performance
and emission characteristics are discussed in the following subsequent sections. The error
and uncertainty analysis of the MORSM-generated engine performance and emissions
model is also provided.

3.1. Predictive Model Evaluation
3.1.1. Combustion and Performance Models

The mathematical equations, Equations (5)—(9) developed with MORSM were used
to predict the engine outputs for all engine trial runs. Table 7 shows the observed and
MORSM predicted values of performance metrics such as BTE and BSFC. For model error
analysis, these values were employed. A comparative presentation of observed and
model-predicted BTE values is illustrated in Figure 2. BTE model could achieve the R and
R2 values as 0.9989 and 0.9975, respectively. Both MAPD and RMSE were quite low for
the BTE model. The predictive efficiency for the BTE model was measured with NSE as
0.9988. Similarly, the R and R? for MORSM based BSFC model were 0.9917 and 0.9836,
respectively. Figure 3 illustrates the comparison of model-predicted and observed BSFC
values. The MAPD and RMSE for the BSFC model were 2.3% and 10.78 absolute. The NSE
value for the BSFC model was 0.984. The proposed model’s superior prediction perfor-
mance is demonstrated by its high correlation values (R and R?) and low model errors.
Both the performance models had low MAPD values, indicating a strong predictive model
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capable of reliably forecasting the outputs. The R, R?, NSE, MAPD, and RMSE values for
BTE and BSFC are listed in Table 8. Overall, the MORSM approach was demonstrated in
this study to be capable of building a trustworthy engine performance prediction model
[36,37]. In Figures 2-6, the blue, green, yellow, amber, red colors indicate the increasing
values of variables in the same sequence. The blue color denotes lowest while red denotes
the highest values.

35.00—
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26.50
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Model predicted BTE, %

18.00 —
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Figure 2. Observed vs. MORSM predicted BTE (%).
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Figure 3. Observed vs. predicted BSFC (g/kWh).
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Table 7. Actual experimental and model predicted values.

BTE (%) BSFC (g/kWh) CO:z(g/kWh) PM (g/kWh) NOx (ppm)
Obs. Pred. Obs Pred. Obs. Pred. Obs. Pred. Obs. Pred.
21.21 20.97 400.39 379.37 1259.63 1245.57 0.23 0.25 574.80 571.21
24.13 23.92 372.59 368.81 1051.33 1060.21 0.36 0.33 872.20 868.93
25.99 26.04 437.40 437.52 1341.93 1341.91 0.37 0.35 889.20 882.22
26.33 26.52 252.10 258.55 955.36 952.67 0.34 0.34 763.30 816.96
26.42 26.83 253.40 266.90 993.24 978.56 0.35 0.35 761.20 763.04
26.01 26.04 438.00 437.52 1342.00 1341.91 0.35 0.35 758.20 761.22
26.0 26.04 437.30 437.52 1341.81 1341.91 0.36 0.35 798.10 781.22
33.45 33.54 283.94 269.29 870.99 843.75 0.44 0.45 1825.10 1821.22
31.46 31.69 302.04 323.06 852.18 866.24 0.47 0.48 1718.40 1812.99
34.25 33.88 268.47 269.54 844.54 875.95 0.50 0.49 1925.10 1934.22
26.09 26.04 437.50 437.52 1341.90 1341.91 0.36 0.35 788.40 781.22
32.15 32.20 268.38 260.94 823.24 805.00 0.41 0.43 2215.10 2210.35
20.33 20.23 418.53 435.85 1320.81 1354.25 0.22 0.21 427.60 434.96
26.08 26.04 437.40 437.52 1341.93 1341.91 0.36 0.35 672.10 781.22
18.51 18.89 547.44 546.37 1544.72 1513.30 0.23 0.24 431.90 422.81
20.30 20.26 422.74 427.51 1296.93 1309.00 0.18 0.19 398.20 407.59
25.33 24.93 393.33 377.16 1109.84 1118.32 0.38 0.34 715.30 633.08

Table 8. Statistical evaluation of predictive models.

Indices BTE BSFC CO2 PM NO«x
R 0.9989 0.9917 0.9969 0.9820 0.9972
R? 0.9975 0.9836 0.9939 0.9644 0.9944

MAPD 0.7% 2.3% 1.2% 4.4% 3.1%
NSE 0.9988 0.984 0.994 0.965 0.9944

RMSE 0.22 10.78 17.29 0.016 42.87

Theil’s Ul 0.0042 0.014 0.0073 0.022 0.019

Theil’s U2 0.0449 0.092 0.059 0.1804 0.125

3.1.2. Engine Emission Characteristics Models

Emission models were developed for COz, PM, and NOx using MORSM in the pre-
sent work. The predictive models were used to forecast the emission characteristics values
at different engine operating parameters. The MORSM based forecasted and observed
values are compared in Figures 4-6 for CO2, PM, and NOx, respectively. The observed and
model-predicted values of NOx, H.C., and C.O. emissions are listed in Table 7. The present
study analyzed the proposed models using statistical indices as mentioned in Equation
(10) to Equation (12). The R-value denoting the correlation coefficient between observed
and model forecasted values was 0.9969, 0.9820, and 0.9972 for CO2, PM, and NOx models,
respectively. The coefficient of determination was predicted to be 0.9939, 0.9644, and
0.9944 for the proposed emission models of COz, PM, and NO, respectively. Both the cor-
relation indices exhibit a superior degree of prediction ability. As estimated with NSE for
COz, PM, and NOxmodels, the efficiency of model prediction is 0.994, 0.965, and 0.9944,
respectively. The MAPD (also known as MAPE) values were 1.2%, 4.4%, and 3.1% while
RMSE was 17.29, 0.016, and 42.87 for COz, PM, and NOx models, respectively. The low
MAPD and RMSE values indicate an efficient prediction model. All the statistical indices
estimated for emission models are listed in Table 8. The statistical indices demonstrate
that MORSM is an efficient model prediction method [30,38].
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3.1.3. Uncertainty Analysis of Predictive Models

Theil’s U1 and U2 values for the BTE model are 0.0042 and 0.0449, respectively, indi-
cating that the proposed model is accurate and its predictive uncertainty is quite low. The
model’s strong prognostic capacity with minimal uncertainty is demonstrated by these
low numbers. BSFC also shows similar results, with Ul and U2 being 0.014 and 0.092,
respectively. Theil’s Ul values for COz, PM, and NOx emission models, respectively, are
0.0073, 0.022, and 0.019. Theil’s U2 for COz, PM, and NOx emission models, respectively,
is 0.059, 0.1804, and 0.125. Theil’s Ul and U2 values are very low, indicating that the
MORSM-based prediction model is accurate and of good quality.

3.2. Interactive Effects of Control Variables on Response Factors
3.2.1. Brake Thermal Efficiency

The effects of control variables viz., engine load, compression ratio, and blending
ratio on response factor (BTE) are illustrated in Figure 7. The common effect of compres-
sion ratio and engine load on BTE is illustrated in Figure 7a. It has been observed that
engine load has a greater influence on BTE than compression ratio. The highest BTE was
achieved to be closer to 80% of engine load and 17.5 of compression ratio. BTE improves
with greater loads as the amount of fuel supplied increases and the engine’s breathing
efficiency improves [39,40]. The interactive effects of blending ratio and engine load are
shown in Figure 7b. Until now, increasing engine load has improved BTE, but blending
ratio has had the reverse effect. With a larger blending ratio, the BTE progressively drops.
The higher viscosity of biodiesel combined with the lower heating value of biodiesel is
responsible for the loss in BTE at a higher blending ratio. Figure 7c illustrates the interac-
tion of blending ratio and compression ratio. This substantiates the result of response sur-
faces shown in Figure 7a,b. Kashyap et al. [41] and Sharma [18] also present similar trends
for BTE, showing that BTE is largely influenced by engine load and peak value of BTE is
achieved close to 80% engine load.
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3.2.2. Brake Specific Fuel Consumption

The three-dimensional response surfaces depicting the impact of response variables
on BSFC are shown in Figure 8. The combined effect of compression ratio and engine load,
as shown in Figure 8a, demonstrates that BSFC initially increases with an increase in com-
pression ratio and again reduces. The engine load on the other hand has a continuous
positive effect on BSFC. The BSFC decreases with increasing engine load. The optimal
BSFC can be observed at lower compression ratios but with higher engine load. These
trends of BSFC are just opposite to BTE trends. The decreasing BSFC at higher engine load
is the result of improved combustion and higher BTE [42]. The combined effect of engine
load and blending ratio is shown in Figure 8b. It was observed that the lowest BSFC is
observed at a lower blending ratio (close to 10%) and higher engine load (80% to 10%).
Similarly, the interplay between compression ratio and blending mix is shown in Figure
8c. Minimum BSFC is observed between 17.5 to 18 compression ratio and 10% blending
ratio. Uslu et al. [28] and Kataria et al. [43] also reported similar trends for BSFC under
similar conditions, demonstrating that the lowest BSFC can be achieved at higher engine
loads when combustion quality is superior.
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3.2.3. Exhaust Emission
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The response surfaces depicting the combined impacts of engine load and compres-
sion ratio on CO:z exhaust emission are shown in Figure 9a. CO: emissions appear to de-
crease as engine load increases, owing to better combustion at higher engine loads, as also
reported in [13]. However, CO:z emission first increases then decreases on increasing the
engine load. In terms of interaction, the lowest CO: emission is observed to be between
80% and 10% engine load whilst the compression ratio is between 17.25 and 17.63. The
interaction of engine load and biodiesel blending ratio is shown in Figure 9b. Figure 9¢
shows the combined impact of blending ratio and compression ratio predictions. It is ob-
served that CO: emission increases with the supply of a higher amount of biodiesel in
blends, owing to the poorer combustion of algal biodiesel compared to diesel. Response
surfaces make it easier to observe and understand the interplay of two control variables

on one response variable [44].
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The interactions of the control variables (engine load, compression ratio, and blend-
ing ratio) on PM emission are shown in Figure 10a—c. The interaction of load and com-
pression ratio on PM emission is depicted in Figure 10a. It is observed that PM emission
is mostly influenced by a change in engine load while the compression ratio has only a
marginal effect on PM emission. Figure 10b predicts the combined effects of blending ratio
and load. It is observed that initially, the PM emission decreases with an increase in blend
ratio (higher biodiesel content) up to 28% but beyond this PM emission is observed to be
increasing again. The PM emission in diesel engines increases due to poor combustion
conditions. Figure 10c, depicts the combined effects of compression ratio and blending
ratio. The lowest PM emission is observed between 20% and 30% biodiesel blends while
the combined effect to produce lowest PM emission is observed at 18 compression ratio
and 25% blending ratio. Sharma [21] and Billa et al. [30] also reported that engine load

was the main influencing factor for the variation in PM emission.
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Figure 10. Input parameters interaction surfaces for PM (a) Compression ratio vs. engine load (b) blending ratio vs. engine
load (c) blending ratio vs. compression ratio.

Three-dimensional response surfaces are used to depict the cumulative impact of re-
sponse variables on NOx emission (Figure 11). The collective impact of compression ratio
and engine load on NOx emission is shown in Figure 11a. The interaction of blending ratio
and engine load is depicted in Figure 11b. In both situations, NOx emission is minimal at
low loads but increases with greater loads and a higher compression ratio [21]. The NOx
increases at higher engine load owing to higher combustion temperatures. Figure 11c de-
picts the impact of blending ratio and compression ratio on NOx emission. Both appear
to be canceling out each other’s effects, with the highest NOx emission in the response
surface observed at a low compression ratio and with the 10% biodiesel blend. Kataria et
al. [43] and Dubey et al. [45] also reported higher NOx at a higher compression ratio, es-
pecially at higher load owing to higher combustion temperature.
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Figure 11. Input parameters interaction surfaces for NOx (a) Compression ratio vs. engine load (b) blending ratio vs. engine
load (c) blending ratio vs. compression ratio.

4. Optimization and Validation
4.1. Optimization Using Desirability Approach

Following the development of a robust predictive model, the optimization was per-
formed to determine the optimal settings of control variables (input parameters) that pro-
duce the best response variables (output). To determine the best operating settings in
MORSM, the desirability technique was employed. We can specify limitations in the de-
sirability method, such as setting BTE to the maximum while setting emission and BSFC
to minimal [41]. A bar graph illustrating individual and combined desirability is shown
in Figure 12. At this level of desirability, the optimal engine operating conditions in terms
of engine load, compression ratio, and biodiesel mixes were achieved. Table 9 lists both
optimal operating conditions and forecasted output. The best control variables achieved
in the present investigation are the engine load of 81.2%, the compression ratio of 17.5,
and the biodiesel blending ratio of 10%. The MORSM projected value for BTE was 30.14%,
while BSFC was 307.6 (g/kWh). The COz, PM, and NOx emissions values were estimated
as 1030.99 (g/kWh), 0.429 (g/kWh), and 1261.75 (ppm) at the optimized engine operating
conditions.
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4.2. Validation of Optimized Conditions

Lab-based tests were conducted to validate the MORSM model’s predictions for en-
gine performance and emission characteristics. The engine was run at these optimum set-
tings, and the performance and emission results were recorded. Table 9 shows the out-
comes of an experiment carried out under optimal operating circumstances, as well as the
percent departure from the model’s expected outputs. All of the experimental output was
within 7.29% of the model-predicted values under optimal operating circumstances. The
approach of validating the developed model through field studies was also exercised by
Billa et al. [30] with an error range of 0.56-17.48%.

Table 9. MORSM Optimized operating condition, prediction, validation, and % error.

Optimized Control
Outputs
Factors
Engine ¢ BRatio BTE BSFC  CO: PM  NO.
Load

30.14 307.36 1030.99 0429 1261.75
(%)  (g/kWh) (g/kWh) (g/kWh) (ppm)
3036 30245 1051.25 0411  1287.4
(%) (g/kWh) (g/kWh) (g/kWh) (ppm)
%Error  7.29%  1.6% = 1.96%  4.19%  2.03%

81.2% 175 10% Pred. results

Exp. output

5. Conclusions

The performance of third-generation algal biodiesel was investigated in the present
study using MORSM-based prognostic modeling. This approach improved upon the tra-
ditional practice of result presentation using one control factor and one response variable
at a time. MORSM generated three-dimensional response surfaces that can present the
interaction of two control variables on response variables, and their graphs are easy to
interpret. In different ratios, Azolla pinnata oil methyl ester-diesel blends were used to
power a variable compression engine at different engine load and compression ratios. The
engine outputs, such as BTE, BSFC, COz, PM, and NOx, were recorded at these diverse
conditions. Using the Box-Behnken design and ANOVA, the input-output data were uti-
lized to create five prediction models. Different recognized statistical metrics of error and
efficiency analysis, such as R, R?, Nash-Sutcliffe efficiency, MAPD, and RMSE, were used
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to evaluate the prediction models. Theil’s U1 and U2 were computed to assess the accu-
racy and predictability of the created model. The desirability technique was used as a tool
for analyzing combustion performance and emission trade-offs. The following are the con-
clusive outcomes of the present study:

e With only 17 experimental tests, a reliable and efficient model was developed. It is
noteworthy because three control variables and five response variables were em-
ployed at three levels.

e The high R and R?values (close to 1) achieved for all the prediction models with
low prediction errors indicate an excellent degree of prediction ability of MORSM.

e  The generated model’s Nash—Sutcliffe efficiency was in the range of 0.965-0.9988,
suggesting a stable model. In addition, the mean absolute percentage deviation was
modest (0.74.4%).

e The engine operating condition was optimized using the desirability technique. An
optimum condition was reached with the engine load at 81.2%, compression ratio at
17.5, and with 10% biodiesel blends. The trade-off resulted in optimal combustion
performance with low emission. The best performance output was obtained as
30.14% BTE, 307.36 g/kWh BSFC with exhaust emission CO: as 1030.99 (g/kWh),
PM as 0.429 (g/kWh), and NOx as 1261.75 ppm.

e  An experimental test was used to confirm the output anticipated under optimal
conditions. The predictions were all within 7.29% of the experimental findings.

The present study is a successful endeavor to study third-generation algal biodiesel’s
combustion and emission characteristics using MORSM based model prediction. The
third-generation biodiesel feedstock does not affect the human food chain and is easier to
produce. The study may further extend to dual-fuel engines and life cycle analysis to as-
sess the potential environmental impacts.
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Abbreviations

Al Artificial intelligence

bTDC Before top dead centre

BTE Brake thermal efficiency

CFD Computational fluid dynamics

GHG Greenhouse gas
MAPD  Mean absolute percentage deviation
NSE Nash-Sutcliffe Efficiency

SDG Sustainable development goals
FFA Free fatty acid

FIT Fuel injection timing

ICE Internal combustion engine

ANN Artificial neural network
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BSFC Brake specific fuel consumption
CO2 Carbon dioxide

CRDi Common rail direct injection
HC Hydrocarbon

RMSE  Root mean square error

NO« Oxides of nitrogen

UNGA  United nations general assembly
FIP Fuel injection pressure

GEP Gene expression programming

J/°CA Joule per crank angle
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