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Abstract—Modelling service deployment on distributed, het-
erogenous and dynamic environments usually involves the in-
tegration of multiple software components under a common
deployment. Such deployments have gained focus lately, not only
because of the rise of the Edge Computing paradigm but also
due to Clouds and micro-Clouds Computing infrastructures.
A novel approach for this deployment is Virtual Function
Chains, according to which a service is decomposed to a set
of Virtual Functions and each Virtual Function is undertaken
by a different device. We propose a Virtual Function Chain
Simulation (V FCSIM ) Framework, an opensource library for
building simulation models of both edge and cloud networked
systems, based on Virtual Function Chains. VFCSIM’s central
structure is a heterogeneous network, which can describe, via
scripting, a wide set of devices, network links, cloud resources,
cost models and services. A case study is presented, according to
which final users request on demand surveillance services from
an edge network. After describing the simulation setup steps,
both the summarization results and the real-time probing metrics
are presented. VFCSIM is expected to enhance and facilitate the
deployment of the Virtual Function Chaining paradigm both to
cloud and edge infrastructures.

Index Terms—simulator, edge computing, cloud computing,
streaming services, multiprocessing

I. INTRODUCTION

The technological developments of the last decade in the
area of networking and embedded systems have resulted
to an exponential increase of micro-processing units, which
can be deployed near the production of primal data. These
micro-processing units facilitated in the formulation of the
Edge Computing paradigm. Edge Computing is an umbrella
term which describes an extensive range of computing con-
cepts, such as mobile computing, multi-access edge computing
(MEC) [1], open edge computing [2] and fog computing [3].
The underline denominator of the aforementioned approaches
is the effort to minimize the network distance and thus increase
proximity between data (usually generated by sensing devices
and communicated through streaming protocols) and process-
ing devices. Time sensitive services benefit from the edge
computing model, as the round-trip network delay, implied by
the cloud computing based services, is omitted. Additionally,
services which can not access cloud infrastructures can explore
Edge computing for deployment.

Furthermore, the network infrastructure of edge computing
provides a lower transmission delay than the cloud computing
because the clients do not encounter the wide area network
(WAN) delay in the edge computing. Thus, services like video
analytics or biosignals processing can be implemented more
efficiently on the edge of the network [4].

Both academia and industry are showing an increasing
interest towards edge computing and many researchers and
engineers are designing new models and novel approaches.
Such approaches though pose a challenge from the design
point of view, as a wide set of parameters and performance
criteria need to be considered. During the design phase, there
are three options to be explored: (i) cloud environments, (ii)
experimental test beds and (iii) simulators, in order to evaluate
the proposed schemes. For each option, certain advantages and
disadvantages can be discussed. An actual cloud environment
is usually costly and requires special virtualization frameworks
for deployment. Likewise, designing on experimental test
beds brings in difficulties regarding the expandability of the
experiments and scalability of the proposed architectures. On
top of that, as the main category of edge processing units
are mobile systems, emulating their software environment is
a challenging task.

As a result, engineers and researchers usually use simulation
frameworks to optimize and evaluate their edge computing
architectures and designs. While simulators offer many ad-
vantages, various modelling challenges need to be tackled
by developers. Compared with mainstream cloud computing
simulators, edge computing environment simulators need to in-
corporate heterogeneous devices, limited computing resources
and networking protocols, which require a more complex
framework to be developed. Thus, while cloud environment
simulators can inspire and direct the device of edge based
simulators, they can not be used ‘off the shelf’ for simulating
edge environments.

A second challenge to be addressed when designing an edge
environment simulator is the mobility of the edge devices.
Relative positioning of the edge devices plays an important
role when point-to-point communication protocols are applied
(e.g., BLE – Low Energy Bluetooth). Finally, edge based
setups are highly fluctuating environments where edge devices



become available or unavailable constantly. This environment
fluctuations is a characteristic that is not explored in cloud
based simulators, as the infrastructure is expected to be stable
at a high degree.

A service deployed on an Edge environment can be con-
ceived as a set of independent functions which communicate
with each other to realize the service’s objective, and typically
interact in a sequential order, especially in IoT scenarios
demanding for sense-process-actuate workflows [5]. These
functions are composed of atomic commands and are expected
to be deployed on virtualized infrastructures (e.g., container-
based virtualization) or run natively on an edge device. For
instance, Docker containers are explored in Microsoft Azure
IoT Edge for deploying computational processes on edge
devices, and Amazon AWS Greengrass can deploy and execute
Lambda functions on the Greengrass core software in edge
devices.

An umbrella term for these functions is called Virtual
Functions (V Fs) and are inspired by the Virtual Network
Functions, as a set of interconnecting and communicating
V Fs as Virtual Function Chains (V FCs). Concerning V FC
models, a wide set of problems have been addressed and
discussed by the research community [18]. Among the most
challenging ones are:

1) V F placement problem, which refers to the optimal
assignment of each V F instance to an edge device,
so that the services constrains are met and the total
environment cost is minimized.

2) V F dimensionality problem, which refers to the esti-
mation of the minimum number of V F replicas required
to implement the service. It is important to mention that
V FC models may consider deploying multiple replicas
of a V F in order to distribute the data to the edge and
thus reducing the processing time of the specific V F .
This approach, inspired by the micro-services model
[17], can enable the deployment to heavy processing
V Fs to low-end edge devices.

3) V F migration problem, which refers to the transparent
transfer of the running status of a VF when the undertak-
ing device needs to be removed from the V FC. While
the aforementioned problems have been discussed in the
literature, new approaches appear constantly which need
to be evaluated.

For this, we consider a simulation framework suitable for
modeling V FC architectures and schemes that would be
of great usefulness to engineers and researchers. This work
proposes V FCSIM , a simulator for V FC architectures, both
in the Edge and in Cloud. While other simulation environments
can be used for simulating V FCs, they require substantial
effort for doing so.

The novelty of V FCSIM is that is can natively sup-
port V F and V FCs. Most important, V FCSIM can sup-
port real-time interaction with the simulations, enabling the
ad hoc alteration of the edge environment, edge network
and deployed services. V FCSIM can be used for simu-
lations on Edge environments, as well as in Cloud envi-

ronments. Finally, V FCSIM can support multi user access
support, which is crucial for edge environments. V FCSIM
is an open source project and is publicly available at
github.com/vtsakan/VFCSIM.

The organization of this paper is as follows. In Section II,
the background of the edge computing and the related works
are detailed while in Section III, the design and the architecture
of the V FCSIM is detailed. In Section IV, a case study
which utilize the proposed simulation framework is presented
while Section V concludes the wok and describes the possible
directions for the future work.

II. STATE OF THE ART

Edge computing, fog computing, open edge computing, and
MEC, while presenting some dissimilarities, can be considered
as similar conceptions. In the present study we use the
term edge computing, for consistency. A useful review on

Fig. 1. Cloud - Edge - IoT conceptual architecture.

the evolution of the edge computing paradigm is provided
by Taleb et al. [6]. Satyanarayanan et al. introduced the
Cloudlet paradigm with the work reported in [7]. Cloudlets
can be thought as micro-clouds close to mobile users, which
can deploy and manage their own virtualized environments.
About the same period, Cisco © proposed fog computing
[3], a concept comparable to the main ideas as cloudlets. Fog
computing architectures most usually comprise devices placed
in the edge of the network, with the capacity of wireless
communication.

The aforementioned approaches draw the attention of
the telecommunication service providers and public institu-
tions. Thus, European Telecommunications Standards Institute
(ETSI) introduced the mobile edge computing (MEC) concept,
aiming to adjust the edge computing paradigm in mobile
cellular networks [8]. The objective of this concept is to
enable the support of real time access to high-end services by
adjusting the edge and cloud computing capabilities into the
edge of the radio access network (RAN). To expand the MEC
paradigm from cellular networks to alternative wireless access
technologies (e.g., WiFi), ETSI modified the name of the
concept to multiaccess edge computing (keeping though the
abbreviation the same). A typical edge computing architecture
and end user devices are depicted in Fig. 1. The proliferation
of cloud based services resulted to numerous cloud computing



TABLE I
COMPARISON OF THE WELL-ESTABLISHED SIMULATORS.

Resource
modelling

Dynamic
simulation

Virtualization
modelling

Cloud
GreenCloud - - X
iCanCloud X - -
CloudSim X X -

Edge
IoTSim X - X
SimIoT - X -
iFogSim X - X

simulators [9]. Basically, most of these simulators provide the
computational models for the virtualized cloud environments,
which can simulate the basic aspects of the virtual nodes, such
as CPU, RAM memory, storage and energy consumption. The
models incorporated in the simulators usually consider at least
three of the aforementioned characteristics.

A. Cloud simulators

Three of the most well established cloud simulators are
GreenCloud [10], iCanCloud [11] and CloudSim [12]. Green-
Cloud (an add-on of the well-known NS2 simulator) is a
framework which has advanced models for energy usage
and consumption for both communication and computational
tasks. GreenCloud can utilize the full TCP/IP stack from the
NS2 library, enabling the detailed modeling of the energy
consumption on the network elements. Nonetheless, NS2
backend requires substantial CPU and memory capacity, af-
fecting the simulation time of the produced scenarios. Built
on OMNeT++, iCanCloud is another well-established cloud
simulator. The comparative advantage of iCanCloud is the
capacity to simulate large-scale environments with thousands
of nodes, by supporting great extensibility, scalability and
performance indicators. iCanCloud provides a graphical user
interface to describe the simulation scenario.

When it comes to simulate Infrastructure-as-a-Service cloud
computing environments, CloudSim is probably the optimal
option, as it is designed for modeling both cloud components
such as datacenters, virtual machines and hosts, and source
provisioning policies such as CPU, RAM memory, storage,
and network communication models.

B. Edge simulators

Edge environments, compared with the cloud setups, share
diverse characteristics, as far as devices, virtualization envi-
ronments, networking, user access and service deployment.
For this, additional aspects need to be integrated in the
simulation frameworks which plan to support edge computing
environments. These aspects can be summarized in three
categories: (1) Edge node mobility profiles, as mobility is
usually not considered in cloud environments, (2) Data gen-
eration devices (e.g. sensors) integration and (3) Reliability
profiles for the edge devices. For supporting these capabili-
ties, simulators specialized for edge environments have been
introduced. Among the most popular ones are SimIoT [13],
IOTSim [14], and iFogSim [14]. IOTSim is simulator which
is built upon the engine of CloudSim. It is proposed for

simulations which require large volumes of data to be sent
out to cloud infrastructures. SimIoT is developed by extending
the SimIC( [16]) simulator and, in principle, it integrates an
IoT layer to the SimIC, allowing edge devices to request
and access cloud resources. Finally, iFogSim runs on top of
CloudSim and it has been developed for simulating IoT and
fog environments by modeling components like the sensors,
actuators, fog devices and the cloud infrastructures. iFogSim
supports the establishment service access from edge devices
from fog servers. Yet, this information is static and can not
be updated during a running scenario. Table I summarizes
the reviewed simulators, in terms of their capacity to model
resource allocation, virtualization technologies and dynamic
changes during the execution of a simulation.
V FCSIM introduces a simulation framework which can

be used to simulate scenarios based on virtual functions, both
on edge and cloud environments. The main novel aspects of the
proposed framework are: (i) native support of V F and V FCs,
(ii) real-time interaction with the simulation environment, (iii)
common simulation environment for Edge and Cloud based
simulations and (iv) multi user access support.

III. V FCSIM SIMULATION FRAMEWORK

With the progress of modeling frameworks, and the diverse
scenarios where V FC could be integrated, the scripting ap-
proach has been applied, according to which the modeler can
utilize already established entities and constitute a simulation
scenario, without requiring advance programming skills, espe-
cially with Python involved in the pathway. When a flexible
structured framework is provided, scripting can create complex
simulation scenarios by modelers, after a short training period.
V FCSIM is a modelling and simulation framework cre-

ated to build V FC scenarios on edge and cloud infrastruc-
tures. V FCSIM is based on an object-oriented approach
to define the network environment, the computational nodes
(edge-cloud nodes), the services, described as a set of se-
quential V Fs their properties, as well as the demand from
the users side. This particular design approach is general
enough for enabling modular, multi-services scenarios and
specific enough, so that the modeler can easily deploy different
scenarios.
V FCSIM ’s novelty lies on the fact that it is a generic

V FC simulation framework, written in Python, capable of
supporting multi-service modelling. The use of Python offers
V FCSIM particular advantages, such as:

• Python integrates numerical, statistical, scientific and vi-
sualization libraries, like numpy, pandas, seaborn, matlib-
plot and scipy-kit.

• Python is a recognized framework for resource modelling.
• Python integrates pyomo, a native optimization frame-

work.
In V FCSIM documentation, the following terminology is
used to describe its elements: Module: A file containing a
Python class definition, Object: An instance of a class (as
defined within a Module), Type: A file containing a super-
class definition, along with the relative Python decorators and



Simulation: An instance of a model with a particular set of
model parameters.

A. Design

The basic classes of the simulation framework are presented
in Fig. 2. More specifically, the basic entities of the framework
are:

Fig. 2. UML design of the proposed simulation framework.

• Node, which is used to model a computational and
communication entity, as an edge device or a virtual
machine. The basic attributes of the Node entity are
(i) CPU mips (million instructions/sec), RAM memory
volume, storage capacity and a cost function, which refers
to the total operational cost of the node

• VF, which is used to model a virtual function with
attributes: (i) input data size, (ii) output size data, (iii)
required CPU instructions and (iv) required RAM vol-
ume.

• NetworkLink, which is used to model a point-to-point or
a point-to-multipoint network communication link.

• Service, which models a deployed service. Service’s
attributes include a set (list) of V Fs, which actually
constitute a VFC and QoS requirements which refers to
the specific quality of service contract of a service.

• Simulation, which is used to create a script with a specific
simulation scenario.

In order to set up a simulation scenario, one should create
a script which describes (i) the device environment, (ii) the
deployed services and the networking infrastructure. Each
simulated entity is materialized as a Python process, utilizing
the multiprocess Python library. Thus, V FCSIM considers a
no-shared memory environment, promoting a realistic frame-
work for the simulations. V FCSIM handles the evolution
of time as discrete time points. It is important to mention
that the time discretization is involved on probing the relative
pre-defined metrics and logging them. The actual simulation
is performed on a realistic basis, according to the specific
simulation scenario. Fig. 3 illustrates the basic steps for the
execution of a simulation.

Fig. 3. Steps for simulation execution.

B. Visualization

V FCSIM offers two visualization modules, which are ex-
pected to facilitate the work of the modelers. The first module
parses the designed environment and produces a graph network
by utilizing the NetworkX library. Thus, the modeler can
inspect the designed network. It is important to mention that
V FCSIM offers live interaction with the simulation, which
means that the modeler can intervene with the environment
during the execution of a simulation. The second visualization
module refers to the real-time probing of specific simulation
metrics. This user interface explores the Python-Qt library
and communicates with the up-running processes via UDP
multicast sockets. Thus, when an edge node for example needs
to report a metric, it creates a multicast packet and send to a
pre-defined port. The visualization module dynamically creates
a set of views for each node and for each V F , which can be
later selected by the modeler (Fig. 10).

C. Validation

Aiming to verify that the entities built in V FCSIM are
valid, and that the simulation environment is functioning
properly, we have implemented a virtual function chaining
scenario in V FCSIM and in a well-established simulation
environment (iFogSim). The scenario involved the modeling
of a set of virtual function chains, each one of them modeling a
mock service. Each V FC required 3 - 8 nodes, with a different
V F to be deployed to a different edge node. Each V F
produced a throughput of 200kbps. By implementing the same
setup in both iFogSim and V FCSIM , the overall network
utilization has been compared (Fig. 4). One can observe that
the difference between the two simulation frameworks, is
approximately 1.8% (maximum value), and remains relatively
small, even when the number of the edge devices increases.

IV. CASE STUDY: SURVEILLANCE SERVICES

Aiming to test the proposed simulation framework, a spe-
cific scenario has been built. More specifically, an edge
environment with dynamic number of devices has been con-
sidered, upon which, users can request on demand different
surveillance services with different demand probabilities. The
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TABLE II
PARAMETERS ON SIMULATION SETUP.

Parameter Value Description
cpuload 104N(10, 0.8) cpu mips of edge devices
mk 103N(20, 0.9) V Fk required mips per data instance
Wtt′ 105N(10, 0.7) bps between V Ft and V F ′

t

cg(l) l2+0.8
1000

function which describes the cost of g
edge device when performing l instruc-
tions

r(l) 20l+9
mk

function which describes required time of
an edge device to perform l instructions

simulated services have been modeled as a set of nV Fs, where
n is a random integer ∈ [3, 7], aiming to simulate different
sizes of V FCs. Each V F could be either a light V F , a
moderate V F (4 times higher computational requirements than
a light V F ) or a heavy V F (4 times higher computational
requirements than a moderate V F ), with relative computa-
tional characteristics each. Within the simulation platform,
two different Setups of a surveillance service have been
implemented.

• Setup I: The surveillance service has been implemented
under a monolithic approach. This means that all V Fs
of the same service have been hosted in one edge device.

• Setup II: A V FC model, where the different V Fs were
deployed on different edge devices.

The two aforementioned setups have been tested under
different service demand probability distributions. By service
demand probability distribution, we refer to the probability
a user requests a service at a specific time-point td. More
specifically, various Poisson distributions have been used. For
the Poisson distributions, three different λ parameters have
been used, aiming to simulate low (λ = 20), normal (λ = 40)
and high (λ = 100) user demand rates. For the same Setup,
the cumulative number of the requested services was the same.
The parameters of the simulation environment are given in
Table II.

For this specific scenario, the modeler aims at exploring
the scalability of V FC model. For this, a script has been
developed which implements the aforementioned Setups under
two dependent variables: (i) the number of edge devices
n and (ii) the service demand distribution probability. The
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measurements of the simulation study include the following
metrics: (i) the total edge environment utilization (Fig. 5),
(ii) the total network traffic (Fig. 6), (iii) the percentage of
successfully served services (Fig. 7), (iv)the percentage of
rejected services (Fig. 8) (inadequate resources) and (v) the
total edge environment cost (normalized) (Fig. 9). Finally, the
V FCSIM visualization module can probe specific metrics
during the execution of the simulation. For example, in Fig.
10, the available RAM of a randomly selected edge device is
presented, after 60 secs of simulation time.
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V. DISCUSSION

V FCSIM has been applied successfully to a case study
which aims to design an edge network with the capacity to un-
dertake a set of surveillance services. The feature under study
was the number of required edge devices against the service
deployment mode (Monolithic vs. V FC). Via scripting, a set
of simulation scenarios have been considered, with different
end user demand probability distributions. From the simulation
results, certain conclusions can be drawn. For instance, in
order to avoid down-time of the designed system (down-
time refers to the time the system can not undertake new
services), the edge environment would require 58 devices for
low demand, 125 devices for normal demand and about 190
devices for high demand, if the V FC model is applied. In case
of the Monolithic model, the relative numbers are 110, 195
and > 200 edge devices. As virtualization and dockerization

technologies are recently considered not only to the cloud but
also to the edge computing paradigm, an abstract approach for
developing services is required. V FC model can support this
design approach. For this, we propose a simulation framework
which can support modellers, engineers and researchers to
test architectures and solutions based on V F . The limitations
of the framework summarize our future work. An integrated
user interface for designing networks, devices and V F is
expected to facilitate the work of the modellers. On the same
direction, the integration of libraries with well-established
devices and communication protocols will result to a more
concrete simulation framework.
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