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Highlights

• This paper proposed a frame work based on the inequality constrained optimiza-
tion model to learn conditional probability table parameters by incorporating expert
judgments and Dirichlet priors.

• We further improve the proposed method by developing a constrained Bayesian
Dirichlet prior.

• Combined the proposed method, we provide an improved expectation maximum al-
gorithm for learning conditional probability table parameters from incomplete data.

• The contributed algorithm is tested on 13 well-known Bayesian networks, whose
parameter number varies from 9 to 1157. The experiments show that the proposed
method outperforms most of the existing parameter learning algorithms, especially
when training data are extremely scarce.

• A real facial action unit recognition case with incomplete data is conducted. The
results show that the proposed method can build a more accurate Bayesian network
for recognizing facial action units.
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Abstract

Purely data-driven methods often fail to learn accurate conditional probability table (CPT)

parameters of discrete Bayesian networks (BNs) when training data are scarce or incom-

plete. A practical and efficient means of overcoming this problem is to introduce qualitative

parameter constraints derived from expert judgments. To exploit such knowledge, in this

paper, we provide a constrained maximum a posteriori (CMAP) method to learn CPT pa-

rameters by incorporating convex constraints. To further improve the CMAP method, we

present a type of constrained Bayesian Dirichlet priors that is compatible with the given

constraints. Combined with the CMAP method, we propose an improved expectation

maximum algorithm to process incomplete data. Experiments are conducted on learning

standard BNs from complete and incomplete data. The results show that the proposed

method outperforms existing methods, especially when data are extremely limited or in-

complete. This finding suggests the potential effective application of CMAP to real-world

problems. Moreover, a real facial action unit (AU) recognition case with incomplete data

is conducted by applying different parameter learning methods. The results show that the

recognition accuracy of respective recognition methods can be improved by the AU BN,

which is trained by the proposed method.
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1. Introduction

Bayesian networks (BN) [1] have become an efficient tool to express and infer uncer-

tain knowledge. A discrete BN consists of a directed acyclic graph (DAG) and a set of

related conditional probability table (CPT) parameters. The DAG qualitatively expresses

(in)dependency relationships among variables, while the CPTs probabilistically quantify

those relationships.

The first step in building a BN from data (or samples) is to recover the DAG. When

training data are scarce or incomplete, it is unrealistic to build a DAG by purely data-driven

algorithms [2–5]. To address this problem, some systematic approaches have been estab-

lished to help domain experts artificially define BN structures (DAGs) [2, 6]. However, few

experts have the confidence to directly provide CPTs for a BN as the corresponding struc-

ture identified in advance. Moreover, a scarce or incomplete dataset alone is insufficient

for accurately revealing the CPTs relating to a known structure.

In addition to structures, domain experts might be able to provide qualitative judg-

ments about parameters [7]. It has been proved that expert judgments are helpful for

improving parameter learning accuracy when data are scarce [8–13]. In practice, qualita-

tive constraints can be derived from expert judgments. These constraints are almost linear,

and are thus convex. Although concave constraints exist, such as θijk 6= 0.5, experts actu-

ally have a small probability of providing judgments that will derive such constraints. Thus,

in this paper, we only consider convex constraints, while emphasizing linear constraints.

Accordingly, we concentrate on enhancing the accuracy of learning CPT parameters

from scarce or incomplete data by incorporating convex parameter constraints as structures

that have been artificially defined.

Several methods have been applied to learn CPT parameters from scarce data by in-

corporating qualitative constraints, including those listed below.
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• Convex Optimization (CO) [9, 10, 14–19]: This method is an extension of the max-

imum likelihood (ML); however, CO partly alleviates the overfitting problem by in-

troducing constraints. There are two approaches to assimilate the information of

constraints: (a) penalty functions constructed from constraints are used to modify

likelihood functions [9, 14]; (b) constraints are directly used to restrict parameter

spaces [10, 19]. Theoretically, the CO method can cope with all convex constraints.

• Isotonic Regression (IR) [11, 20]: IR computes isotonic estimations by the minimum

lower sets (MLS) [21] algorithm based on data statistics and monotonic influences.

Then it takes the isotonic estimations as desired CPT parameters.

• Qualitative Maximum a Posteriori (QMAP) [12]: This method firstly recruits Monte

Carlo samples from the constrained parameter space to construct prior Dirichlet

priors. Next, it respectively copes with them by using the maximum a posteriori

(MAP) algorithm to obtain the MAP estimations. It finally takes the mean value of

the MAP estimations as the learned BN parameters.

• Multinomial Parameter Learning with Constraints (MPL-C) [13, 22, 23]: MPL-C was

recently proposed to learn CPTs by creatively reconstructing auxiliary BNs, which

are hybrid BNs [24], to infer the posterior distribution of BN parameters. It then

takes the expectation as the parameter estimation.

In this paper, we propose a framework—a constrained maximum a posteriori (CMAP)

method—to address CPT learning by incorporating convex constraints and Dirichlet priors.

CMAP is proposed based on a convex optimization method, in which given constraints are

directly used to restrict feasible parameter spaces. Dirichlet priors are introduced to further

alleviate the overfitting problem of the basic convex optimization method. Although BDeu

prior [25] and flat prior [9] are commonly used prior distributions for discrete variables, they

are often incompatible with expert judgments as they always drive conditional distributions

moving towards uniforms. Consequently, they likely restrict parameter learning accuracy.
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Accordingly we develop constrained Bayesian Dirichlet (CBD) priors that are compatible

with expert judgments. The convex optimization problem is approximately solved by a

barrier method with a guaranteed specified accuracy.

A scenario where some records are missing or nodes are unobservable leads to incom-

plete data. If the missing records randomly occur and there remains adequate complete

data, we can remove incomplete samples to obtain a complete dataset. At that point, a

complete-data-driven algorithm can be used to learn CPTs. Otherwise, we can employ the

classic expectation maximization (EM) algorithm [26] to learn the CPT parameters from

such incomplete data. However, the learning results by using the EM algorithm are often

frustrating. When a dataset is incomplete, the expectation of the likelihood function is

actually multimodal. The EM algorithm is essentially a special hill-climbing method that

can be applied to such parameter learning tasks. Thus, a local optimum is always found.

The local optimum parameter cannot guarantee that a ’good’ BN is built since the global

optimal solution is even not a desired result. Furthermore, because the same dataset prob-

ably results in contradictory BNs with the change of the initial condition (or start point), it

is unreliable to parameterize a DAG from incomplete data by a purely data-driven method.

It has been shown that expert judgments are additionally helpful to improve the ac-

curacy of learning parameters from incomplete data [10, 14]. The parameter constraints

can restrict the path by which the EM procedures converge to a local optimum. Thus,

even though different BNs will be learned with the start point changing, each of them

can satisfied experts’ preferences. Similar to the ML algorithm, the proposed approach is

compatible with the EM algorithm since the convergence can be guaranteed.

The remainder of this paper is structured as follows. Section 2 outlines basic information

on BNs. Section 3 lists linear constraints that can be collected from expert judgments.

Section 4 describes our framework for learning CPTs from both complete and incomplete

data. Section 5 compares different methods by learning 13 standard BNs and training a

real facial action unit (AU) recognition model. Section 6 concludes this paper.
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2. Preliminaries

A discrete Bayesian network consists of a DAG G and related CPT parameters θ.

The G = (X,E) expresses independence relationships among a set of variables (or nodes)

X = {X1, X2, · · · , Xn}, where E = {Xj → Xi|Xj ∈ Πi, i = 1, · · · , n} is the set of arrows

in the DAG and Πi ⊆ X \ {Xi} is the parent set for Xi. In other words, there exists

an arrow in G points to Xi from each node in Πi. The θ = {θ1, θ2, · · · , θn} quantifies the

dependency relationships among X, where θi is the CPT related to family Gi. According to

the Markov independency, given all parents, Xi is independent of its other non-descendant

nodes. Thus, we have

p(X) =
n∏

i=1

p(Xi|Πi) (1)

As a result, the goal of parameter learning on BNs is to determine each conditional

distribution p(Xi|Πi). For simplicity, we define θijk as a specific conditional probability

p(Xi = k|Πi = j), where k ∈ {1, 2, · · · , ri} is the state of node Xi, and j ∈ {1, 2, · · · , qi}
expresses the configuration of the parent set Πi. Thus, parameters of Xi construct a

ri × qi conditional probability table (CPT). Given data D = {Dl|l = 1, 2, · · · , N}, the

log-likelihood function for θ is

L(θ,D) = log p(D|θ) =
N∑

i=1

log p(Dl|θ) (2)

We respectively define Nijk as the count for records where and Xi = k and Πi = j,

and Nij =
∑

kNijk as the count for records where Πi = j in D. Hence, the maximum

likelihood estimation (MLE) is obtained by maximizing L(θ,D):

θ̂ijk =
Nijk

Nij
(3)

Obviously, the ML method will fail to work if Nij = 0 (i.e., the certain parent config-

uration Πi = j has not appeared in data D). In practice, it is common that some parent
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configurations will scarcely appear, even for a large number of data [22]. Then a Dirichlet

prior is introduced to overcome this problem:

p(θ|G) ∝
n∏

i=1

qi∏

j=1

ri∏

k=1

θ
τijk−1
ijk (4)

where τ = {τijk} is the hyper-parameter set and τij =
∑

k τijk. Flat prior (τijk − 1 = 1) or

BDeu prior (τijk − 1 = 1
riqi

) are popular Dirichlet priors [9]. Then the objective function

can be a logarithmic form of the conditional distribution of θ given D:

log p(θ|D) = log p(D|θ)p(θ) + c (5)

Here, c is a constant. Therefore, we can obtain the MAP estimation for a single

parameter by maximizing log p(θ|G,D):

θ̂ijk =
Nijk + τijk − 1

Nij + τij − ri
(6)

3. Linear Parameter Constraints

Example 1 From the widely accepted judgment that ”people who smoke have a higher risk

of developing lung cancer than those who do not”, we can obtain a parameter constraint as

p(Cancer = true|Smoke = false) ≤ p(Cancer = true|Smoke = true).

Like Example 1, an expert judgment can induce qualitative parameter constraints. An

interior constraint restricts the parameters that share the same parent state configuration

within a CPT column, such as θijk ≤ 0.1 and θijk1 ≤ θijk2 . Nevertheless, an exterior

constraint expresses an inequality relationship across two or more CPT columns, which

means the constrained parameters have different parent configurations, such as θij1k1 ≤
θij2k2 . Both interior and exterior constraints have been proved to be helpful for improving
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parameter learning accuracy, especially when training data are limited or incomplete [9].

Regardless of their interior or exterior status, the parameter constraints derived from

practical expert judgments can almost be formulated as a linear inequality

f(θ) ≤ 0 (7)

where f : Rdim(BN) → R is a linear function and dim(BN) is the number of free parameters

of BN. Several specific types of constraints can be derived from the linear inequality.

Range Constraints A range constraint defines the upper or lower bound (or both)

of a single parameter, which can be represented as

0 ≤ α ≤ θijk ≤ β ≤ 1 (8)

Inequality Constraints An inequality constraint defines the relative relation be-

tween a pair of parameters, that is

θi′j′k′ ≤ αθijk + β (9)

where two groups of subscripts must be different and 0 ≤ αθijk + β ≤ 1.

Additive Inequality Constraints An additive inequality constraint is the relative

relation between two summations of parameters. A qualitative influence gives a typical

additive inequality constraint as

k(c)∑

k=1

θisk ≤
k(c)∑

k=1

θitk (10)

where k(c) ∈ {1, 2, · · · , ri}. Moreover, s and t express two parent configurations, where

only the state of the concerned parent in the qualitative influence relationship changes but

the configurations for the other parents remain the same.
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Example 2 A simple BN X1
+−→ X2

−←− X3 includes a positive influence and a negative

influence. Thus, for k(c) ∈ {1, 2, · · · , r2}, we have two groups of constraints as

X1
+−→ X2 :

k(c)∑

k=1

p(X2 = k|X1 = 1, X3) ≤
k(c)∑

k=1

p(X2 = k|X1 = 2, X3) ≤ · · ·

X3
−−→ X2 :

k(c)∑

k=1

p(X2 = k|X1, X3 = 1) ≥
k(c)∑

k=1

p(X2 = k|X1, X3 = 2) ≥ · · ·

Axiomatic Constraints Probabilities should be normalized and nonnegative:





ri∑

k=1

θijk = 1

0 ≤ θijk ≤ 1

(11)

4. Constrained Maximum a Posteriori Method

4.1. Learning from Complete Data

4.1.1. Learning CPTs by Using Constraints and Dirichlet Priors

It can be seen that f(x) = n log x (n ≥ 0, x > 0) is a concave function, since the

derivative f ′(x) = n
x decreases as x increases. Hence, the log-likelihood function is a

concave (a positive sum of concave functions is also concave). Then parameter learning

can be modeled as a standard convex optimization problem if the feasible parameter space

is convex [27–29]. For constrained maximum likelihood (CML) [10] model, constraint set

Ω = {fl(θ) ≤ 0|l = 1, · · · ,m} is directly taken as optimization constraints. Thus, we have

arg min
θ
− log p(D|θ)

s.t.

ri∑

k=1

θijk = 1, i = 1, · · · , n; j = 1, · · · , qi

0 ≤ θijk ≤ 1, i = 1, · · · , n; j = 1, · · · , qi; k = 1, · · · , ri

fl(θ) ≤ 0, l = 1, · · · ,m

(12)
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When some parent configurations are absent from D, the problem becomes a combi-

nation of a feasibility problem (wherein the parent configurations are absent) [30] and a

convex optimization problem (wherein the parent configurations are present). This prob-

lem can still be solved by some convex optimization techniques; nevertheless, the solution

for the feasibility problem is probably undesired. A Dirichlet prior can hence be introduced

to mediate this problem. Accordingly,

log p(θ|D) = log p(D|θ)p(θ)− log p(D) (13)

Removing the constant term − log p(D), the objective function can be substituted as

arg min
θ
− log p(D|θ)p(θ)

s.t.

ri∑

k=1

θijk = 1, i = 1, · · · , n; j = 1, · · · , qi

0 ≤ θijk ≤ 1, i = 1, · · · , n; j = 1, · · · , qi; k = 1, · · · , ri

fl(θ) ≤ 0, l = 1, · · · ,m

(14)

Widely-used flat and BDeu priors are often incompatible with constraints as they always

drive local conditional distributions to move towards uniforms. Then the learning accuracy

or prediction accuracy of learned BNs may be impeded. To further improve learning

accuracy, we introduce constrained Bayesian Dirichlet (CBD) priors from constraints as

p(θ|G) ∝
n∏

i=1

qi∏

j=1

ri∏

k=1

θ
γijθijk
ijk (15)

where γij is the weight of the prior and θ = {θijk} is the mean value of the constrained

parameter space. Thus, θ can be computed as

θ =

∫
Ω θdθ∫
Ω dθ

(16)
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The integration is sometimes difficult to compute directly. If it is practical to generate

an adequate number of samples from constrained parameter space, we can employ a Monte

Carlo method to approximate the integral [31]. Otherwise, a strictly feasible point can be

a relatively accurate approximation for θ since the constrained space is very narrow.

We refer to the proposed approach as the constrained maximum a posteriori (CMAP)

method. The global optimal solution for equation (14) can be found in polynomial time in

the input size [10, 32] by Newton’s method. In addition, non-linear convex constraints are

theoretically allowed as long as they are second-order differentiable.

4.1.2. Solving by Newton’s Method

To solve equation (14) with the classical Newton’s method [27], we first transform it

into an unconstrained problem. Letting f0(θ) = − log p(D|G, θ)p(θ|G) and θijri = 1 −
∑ri−1

k=1 θijk, we make the inequality constraints implicit in the objective:

arg min
θ

f0(θ) +

m∑

l=1

I−(fl(θ)) (17)

where the constraint 0 ≤ θijk ≤ 1 and
∑ri−1

k=1 θijk ≤ 1 is implicated, and I− : R → R is an

indicator function for the non-positive real numbers:

I−(x) =





0, x ≤ 0

+∞, x > 0
(18)

Although equation (17) has no constraints, its objective function is not second-order

differentiable. Thus, Newton’s method cannot be directly applied. To cope with this

problem, we can approximate the indicator function I− by a logarithmic barrier function

Î−(x) = −1

u
log(−x), u > 0 (19)

Here, u is a factor that is used to control the approximation accuracy. As u increases, the
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approximation becomes more accurate. Similar to I−, Î− is strictly convex. Furthermore,

Î− has a more attractive property such that it is continuous second-order differentiable.

Substituting Î− for I− in equation (17), we obtain the approximation

arg min
θ

f0(θ) +
m∑

l=1

−1

u
log(−fl(θ)) (20)

For convenience, we define J(θ) as the objective in equation (20). As J(θ) is convex

and second-order differentiable, the positive definiteness of Hessian matrix ∇2J(θ) implies

−∇J(θ)T∇2J(θ)−1∇J(θ) ≤ 0 (21)

where ∇J(θ)T is the transposed matrix of ∇J(θ), ∇2J(θ)−1 denotes the inverse matrix

of ∇2J(θ), and the equality holds if and only if ∇J(θ) = 0. Thus, the Newton step

4θnt = −∇2J(θ)−1∇J(θ) is a descent direction. It reveals that we can find the optimal

value for θ along 4θnt from a strictly feasible point.

Letting Ñijk = Nijk + τijk − 1, the partial derivative of J(θ) with respect to θijk is

∂J(θ)

∂θijk
=
Ñijri

θijri
− Ñijk

θijk
− 1

u

m∑

l=1

1

fl(θ)

∂fl(θ)

∂θijk
(22)

Therefore,∇J(θ) = (∂J(θ)
∂θijk

) is a dim(BN) column vector, where dim(BN) is the number

of free parameters of the BN. The second-order partial derivative of J(θ) with respect to

θijk and θi′j′k′ can be expressed as

∂2J(θ)

∂θijk∂θi′j′k′
=





Ñijri

θ2
ijri

+
Ñijk

θ2
ijk

+
1

u

m∑

l=1

(
1

f2
l (θ)

∂fl(θ)

∂θijk
− 1

fl(θ)

∂2fl(θ)

∂θ2
ijk

), ijk = i′j′k′

Ñijri

θ2
ijri

+
1

u

m∑

l=1

(
1

f2
l (θ)

∂fl(θ)

∂θijk
− 1

fl(θ)

∂2fl(θ)

∂θ2
ijk

), ij = i′j′ ∧ k 6= k′

1

u

m∑

l=1

(
1

f2
l (θ)

∂fl(θ)

∂θi′j′k′
− 1

fl(θ)

∂2fl(θ)

∂θijk∂θi′j′k′
), ij 6= i′j′

(23)
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Thus, ∇2(θ) = ( ∂2(θ)
∂θijk∂θi′j′k′

) is a dim(BN)× dim(BN) matrix. If we only gather linear

constraints, the second-order derivative of fl(θ) is always zero. Then ∂2(θ)
∂θijk∂θi′j′k′

can be

furthermore simplified as

∂2J(θ)

∂θijk∂θi′j′k′
=





Ñijri

θ2
ijri

+
Ñijk

θ2
ijk

+
1

u

m∑

l=1

1

f2
l (θ)

∂fl(θ)

∂θijk
, ijk = i′j′k′

Ñijri

θ2
ijri

+
1

u

m∑

l=1

1

f2
l (θ)

, ij = i′j′ ∧ k 6= k′

1

u

m∑

l=1

1

f2
l (θ)

∂fl(θ)

∂θi′j′k′
, ijk 6= i′j′k′

(24)

At this point, based on the gradient discussed in equations (22–24), the approximate

problem shown in equation (20) can be solved by an improved Newton’s method, the barrier

method [27]. Defining θ∗(u) as the solution of equation (20) and f∗ as the lower bound on

the optimal value, the accuracy of the approximation is given by [27]

f0(θ∗(u))− f∗ ≤ m

u
(25)

where m is the number of constraints.

4.2. Learning from Incomplete Data

An incomplete dataset means some of the records are missing, or some nodes are unob-

servable (or hidden). If the dataset is D = {Dl|l = 1, · · · , N}, then Dl is the l -th sample.

Respectively, define D
(m)
l = {D(m)

l,1 , · · · , D(m)
l,u } and D

(o)
l = {D(o)

l,1 , · · · , D
(o)
l,v } as the missing

part and observed part of Dl, then we have D
(m)
l ∩D(o)

l = ∅ and D
(m)
l ∪D(o)

l = Dl. As

D
(m)
l (l = 1, · · · , N) is unknown, the expectation of likelihood function log p(D|θ) becomes

a combination of those likelihood functions that are related to all possible instantiations

of incomplete data D. Although a likelihood function for complete data is unimodal, the

expectation of log p(D|θ) is multimodal since different instantiations of D make the mode

of log p(D|θ) various. Thus, the related optimization problem is not a convex model [33].
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If missing records randomly occur and there remain an adequate number of complete

samples, we can remove incomplete samples to obtain a complete dataset. That is, for

l = 1, · · · , N , if D
(m)
l 6= ∅, D = D \ Dl. Then, complete-data-driven algorithms can be

used to learn CPTs. However, when records are not randomly missing or data are scarce,

this approach becomes impractical. The EM algorithm is a conventional technique to learn

parameters from incomplete data [26, 33], which can iteratively reach a local maximum of

the expectation of log p(D|θ). The standard EM algorithm is comprised of two key steps:

• E-step: Compute the expectation of the log-likelihood function based on the incom-

plete data D and current parameter estimation θ(t), which is updated in the M-step:

Q(θ|θ(t)) = Eθ(t) [log p(D|θ)|θ(t), D]

• M-step: Maximize the current expectation Q(θ|θ(t)), which is updated in the E-step,

to determine the new parameter:

θ(t+1) = arg min
θ
−Q(θ|θ(t))

The EM algorithm can start from either the E-step when an initial parameter θ0 is

defined, or from the M-step by artificially assigning missing records.

However, the EM algorithm is often trapped in undesired local optimal solutions, and

different start points may result in contradictory BNs. Parameter constraints and Dirichlet

priors are helpful for deriving an EM procedure converging to the local optimum where the

learned BN satisfies domain knowledge. Given a Dirichlet prior p(θ), the expectation can

be modified as Q(θ|θ(t)) = Eθ(t) [log p(θ|D)|θ(t), D]. According to equation (16), we have

Q(θ|θ(t)) = Eθ(t) [log p(D|θ) + log p(θ)− log p(D)|θ(t), D]

= Eθ(t) [log p(D|θ)|θ(t), D] + log p(θ)− log p(D)

14
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Let

Q′(θ|θ(t)) = Eθ(t) [log p(D|θ)|θ(t), D] + log p(θ) (26)

It has the same optimization as Q(θ|θ(t)) for a shared feasible domain. As Q′(θ|θ(t)) is con-

cave, given convex parameter constraints, the improved M-step can still obtain the global

optimum solution. Then, the modified EM algorithm shares convergence and optimality

properties (more details in Appendix A). However, the EM procedure likely stops at a

point where the gradient is orthogonal to the constraints instead of a stationary point with

a zero gradient [33]. The improved EM algorithm is shown in Algorithm 1.

Input: incomplete data D, constraints Ω, initial parameter θ(0), tolerance ε > 0
Output: parameter estimation θ

1 Let t = 0;
2 repeat
3 E-step:

4 Compute Q′(θ|θ(t)) based on equation (26).
5 M-step:

6 Compute θ(t+1) by calling Algorithm 2 to solve problem

θ(t+1) = arg minθ −Q′(θ|θ(t)) subject to Ω.
7 Increase t: t = t+ 1.

8 until Q′(θ(t+1)|θ(t))−Q′(θ(t)|θ(t−1)) < ε;

9 return θ(t)

Algorithm 1: Improved EM algorithm

5. Experimental Evaluation

The conducted experiments consist of a group of standard BN learning cases and a

real-world case study. The standard BN learning cases compare different parameter learn-

ing methods by measuring the errors from known true CPTs to the CPTs learned from

complete scarce data. The comparison can show the potentials of those methods being

applied to real-world problems. However, there are no true CPTs in the real case study.
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Thus, the prediction performance (AUC) metric is employed to evaluate BN models built

from the same incomplete data by different parameter learning algorithms.

To show the performance of the proposed method, we consider the following methods:

• Conventional parameter learning algorithms: ML (equation 3) and MAP (equation

6, using the flat prior)

• Constrained maximum likelihood (CML) algorithm (equation 12)

• Proposed algorithm: CMAP (equation 14, using the flat prior) and CMAP+ (equa-

tion 14, using the CBD prior with γij = ri)

5.1. Experiments on Standard BNs

5.1.1. Complete Data

The proposed method was compared with other methods by learning 13 standard BNs

in this group of experiments. Except the Boerlage92 BN [34], the other standard BNs are

publicly available in the BN repository1. They range from typically small expert-built BNs

to those that are as large as what could be reasonably produced by experts.

The Kullback-Leibler (K-L) divergence metric [35] was selected as the criterion for eval-

uating errors between true CPTs and estimated CPTs. To avoid log 0 in the computation

of K-L divergences, zero values in CPTs were replaced by a tiny value (1 × 10−10). For a

BN, averaged K-L divergence is used, which is computed as

KL(θ, θ̂) =
1∑n

i=1 riqi

n∑

i=1

qi∑

j=1

ri∑

k=1

θijk log(
θijk

θ̂ijk
) (27)

The experiment settings are summarized follows:

• For the standard BNs, the structures and true CPTs were known but there were

1http://www.bnlearn.com/bnrepository/
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no true data. Thus, training datasets were randomly sampled from true CPTs with

different sparsity levels (50, 100, and 500).

• Parameter constraints on standard BNs were synthesized according to the true CPTs

as constraint definitions are satisfied [8]. For a parameter θijk whose true value is

greater than 0.9, a range constraint was generated as 0.9 ≤ θijk ≤ 1. For two

parameters θijk and θij′k′ from the same CPT row or column, if their true values

satisfy θijk − θij′k′ ≤ −0.2, an inequality constraint was generated as θijk ≤ θij′k′ .

Moreover, the maximum number of constraints for a CPT was 20.

• Learning was repeated 20 times for each BN and data size, and training data were

randomly re-sampled for each repetition. Then we employed the mean K-L divergence

as a measure for this condition (the BN and the data size).

• CBD priors for the CMAP+ method were determined according to equation (15),

and θ was approximated by a strictly feasible point.

• Methods using Dirichlet priors shared the same weight of priors, which is
∑

k(τijk −
1) = ri. For the CBD prior of CMAP+, γij was set as ri.

Table 1: Basic information of standard BNs

BNs Nodes Arcs Parameters Constraints
Andes 223 338 1157 935
Win95pts 76 112 574 222
Hepar2 70 123 1453 398
Hailfinder 56 66 2656 437
Alarm 37 46 509 186
Insurance 27 52 984 306
Boerlage92 23 36 86 73
Sachs 11 17 178 79
Asia 8 8 18 16
Survey 6 6 21 16
Cancer 5 4 10 10
Earthquake 5 4 10 10
Weather 4 4 9 7

In this way, parameter learning methods were compared under different BNs, data

sizes, and ratios of constrained parameters (ranging from 0.1645 to 1), making the results
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relatively fair. The information for BNs is shown in Table 1, and the learning results are

given in Tables 2–4, where the best results are highlighted in bold.

From Tables 2–4, we can draw the following conclusions.

Overall According to the results, the CMAP+ performs the best overall in this

group of experiments, while CMAP takes second place. On one hand, the ’MEAN’ K-L

divergence obtained by CMAP+ is consistently the smallest for the data size ranges 50,

100, 500; CMAP is only outperformed by CMAP+. On the other hand, for 39 learning

cases with different BNs and data sizes, CMAP+ achieved the best results in 31 cases,

while 9 of the best results are realized by CMAP. However, CML and MAP respectively

perform best in one case but never the best for ML.

Using Constraints or Not In contrasting the learning results of ML and CML,

as well as those of MAP and CMAP, we find that the learning accuracy is significantly

improved by incorporating constraints. For different data sizes, from CML to ML, the

’MEAN’ K-L divergences respectively decrease by 35.9%, 30.3%, and 25.4%; from CMAP

to MAP, the ’MEAN’ K-L divergence respectively decreases by 45.9%, 34.6%, and 38.5%.

Using Dirichlet Priors or Not In comparing the learning results of ML and MAP,

as well as those of CML and CMAP, it can be observed that Dirichlet priors are extremely

helpful for enhancing CPT learning accuracy. The ’MEAN’ K-L divergence achieved by

MAP with 100 data is better than that achieved by ML with 500 data. More notably,

CMAP using only 50 data outperforms CML using 500 data as its ’MEAN’ K-L divergence

is 80.2% of that achieved by the latter.

CBD Priors vs. flat Priors In fact, we can roughly guess that the CBD prior is

overall better than the flat prior, because it is compatible with expert judgments, whereas

the latter is not. That the CMAP+ outperforms CMAP by 8.6% reduction on the ’MEAN’

K-L divergence supports this estimation.
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Table 2: Learning results on standard BNs with 50 data

BNs ML MAP CML CMAP CMAP+
Andes 0.305± 0.018 0.146± 0.002 0.196± 0.015 0.073± 0.002 0.063± 0.002
Win95pts 0.274± 0.023 0.226± 0.005 0.189± 0.013 0.146± 0.001 0.136± 0.001
Hepar2 0.251± 0.022 0.125± 0.002 0.203± 0.020 0.109± 0.001 0.095± 0.001
Hailfinder 0.309± 0.012 0.116± 0.001 0.272± 0.012 0.083± 0.001 0.078± 0.001
Alarm 0.256± 0.017 0.249± 0.009 0.089± 0.012 0.057± 0.002 0.052± 0.002
Insurance 0.260± 0.020 0.215± 0.004 0.160± 0.013 0.102± 0.002 0.091± 0.002
Boerlage92 0.334± 0.096 0.067± 0.005 0.234± 0.050 0.044± 0.003 0.034± 0.004
Sachs 0.308± 0.041 0.162± 0.008 0.193± 0.039 0.099± 0.004 0.076± 0.003
Asia 0.224± 0.125 0.144± 0.020 0.158± 0.037 0.138± 0.017 0.142± 0.018
Survey 0.178± 0.089 0.039± 0.010 0.154± 0.077 0.032± 0.009 0.032± 0.009
Cancer 0.142± 0.105 0.097± 0.030 0.066± 0.081 0.018± 0.003 0.009± 0.007
Earthquake 0.367± 0.258 0.130± 0.032 0.133± 0.104 0.019± 0.004 0.011± 0.006
Weather 0.054± 0.022 0.043± 0.015 0.050± 0.024 0.025± 0.009 0.025± 0.011
MEAN 0.251 0.135 0.161 0.073 0.065

Table 3: Learning results on standard BNs with 100 data

BNs ML MAP CML CMAP CMAP+
Andes 0.249± 0.013 0.108± 0.002 0.164± 0.012 0.057± 0.001 0.052± 0.001
Win95pts 0.278± 0.027 0.205± 0.005 0.217± 0.028 0.141± 0.001 0.132± 0.001
Hepar2 0.245± 0.018 0.115± 0.002 0.207± 0.015 0.103± 0.001 0.091± 0.001
Hailfinder 0.297± 0.011 0.098± 0.002 0.275± 0.009 0.075± 0.001 0.071± 0.001
Alarm 0.224± 0.014 0.215± 0.007 0.092± 0.015 0.053± 0.002 0.047± 0.002
Insurance 0.208± 0.017 0.178± 0.004 0.136± 0.013 0.089± 0.002 0.079± 0.002
Boerlage92 0.236± 0.072 0.050± 0.005 0.164± 0.055 0.033± 0.004 0.028± 0.005
Sachs 0.230± 0.041 0.132± 0.007 0.143± 0.029 0.081± 0.005 0.063± 0.003
Asia 0.141± 0.076 0.102± 0.016 0.123± 0.071 0.099± 0.015 0.103± 0.016
Survey 0.158± 0.088 0.029± 0.009 0.114± 0.079 0.023± 0.006 0.024± 0.006
Cancer 0.239± 0.186 0.056± 0.020 0.118± 0.093 0.013± 0.002 0.009± 0.004
Earthquake 0.419± 0.259 0.126± 0.031 0.148± 0.090 0.150± 0.006 0.140± 0.007
Weather 0.023± 0.021 0.022± 0.008 0.020± 0.021 0.016± 0.004 0.014± 0.012
MEAN 0.227 0.110 0.147 0.072 0.066

Table 4: Learning results on standard BNs with 500 data

BNs ML MAP CML CMAP CMAP+
Andes 0.118± 0.010 0.044± 0.002 0.087± 0.004 0.024± 0.001 0.027± 0.001
Win95pts 0.267± 0.023 0.159± 0.003 0.239± 0.023 0.124± 0.002 0.117± 0.002
Hepar2 0.222± 0.012 0.093± 0.002 0.198± 0.012 0.088± 0.001 0.079± 0.001
Hailfinder 0.294± 0.010 0.058± 0.001 0.286± 0.009 0.050± 0.001 0.048± 0.001
Alarm 0.139± 0.018 0.136± 0.005 0.067± 0.012 0.037± 0.001 0.031± 0.001
Insurance 0.117± 0.009 0.098± 0.003 0.083± 0.008 0.055± 0.001 0.047± 0.001
Boerlage92 0.062± 0.017 0.018± 0.003 0.045± 0.013 0.011± 0.002 0.011± 0.002
Sachs 0.125± 0.029 0.076± 0.005 0.083± 0.014 0.046± 0.003 0.037± 0.002
Asia 0.052± 0.025 0.055± 0.010 0.044± 0.019 0.055± 0.009 0.056± 0.010
Survey 0.072± 0.079 0.013± 0.009 0.041± 0.059 0.009± 0.007 0.009± 0.007
Cancer 0.072± 0.096 0.022± 0.020 0.042± 0.052 0.006± 0.002 0.010± 0.005
Earthquake 0.113± 0.068 0.072± 0.019 0.059± 0.057 0.010± 0.003 0.014± 0.005
Weather 0.003± 0.001 0.004± 0.001 0.003± 0.001 0.003± 0.001 0.002± 0.001
MEAN 0.122 0.065 0.091 0.040 0.038
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5.1.2. Incomplete Data

Figure 1: Boerlage92 network with 23 nodes.

To compare the five algorithms under incomplete data, we conducted two experiments

on the Boerlage92 network (shown in Figure 1). The experiment settings are summarized

as follows:

• The parameter constraints of Boerlage92 network were the same constraints used in

the experiments with complete data.

• Incomplete data were obtained by removing samples of hidden nodes from complete

data, which were generated based on the true parameters.

• The parameters were learned from incomplete data by combining the five complete-

data-driving methods and the EM algorithm, respectively. The hyper-parameters of

the five methods were introduced at the beginning of Section 4.

• The K-L divergence was used for measuring the errors between the true parameter

and estimated parameter. We used equation (27) to compute the K-L divergence for
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a BN. For the K-L divergence of a CPT, we used the follow formula:

KL(θi, θ̂i) =
1

riqi

qi∑

j=1

ri∑

k=1

θijk log(
θijk

θ̂ijk
)

• Two data sizes (500, 1000) and two sets of hidden nodes, (2, 4, 5, 10) and (2, 4, 5,

10, 12, 14, 16, 18), were considered in the experiments.

• Learning was repeated 10 times and training data were randomly re-sampled for each

repetition. Then we used the mean of the 10 K-L divergences as a measure for the

learning.
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Figure 2: Learning results from incomplete data for the Boerlage92 network. Two data sizes (500, 1000)
and two sets for hidden nodes, (2, 4, 5, 10) and (2, 4, 5, 10, 12, 14, 16, 18), were considered.

Experiment 1. In this experiment, we focused on the learning accuracy of the whole

Boerlage92 network when the data size and hidden node set varied. The data sizes were

set as 500 and 1000, and the hidden nodes were set as (2, 4, 5, 10) and (2, 4, 5, 10, 12, 14,

16, 18). For learning under each data size and hidden node set, the K-L divergences for

the whole Boerlage92 network were collected. Figure 2 illustrates the results.
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Figure 2 shows that the proposed methods (CMAP and CMAP+) outperformed the

other methods under all of the four conditions. In general, with data size increasing

and hidden nodes reducing, learning accuracy improved for all algorithms. However, the

proposed methods achieved better K-L divergence (≤ 0.053), under the worst condition

(500 data and eight hidden nodes), than did the other methods under the best condition.

Note that, the K-L divergence of CML is ≥ 0.063 when there were 1000 data and four

hidden nodes (the best condition).

Experiment 2. In this experiment, the learning accuracy for each CPT of the Boerlage92

network was concerned. The hidden nodes were fixed at eight (2, 4, 5, 10, 12, 14, 16, 18).

For learning under each data size (500 or 1000), the K-L divergences for each CPT were

collected. The main results are summarized in Figure 3.

Figure 3 shows that the learning results under two data sizes are close. For nodes 6, 10,

and 14, the proposed methods obviously outperformed the other three competing methods.

For nodes 2, 5, 12, 13, 18, and 19, the results of CMAP and CMAP+ were better than

those of ML and MAP. For nodes 20 and 23, the proposed methods performed better than

ML and CML. To sum up, for each node, the accuracies of the proposed methods were the

best or close to the best, which explains why they performed best in Experiment 1.

5.2. Case Study

To compare the proposed method with the existing algorithms under the condition of

scarce and incomplete data, we consider a real facial action unit recognition application

from the computer vision domain. According to the Facial Action Unit System (FACS),

each AU occurs when the related facial muscles are contracting. FACS is a convenient

means to characterize a variety of basic facial expressions by the combination of only a

small set of AUs. Thus, although a number of methods have been developed in recent

years to directly recognize basic facial expressions, we can also first recognize facial AUs.

We then determine the facial expression according to the criteria that facial expressions

consist of AUs [36, 37].
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(b) 1000 data

Figure 3: Learning results for CPTs of the Boerlage92 network. Two data sizes (500, 1000) and eight
hidden nodes, (2, 4, 5, 10, 12, 14, 16, 18), were considered.

5.2.1. BN for AU recognition

In practice, it is probably unreliable to respectively recognize each AU by only using

current computer vision techniques in scenarios of ambiguity and uncertainty, as well as
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under individual differences and dynamic natures of facial actions. Fortunately, there are

some inherent relationships among AUs according to the FACS manual [38], which comprise

helpful knowledge for overcoming the drawback of respectively recognizing computer vision

techniques. Furthermore, the Bayesian network is an appropriate tool to express such

knowledge and infer the AUs.

Table 5: Facial Action Units

AUs Facial Action AUs Facial Action AUs Facial Action

AU1 Inner brow raiser AU2 Outer brow raiser AU4 Brow lowerer
AU5 Upper lid raiser AU6 Cheek raiser AU7 Lid tighten
AU9 Nose wrinkle AU12 Lid corner puller AU15 Lip corner depressor
AU17 Chin raiser AU23 Lip tighten AU24 Lip presser
AU25 Lips part AU27 Mouth stretch

Figure 4: A Bayesian network for AU recognition. The shaded nodes are AUs, which are above the red
line. The measurement nodes are beneath the red line.

Instead of recognizing each AU alone, we constructed a BN structure (see Figure 4),

including 14 AUs (shown in Table 5), based on the probabilistic relationships among AUs

[38]. The structure expresses the mutually exclusive relationships and co-occurrence rules

described in the FACS manual. To incorporate the AU recognition results from a computer

vision technique, the BN structure introduces a measurement node for each AU. As a

result, there are a total of 28 nodes in the structure. Besides the arcs among AUs, each

AU has an arc connected to its measurement node. A measurement node does not connect

to the other measurement nodes considering that AUs are independently measured. As

AUs are not known in advance, they are all set as hidden (unobserved) nodes. On the
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contrary, measurement nodes are all observable. Accordingly, the BN can be divided into

a measurement layer and an AU layer.

Once CPTs are determined, AU recognition can be performed by running probabilistic

inferences on the complete BN.

5.2.2. Learning AU BN with Convex Constraints

To learn the AU BN, an adequate number of unbiased complete training data are re-

quired. However, it may be difficult to collect such data in practice. For one, labeling a

mass of AUs by domain experts is time-consuming and expensive. Secondly, the reliability

of manually labeled AUs is debatable because experts are often confined to ambiguous

images or individual differences. In addition, rarely occurring AUs and unfair samples

are unavoidable. Thus, biased, scarce, and incomplete training data are often gathered,

which can ultimately result in low learning accuracy. As supplementary information, qual-

itative constraints, implicated in the inherent relationships between AUs, are valuable for

improving learning accuracy.

Accordingly, we first introduced qualitative influences on the AU BN: AU2
+−→ AU1,

AU4
+−→ AU1, AU25

+−→ AU2, AU12
−−→ AU4, AU27

−−→ AU4, AU2
+−→ AU5, AU7

+−→
AU6, AU12

+−→ AU6, AU1
−−→ AU7, AU4

+−→ AU7, AU1
−−→ AU9, AU7

+−→ AU9, AU7
−−→

AU15, AU17
+−→ AU15, AU4

+−→ AU17, AU25
−−→ AU17, AU25

+−→ AU23, AU5
−−→ AU24,

AU23
+−→ AU24, AU2

+−→ AU27, and AU25
+−→ AU27.

In addition to the qualitative influences, we consider four other types of constraints as

follows: (a) If AUi has more than one parents and all of them have positive influences,

then p(AUi = 1|Π(AUi) = 1) ≥ 0.7, where Π(AUi) = 1 means all parents are present. (b)

Conversely, if AUi has more than one parents and all of them have negative influences, then

p(AUi = 1|Π(AUi) = 1) ≤ 0.2. (c) AU25 has a relatively small probability of occurring,

that is p(AU27 = 1) ≤ 0.5. (d) We can further give the measurement accuracy, where

p(oi = 1|AUi = 1) and p(oi = 0|AUi = 0) can be respectively restricted in a small range.

We employed the EM algorithm integrated with complete-data-driven methods to pa-
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rameterize the AU BN from incomplete data and the constraints. The incomplete data

included records of measurement nodes but not AU nodes (Figure 4). In addition, the EM

procedure started from a set of random CPTs.

5.2.3. Recognition Results

Table 6: Accuracies of SVMs

AU 1 2 4 5 6 7 9

Present 0.596 0.544 0.666 0.539 0.659 0.660 0.681
Absent 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AU 12 15 17 23 24 25 27

Present 0.714 0.716 0.711 0.658 0.691 0.677 0.506
Absent 1.000 1.000] 1.000] 1.000 1.000 1.000 1.000

We used the CK+ dataset [36] to test the performance of different parameter learning

methods. There are 593 image sequences of images, from neutral to peak frames, across

123 people. The CK+ database provides AUs occurring in each sequence. We labeled the

40% of images close to peak frames with the AUs given by the CK+ database, and the

6% of images close to the neutral frames with empty AU. In this way, we collected more

than 5000 labeled images from the CK+ database. A total of 1000 images were used for

training and 4000 were used for testing. The training data for each measurement node

(observable node) were obtained by a one-vs-all two class linear support vector machine

(SVM), which was trained from all neutral and peak frames. The 1000 training images

were classified by the SVMs to provide samples for measurement nodes in the AU BN;

however, there were no samples for AU nodes (hidden nodes). In such a way, we collected

1000 incomplete training samples. Similarly, we collected 4000 incomplete testing samples

(for performing inferences). The accuracies of these SVMs are shown in Table 6 (] refers to

values close to one). From Table 6, we obtained constraints for the measurement accuracies

in the AU BN. That is p(oi = 0|AUi = 0) ∈ [0.99, 1] and p(oi = 1|AUi = 1) is limited to

the 0.025-neighborhood of the true positive accuracy of the related SVM. Then we used

the 1000 incomplete samples (AU nodes had no samples) and constraints (including the
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constraints mentioned in subsection 4.2.2) to train the AU BN.

After the AU BN had been trained, we inferred the posterior probabilities of each

AU given measurement nodes of the AU and its parents (for AU25, as it has no parent,

it was inferred based on the measurement nodes of AU25 and its child) by using the

junction tree algorithm [39, 40]. If the probability of being present is greater than 0.5, the

AU was treated as present; otherwise, the AU was absent. For example, when we infer

p(AU2|o2, o25), where o2 is the measurement node for AU2, and o25 is the measurement

node for AU2’s parent AU25, if p(AU2 = 1|o2 = 1, o25 = 0) > 0.5, then we believe AU2

will be present when o2 = 1 and o25 = 0. If any of the 4000 test samples (obtained

from testing images by the SVMs) satisfies o2 = 1 and o25 = 0, we believe that AU2 is

present in the image. The recognition results were compared with the labels over the 4000

testing images to get the true positive rate (successful rate of judging an AU presenting)

and true negative rate (successful rate of judging an AU absenting). We applied the true

positive rate and true negative rate to measure the recognition accuracy, with both being

simultaneously higher considered better. The AU recognition results are shown in Figure

5. In addition, Figure 6 illustrates the improvements of true positive and negative rates

by combining the AU BN, which are the differences between recognition accuracies of the

AU BN and SVMs.

Conclusions drawn from Figures 5&6 are summarized as follows:

• For ten AUs, the algorithms using constraints improved the true positive rate, but

the true negative rate decreased for four of the ten AUs.

• The algorithms using constraints achieved higher accuracies than those not using

constraints for recognizing all fourteen AUs. For AU25, although ML and MAP

show higher true positive rates, they failed to recognize all negative cases.

• The algorithms not using constraints barely improved (or even worsened) the AU

recognition accuracy.
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Figure 5: AU recognition results. (a) True positive rates; (b) True negative rates. Higher is better.

• The performances of ML and MAP were close, and the performances of CML, CMAP,

and CMAP+ were close.

The first conclusion indicates that the AU BN is helpful for improving the AU recog-

nition accuracy of respective recognition methods, like the one-vs-all linear SVMs if good

parameters are learned. The mutually exclusive relationships and co-occurrence rules im-

plicated in the AU BN can provide supplementary information for recognizing an AU, like

the measurement nodes of parents. The second and third conclusions declare that incor-

porating parameter constraints is effective for escaping an undesired local optimum when

learning parameters from incomplete data, because the expectation of a likelihood function

is multimodal. Although, the AU BN is insensitive to subtle changes, ’significant’ changes,

such as from 0 to 0.1 or from 0.2 to 0.8, can bring about different results. Using parameter

constraints is an effective way to avoid ’significant’ changes. Therefore, CML, CMAP, and

CMAP+ outperform ML and MAP.

Despite of the same recognition results, the posterior distributions of AU conditioned
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Figure 6: Improvements of true positive and negative rates from SVMs. (a) Improvements of true positive
rates; (b) Improvements of true negative rates. Higher is better. A positive value represents the accuracy
increasing, while a negative value represents accuracy decreasing.

on some measurement nodes, obtained by different learning algorithms, are not identical.

Taking p(AU2 = 1|o2 = 1, o25 = 0) as an example, the inference results of the AU BNs

from CML, CMAP, and CMAP+ are respectively 1.00, 0.926, and 0.999. For classification,

those algorithms obtain the same conclusion (i.e., AU2 is present). However, a probability

of 1.00 is extremely different from 0.926 and 0.999, because it means that the classification

result is absolutely correct, which is impossible.

6. Conclusion

In practice, data are often (locally) scarce, which makes it difficult to reveal true CPTs.

Moreover, incomplete data can be collected when there are missing records or unobservable

variables. The expectation of a likelihood function on incomplete data is multimodal; thus,

purely data-driven algorithms may be trapped in undesired local optimums. Therefore, it

is often unreliable to parameterize a DAG solely using data.
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It has been proved that expert judgments are helpful for improving BN learning accu-

racy when data are scarce or incomplete. Convex (usually linear) parameter constraints,

induced from qualitative expert judgments, can guarantee that estimated CPTs meet do-

main knowledge. In this paper, we propose a constrained maximum a posteriori approach

to learn BN parameters by incorporating convex constraints. In addition to constraints,

Dirichlet priors are introduced to alleviate the overfitting problem of the basic convex opti-

mization method. However, widely used BDeu and flat priors are often incompatible with

expert judgments, which probably hinders learning accuracy. To further improve the per-

formance of the proposed CMAP algorithm, we introduce a type of constrained Bayesian

Dirichlet priors that is compatible with given expert judgments.

A group of experiments were conducted on learning standard BNs from complete and

incomplete data. The results show that expert judgments are helpful to enhance CPT

learning accuracy when data are limited or incomplete. More importantly, the experi-

mental results demonstrate that the proposed algorithm overall outperforms the methods

compared, especially when CBD priors are used. Furthermore, as empirically substantiated

by a case study on AU recognition, we conclude that the proposed method can be effec-

tively applied to real-world problems. There are fourteen hidden nodes in the AU BN, and

the training data are thus incomplete. From the results, we find that constraints (induced

from expert judgments) can improve the recognition accuracy of AU BN; furthermore, we

find that most one-vs-all SVMs are improved by using the AU BN.

In this paper we apply a static BN to model dynamic AUs, where time-sensitive in-

formation is not considered. However, dynamic BNs can suitably express and infer time-

dependent knowledge [41]. Thus, extending the static AU BN to a dynamic BN has the

potential to improve recognition accuracy; this will be the focus of our future work.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61573285).

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Appendix A

The interpretation of equation (25). For an incomplete data set D = {Dl|l =

1, · · · , N}, let Dl be a feasible complete sample of the incomplete sample Dl, and Dl be the

set of all feasible complete samples of Dl. Then, the expectation of the likelihood function

is computed as

Eθ(t) [log p(D|θ)|θ(t), D]

=

N∑

l=1

∑

Dl∈Dl

p(Dl|Dl, θ
(t)) log p(Dl|θ)

=
n∑

i=1

qi∑

j=1

ri∑

k=1

(
N∑

l=1

∑

Dl∈Dl

p(Dl|Dl, θ
(t))p(Xi = k,Πi = j|Dl)) log θijk

where p(Dl|Dl, θ
(t)) is the probability of Dl being Dl based on θ(t), and p(Xi = k,Πi =

j|Dl) =1 if in Dl, Xi = k and Πi = j, or else p(Xi = k,Πi = j|Dl) =0. Thus, we have

Q′(θ|θ(t)) =

n∑

i=1

qi∑

j=1

ri∑

k=1

(τijk − 1 +

N∑

l=1

∑

Dl∈Dl

p(Dl|Dl, θ
(t))p(Xi = k,Πi = j|Dl)) log θijk

We can find from the equation that a Dirichlet prior with hyper-parameters {τijk} will

drive the optimal points of Q′(θ|θ(t)) to move towards the global optimal of the Dirichlet

prior. Thus, a well-defined Dirichlet prior can improve the learning accuracy when data

are incomplete.

The astringency of the Algorithm 1. Let τ = {τijk} be the hyper-parameter of a

Dirichlet prior p(θ). Considering that the incomplete sample Dl is included by a complete

Dl when Dl is a possible complete sample of Dl, we have p(Dl|θ) = p(Dl, Dl|θ). In addition,
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∑
Dl
p(Dl|Dl, θ) = 1 and p(Dl|θ) = p(Dl,Dl|θ)

p(Dl|Dl,θ)
obviously hold. Thus, we have

L(θ|D, τ) = log p(D|θ)p(θ)

= log p(θ) + log p(D|θ)

= log p(θ) +
∑

l

∑

Dl

p(Dl|Dl, θ
(t)) log

p(Dl, Dl|θ)
p(Dl|Dl, θ)

= log p(θ) +
∑

l

∑

Dl

p(Dl|Dl, θ
(t)) log p(Dl|θ)−

∑

l

∑

Dl

p(Dl|Dl, θ
(t)) log p(Dl|Dl, θ)

= log p(θ) + Eθ(t) [log p(D|G, θ)|θ(t), D]−
∑

l

∑

Dl

p(Dl|Dl, θ
(t)) log p(Dl|Dl, θ)

=Q′(θ|θ(t))−
∑

l

∑

Dl

p(Dl|Dl, θ
(t)) log p(Dl|Dl, θ)

According to the information inequality that the K-L divergence between two distribu-

tions is non-negative, we have

KL(p(Dl|Dl, θ
(t)), p(Dl|Dl, θ

(t+1)))

=
∑

Dl

p(Dl|Dl, θ
(t)) log p(Dl|Dl, θ

(t))−
∑

Dl

p(Dl|Dl, θ
(t)) log p(Dl|Dl, θ

(t+1)) ≥ 0

That is

∑

Dl

p(Dl|Dl, θ
(t)) log p(Dl|Dl, θ

(t)) ≥
∑

Dl

p(Dl|Dl, θ
(t)) log p(Dl|Dl, θ

(t+1))
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Because θ(t+1) = arg minθ −Q′(θ|θ(t)), Q′(θ(t)|θ(t)) ≤ Q′(θ(t+1)|θ(t)) holds. Then we have

L(θ(t)|D, τ) =Q′(θ(t)|θ(t))−
∑

l

∑

Dl

p(Dl|Dl, θ
(t)) log p(Dl|Dl, θ

(t))

≤Q′(θ(t+1)|θ(t))−
∑

l

∑

Dl

p(Dl|Dl, θ
(t+1)) log p(Dl|Dl, θ

(t+1))

=L(θ(t+1)|D, τ)

Assuming that {θ(t)|t = 0, 1, 2, · · · } is the sequence of estimated parameters obtained

by the Algorithm 3, the sequence {L(θ(t)|D, τ)|t = 0, 1, 2, · · · } monotonously increases. As

L(θ(t)|D, τ) < 0, {L(θ(t)|D, τ)|t = 0, 1, 2, · · · } is convergent.

The parameter constraints are not considered in the above discussion, but the result

still holds when the mentioned θ, θ(t), and θ(t+1) come from a shared constrained domain.

To sum up, Algorithm 3 is convergent.
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