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20 Abstract East African region is susceptible to drought due to high variation in monthly 21 

precipitation. Studying drought at regional scale is vital since droughts are considered a ‘creeping 

22 ’ disaster by nature with devasting and extended impact often requiring long periods to reverse the  

23 recorded damages. This study assessed drought exceedance and return years over East Africa from  

24 1920 to 2016 using Climate Research Unit (CRU) precipitation data records. Meteorological 25 

drought, where precipitation is the central quantity of interest, was adopted in the work.  

26 Standardize Precipitation Index (SPI) was used to study long term meteorological droughts and  

27 also to assess drought magnitude, frequency, exceedance probability and return years using Joint  

28 Probability Density Function (JPDF). Also, Mann-Kendall trend analysis was applied to  

29 precipitation and SPI to investigate the trend changes. Results showed that years with high drought  

30 magnitude ranged from 1920-22, 1926-29, 1942-46 and 1947-51 with values corresponding to 2.2, 

31 3.2, 3.4 and 2.6, respectively while years with low drought magnitude ranged from 1930-31, 

198832 89 and 2001-02 with values as 0.2, 0.12 and 0.15, respectively. The longest droughts 

occurred  

33 from 1926-29, 1937-41, 1942-46, 1947-51, 1952-56, and 1958-61 with values in years as 3, 4, 4,  
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34 4, 4, and 3 years, respectively, while the shortest droughts occurred in time period of 1 year and  

35 ranged from 1930-31, 1964-65, 1979-80, 1981-82, 1983-84, 1988-89, 1991-92, 1993-94, 1996-97  

36 and 2001-02. Also, it was demonstrated that probability of drought occurrence is high when  

37 severity is low and such droughts occur at short time intervals and not all severest drought took 38 

longer periods. The SPI trends indicate high positive (negative) pixels above (below) the zero39 

trend mark, indicating that drought prevails in both low and high elevation areas up to 2000 m.  

40 There was no direct link between ENSO and drought but arguably the association of drought in  

41 most El Niño and La Niña years suggests that the impact of ENSO cannot be ruled out since peak  

42 ENSO events occur during October to March periods which coincides with the short (SON) and 

43 long (MAM) rainy seasons of East Africa. The study is particularly relevant in being able 

to depict  

44 continuous and synoptic drought condition all over East Africa, providing vital information to 45 

farmers and policy makers, using very cost-effective method. 

46 Keywords    

47 

48 

49 Introduction 

50 Several studies indicate that droughts are among the most destructive natural disasters, 

negatively  

51 impacting livelihoods including crops and livestock, as well as other natural resources such as  

52 water, ecology, and biodiversity (Haroon et al.,  ; Lei et al., 2016; 

Schubert et al., 2016;  

53 Igbawua et al., 2018; Yao et al., 2018;   2020). The American 

Meteorological Society  

Meteorological Drought, Joint Probability Density Function (JPDF), SPI, ENSO,  

Drought Risk Mapping. 

2016 

Liu et al., 
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54 (1997) categorizes droughts into meteorological, agricultural and hydrological mainly on the 

basis  

55 of duration, impact and recovery rate. According to Ghulam et al. (2007) and Haroon et al. 

(2016),  

56 meteorological drought refers to a sustained period of three months or more during which 

monthly  

57 precipitation remains well below the long-term average. Agricultural drought occurs when there  

58 is an imbalance between water availability and demand in a farmland ecosystem, where water  

59 demand by plants is more as compared to supply. Hydrological droughts occur when 

deficiencies  

60 in surface and subsurface water supplies become evident in terms of reduced stream flow and  

61 reduction in ground water. For the purpose of this study however, the assumption is that 

“drought  

62 occurs when precipitation deficit exceeds some critical level beyond which the prevailing 

adaptive  

63 mechanisms fail to cope”, as defined by Tarhule and Woo (1997). The occurrence of drought 

has  

64 been recorded across all continents and under all climatic regions with low and high mean  

65 precipitation (Um et al., 2017) with varying degree, intensity, impact and duration.  

66 In recent decades, the occurrence and incidence of drought has been aggravated with the  

67 increase in global climate change (IPCC, 2014). For Africa, O'Connor (1995) reported that  

68 remotely sensed data analysis from National Aeronautics and Space Administration (NASA)  

69 reveal that about 900,000 km2 of previous savanna grassland in the African region had been  

70 severely degraded between the early 1960s and 1986 due to persistent occurrences of drought,  

71 while Bates et al., (2008) estimated that one-third of African population live in drought-prone  
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72 areas. Yang & Huntingford (2018) revealed historical precipitation estimated by Climate 

Hazards  

73 Group InfraRed Precipitation with Station data (CHIRPS) (Funk et al., 2015) shows that during  

74 August, September and October (ASO) of 2016, most of East Africa (particularly Somalia,  

75 Ethiopia and Kenya) had a reduction of 40% or more in precipitation compared to a baseline 

ASO  

76 period 1981–2015. Several studies confirm that the East African region ranks among the most  

77 vulnerable drought-prone regions of the world with a high potential for increased risk of drought  

78 related water and food shortages as recorded in as recent as year 2016/2017 (Love, 2009; Masih  

79 et al., 2014; Funk et al., 2014, 2015; Yang and Huntingford, 2018). The threat of drought is  

80 expected to further aggravate the existing widespread poverty and food insecurity (Funk et al., 

81 2008, 2013, 2015; von Grebmer et al., 2016). The situation is similar within other regions of 

sub82 saharan Africa. In West Africa, Dai et al. (2004) reported that there is about 40% decline 

in annual  

83 precipitation total from the year 1968–1990 as compared with the 30 years between 1931 and  

84 1960. Thus, frequent drought occurrences within the West African region have caused famine and  

85 are threatening the human existence in African savanna regions and consequently making the 86 

households highly vulnerable to drought (Eze, 2018). 

87 Droughts are considered a ‘creeping’ disaster by nature with devasting and extended impact  

88 often requiring long periods to reverse the recorded damages. It is therefore crucial that 

consistent 89 drought monitoring is carried out to provide decisive policy support for 

long- and medium-term  

90 planning of mitigative measures. Typically, at the turn of the 20th century, scientific studies had  

91 adopted climatic (temperature and precipitation) and hydrological (soil moisture and stream flow)  
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92 indicators as main input towards the generation of indices for quantitative modelling of drought  

93 severity (Kincer, 1919; Munger, 1916; McQuigg, 1954; Waggoner and O’Connell, 1956).  

94 However, further advances in the study of drought (beginning from the latter part of the 20th  

95 century into the 21st century) led to the identification of over 150 indices used for drought studies  

96 (Niemeyer, 2008) across various regions with different climatic conditions. The most 

prominently  

97 adopted contemporary indices for drought research include, but not limited to: decile index (DI)  

98 by Gibbs and Maher (1967); Palmer drought severity index (PDSI) by Palmer (1968), 

standardized  

99 precipitation index (SPI) applied by McKee et al. (1993); reclamation drought index (RDI) by  

100 Weghorst (1996); US Drought Monitor (USDM) applied by Svoboda et al. (2002); optimized  

101 meteorological and vegetation drought indices (OMDI and OVDI) proposed by Hao et al. (2015);  

102 composite drought indices using multivariable linear regression (MCDIs) developed by Liu et al.  

103 (2020). 

104 Recent drought studies have relied on the availability of data from different remote sensing 105 

platforms due largely to the synoptic coverage it provides for analysis over a wide region.  

106 Numerous methods have been developed for the application of remotely sensed data in drought  

107 studies. These include normalized difference vegetation index (NDVI) based conceptualization  

108 such as vegetation condition index (VCI) (Kogan 1995),  enhanced vegetation index (EVI) (Liu  

109 and Huete 1995),  soil adjusted vegetation index (SAVI) (Huete 1988), temperature vegetation  

110 index (TVX) (Lambin and Ehrlich, 1995), Deviations from NDVI (Anyamba et al., 2001),  

111 vegetation health index (VHI) (Kogan, 2001), temperature condition index (TCI) (Kogan, 1995; 

112 Kogan et al., 2003), and temperature vegetation dryness index (TVDI) (Sandholt et al., 

2002).  
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113 More advanced methods now include satellite derived indices such as perpendicular drought index  

114 (PDI) (Ghulam et al., 2007a); modified perpendicular drought index (MPDI) (Ghulam et al.,  

115 2007b); effective drought index (EDI) (Yao et al., 2010); and Drought severity index (DSI) 116 

proposed by Mu et al. (2013) and applied by Haroon et al. (2016). 

117 For the purpose of this study, the SPI proposed by McKee et al. (1993), and applied in Indonesia  

118 by Pramudya and Onishi (2018) will be adopted for the analysis of drought across the East 

African  

119 region. The SPI is considered most applicable for this study because it provides for drought  

120 analysis in multi-temporal levels such as monthly, single seasonal, multi-seasonal, and annual  

121 basis. This level of spatio-temporal scale analysis allows for the SPI to provide accurate 122 

meteorological and agricultural drought analysis. 

123 2.0 Methodology 

124 2.1 Study Area 

125 The study area covers eight countries consisting of Ethiopia, Kenya, Rwanda, Uganda, 

Tanzania,  

126 Burundi, Somalia and South-Sudan (Fig. 1). The climate of the region is influenced by a number  

127 of factors ranging from combination of the high altitude and the westerly monsoon winds that  

128 originate from the Ethiopian Highlands and Rwenzori Mountains. Generally, majority of the  

129 region’s countries experience two distinct precipitation regimes: “long rains” which extend 

during  

130 March–May (MAM), and a season with “short rains”, which lasts from October to December  

131 (OND). Figure 1 shows that much of Uganda and Somalia are humid and arid, respectively 

while  
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132 much of Ethiopia is semi-arid and arid. South-Sudan and Tanzania are largely sub-humid, with  

133 Kenya containing a vast area of aridity. Rwanda and Burundi are largely tropical highlands. 

134 The major livelihood sources include pastoralism and agro-pastoralism, rangeland cultivation,  

135 small-holder agriculture, milk production and dairy products processing (Morton and Kerven, 

136 2013; Abbink et al., 2014). 

137  

138 Fig. 1 Study area (Harvest Choice, 2015) 

139 2.2 Data sets and methods 

140 The precipitation data set used in this work is the Climate Research 

Unit (CRU) data developed  

141 by  University  of  East  Anglia.  The  data 

 was  retrieved  from  

142 http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.00/data/ at a 

spatial resolution of 0.5 x 0.5  

http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.00/data/
http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.00/data/
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143 degrees covering a temporal range of 1920 to 2015. The Standardized 

Precipitation Index (SPI)  

144 developed by McKee et al. (1993) is a popular index that is used to 

characterize drought at different  

145 time scales. SPI is computed by fitting a gamma distribution function 

to precipitation data of given  

146 frequency distribution over an area, and subsequently transforming 

the gamma distribution to a 147 normal distribution with a mean and 

variance of zero (0) and one (1) respectively (Suryabhagavan,  

148 2016). The aim of doing this is to minimize skewness in the data to zero. The Gamma distribution  

149 is widely used to represent precipitation time series (Guttman, 1999). The drought magnitude was  

150 obtained as the cumulative SPI over the drought months taken as a positive value. The intensity  

151 (drought severity) was computed as the magnitude divided by drought duration. The general  

152 technique for detecting changes in precipitation and drought is trend analysis. In this work, Trend  

153 analysis of precipitation and SPI will reveal will reveal the trends in drought over East Africa.  

154 Since, the input parameter for SPI computation is precipitation, trend analysis of precipitation will  

155 be done in order to study the local changes in climate. The Mann-Kendall non-parametric test was  

156 adopted in this work to assess the trends in precipitation and SPI and, also test the statistical  

157 distribution of the data records. Mann-Kendall was most preferred because it works well to avoid  

158 the problem caused by skewness of which precipitation is a kind of data that may be either  

159 negatively or positively skewed due to the existence of extreme values (Mahajan & Dodamani,  

160 2015). 

161 

162 2.2.1 SPI 

163 In calculating SPI, we adopt methods by Haroon, et al. (2016) and Guttman (1999), and fit a  
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164 probability distribution to long-term monthly precipitation records. The mean (𝑥), standard 165 

deviation (s) and skew (sk) are determined as follows: 

∑𝑋 

166 mean (𝑥) = 𝑁                                     (1) 

167 standard deviation (s) =                                       (2) 

168 skewness (sk) =(𝑁 ‒ 1)(𝑁 ‒ 2).  𝑁                          (3) 

169 where, x is the precipitation time series and N is the length of data records. The precipitation  

170 data are transformed by the log normal (ln) and the mean of those values is computed. The  

171 transformed values are further subjected to the constant U, which is used to compute the shape 

and  

172 Scale parameter as follows: 

ln (𝑋) 

173 Log mean = 𝑋ℎ = 𝑁 (4) 

ln (𝑋) 

174 U = ln (X) ‒ 𝑁   (5) 

(𝛽) =  (6) 175 Shape 

Scale (𝛼) = (7) 176 and, 

177 Further, the log values are transformed by the gamma distribution, incorporating the shape and 

178 scale values: 

𝑥 

 

𝑥 

179 Cumulative Gamma function G(x) = 𝛼𝛽
1Г𝛽

∫
𝑥𝑜 𝛽 ‒ 1𝑒𝑎𝑑𝑥 (8) 

∑ ( 𝑋 ‒ 𝑋 ) 2 

𝑁 

𝑁 ∑ ( 𝑋 ‒ 𝑋 ) 2 

1 
4 𝑈 [1 + 

4 𝑈 
3 

𝑋 
𝛽 



10 

1 181

 Similarly,  𝑡 = ln ((1 ‒ 𝑋𝑔)2), where 0.5 < 𝑋𝑔 ≤ 1.0 1 

180 and, we perform T transform as = ln (𝑋𝑔2) , where 0 < 𝑋𝑔 ≤ 0.5 (9) 

𝐶0 + 𝐶1𝑡 + 𝐶2𝑡2 

182 and the SPI= - 𝑡 + 
1 + 𝑑 𝑡 + 𝑑 𝑡2 + 𝑑3𝑡3    where 0 < 𝑋𝑔 ≤ 0.5            (10) 

 1 2 

𝐶0 + 𝐶1𝑡 + 𝐶2𝑡2 

183 or  SPI=  𝑡 ‒ 
1 + 𝑑 𝑡 + 𝑑 𝑡2 + 𝑑3𝑡3   where 0.5 < 𝑋𝑔 ≤ 1.0 (11) 

 1 2 

184 The constants expressed in equations (10) and (11) are given as follows 

185   𝐶0=2.515517,  𝑑1= 1.432788 

186   𝐶1=0.802853, 𝑑2= 0.189269 

187    𝐶2 = 0.010328,  𝑑3 = 0.001308 

188 

189 2.2.2 Drought Magnitude, Duration and Intensity 

190 The drought magnitude (𝐷𝑀) was obtained as follows 

191 𝐷𝑀 =‒ ∑𝑛𝑖 = 1𝑆𝑃𝐼𝑖𝑗 (12) 

192 where 𝐷𝑀 is the drought magnitude, n is the number of months with drought event at j timescale. 

193 

194 follows: 

𝐷𝑀 

Drought intensity 

( 

𝐷𝐼  ) is the ratio of drought magnitude 

( 

𝐷𝑀 )  

to 

 drought duration  (𝐷𝑑)  

as  
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195 

196 

              𝐷𝐼 = 𝐷𝑑                     (13) 

197 2.2.3 Mann-Kendall Trend Test 
  

198 The Mann-Kendall trend test is given as 
  

𝑛 

199 𝑆
𝑗 ‒ 1 + 1𝑠𝑔𝑛(𝑥𝑗 ‒ 𝑥𝑖)        (14) 

200 where 𝑥𝑖 is the time series ranked from i= 1, 2,………n-1 and 𝑥𝑗 from 

j=i+1,2,……..n. All the data  

201 values are taken as reference point to which comparison is done with the 

rest of the data values 𝑥𝑗  

202 such; 

+ 1, > (𝑥𝑗 ‒ 𝑥𝑖) 

203 𝑠𝑔𝑛(𝑥𝑗 ‒ 𝑥𝑖) =0, = (𝑥𝑗 ‒ 𝑥𝑖)               (15) 

‒ 1, < (𝑥𝑗 ‒ 𝑥𝑖) 

204 The statistics of variance is given as 

𝑛 (𝑖)(𝑖 ‒ 1)(2𝑖 + 5) 

205 𝑉𝑎𝑟(𝑆) = 18       (16) 

206 where 𝑡𝑖 is the number of ties up to sample value i. 𝑍𝑐 is the test statistics 

and is calculated as 𝑍𝑐 = 

𝑆 ‒ 1 

𝑉𝑎𝑟(𝑆), 𝑆 > 0 

2070, 𝑆 = 0                   (17) 
𝑆 ‒ 1 

𝑉𝑎𝑟(𝑆), 𝑆 < 0 

208 

209 𝑍𝑐 describes a Standard Normal Distribution (SND) and positive and negative values of 𝑍𝑐 shows  

{

{
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210 an upward and downward trend respectively. According to Mondal et al. (2012), a significance  

211 level  is also used in testing either an upward or downward monotone trend, if 𝛾 𝑍𝑐 is greater 

than 212 𝑍𝛾 then the trend is considered significant and vice versa. 2 

213 

214 2.2.4 Sen’s Trend Estimator 

215 The Sen’s trend estimator test was described by Sen (1968) and the magnitude of the trend is given  

216 by 

𝑥𝑗 ‒ 𝑥𝑘 

217 𝑇𝑖 
= 

𝑗 ‒ 𝑘                          (18) 

218 where 𝑥𝑗 and 𝑥𝑘 are considered as data points j and k (j>k) compatibly. The median of these N  

219 values of 𝑇𝑖 is represented as Sen’s estimator of slope which is given as   

𝑇𝑁+1                                𝑁 𝑖𝑠 

𝑜𝑑𝑑 2 

=1 ( ) (19) 220 𝑄𝑖 

2 𝑇𝑁2 + 𝑇𝑁+2 2         𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛 

221   

222 Positive and negative values of 𝑄𝑖 represent upward (increasing) and downward (decreasing)  

223 trends, respectively.  

224 In order to assess the spatio-temporal occurrence of drought over East Africa, the 3-month, 6225 

month and 12-month SPI was used to study drought in the long term. This period is enough for  

226 drought frequency and intensity assessment. The SPI was computed on monthly scale so that the 227 

consistency of drought duration and intensity can be determined according to Table 1.  

228 Table 1 Standard SPI table (McKee et al., 1993) 

{
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SPI value Description 

2 > Extremely wet 

1.5 – 1.99 Very wet 

1.0 – 1.49 Moderately wet 

0 – 1.0 Mildly wet 

-1.0 – 0 Mildly drought 

-1.5 – -1.0 Moderately drought 

-2.0 – -1.5 Severe drought 

-2 < Extreme drought 

229 

230 From a statistical point of view, droughts are considered as multivariate events whose dimension  

231 and treatment depends on their characteristics such as the duration, severity and frequency  

232 (Gonzalez et al., 2004). Most studies have proposed the Joint Probability Distribution Function  

233 (JPDF) for determining probabilistic characteristic because drought severity and duration are 

often 234 difficult to treat separately. 

235 Given a set of observations 𝑦𝑖……..𝑦𝑛, a mathematical expression of bivariate Kernel probability 236 

density estimator 𝑓𝑆𝐷  is given as (kim et al., 2003): 

1 

237 𝑓𝑆𝐷(𝑠,𝑑) = 
𝑛 ℎ𝑠           (20) 

238 The joint return period of drought (𝑇𝑆𝑑) is given as (kim et al., 2003): 

𝑁 

239 𝑇𝑆𝑑 = 𝑛[1  ‒ 𝑓𝑆𝐷(𝑠,𝑑)]              (21) 

240 where N is the numbers of years. 

241 

242 3. Results 

243 3.1. Seasonal Characteristics of Precipitation and Precipitation Anomaly over East Africa  

244 from 1920 to 2015 
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245 The seasonal characterization of precipitation over the East African region (Fig. 2) reveals that  

246 long precipitations occur during the period of March to May (MAM) while short precipitations  

247 occur from the period of October to December (OND). The study analysis revealed that peak  

248 annual precipitation from 1920 to 2015 is recorded as 120 mm/yr while average seasonal  

249 cumulative precipitation from 1920 to 2015 is about 920 mm/yr. Crop production over East Africa  

250 is highly dependent on the long rainy season, which accounts for more than 70% of total annual  

251 precipitation. It is therefore, understandably that fluctuations in precipitation within this period is 

252 capable of altering and impacting food production across the region. 

253  

254 Fig. 2 Characteristics of precipitation over East Africa  

255 Figure 3 shows precipitation anomalies from 1920 to 2015. Positive and 

negative anomalies  

256 represent wet and dry conditions, respectively, over East Africa. Based on 

the data used from 96  

257 years (from 1920 to 2015) there are a total of 41 wet years and 46 drought 

years. The anomaly of 258 the wet years and dry years were obtained 

when precipitation was above and below normal  

259 conditions, respectively, as seen in Fig. 3. The years 1961, 1967, 1997, 2007 and 2015 are the  
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260 wettest while 1943, 1983, 1993, 1997 and 2003 are the driest. The annual precipitation, anomalies  

261 and the corresponding SPI’s for wet and dry years are presented in Table 2.  Results show that  

262 both wet and drought spells coincide with positive and negative anomalies over East Africa,  

263 respectively. This shows that the reason for the drought periods was as a result of unavailability of  

264 water in the soil. The magnitude of anomaly of the wet years was higher than that of the dry years  

265 and both wet and dry years were obtained when precipitation was above and below normal  

266 conditions, respectively. A detailed inspection of dry- and wet-year results also revealed that the  

267 chances of occurrence of wet years are greater in comparison to dry years. This information is  

268 important for the future planning and management of agricultural practices. This work has allowed  

269 us to identify years within the region that are prone to dry/wet conditions using available 270 

precipitation data records from 1920 to 2015. 

271 

 

274 

275 

276 Table 2 Annual precipitation, anomaly and SPI-12 

272   

273 Fig. 3 P recipitation anomaly over East Africa 
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Condition Yr 
Annual precipitation 

(mm/yr) Anomaly (mm/yr) 
SPI 

 1920-21 817.7 -102.8 -1.2 

 1921-22 823.5 -96.9 -1.1 

 1924-25 810.4 -110.0 -1.2 

 1927-28 803.3 -117.2 -1.3 

 1928-29 828.7 -91.7 -1.0 

 1933-34 820.1 -100.3 -1.1 

 1942-43 775.0 -145.4 -1.7* 

Dry Spells 1943-44 

1947-48 

1948-49 

1952-53 

1964-65 

1983-84 

1991-92 

1996-97 

1999-00 

826.4 

811.3 

823.7 

818.9 

820.4 

784.2 

788.1 

788.2 

820.7 

-94.1 

-109.1 

-96.7 

-101.5 

-100.0 

-136.2 

-132.3 

-132.2 

-99.7 

-1.0 

-1.2 

-1.1 

-1.1 

-1.1 

-1.6* 

-1.5* 

-1.5* 

-1.1 

 2003-04 815.8 -104.7 -1.2 

 Yr Annual precipitation 

(mm/yr) 
Anomaly 

(mm/yr) 
SPI 

 1925-26 1064.5 144.1 1.6 

 1929-30 1071.0 150.6 1.6 

 1941-42 1054.0 133.6 1.4 

 1946-47 1056.9 136.5 1.5 

 1961-62 1185.0 264.5 2.7** 

 1962-63 1069.6 149.2 1.6 

 1963-64 1043.2 122.8 1.3 

 1967-68 1110.8 190.4 2.0** 
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Wet  
Spells 

1977-78 

1978-79 

1997-98 

2002-03 

2006-07 

2009-10 

2012-13 

1042.9 

1021.9 

1180.0 

1006.7 

1118.2 

1036.0 

1036.8 

122.4 

101.5 

259.6 

86.3 

197.8 

115.6 

116.4 

1.3 

1.1 

2.7** 

1.0 

2.1** 

1.3 

1.3 

 2015-16 1196.4 275.9 2.8** 

277 

278 

279 Figure 4 shows the spatial representation of SPI for different hydrological years from 1920 to 2015 over  

280 East Africa. Results show that Figs. 4a, d and k recorded the highest precipitation while Fig. 4b, e  

281 and h recorded the least precipitation. It is critical to note that most of the regions that recorded  

282 the highest precipitation in some years also recorded the least in other years, hence establishing  

283 the fact that precipitation across most of the East African region is fluctuating and drought is not 

284 peculiar to one region.  

3.2. Spatial and temporal representation of spatial SPI over East Africa 
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285  

286 Fig. 4 Spatial representation of SPI for different hydrological years over East Africa 

287 From Fig. 5, calculated SPI at different time scales of 3, 6 and 12 months indicated that for  

288 shorter time scales (i.e., 3 months, 6 months), there was a high temporal variability in dry 

and wet  

289 periods, whereas at longer time scales (12 months), frequency of dry and wet periods were  

290 considerably decreased.   
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291  

292 Fig. 5 (a) SPI-3 months (b) SPI-6 months (c) SPI-12 months 

293 The drought magnitude, drought duration, and corresponding drought intensity 

were  

294 calculated over the study area (Table 3). And also, Fig. 6 shows drought 

magnitude over east  

295 Africa. Years with high drought magnitude ranged from 1922-22, 1926-29, 

1942-46 and 1947-51  

296 with values corresponding to 2.2, 3.2, 3.4 and 2.6, respectively while years with 

low drought  
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297 magnitude ranged from 1930-31, 1988-89 and 2001-02 with values as 0.2, 0.12 

and 0.15,  

298 respectively. Figure 7 shows drought duration in years over East Africa with the 

longest droughts  

299 occurring from 1929-29, 1937-41, 1942-46, 1947-51, 1952-56, and 1958-61 

with values in years 300 as 3, 4, 4, 4, 4, and 3 years, respectively, while the 

shortest droughts occurred in time period of 1  

301 year and ranged from 1930-31, 1964-65, 1979-80, 1981-82, 1983-84, 1988-89, 1991-92, 1993-94,  

302 1996-97 and 2001-02 (Also see Table 3). A comparison between Fig. 6 (drought magnitude) and  

303 Fig. 7 (drought duration) shows that not all the severest drought took longer and vice versa. Both 

304 drought magnitude and duration showed a negative slope of -0.071 and -0.086, respectively. 

305   

306 Fig. 6 Drought magnitude over East Africa 
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307   

308 Fig. 7 Drought duration over East Africa 

309 The drought magnitude was obtained as the cumulative SPI over the 

drought months taken as a  

310 positive value. The intensity (drought severity) was computed as the 

magnitude divided by drought 311 duration. Among the droughts 

recorded, the drought of 1937-41, 1942-46, 1947-51, 1952-56 had  

312 the longest duration. Specifically, the results indicated that on one hand the frequency of drought  

313 events were high at shorter time scales but lasted for shorter durations at longer time intervals, 

and 314 on the other hand droughts were less frequent but persisted for longer periods of time.   

315 Table 3 Extraction of drought characteristics 

Hydrological year  M agnitude  Duration Intensity 

 

1920-22 2.2333 2.000 1.1167 

1923-25 1.7703 2.000 0.8852 

1926-29 3.2102 3.000 1.0701 

1930-31 0.2493 1.000 0.2493 

1932-34 1.9668 2.000 0.9834 

1937-41 1.5215 4.000 0.3804 

1942-46 3.3653 4.000 0.8413 

1947-51 2.5589 4.000 0.6397 
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1952-56 2.0666 4.000 0.5166 

1958-61 1.5564 3.000 0.5188 

1964-65 1.1191 1.000 1.1191 

1970-72 0.9154 2.000 0.4577 

1974-76 0.7563 2.000 0.3781 

1979-80 0.8044 1.000 0.8044 

1981-82 0.7803 1.000 0.7803 

1983-84 1.5593 1.000 1.5593 

1985-87 1.1279 2.000 0.5640 

1988-89 0.1257 1.000 0.1257 

1991-92 1.5109 1.000 1.5109 

1993-94 0.8771 1.000 0.8771 

1996-97 1.5102 1.000 1.5102 

1998-00 1.1151 2.000 0.5576 

2001-02 0.1588 1.000 0.1588 

316 

317 

318 hydrological years.  

Figure 8 shows the spatial map of drought magnitude across the East African region for different  
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319  

320 Fig. 8 Spatial drought magnitude over East Africa for different hydrological years 

321 The results show that the drought magnitude is highest in 1920-21, 1950-51, 1970-71, 

2000-01  

322 and 2014-15 hydrological years. In 1920-21 hydrological year, regions that recorded high 

drought  

323 magnitude include South Sudan, Uganda, Kenya, Rwanda, Burundi and Eastern Tanzania. 

In  

324 1950-51hydrological year, drought magnitude was highest over Ethiopia and South Sudan. 

In  

325 1970-71 hydrological year, drought magnitude was highest over South Sudan, Ethiopia 

and  

326 Somalia. In 2000-01 hydrological year, drought magnitude was highest in South Sudan, 

Ethiopia,  

327 Somalia and Kenya. In 2014-15 hydrological year, drought magnitude was highest in 

Ethiopia and  
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328 Tanzania. This indicated that besides seasonal variability of spatial drought magnitude, 

there exist  

329 

330 

331 3.3. Drought Risk Mapping and Joint Probability Distribution Function and Return years of 

332 Drought over East Africa 

333 The spatial drought risk map was got from the spatial SPI map and represented in Fig. 9. It shows  

334 the spatial drought levels over East Africa across different decades, and changes across the region’s  

335 land mass suggested to be as a result of changes in climate and land cover. There is high variability  

336 in drought across the decades over the region. These droughts could be categorized as ranging  

337 from moderate to extreme, with different durations and magnitudes. Nevertheless, the total  

338 duration, severity and magnitude of occurrence of the drought episodes varied from one location 

339 to another across the decades. 

a strong variability of spatial drought magnitude across different decades. 
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340  

341 Fig. 9 The spatial drought risk map across East Africa 

342 From Fig. 9, it appears as if drought repeats itself in some selected locations 

after a period of  

343 time but all droughts experienced in all locations and at all recorded periods 

appear to differ (see 344 Figs. 9a to 9k). Drought may have similar 

magnitudes or duration but different levels of severity.  

345 For example, the droughts with magnitude (duration in years) of 1.5(4), 3.4(4), 2.6(4) and 2.0(4)  

346 lasted from 1937 to 1941, 1942 to 1946, 1947 to 1951 and 1952 to 1956, respectively (see Table  

347 3). Since both drought severity and durations have different distributions, the Joint Probability  

348 Distribution Function (JPDF) given by equation (9) was used to obtain the probability Density  

349 function and the Joint return years were obtained using equation (10). The JPDF analysis is a useful  
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350 multivariate tool needed for water resources management. Based on the drought characteristics, 

351 duration and magnitude using the 12-month SPI, the JPDF was estimated as shown in Figure 

10.  

352 From Fig.10, it shows that probability of drought occurrence is high when severity is low and such  

353 droughts occur at short time intervals. Also, it takes so many years for a severe drought to repeat 

354 itself at short time intervals.  

355  

356 Fig.10 The JPDF for drought duration and severity (magnitude) 

357 Once the JPDF for the bivariate return periods of drought was calculated, the 

drought severity358 duration frequency curve of East Africa was created (Fig.11). 

Fig.11 is a bivariate analysis of 359 drought severity for East Africa region 

showing return periods and different levels of severity.  

360 Drought severity itself is a function of the different drivers of drought over particular area. Drought 

361 severity characterizes drought magnitude of dry events. The JPDF drought-based curves were  

362 developed for selected recurrence severity levels of 5, 10, 20, 30, 40 and 50 years are plotted in 363 

Fig.11. It is observed that for any given duration, severe droughts have more return periods.   
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364  

365 Fig. 11 Joint return years for severity (magnitude) corresponding to duration 

366 Table 4 shows the drought occurrence over East African countries. The result shows 

that the  

367 drought mechanism is complex and the drivers highly depend on the local 

environmental  

368 conditions prevailing in a particular country. All drought episodes are associated with 

negative  

369 precipitation anomalies, low precipitation values closely matching the SPI values. The 

SPI values  

370 depicting drought levels (shown in Table 1) are applied to reveal the varying levels of 

drought  

371 experienced over specific countries in East Africa over the study period.  

372 Table 4 Annual precipitation anomalies for various countries in East Africa from 1920-

2015 373 with SPI-12. The value in parenthesis represents SPI 
 Burundi Rwanda Ethiopia Kenya Somalia Uganda Tanzania South Sudan 

1920/21 -145 (-1.0) -197 (-1.3)   -188(-1.4)   

1921/22 -383 (-3.0)       

1923/24 -174 (-1.2) -231 (-1.5)      

1924/25   -93 (-1.0) -150 (-1.2) -190 (- 
1.4) 

-165 (-1.3) -84 (-1.0) 

1926/27     -168 (- 
1.2) 

 -106 (-1.3) 
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1927/28 -259 (-1.9) -225 (-1.5)  -125 (-1.0) -155 (- 
1.1) 

  

1928/29 -216 (-1.6) -158 (-1.0)  -128 (-1.0) -144 (- 
1.0) 

-191 (-1.5)  

1932/33   -96 (-1.1) -163 (-1.4)     

1933/34 -285 (-2.1) -291 (-2.0)    -163 (- 
1.2) 

  

1938/39   -95 (-1.0)  -72 (-1.0) -191 (- 
1.4) 

  

1940/41   -102 (-1.1)      

1942/43 -203 (-1.5) -237 (-1.6) -146 (-1.7) -129 (-1.0)  -215 (- 
1.6) 

 -123 (-1.5) 

1943/44  -158 (-1.0)   -109 (-1.7) -139 (- 
1.0) 

-128 (-1.0)  

1945/46  -165 (-1.1)   -104 (-1.6)  -193 (-1.5)  

1947/48 -199 (-1.4)  -89 (-1.0) -128 (-1.0) -122 (-2.0)    

1948/49     -88 (-1.3)  -241 (-2.0)  

1950/51   -170 (-2.0)     -124 (-1.5) 

1952/53   -100 (-1.1)   -177 (- 
1.3) 

-222 (-1.8)  

1953/54     -72 (-1.0)    

1954/55     -106 (-1.6)    

1955/56   -130 (-1.5)  -117 (-1.8)    

1958/59 -193 (-1.4)    -68 (-1.0)  -162 (-1.3)  

1960/61 -211 (-1.5) -148 (-0.9)     -164 (-1.3)  

1964/65   -121 (-1.4) -140 (-1.2) -80 (-1.2) -213 (- 
1.6) 

-148 (-1.1)  

1970/71     -86 (-1.3)   -99 (-1.2) 

1971/72        -132 (-1.6) 

1975/76    -183 (-1.6)     

1979/80   -113 (-1.3) -149 (-1.2) -77 (-1.1) -189 (- 
1.4) 

 -110 (-1.3) 

1981/82  -157 (-1.0)      -121 (-1.5) 

1982/83        -125 (-1.5) 

1983/84   -151 (-1.7) -248 (-2.2) -83 (-1.2) -177 (- 
1.3) 

 -228 (-2.9) 

1985/86   -114 (-1.3)      

1986/87   -105 (-1.2)     -218 (-2.8) 
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1989/90        -124 (-1.5) 

1991/92 -144 (-1.0) -151 (-1.0) -155 (-1.8) -147 (-1.2) -156 (-2.7) -154 (- 
1.1) 

 -97 (-1.2) 

1993/94 -161 (-1.1)    -84 (-1.2)  -137 (-1.0)  

1996/97 -152 (-1.1)  -138 (-1.6) -136 (-1.1) -90 (-1.3) -160 (- 
1.2) 

-169 (-1.3) -86 (-1.0) 

1998/99  -166 (-1.1) -104 (-1.2) -171 (-1.4) -87 (-1.3)    

1999/00 -158 (-1.1) -209 (-1.4)  -161 (-1.3)   -254 (-2.1)  

2003/04  -250 (-1.7) -141 (-1.6) -161 (-1.3)  -177 (- 
1.3) 

  

2004/05    -160 (-1.3)  -178 (- 
1.3) 

  

2005/06  -175 (-1.1)     -139 (-1.1)  

2007/08      -142 (- 
1.0) 

  

2008/09        -150 (-1.9) 

2010/11    -119 (-1.0)   -150 (-1.2)  

2011/12 -204 (-1.5)        

 

374 Note: 1920/21 represents a hydrological year starting in 1920 and ending in 1921. 

375 

376 The spatial and temporal variability in drought trends is observed in the study area and shown  

377 in Table 5 as the Negative and Positive SPI trends at multiple time scales across the East 

African 378 countries. Of all the SPI models tested, only SPI-12 indicated significant trend 

values in Burundi,  

379 Rwanda and Uganda with Sen’s slope (Kendal tau) values of 0.008 (0.143), 0.007 (0.144) and  

380 0.008 (0.149) respectively. Basically, the SPI-12 shows the status of year-round water shortage  

381 caused by drought while SPI-6 and SPI-3 are appropriate indicators of the status of seasonal water 

382 shortage caused by drought (Tan et al., 2015).  

383 Table 5 Mann-Kendall Trend and significance level of SPI-3, SPI-6 and SPI-12 over East African countries 

Durati 

on 

Parameter Burundi Ethiopia Kenya Rwanda South  Somalia Tanzania Uganda Regional 

Sudan 
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SPI-3 
Kendal τ 

(Sign) 
Sen’s slope 

0.060 
(0.086) 
0.002 

0.017 
(0.635) 
0.004 

-0.004 
(0.914) 
-0.0001 

0.089 
(0.011) 
0.003 

-0.058 
(0.097) 
-0.005 

0.026 
(0.450) 
0.002 

-0.028 
(0.419) 
-0.003 

0.062 
(0.074) 
0.0002 

0.036 
(0.307) 
-0.0001 

 Trend No No No No No No No No No 

SPI-6 
Kendal τ 

(Sign) 
Sen’s slope 

0.073 
(0.140) 
0.004 

0.008 
(0.879) 
0.0001 

0.006 
(0.908) 
-0.0003 

0.087 
(0.079) 
0.004 

-0.051 
(0.305) 
-0.003 

0.040 
(0.421) 
0.002 

-0.057 
(0.247) 
-0.003 

0.087 
(0.079) 
0.005 

0.037 
(0.457) 
0.002 

 Trend No No No No No No No No No 

SPI-12 
Kendal τ 

(Sign) 
Sen’s slope 

0.143 
(0.040) 
0.008 

-0.009 
(0.903) 
-0.001 

0.031 
(0.662) 
0.001 

0.144 
(0.039) 
0.007 

-0.071 
(0.301) 
-0.004 

0.072 
(0.301) 
0.004 

-0.016 
(0.817) 
-0.001 

0.149 
(0.033) 
0.007 

0.103 
(0.141) 
0.006 

 Trend Yes No No Yes No No No Yes No 

384 

385 Table 6 shows negative  positive precipitation trends at multiple time scales over East  

386 African countries. Out of eight countries, precipitation shows significant positive (insignificant  

387 positive) trends over 1(4) countries and significant (insignificant) negative trends over 1(2) 388 

countries from 1920 to 2015.  

389 Table 6 Mann-Kendall Trend and significance level of precipitation over East African countries 

Country Kendal τ (sign) Sen’s slope Trend 

Burundi 0.023 (0.248) 0.021 No 

Ethiopia -0.001 (0.980) -0.034 No 
Kenya 0.005 (0.799) 0.006 No 

Rwanda 0.034 (0.088) 0.092 No 

South-Sudan -0.044 (0.028) -0.042 Yes 
Somalia 0.048 (0.05) 0.007 Yes 

Tanzania -0.010 (0.603) -0.010 No 
Uganda 0.033 (0.101) 0.022 No 

Regional 0.025 (0.216) -0.005 No 

390 

391 

392 3.4 Spatial trends in drought across East Africa 

393 Figure 12 shows the spatial trend of SPI over East Africa. The approach involves running an  

394 Ordinary Linear Regression model to the SPI maps generated. Results show that about 28, 22  

395 and 50 % of the SPI indicated spatial increase, no change and decrease in SPI trends respectively  

and 
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396 over the study area from 1920 to 2015. Increase (decrease) of SPI trends by our analysis means  

397 an increase (decrease) in moisture conditions corresponding to decrease (increase) in drought  

398 prevalence. Assessing the mean SPI drought characteristics over the region indicates that there  

399 were some notable variations in SPI, consistent with the distribution of precipitation. Areas with  

400 increase in SPI were located northeast, along the shores of the Indian Ocean and some few areas  

401 in the Central part of the study area. Areas with no trend changes in SPI were located in  

402 northwest, northeast, southeast parts of East Africa and close to the shores of the ocean. Also,  

403 areas with decreasing SPI trend pixels were located around in the Northwest, Northeast, and  

404 Southwest and along the shores of the study area. The 96-year precipitation records in areas with  

405 spatial increase in SPI trend were 11.3, 136.5, 77.3 and 26.5 mm for minimum, maximum, mean  

406 and standard deviation values respectively while the precipitation records in areas with spatial  

407 decrease in SPI were 539, 138.3, 56.1 and 29.7 for minimum, maximum, mean and standard  

408 deviation values respectively. For areas with no spatial trend changes in SPI were 7.2, 161.6,  

409 93.2 and 31.9 for minimum, maximum, mean and standard deviation values, respectively. Areas  

410 with improvement in drought indicated the low precipitation standard deviation. Our result 411 

confirms that areas with no SPI changes in drought were wetter from 1920 to 2015.  

412 

413 

414 

415 

416 

417 
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418 

419 

420 

421 

422 

423 

424 

425 

426 

427 

428 

429 Figure 13a shows the spatial slope of SPI versus latitudes (degrees). Results indicate that  

430 high of SPI slope are clustered at higher latitudes from latitude 0 to 12 while 

low trend values  

431 are clustered between latitude -2 and 2 south of the study region 

which is an indication that  

432 drought is prevalent in the northern section than southern section of the study area.  

o 

 o 

Fig.12 Spatial trends in SPI over  East Africa 
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433  

434 Fig.13 (a) SPI slope versus latitude (b) SPI slope versus DEM and (c) histogram of pixel count 

435 Figure 13b shows SPI slope versus DEM where both high and low slope values of SPI are  

436 clustered at lower latitudes between 0 to 1500 m, and at the foot hills of mountains. The 

histogram  

437 of the SPI trends is shown in Figure 13c. It can be observed that most of the SPI trends are 

clustered  

438 around the 0.0 mark, which shows that the density curve of the pixels is symmetrical and 

centered  
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439 about its mean. The SPI trends indicate high positive (negative) pixels above (below) the 

zero440 trend mark, implying that drought prevails in both low and high elevation areas up 

to 2000 m. 441 3.5 ENSO-drought relationship 

442 Drought is considered as one of the most complex and deleterious natural, with severe impacts on  

443 natural ecosystems, water resources and food security (Tan et al., 2015). In this study, we selected  

444 the El Niño, neutral, and La Niña years based on data from sea surface temperature (SST)  

445 anomalies of the tropical Indian Ocean in the region + 0.5 °C and – 0.5 °C also known as the Niño  

446 3.4 region. The gridded Extended Reconstructed Sea Surface Temperature version 4 (ERSSTv4)  

447 temperature data was used to study the ENSO events. We considered El Niño (La Niña) years as  

448 years with average SST anomalies above (below) temperature values of +0.5 °C (−0.5 °C) from 

449 October to March. The October to March period typically coincides with peak ENSO 

Conditions  
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453 

454 The SPI values in neutral, El Niño, and La Niña years were studied over East Africa from 1920  

455 to 2015. The mean drought characteristics, magnitude, duration and even the dispersion, of 

drought  

456 magnitude in SPI-3, SPI-6 and SPI-12 are very similar in El Niño and La Niña events while the 

457 neutral years presented high dispersion in both drought magnitude and duration (Fig.15). 

450 Neutral years if the SST values are within - 0.5 °C < SST < 0.5 °C as shown in Fig.  14 . 

451 

452 Fig.  14  Extended reconstructed  s ea  s urface temperature showing El Niño,  n eutral and La Niña years. 
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458 Fig. 15 Boxplots of mean magnitude and duration for (a) El Niño (b) neutral and (c) La Niña years 

459 Results shown on Fig. 15a indicate that the mean drought duration during El Niño years were  

460 less than 1.5 years while the mean drought duration during neutral (La Niña) years was 3 (4) 

years 461 (Figs. 15b and c).  

462 In this study, there is no direct link between ENSO and drought over the East African region.  

463 But the association of drought in most El Niño and La Niña years suggests that the impact of  
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464 ENSO cannot be ruled out. Our results have supported reports that present teleconnections 

between  

465 drought and ENSO. Previous reports have shown that ENSO events normally peak during 

October  

466 to March periods which coincides with the short (SON) and long (MAM) rainy seasons of East  

467 Africa. This period coincides with the SON and MAM seasons and increased precipitation in 

East  

468 Africa. Considering the major drought episodes over the East Africa, our analysis has only 

agreed  

469 with the major droughts of 2011/12. Based on our results, 2011/12 was captured as an El Niño  

470 year with drought magnitudes captured by SPI-3 and SPI-6 as 2.8 and 0.5 respectively with 

drought  

471 duration of 3 and 6 months, respectively. The drought episode of 2011/12 affected countries like 

472 Somalia, Uganda, Kenya, Ethiopia, South-Sudan and other nearby countries. 

473 3.6. Discussion 

474 Generally, the actual precipitation expressed as a percentage deviation from normal (or long-term  

475 average) is the most commonly used drought indicator, although it has limited use/reliability for  

476 spatial comparison due to its dependence on the mean (Kumar et al., 2009). According to Solanki  

477 and Parekk (2014), the SPI represents a departure from the mean and is thus, expressed in standard  

478 deviation units as a normalized index in time and space. The departure from the mean is a  

479 probability indication of the severity of the wetness or drought that can be used for risk assessment.  

480 The application of data from 1920 in this study is considered most desirable as long records provide  

481 more reliable statistics for SPI, given that it is a statistical approach. As a result, SPI has gained 

482 importance in recent years as a potential drought indicator permitting comparisons across 

different 483 precipitation zones (Kumar et al., 2009; Solanki and Parekk, 2014). 
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484 This study analyzed SPI values between 1920 and 2016 with actual precipitation and  

485 precipitation deviation from normal in East Africa, a generally low precipitation and drought 

prone  

486 region. The objective is to establish whether or not SPI can be used as a suitable indicator (when  

487 compared to conventionally adopted precipitation deviation-based approach for drought 

intensity 488 assessment) over an extended region such as East Africa.  

489 The results of the analysis show that very low or very high precipitation corresponded to very  

490 low or very high SPI values. Thus, SPI values adequately estimated the dryness or wetness when  

491 the precipitation is very low or very high, respectively. Table 2 shows that all periods that  

492 experienced dry spells (or drought) recorded low/negative anomaly and SPI values with the 

periods  

493 1942-1943 recording the driest (-1.7) followed by 1983-1984 (-1.6). Similarly, the periods of 

wet  

494 spells reveal positive anomaly and SPI values with the wettest period being 2014-2015. The  

495 outcome of this study is in line with the SPI classes proposed by McKee et al. (1993). However,  

496 there is a marked variation between drought characteristics of magnitude, duration and intensity  

497 when viewed against temporal scales. In essence, no time scale recorded the highest in all 3 

drought  

498 characteristics throughout the 95-year period of analysis (Table 3). This is similar to the  

499 observation of SPI at different time scales of 3, 6 and 12 months which reveal that for shorter 

time  

500 scales, there was a high temporal variability in dry and wet periods, whereas at longer time 

scales 501 (12 months), frequency of dry and wet periods were considerably decreased (Fig. 

5). 

502 The results of this study indicate that drought characteristics analysis (magnitude, duration and  
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503 intensity) using SPI can be adequately applied for drought intensity assessment particularly in  

504 regions such as East Africa where low precipitation and vulnerability to droughts is prevalent. 

505 The precipitation anomalies (Table 4), Mann-Kendall Trend and significance level of SPI-3,  

506 SPI-6 and SPI-12 (Table 5) and Mann-Kendall Trend and significance level of precipitation 

(Table  

507 6) reveal varying results both temporally and spatially across the eight countries comprising the  

508 East African region covered in this study. For instance, the same drought level (SPI) may be  

509 prevalent in a country but the precipitation anomaly values may differ (Table 4). The drought 

of 510 1942-43 was worst hit in countries like Burundi, Rwanda, Ethiopia, Uganda and South-

Sudan.  

511 From 1983-84, Ethiopia, Kenya, Somalia, Uganda and South-Sudan experienced the worst drought  

512 episodes. Also, from 1991-92, Ethiopia, Kenya, and Somalia experienced worst drought spells,  

513 while in 1996-97, the highest effect was observed in Ethiopia. Table 5 reveals that out of eight  

514 countries, SPI-12 detects significant positive (insignificant positive) trend over 3(2) countries and  

515 insignificant negative trends over 3 countries. SPI-6 detects insignificant positive trend over 6  

516 countries and insignificant negative trend over 2 countries. SPI-3 detects insignificant positive  

517 trends over 5 countries while insignificant negative trends in 3 stations. At regional (continental  

518 scale), there was no significant trend in SPI-3, SPI-6 or SPI-12. The results in Table 6 show that  

519 most countries experience oscillations between wet and dry conditions while few countries are  

520 getting wetter with few others getting more arid. At regional (continental scale), there was no  

521 significant trend in precipitation. There was no significant change in precipitation in annual rainy  

522 seasons during the study period. As no annual trend was observed in the precipitation amount, we 

523 applied SPI to study precipitation address potential changes in precipitation extremes. 
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524 There is expected to be some time lag due to the unique vegetation types which, according to  

525 Abbas et al. (2014), should have different capacity of water storage. The humid area covering 

most  

526 of Uganda as shown on Fig. 1 (with predominantly tall and dense forests) are expected to have 

a  

527 longest time lag because, according to Allen (2008), forests possess the best capacity of water 

528 retention with deeper roots to tap groundwater. Conversely, arid and semi-arid areas such 

as  

529 Kenya, Somalia and Ethiopia are covered mostly by grasses and should have shorter time lag due  

530 to the lower capacity of water retention for grasses. South-Sudan and a significant area of Tanzania  

531 are sub-humid areas largely covered by crops. Generally, the water storage capacity of crops is  

532 likely similar to or even lower than that of grasses, and Grünzweig et al. (2015) posits that artificial  

533 irrigation could alter the time lag for regions engaged in irrigation agriculture. It is therefore,  

534 expected that semi-arid areas should have a time lag similar to or longer than arid areas (Cong et  

535 al., 2017). This pattern is largely similar to the outcome of the study as shown on Tables 4, 5 and 

536 6, and Figs 4, 8 and 9. 

537 

538 4. Conclusions 

539 In this study, the SPI approach applied to this study adequately explained the drought conditions  

540 across the East African region between 1920 and 2015. The drought characteristics of magnitude,  

541 duration and intensity collectively explained the severity levels of drought within the study area.  

542 It is expected that the outcome of this study could be applied elsewhere in sub-Saharan Africa 543 

where precipitation is limited and likelihood of drought is high.  

544 The result from the 96 years (from 1920 to 2015) data records shows that there are a total of 41  
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545 wet years and 46 drought years. The anomaly of the wet years and dry years were obtained when  

546 precipitation was above and below normal conditions respectively. The years 1961, 1967, 1997,  

547 2007 and 2015, were adjudged the wettest while 1943, 1983, 1993, 1997 and 2003 were 

adjudged  

548 the driest. Both the positive and negative peak of SPI coincided with the positive and negative  

549 anomaly peaks, respectively. The computed SPI at different time scales of 3, 6 and 12 months  

550 indicated that for shorter time scales, there was high temporal variability in dry and wet periods, 

551 whereas at longer time scales (12 months), frequency of dry and wet periods were 

considerably 552 decreased.  

553 Years with high drought magnitude ranged from 1920-22, 1926-29, 1942-46 and 1947-51 with  

554 SPI values corresponding to 2.2, 3.2, 3.4 and 2.6, respectively while years with low drought  

555 magnitude ranged from 1930-31, 1988-89 and 2001-02 with values as 0.2, 0.12 and 0.15,  

556 respectively. The longest droughts occurred from 1929-29, 1937-41, 1942-46, 1947-51, 1952-

56,  

557 and 1958-61 with values in years as 3, 4, 4, 4, 4, and 3 years, respectively, while the shortest  

558 droughts occurred in time period of 1 year and ranged from 1930-31, 1964-65, 1979-80, 1981-

82, 559 1983-84, 1988-89, 1991-92, 1993-94, 1996-97 and 2001-02.  

560 Our study also indicated that high values of SPI slope are clustered at higher latitudes from 0 

to  

561 while low trend values are clustered between -2 and 2o south of the study region which is 

an  

562 indication that drought is prevalence in the northern section than southern section of the study 

area.  

563 Both high and low slope values of SPI are clustered at lower latitudes between 0 to 1500 

meters,  

12o 
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564 and at the foot hills of mountains. The SPI trends showed high positive (negative) pixels above  

565 (below) the zero-trend mark, indicating that drought prevails in both low and high elevation 

areas 566 up to 2000 m. 

567 In terms of ENSO impacts on drought over the region, the mean characteristics, magnitude,  

568 duration and even the dispersion, of drought magnitude in SPI-3, SPI-6 and SPI-12 are very 

similar  

569 in El Niño and La Niña years while the neutral years presented high dispersion in both drought  

570 magnitude and duration. The mean drought duration during El Niño years were less than 1.5 

years  

571 while the mean drought duration during neutral (La Niña) years was 3 (4) years which suggest 

that  

572 there is no direct link between ENSO and drought over the East African region. But the 

association  

573 of drought in most El Niño and La Niña years suggests that the impact of ENSO cannot be ruled 

574 out since peak ENSO events occur during October to March periods which coincides with 

the short 575 (SON) and long (MAM) rainy seasons of East Africa.  

576 Furthermore, the outcome of this study indicates that SPI can be reliably suitable and most  

577 applicable  in drought studies within the study area as it provides for analysis in multi-temporal  

578 levels such as monthly, single seasonal, multi-seasonal, and annual droughts, thereby allowing 

for  

579 a spatio-temporal scale of analysis that creates the room for SPI to provide accurate 

meteorological  

580 and agricultural drought analysis. To this extent, the study provides policy makers the necessary  

581 information that is critical to local adaptation, increased resilience and mitigation measures in 

the  
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582 face of a vulnerable eco-climatic system triggered by a continuously changing climate within 

East 583 Africa as well as other parts of sub-Saharan Africa.  

584 Our study is particularly relevant in its ability to depict continuous and synoptic drought  

585 conditions all over East Africa, providing vital information to farmers and policy makers, using  

586 very cost-effective method. This is particularly the case in view of the assertion by Karavitis et 

al.  

587 (2011) that “effective (and reliable) information and early warning systems based on indicators  

588 such as the SPI are the foundation for overall effective drought adaptation (and resilience) 

plans”.  

589 Finally, the adoption of SPI for this study demonstrates the fact that it is a robust concept,  

590 unambiguous in calculation and understanding, temporally flexible, spatially meaningful, and  

591 widely applicable, a basis for which it is considered a powerful tool for drought studies as clearly 

592 amplified by Cheval (2015). 

593 
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20 Abstract East African region is susceptible to drought due to high variation in monthly 21 

precipitation. Studying drought at regional scale is vital since droughts are considered a ‘creeping 

22 ’ disaster by nature with devasting and extended impact often requiring long periods to reverse the  

23 recorded damages. This study assessed drought exceedance and return years over East Africa from  

24 1920 to 2016 using Climate Research Unit (CRU) precipitation data records. Meteorological 25 

drought, where precipitation is the central quantity of interest, was adopted in the work.  

26 Standardize Precipitation Index (SPI) was used to study long term meteorological droughts and  

27 also to assess drought magnitude, frequency, exceedance probability and return years using Joint  

28 Probability Density Function (JPDF). Also, Mann-Kendall trend analysis was applied to  

29 precipitation and SPI to investigate the trend changes. Results showed that years with high drought  

30 magnitude ranged from 1920-22, 1926-29, 1942-46 and 1947-51 with values corresponding to 2.2, 

31 3.2, 3.4 and 2.6, respectively while years with low drought magnitude ranged from 1930-31, 

198832 89 and 2001-02 with values as 0.2, 0.12 and 0.15, respectively. The longest droughts 

occurred  

33 from 1926-29, 1937-41, 1942-46, 1947-51, 1952-56, and 1958-61 with values in years as 3, 4, 4,  



3 

34 4, 4, and 3 years, respectively, while the shortest droughts occurred in time period of 1 year and  

35 ranged from 1930-31, 1964-65, 1979-80, 1981-82, 1983-84, 1988-89, 1991-92, 1993-94, 1996-97  

36 and 2001-02. Also, it was demonstrated that probability of drought occurrence is high when  

37 severity is low and such droughts occur at short time intervals and not all severest drought took 38 

longer periods. The SPI trends indicate high positive (negative) pixels above (below) the zero39 

trend mark, indicating that drought prevails in both low and high elevation areas up to 2000 m.  

40 There was no direct link between ENSO and drought but arguably the association of drought in  

41 most El Niño and La Niña years suggests that the impact of ENSO cannot be ruled out since peak  

42 ENSO events occur during October to March periods which coincides with the short (SON) and 

43 long (MAM) rainy seasons of East Africa. The study is particularly relevant in being able 

to depict  

44 continuous and synoptic drought condition all over East Africa, providing vital information to  

45 farmers and policy makers, using very cost-effective method. 

46 Keywords   Meteorological Drought, Joint Probability Density Function (JPDF), SPI, ENSO,  

47 Drought Risk Mapping. 

48 

49 Introduction 

50 Several studies indicate that droughts are among the most destructive natural disasters, 

negatively  

51 impacting livelihoods including crops and livestock, as well as other natural resources such as  

52 water, ecology, and biodiversity (Haroon et al., 2016; Lei et al., 2016; Schubert et al., 2016;  

53 Igbawua et al., 2018; Yao et al., 2018; Liu et al., 2020). The American Meteorological Society  

54 (1997) categorizes droughts into meteorological, agricultural and hydrological mainly on the 

basis  
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55 of duration, impact and recovery rate. According to Ghulam et al. (2007) and Haroon et al. 

(2016),  

56 meteorological drought refers to a sustained period of three months or more during which 

monthly  

57 precipitation remains well below the long-term average. Agricultural drought occurs when there  

58 is an imbalance between water availability and demand in a farmland ecosystem, where water  

59 demand by plants is more as compared to supply. Hydrological droughts occur when 

deficiencies  

60 in surface and subsurface water supplies become evident in terms of reduced stream flow and  

61 reduction in ground water. For the purpose of this study however, the assumption is that 

“drought  

62 occurs when precipitation deficit exceeds some critical level beyond which the prevailing 

adaptive  

63 mechanisms fail to cope”, as defined by Tarhule and Woo (1997). The occurrence of drought 

has  

64 been recorded across all continents and under all climatic regions with low and high mean  

65 precipitation (Um et al., 2017) with varying degree, intensity, impact and duration.  

66 In recent decades, the occurrence and incidence of drought has been aggravated with the  

67 increase in global climate change (IPCC, 2014). For Africa, O'Connor (1995) reported that  

68 remotely sensed data analysis from National Aeronautics and Space Administration (NASA)  

69 reveal that about 900,000 km2 of previous savanna grassland in the African region had been  

70 severely degraded between the early 1960s and 1986 due to persistent occurrences of drought,  

71 while Bates et al., (2008) estimated that one-third of African population live in drought-prone  

72 areas. Yang & Huntingford (2018) revealed historical precipitation estimated by Climate 

Hazards  

73 Group InfraRed Precipitation with Station data (CHIRPS) (Funk et al., 2015) shows that during  
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74 August, September and October (ASO) of 2016, most of East Africa (particularly Somalia,  

75 Ethiopia and Kenya) had a reduction of 40% or more in precipitation compared to a baseline 

ASO  

76 period 1981–2015. Several studies confirm that the East African region ranks among the most  

77 vulnerable drought-prone regions of the world with a high potential for increased risk of drought  

78 related water and food shortages as recorded in as recent as year 2016/2017 (Love, 2009; Masih  

79 et al., 2014; Funk et al., 2014, 2015; Yang and Huntingford, 2018). The threat of drought is  

80 expected to further aggravate the existing widespread poverty and food insecurity (Funk et al., 

81 2008, 2013, 2015; von Grebmer et al., 2016). The situation is similar within other regions of 

sub82 saharan Africa. In West Africa, Dai et al. (2004) reported that there is about 40% decline 

in annual  

83 precipitation total from the year 1968–1990 as compared with the 30 years between 1931 and  

84 1960. Thus, frequent drought occurrences within the West African region have caused famine and  

85 are threatening the human existence in African savanna regions and consequently making the 86 

households highly vulnerable to drought (Eze, 2018). 

87 Droughts are considered a ‘creeping’ disaster by nature with devasting and extended impact  

88 often requiring long periods to reverse the recorded damages. It is therefore crucial that 

consistent 89 drought monitoring is carried out to provide decisive policy support for 

long- and medium-term  

90 planning of mitigative measures. Typically, at the turn of the 20th century, scientific studies had  

91 adopted climatic (temperature and precipitation) and hydrological (soil moisture and stream flow)  

92 indicators as main input towards the generation of indices for quantitative modelling of drought  

93 severity (Kincer, 1919; Munger, 1916; McQuigg, 1954; Waggoner and O’Connell, 1956).  

94 However, further advances in the study of drought (beginning from the latter part of the 20th  
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95 century into the 21st century) led to the identification of over 150 indices used for drought studies  

96 (Niemeyer, 2008) across various regions with different climatic conditions. The most 

prominently  

97 adopted contemporary indices for drought research include, but not limited to: decile index (DI)  

98 by Gibbs and Maher (1967); Palmer drought severity index (PDSI) by Palmer (1968), 

standardized  

99 precipitation index (SPI) applied by McKee et al. (1993); reclamation drought index (RDI) by  

100 Weghorst (1996); US Drought Monitor (USDM) applied by Svoboda et al. (2002); optimized  

101 meteorological and vegetation drought indices (OMDI and OVDI) proposed by Hao et al. (2015);  

102 composite drought indices using multivariable linear regression (MCDIs) developed by Liu et al.  

103 (2020). 

104 Recent drought studies have relied on the availability of data from different remote sensing 105 

platforms due largely to the synoptic coverage it provides for analysis over a wide region.  

106 Numerous methods have been developed for the application of remotely sensed data in drought  

107 studies. These include normalized difference vegetation index (NDVI) based conceptualization  

108 such as vegetation condition index (VCI) (Kogan 1995),  enhanced vegetation index (EVI) (Liu  

109 and Huete 1995),  soil adjusted vegetation index (SAVI) (Huete 1988), temperature vegetation  

110 index (TVX) (Lambin and Ehrlich, 1995), Deviations from NDVI (Anyamba et al., 2001),  

111 vegetation health index (VHI) (Kogan, 2001), temperature condition index (TCI) (Kogan, 1995; 

112 Kogan et al., 2003), and temperature vegetation dryness index (TVDI) (Sandholt et al., 

2002).  

113 More advanced methods now include satellite derived indices such as perpendicular drought index  

114 (PDI) (Ghulam et al., 2007a); modified perpendicular drought index (MPDI) (Ghulam et al.,  



7 

115 2007b); effective drought index (EDI) (Yao et al., 2010); and Drought severity index (DSI) 116 

proposed by Mu et al. (2013) and applied by Haroon et al. (2016). 

117 For the purpose of this study, the SPI proposed by McKee et al. (1993), and applied in Indonesia  

118 by Pramudya and Onishi (2018) will be adopted for the analysis of drought across the East 

African  

119 region. The SPI is considered most applicable for this study because it provides for drought  

120 analysis in multi-temporal levels such as monthly, single seasonal, multi-seasonal, and annual  

121 basis. This level of spatio-temporal scale analysis allows for the SPI to provide accurate 122 

meteorological and agricultural drought analysis. 

123 2.0 Methodology 

124 2.1 Study Area 

125 The study area covers eight countries consisting of Ethiopia, Kenya, Rwanda, Uganda, 

Tanzania,  

126 Burundi, Somalia and South-Sudan (Fig. 1). The climate of the region is influenced by a number  

127 of factors ranging from combination of the high altitude and the westerly monsoon winds that  

128 originate from the Ethiopian Highlands and Rwenzori Mountains. Generally, majority of the  

129 region’s countries experience two distinct precipitation regimes: “long rains” which extend 

during  

130 March–May (MAM), and a season with “short rains”, which lasts from October to December  

131 (OND). Figure 1 shows that much of Uganda and Somalia are humid and arid, respectively 

while  

132 much of Ethiopia is semi-arid and arid. South-Sudan and Tanzania are largely sub-humid, with  

133 Kenya containing a vast area of aridity. Rwanda and Burundi are largely tropical highlands. 
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134 The major livelihood sources include pastoralism and agro-pastoralism, rangeland cultivation,  

135 small-holder agriculture, milk production and dairy products processing (Morton and Kerven, 

136 2013; Abbink et al., 2014). 

137  

138 Fig. 1 Study area (Harvest Choice, 2015) 

139 2.2 Data sets and methods 

140 The precipitation data set used in this work is the Climate Research 

Unit (CRU) data developed  

141 by  University  of  East  Anglia.  The  data 

 was  retrieved  from  

142 http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.00/data/ at a 

spatial resolution of 0.5 x 0.5  

143 degrees covering a temporal range of 1920 to 2015. The Standardized 

Precipitation Index (SPI)  

http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.00/data/
http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.00/data/
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144 developed by McKee et al. (1993) is a popular index that is used to 

characterize drought at different  

145 time scales. SPI is computed by fitting a gamma distribution function 

to precipitation data of given  

146 frequency distribution over an area, and subsequently transforming 

the gamma distribution to a 147 normal distribution with a mean and 

variance of zero (0) and one (1) respectively (Suryabhagavan,  

148 2016). The aim of doing this is to minimize skewness in the data to zero. The Gamma distribution  

149 is widely used to represent precipitation time series (Guttman, 1999). The drought magnitude was  

150 obtained as the cumulative SPI over the drought months taken as a positive value. The intensity  

151 (drought severity) was computed as the magnitude divided by drought duration. The general  

152 technique for detecting changes in precipitation and drought is trend analysis. In this work, Trend  

153 analysis of precipitation and SPI will reveal will reveal the trends in drought over East Africa.  

154 Since, the input parameter for SPI computation is precipitation, trend analysis of precipitation will  

155 be done in order to study the local changes in climate. The Mann-Kendall non-parametric test was  

156 adopted in this work to assess the trends in precipitation and SPI and, also test the statistical  

157 distribution of the data records. Mann-Kendall was most preferred because it works well to avoid  

158 the problem caused by skewness of which precipitation is a kind of data that may be either  

159 negatively or positively skewed due to the existence of extreme values (Mahajan & Dodamani,  

160 2015). 

161 

162 2.2.1 SPI 

163 In calculating SPI, we adopt methods by Haroon, et al. (2016) and Guttman (1999), and fit a  
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164 probability distribution to long-term monthly precipitation records. The mean (𝑥), standard 165 

deviation (s) and skew (sk) are determined as follows: 

∑𝑋 

166 mean (𝑥) = 𝑁                                     (1) 

167 standard deviation (s) =                                       (2) 

168 skewness (sk) =(𝑁 ‒ 1)(𝑁 ‒ 2).  𝑁                          (3) 

169 where, x is the precipitation time series and N is the length of data records. The precipitation  

170 data are transformed by the log normal (ln) and the mean of those values is computed. The  

171 transformed values are further subjected to the constant U, which is used to compute the shape 

and  

172 Scale parameter as follows: 

ln (𝑋) 

173 Log mean = 𝑋ℎ = 𝑁 (4) 

ln (𝑋) 

174 U = ln (X) ‒ 𝑁   (5) 

(𝛽) =  (6) 175 Shape 

Scale (𝛼) = (7) 176 and, 

177 Further, the log values are transformed by the gamma distribution, incorporating the shape and 

178 scale values: 

𝑥 

 

𝑥 

179 Cumulative Gamma function G(x) = 𝛼𝛽
1Г𝛽

∫
𝑥𝑜 𝛽 ‒ 1𝑒𝑎𝑑𝑥 (8) 

∑ ( 𝑋 ‒ 𝑋 ) 2 

𝑁 

𝑁 ∑ ( 𝑋 ‒ 𝑋 ) 2 

1 
4 𝑈 [1 + 

4 𝑈 
3 

𝑋 
𝛽 
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1 181

 Similarly,  𝑡 = ln ((1 ‒ 𝑋𝑔)2), where 0.5 < 𝑋𝑔 ≤ 1.0 1 

180 and, we perform T transform as = ln (𝑋𝑔2) , where 0 < 𝑋𝑔 ≤ 0.5 (9) 

𝐶0 + 𝐶1𝑡 + 𝐶2𝑡2 

182 and the SPI= - 𝑡 + 
1 + 𝑑 𝑡 + 𝑑 𝑡2 + 𝑑3𝑡3    where 0 < 𝑋𝑔 ≤ 0.5            (10) 

 1 2 

𝐶0 + 𝐶1𝑡 + 𝐶2𝑡2 

183 or  SPI=  𝑡 ‒ 
1 + 𝑑 𝑡 + 𝑑 𝑡2 + 𝑑3𝑡3   where 0.5 < 𝑋𝑔 ≤ 1.0 (11) 

 1 2 

184 The constants expressed in equations (10) and (11) are given as follows 

185   𝐶0=2.515517,  𝑑1= 1.432788 

186   𝐶1=0.802853, 𝑑2= 0.189269 

187    𝐶2 = 0.010328,  𝑑3 = 0.001308 

188 

189 2.2.2 Drought Magnitude, Duration and Intensity 

190 The drought magnitude (𝐷𝑀) was obtained as follows 

191 𝐷𝑀 =‒ ∑𝑛𝑖 = 1𝑆𝑃𝐼𝑖𝑗 (12) 

192 where 𝐷𝑀 is the drought magnitude, n is the number of months with drought event at j timescale. 

193 Drought intensity (𝐷𝐼 ) is the ratio of drought magnitude (𝐷𝑀) to drought duration (𝐷𝑑) as  

194 follows:   

195 

196 

𝐷𝑀               
𝐷𝐼 = 𝐷𝑑 

                    (13) 
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197 2.2.3 Mann-Kendall Trend Test 
  

198 The Mann-Kendall trend test is given as 
  

𝑛 

199 𝑆
𝑗 ‒ 1 + 1𝑠𝑔𝑛(𝑥𝑗 ‒ 𝑥𝑖)        (14) 

200 where  is the time series ranked from 𝑥𝑖 i= 1, 2,………n-1 and 𝑥𝑗 from 

j=i+1,2,……..n. All the data  

201 values are taken as reference point to which comparison is done with the 

rest of the data values 𝑥𝑗  

202 such; 

+ 1, > (𝑥𝑗 ‒ 𝑥𝑖) 

203 𝑠𝑔𝑛(𝑥𝑗 ‒ 𝑥𝑖) =0, = (𝑥𝑗 ‒ 𝑥𝑖)               (15) 

‒ 1, < (𝑥𝑗 ‒ 𝑥𝑖) 

204 The statistics of variance is given as 

𝑛 (𝑖)(𝑖 ‒ 1)(2𝑖 + 5) 

205 𝑉𝑎𝑟(𝑆) = 18       (16) 

206 where  is the number of ties up to sample value 𝑡𝑖 i. 𝑍𝑐 is the test 

statistics and is calculated as 𝑍𝑐 = 

𝑆 ‒ 1 

𝑉𝑎𝑟(𝑆), 𝑆 > 0 

2070, 𝑆 = 0                   (17) 
𝑆 ‒ 1 

𝑉𝑎𝑟(𝑆), 𝑆 < 0 

208 

209 𝑍𝑐 describes a Standard Normal Distribution (SND) and positive and negative values of 𝑍𝑐 shows  

210 an upward and downward trend respectively. According to Mondal et al. (2012), a significance  

{

{
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211 level  is also used in testing either an upward or downward monotone trend, if 𝛾 𝑍𝑐 is greater 

than 212 𝑍𝛾 then the trend is considered significant and vice versa. 2 

213 

214 2.2.4 Sen’s Trend Estimator 

215 The Sen’s trend estimator test was described by Sen (1968) and the magnitude of the trend is given  

216 by 

𝑥𝑗 ‒ 𝑥𝑘 

217 𝑇𝑖 
= 

𝑗 ‒ 𝑘                          (18) 

218 where 𝑥𝑗 and 𝑥𝑘 are considered as data points j and k (j>k) compatibly. The median of these N  

219 values of 𝑇𝑖 is represented as Sen’s estimator of slope which is given as   

𝑇𝑁+1                                𝑁 𝑖𝑠 

𝑜𝑑𝑑 2 

=1 ( ) (19) 220 𝑄𝑖 

2 𝑇𝑁2 + 𝑇𝑁+2 2         𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛 

221   

222 Positive and negative values of 𝑄𝑖 represent upward (increasing) and downward (decreasing)  

223 trends, respectively.  

224 In order to assess the spatio-temporal occurrence of drought over East Africa, the 3-month, 6225 

month and 12-month SPI was used to study drought in the long term. This period is enough for  

226 drought frequency and intensity assessment. The SPI was computed on monthly scale so that the 227 

consistency of drought duration and intensity can be determined according to Table 1.  

228 Table 1 Standard SPI table (McKee et al., 1993) 

SPI value Description 

2 > Extremely wet 

{
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1.5 – 1.99 Very wet 

1.0 – 1.49 Moderately wet 

0 – 1.0 Mildly wet 

-1.0 – 0 Mildly drought 

-1.5 – -1.0 Moderately drought 

-2.0 – -1.5 Severe drought 

-2 < Extreme drought 

229 

230 From a statistical point of view, droughts are considered as multivariate events whose dimension  

231 and treatment depends on their characteristics such as the duration, severity and frequency  

232 (Gonzalez et al., 2004). Most studies have proposed the Joint Probability Distribution Function  

233 (JPDF) for determining probabilistic characteristic because drought severity and duration are 

often 234 difficult to treat separately. 

235 Given a set of observations 𝑦𝑖……..𝑦𝑛, a mathematical expression of bivariate Kernel probability 236 

density estimator 𝑓𝑆𝐷  is given as (kim et al., 2003): 

1 

237 𝑓𝑆𝐷(𝑠,𝑑) = 
𝑛 ℎ𝑠           (20) 

238 The joint return period of drought (𝑇𝑆𝑑) is given as (kim et al., 2003): 

𝑁 

239 𝑇𝑆𝑑 = 𝑛[1  ‒ 𝑓𝑆𝐷(𝑠,𝑑)]              (21) 

240 where N is the numbers of years. 

241 

242 3. Results 

243 3.1. Seasonal Characteristics of Precipitation and Precipitation Anomaly over East Africa  

244 from 1920 to 2015 

245 The seasonal characterization of precipitation over the East African region (Fig. 2) reveals that  
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246 long precipitations occur during the period of March to May (MAM) while short precipitations  

247 occur from the period of October to December (OND). The study analysis revealed that peak  

248 annual precipitation from 1920 to 2015 is recorded as 120 mm/yr while average seasonal  

249 cumulative precipitation from 1920 to 2015 is about 920 mm/yr. Crop production over East Africa  

250 is highly dependent on the long rainy season, which accounts for more than 70% of total annual  

251 precipitation. It is therefore, understandably that fluctuations in precipitation within this period is 

252 capable of altering and impacting food production across the region. 

253  

254 Fig. 2 Characteristics of precipitation over East Africa  

255 Figure 3 shows precipitation anomalies from 1920 to 2015. Positive and 

negative anomalies  

256 represent wet and dry conditions, respectively, over East Africa. Based on 

the data used from 96  

257 years (from 1920 to 2015) there are a total of 41 wet years and 46 drought 

years. The anomaly of 258 the wet years and dry years were obtained 

when precipitation was above and below normal  

259 conditions, respectively, as seen in Fig. 3. The years 1961, 1967, 1997, 2007 and 2015 are the  

260 wettest while 1943, 1983, 1993, 1997 and 2003 are the driest. The annual precipitation, anomalies  
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261 and the corresponding SPI’s for wet and dry years are presented in Table 2.  Results show that  

262 both wet and drought spells coincide with positive and negative anomalies over East Africa,  

263 respectively. This shows that the reason for the drought periods was as a result of unavailability of  

264 water in the soil. The magnitude of anomaly of the wet years was higher than that of the dry years  

265 and both wet and dry years were obtained when precipitation was above and below normal  

266 conditions, respectively. A detailed inspection of dry- and wet-year results also revealed that the  

267 chances of occurrence of wet years are greater in comparison to dry years. This information is  

268 important for the future planning and management of agricultural practices. This work has allowed  

269 us to identify years within the region that are prone to dry/wet conditions using available 270 

precipitation data records from 1920 to 2015. 

271 

272   

273 Fig. 3 Precipitation anomaly over East Africa 

274 

275 

276 Table 2 Annual precipitation, anomaly and SPI-12 



17 

Condition Yr 
Annual precipitation 

(mm/yr) Anomaly (mm/yr) 
SPI 

 1920-21 817.7 -102.8 -1.2 

 1921-22 823.5 -96.9 -1.1 

 1924-25 810.4 -110.0 -1.2 

 1927-28 803.3 -117.2 -1.3 

 1928-29 828.7 -91.7 -1.0 

 1933-34 820.1 -100.3 -1.1 

 1942-43 775.0 -145.4 -1.7* 

Dry Spells 1943-44 

1947-48 

1948-49 

1952-53 

1964-65 

1983-84 

1991-92 

1996-97 

1999-00 

826.4 

811.3 

823.7 

818.9 

820.4 

784.2 

788.1 

788.2 

820.7 

-94.1 

-109.1 

-96.7 

-101.5 

-100.0 

-136.2 

-132.3 

-132.2 

-99.7 

-1.0 

-1.2 

-1.1 

-1.1 

-1.1 

-1.6* 

-1.5* 

-1.5* 

-1.1 

 2003-04 815.8 -104.7 -1.2 

 Yr Annual precipitation 

(mm/yr) 
Anomaly 

(mm/yr) 
SPI 

 1925-26 1064.5 144.1 1.6 

 1929-30 1071.0 150.6 1.6 

 1941-42 1054.0 133.6 1.4 

 1946-47 1056.9 136.5 1.5 

 1961-62 1185.0 264.5 2.7** 

 1962-63 1069.6 149.2 1.6 

 1963-64 1043.2 122.8 1.3 

 1967-68 1110.8 190.4 2.0** 
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Wet  
Spells 

1977-78 

1978-79 

1997-98 

2002-03 

2006-07 

2009-10 

2012-13 

1042.9 

1021.9 

1180.0 

1006.7 

1118.2 

1036.0 

1036.8 

122.4 

101.5 

259.6 

86.3 

197.8 

115.6 

116.4 

1.3 

1.1 

2.7** 

1.0 

2.1** 

1.3 

1.3 

 2015-16 1196.4 275.9 2.8** 

277 

278 3.2. Spatial and temporal representation of spatial SPI over East Africa 279 Figure 4 shows the 

spatial representation of SPI for different hydrological years from 1920 to 2015 over  

280 East Africa. Results show that Figs. 4a, d and k recorded the highest precipitation while Fig. 4b, e  

281 and h recorded the least precipitation. It is critical to note that most of the regions that recorded  

282 the highest precipitation in some years also recorded the least in other years, hence establishing  

283 the fact that precipitation across most of the East African region is fluctuating and drought is not 

284 peculiar to one region.  
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285  

286 Fig. 4 Spatial representation of SPI for different hydrological years over East Africa 

287 From Fig. 5, calculated SPI at different time scales of 3, 6 and 12 months indicated that for  

288 shorter time scales (i.e., 3 months, 6 months), there was a high temporal variability in dry 

and wet  

289 periods, whereas at longer time scales (12 months), frequency of dry and wet periods were  

290 considerably decreased.   
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291  

292 Fig. 5 (a) SPI-3 months (b) SPI-6 months (c) SPI-12 months 

293 The drought magnitude, drought duration, and corresponding drought intensity 

were  

294 calculated over the study area (Table 3). And also, Fig. 6 shows drought 

magnitude over east  

295 Africa. Years with high drought magnitude ranged from 1922-22, 1926-29, 

1942-46 and 1947-51  

296 with values corresponding to 2.2, 3.2, 3.4 and 2.6, respectively while years with 

low drought  
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297 magnitude ranged from 1930-31, 1988-89 and 2001-02 with values as 0.2, 0.12 

and 0.15,  

298 respectively. Figure 7 shows drought duration in years over East Africa with the 

longest droughts  

299 occurring from 1929-29, 1937-41, 1942-46, 1947-51, 1952-56, and 1958-61 

with values in years 300 as 3, 4, 4, 4, 4, and 3 years, respectively, while the 

shortest droughts occurred in time period of 1  

301 year and ranged from 1930-31, 1964-65, 1979-80, 1981-82, 1983-84, 1988-89, 1991-92, 1993-94,  

302 1996-97 and 2001-02 (Also see Table 3). A comparison between Fig. 6 (drought magnitude) and  

303 Fig. 7 (drought duration) shows that not all the severest drought took longer and vice versa. Both 

304 drought magnitude and duration showed a negative slope of -0.071 and -0.086, respectively. 

305   

306 Fig. 6 Drought magnitude over East Africa 
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307   

308 Fig. 7 Drought duration over East Africa 

309 The drought magnitude was obtained as the cumulative SPI over the 

drought months taken as a  

310 positive value. The intensity (drought severity) was computed as the 

magnitude divided by drought 311 duration. Among the droughts 

recorded, the drought of 1937-41, 1942-46, 1947-51, 1952-56 had  

312 the longest duration. Specifically, the results indicated that on one hand the frequency of drought  

313 events were high at shorter time scales but lasted for shorter durations at longer time intervals, 

and 314 on the other hand droughts were less frequent but persisted for longer periods of time.   

315 Table 3 Extraction of drought characteristics 

Hydrological year Magnitude Duration Intensity 

1920-22 2.2333 2.000 1.1167 

1923-25 1.7703 2.000 0.8852 

1926-29 3.2102 3.000 1.0701 

1930-31 0.2493 1.000 0.2493 

1932-34 1.9668 2.000 0.9834 

1937-41 1.5215 4.000 0.3804 

1942-46 3.3653 4.000 0.8413 

1947-51 2.5589 4.000 0.6397 

1952-56 2.0666 4.000 0.5166 
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1958-61 1.5564 3.000 0.5188 

1964-65 1.1191 1.000 1.1191 

1970-72 0.9154 2.000 0.4577 

1974-76 0.7563 2.000 0.3781 

1979-80 0.8044 1.000 0.8044 

1981-82 0.7803 1.000 0.7803 

1983-84 1.5593 1.000 1.5593 

1985-87 1.1279 2.000 0.5640 

1988-89 0.1257 1.000 0.1257 

1991-92 1.5109 1.000 1.5109 

1993-94 0.8771 1.000 0.8771 

1996-97 1.5102 1.000 1.5102 

1998-00 1.1151 2.000 0.5576 

2001-02 0.1588 1.000 0.1588 

316 

317 Figure 8 shows the spatial map of drought magnitude across the East African region for different  

318 hydrological years.  
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319  

320 Fig. 8 Spatial drought magnitude over East Africa for different hydrological years 

321 The results show that the drought magnitude is highest in 1920-21, 1950-51, 1970-71, 

2000-01  

322 and 2014-15 hydrological years. In 1920-21 hydrological year, regions that recorded high 

drought  

323 magnitude include South Sudan, Uganda, Kenya, Rwanda, Burundi and Eastern Tanzania. 

In  

324 1950-51hydrological year, drought magnitude was highest over Ethiopia and South Sudan. 

In  

325 1970-71 hydrological year, drought magnitude was highest over South Sudan, Ethiopia 

and  

326 Somalia. In 2000-01 hydrological year, drought magnitude was highest in South Sudan, 

Ethiopia,  

327 Somalia and Kenya. In 2014-15 hydrological year, drought magnitude was highest in 

Ethiopia and  



25 

328 Tanzania. This indicated that besides seasonal variability of spatial drought magnitude, 

there exist 329 a strong variability of spatial drought magnitude across different decades. 

330 

331 3.3. Drought Risk Mapping and Joint Probability Distribution Function and Return years of 

332 Drought over East Africa 

333 The spatial drought risk map was got from the spatial SPI map and represented in Fig. 9. It shows  

334 the spatial drought levels over East Africa across different decades, and changes across the region’s  

335 land mass suggested to be as a result of changes in climate and land cover. There is high variability  

336 in drought across the decades over the region. These droughts could be categorized as ranging  

337 from moderate to extreme, with different durations and magnitudes. Nevertheless, the total  

338 duration, severity and magnitude of occurrence of the drought episodes varied from one location 

339 to another across the decades. 
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340  

341 Fig. 9 The spatial drought risk map across East Africa 

342 From Fig. 9, it appears as if drought repeats itself in some selected locations 

after a period of  

343 time but all droughts experienced in all locations and at all recorded periods 

appear to differ (see 344 Figs. 9a to 9k). Drought may have similar 

magnitudes or duration but different levels of severity.  

345 For example, the droughts with magnitude (duration in years) of 1.5(4), 3.4(4), 2.6(4) and 2.0(4)  

346 lasted from 1937 to 1941, 1942 to 1946, 1947 to 1951 and 1952 to 1956, respectively (see Table  

347 3). Since both drought severity and durations have different distributions, the Joint Probability  

348 Distribution Function (JPDF) given by equation (9) was used to obtain the probability Density  

349 function and the Joint return years were obtained using equation (10). The JPDF analysis is a useful  
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350 multivariate tool needed for water resources management. Based on the drought characteristics, 

351 duration and magnitude using the 12-month SPI, the JPDF was estimated as shown in Figure 

10.  

352 From Fig.10, it shows that probability of drought occurrence is high when severity is low and such  

353 droughts occur at short time intervals. Also, it takes so many years for a severe drought to repeat 

354 itself at short time intervals.  

355  

356 Fig.10 The JPDF for drought duration and severity (magnitude) 

357 Once the JPDF for the bivariate return periods of drought was calculated, the 

drought severity358 duration frequency curve of East Africa was created (Fig.11). 

Fig.11 is a bivariate analysis of 359 drought severity for East Africa region 

showing return periods and different levels of severity.  

360 Drought severity itself is a function of the different drivers of drought over particular area. Drought 

361 severity characterizes drought magnitude of dry events. The JPDF drought-based curves were  

362 developed for selected recurrence severity levels of 5, 10, 20, 30, 40 and 50 years are plotted in 363 

Fig.11. It is observed that for any given duration, severe droughts have more return periods.   
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364  

365 Fig. 11 Joint return years for severity (magnitude) corresponding to duration 

366 Table 4 shows the drought occurrence over East African countries. The result shows 

that the  

367 drought mechanism is complex and the drivers highly depend on the local 

environmental  

368 conditions prevailing in a particular country. All drought episodes are associated with 

negative  

369 precipitation anomalies, low precipitation values closely matching the SPI values. The 

SPI values  

370 depicting drought levels (shown in Table 1) are applied to reveal the varying levels of 

drought  

371 experienced over specific countries in East Africa over the study period.  

372 Table 4 Annual precipitation anomalies for various countries in East Africa from 1920-

2015 373 with SPI-12. The value in parenthesis represents SPI 

 

 Burund

i 
Rwand

a 
Ethiopi

a 
Kenya 

 

Somali

a 
Ugand

a 
Tanzani

a 
South 

Suda

n 
1920/2

1 
-145 (-

1.0) 
-197 (-

1.3) 
   -188(-

1.4) 
  

1921/2

2 
-383 (-

3.0) 
       

1923/2

4 
-174 (-

1.2) 
-231 (-

1.5) 
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1924/2

5 
  -93 (-

1.0) 
-150 (-1.2)  -190 (- 

1.4) 
-165 (-

1.3) 
-84 (-

1.0) 
1926/2

7 
     -168 (- 

1.2) 
 -106 

(-1.3) 
1927/2

8 
-259 (-

1.9) 
-225 (-

1.5) 
 -125 (-1.0)  -155 (- 

1.1) 
  

1928/2

9 
-216 (-

1.6) 
-158 (-

1.0) 
 -128 (-1.0)  -144 (- 

1.0) 
-191 (-

1.5) 
 

1932/33   -96 (-

1.1) 
-163 (-1.4)     

1933/34 -285 (-

2.1) 
-291 (-

2.0) 
   -163 (- 

1.2) 
  

1938/39   -95 (-

1.0) 
 -72 (-

1.0) 
-191 (- 
1.4) 

  

1940/41   -102 (-

1.1) 
     

1942/43 -203 (-

1.5) 
-237 (-

1.6) 
-146 (-

1.7) 
-129 (-1.0)  -215 (- 

1.6) 
 -123 

(-

1.5) 
1943/44  -158 (-

1.0) 
  -109 (-

1.7) 
-139 (- 
1.0) 

-128 (-

1.0) 
 

1945/46  -165 (-

1.1) 
  -104 (-

1.6) 
 -193 (-

1.5) 
 

1947/48 -199 (-

1.4) 
 -89 (-

1.0) 
-128 (-1.0) -122 (-

2.0) 
   

1948/49     -88 (-

1.3) 
 -241 (-

2.0) 
 

1950/51   -170 (-

2.0) 
    -124 

(-

1.5) 
1952/53   -100 (-

1.1) 
  -177 (- 

1.3) 
-222 (-

1.8) 
 

1953/54     -72 (-

1.0) 
   

1954/55     -106 (-

1.6) 
   

1955/56   -130 (-

1.5) 
 -117 (-

1.8) 
   

1958/59 -193 (-

1.4) 
   -68 (-

1.0) 
 -162 (-

1.3) 
 

1960/61 -211 (-

1.5) 
-148 (-

0.9) 
    -164 (-

1.3) 
 

1964/65   -121 (-

1.4) 
-140 (-1.2) -80 (-

1.2) 
-213 (- 
1.6) 

-148 (-

1.1) 
 

1970/71     -86 (-

1.3) 
  -99 

(-

1.2) 
1971/72        -132 

(-

1.6) 
1975/76    -183 (-1.6)     

1979/80   -113 (-

1.3) 
-149 (-1.2) -77 (-

1.1) 
-189 (- 
1.4) 

 -110 

(-

1.3) 
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1981/82  -157 (-

1.0) 
     -121 

(-

1.5) 
1982/83        -125 

(-

1.5) 
1983/84   -151 (-

1.7) 
-248 (-2.2) -83 (-

1.2) 
-177 (- 
1.3) 

 -228 

(-

2.9) 
1985/86   -114 (-

1.3) 
     

1986/87   -105 (-

1.2) 
    -218 

(-

2.8) 
1989/90        -124 

(-

1.5) 
1991/92 -144 (-

1.0) 
-151 (-

1.0) 
-155 (-

1.8) 
-147 (-1.2) -156 (-

2.7) 
-154 (- 
1.1) 

 -97 

(-

1.2) 
1993/94 -161 (-

1.1) 
   -84 (-

1.2) 
 -137 (-

1.0) 
 

1996/97 -152 (-

1.1) 
 -138 (-

1.6) 
-136 (-1.1) -90 (-

1.3) 
-160 (- 
1.2) 

-169 (-

1.3) 
-86 

(-

1.0) 
1998/99  -166 (-

1.1) 
-104 (-

1.2) 
-171 (-1.4) -87 (-

1.3) 
   

1999/00 -158 (-

1.1) 
-209 (-

1.4) 
 -161 (-1.3)   -254 (-

2.1) 
 

2003/04  -250 (-

1.7) 
-141 (-

1.6) 
-161 (-1.3)  -177 (- 

1.3) 
  

2004/05    -160 (-1.3)  -178 (- 
1.3) 

  

2005/06  -175 (-

1.1) 
    -139 (-

1.1) 
 

2007/08      -142 (- 
1.0) 

  

2008/09        -150 

(-

1.9) 
2010/11    -119 (-1.0)   -150 (-

1.2) 
 

2011/12 -204 (-

1.5) 
       

 

374 Note: 1920/21 represents a hydrological year starting in 1920 and ending in 1921. 

375 

376 The spatial and temporal variability in drought trends is observed in the study area and shown  
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377 in Table 5 as the Negative and Positive SPI trends at multiple time scales across the East 

African 378 countries. Of all the SPI models tested, only SPI-12 indicated significant trend 

values in Burundi,  

379 Rwanda and Uganda with Sen’s slope (Kendal tau) values of 0.008 (0.143), 0.007 (0.144) and  

380 0.008 (0.149) respectively. Basically, the SPI-12 shows the status of year-round water shortage  

381 caused by drought while SPI-6 and SPI-3 are appropriate indicators of the status of seasonal water 

382 shortage caused by drought (Tan et al., 2015).  

383 Table 5 Mann-Kendall Trend and significance level of SPI-3, SPI-6 and SPI-12 over East African countries 

Durati 

on 

Parameter Burundi Ethiopia Kenya Rwanda South 
Sudan 

Somalia Tanzania Uganda Regional 

SPI-3 
Kendal τ 

(Sign) 
Sen’s slope 

0.060 
(0.086) 
0.002 

0.017 
(0.635) 
0.004 

-0.004 
(0.914) 
-0.0001 

0.089 
(0.011) 
0.003 

-0.058 
(0.097) 
-0.005 

0.026 
(0.450) 
0.002 

-0.028 
(0.419) 
-0.003 

0.062 
(0.074) 
0.0002 

0.036 
(0.307) 
-0.0001 

 Trend No No No No No No No No No 

SPI-6 
Kendal τ 

(Sign) 
Sen’s slope 

0.073 
(0.140) 
0.004 

0.008 
(0.879) 
0.0001 

0.006 
(0.908) 
-0.0003 

0.087 
(0.079) 
0.004 

-0.051 
(0.305) 
-0.003 

0.040 
(0.421) 
0.002 

-0.057 
(0.247) 
-0.003 

0.087 
(0.079) 
0.005 

0.037 
(0.457) 
0.002 

 Trend No No No No No No No No No 

SPI-12 
Kendal τ 

(Sign) 
Sen’s slope 

0.143 
(0.040) 
0.008 

-0.009 
(0.903) 
-0.001 

0.031 
(0.662) 
0.001 

0.144 
(0.039) 
0.007 

-0.071 
(0.301) 
-0.004 

0.072 
(0.301) 
0.004 

-0.016 
(0.817) 
-0.001 

0.149 
(0.033) 
0.007 

0.103 
(0.141) 
0.006 

 Trend Yes No No Yes No No No Yes No 

384 

385 Table 6 shows negative and positive precipitation trends at multiple time scales over East  

386 African countries. Out of eight countries, precipitation shows significant positive (insignificant  

387 positive) trends over 1(4) countries and significant (insignificant) negative trends over 1(2) 388 

countries from 1920 to 2015.  

389 Table 6 Mann-Kendall Trend and significance level of precipitation over East African countries 

Country Kendal τ (sign) Sen’s slope Trend 

Burundi 0.023 (0.248) 0.021 No 

Ethiopia -0.001 (0.980) -0.034 No 
Kenya 0.005 (0.799) 0.006 No 

Rwanda 0.034 (0.088) 0.092 No 
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South-Sudan -0.044 (0.028) -0.042 Yes 
Somalia 0.048 (0.05) 0.007 Yes 

Tanzania -0.010 (0.603) -0.010 No 
Uganda 0.033 (0.101) 0.022 No 

Regional 0.025 (0.216) -0.005 No 

390 

391 

392 3.4 Spatial trends in drought across East Africa 

393 Figure 12 shows the spatial trend of SPI over East Africa. The approach involves running an  

394 Ordinary Linear Regression model to the SPI maps generated. Results show that about 28, 22  

395 and 50 % of the SPI indicated spatial increase, no change and decrease in SPI trends respectively  

396 over the study area from 1920 to 2015. Increase (decrease) of SPI trends by our analysis means  

397 an increase (decrease) in moisture conditions corresponding to decrease (increase) in drought  

398 prevalence. Assessing the mean SPI drought characteristics over the region indicates that there  

399 were some notable variations in SPI, consistent with the distribution of precipitation. Areas with  

400 increase in SPI were located northeast, along the shores of the Indian Ocean and some few areas  

401 in the Central part of the study area. Areas with no trend changes in SPI were located in  

402 northwest, northeast, southeast parts of East Africa and close to the shores of the ocean. Also,  

403 areas with decreasing SPI trend pixels were located around in the Northwest, Northeast, and  

404 Southwest and along the shores of the study area. The 96-year precipitation records in areas with  

405 spatial increase in SPI trend were 11.3, 136.5, 77.3 and 26.5 mm for minimum, maximum, mean  

406 and standard deviation values respectively while the precipitation records in areas with spatial  

407 decrease in SPI were 539, 138.3, 56.1 and 29.7 for minimum, maximum, mean and standard  

408 deviation values respectively. For areas with no spatial trend changes in SPI were 7.2, 161.6,  

409 93.2 and 31.9 for minimum, maximum, mean and standard deviation values, respectively. Areas  
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410 with improvement in drought indicated the low precipitation standard deviation. Our result 411 

confirms that areas with no SPI changes in drought were wetter from 1920 to 2015.  

412 

413 

414 

415 

416 

417 

418 

419 

420 

421 

422 

423 

424 

425 

426 

427 Fig.12 Spatial trends in SPI over East Africa 

428 

429 Figure 13a shows the spatial slope of SPI versus latitudes (degrees). Results indicate that  

430 high of SPI slope are clustered at higher latitudes from latitude 0 to 12o while low trend 

values  

431 are clustered between latitude -2 and 2 o south of the study region which is an indication that  
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432 drought is prevalent in the northern section than southern section of the study area.  

433  

434 Fig.13 (a) SPI slope versus latitude (b) SPI slope versus DEM and (c) histogram of pixel count 

435 Figure 13b shows SPI slope versus DEM where both high and low slope values of SPI are  

436 clustered at lower latitudes between 0 to 1500 m, and at the foot hills of mountains. The 

histogram  

437 of the SPI trends is shown in Figure 13c. It can be observed that most of the SPI trends are 

clustered  
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438 around the 0.0 mark, which shows that the density curve of the pixels is symmetrical and 

centered  

439 about its mean. The SPI trends indicate high positive (negative) pixels above (below) the 

zero440 trend mark, implying that drought prevails in both low and high elevation areas up 

to 2000 m. 441 3.5 ENSO-drought relationship 

442 Drought is considered as one of the most complex and deleterious natural, with severe impacts on  

443 natural ecosystems, water resources and food security (Tan et al., 2015). In this study, we selected  

444 the El Niño, neutral, and La Niña years based on data from sea surface temperature (SST)  

445 anomalies of the tropical Indian Ocean in the region + 0.5 °C and – 0.5 °C also known as the Niño  

446 3.4 region. The gridded Extended Reconstructed Sea Surface Temperature version 4 (ERSSTv4)  

447 temperature data was used to study the ENSO events. We considered El Niño (La Niña) years as  

448 years with average SST anomalies above (below) temperature values of +0.5 °C (−0.5 °C) from  

449 October to March. The October to March period typically coincides with peak ENSO Conditions 

450 Neutral years if the SST values are within - 0.5 °C < SST < 0.5 °C as shown in Fig. 14. 
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451 

452 Fig. 14 Extended reconstructed sea surface temperature showing El Niño, neutral and La Niña years. 

453 

454 The SPI values in neutral, El Niño, and La Niña years were studied over East Africa from 1920  

455 to 2015. The mean drought characteristics, magnitude, duration and even the dispersion, of 

drought  

456 magnitude in SPI-3, SPI-6 and SPI-12 are very similar in El Niño and La Niña events while the 

457 neutral years presented high dispersion in both drought magnitude and duration (Fig.15). 
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458 Fig. 15 Boxplots of mean magnitude and duration for (a) El Niño (b) neutral and (c) La Niña years 

459 Results shown on Fig. 15a indicate that the mean drought duration during El Niño years were  

460 less than 1.5 years while the mean drought duration during neutral (La Niña) years was 3 (4) 

years 461 (Figs. 15b and c).  

462 In this study, there is no direct link between ENSO and drought over the East African region.  

463 But the association of drought in most El Niño and La Niña years suggests that the impact of  
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464 ENSO cannot be ruled out. Our results have supported reports that present teleconnections 

between  

465 drought and ENSO. Previous reports have shown that ENSO events normally peak during 

October  

466 to March periods which coincides with the short (SON) and long (MAM) rainy seasons of East  

467 Africa. This period coincides with the SON and MAM seasons and increased precipitation in 

East  

468 Africa. Considering the major drought episodes over the East Africa, our analysis has only 

agreed  

469 with the major droughts of 2011/12. Based on our results, 2011/12 was captured as an El Niño  

470 year with drought magnitudes captured by SPI-3 and SPI-6 as 2.8 and 0.5 respectively with 

drought  

471 duration of 3 and 6 months, respectively. The drought episode of 2011/12 affected countries like 

472 Somalia, Uganda, Kenya, Ethiopia, South-Sudan and other nearby countries. 

473 3.6. Discussion 

474 Generally, the actual precipitation expressed as a percentage deviation from normal (or long-term  

475 average) is the most commonly used drought indicator, although it has limited use/reliability for  

476 spatial comparison due to its dependence on the mean (Kumar et al., 2009). According to Solanki  

477 and Parekk (2014), the SPI represents a departure from the mean and is thus, expressed in standard  

478 deviation units as a normalized index in time and space. The departure from the mean is a  

479 probability indication of the severity of the wetness or drought that can be used for risk assessment.  

480 The application of data from 1920 in this study is considered most desirable as long records provide  

481 more reliable statistics for SPI, given that it is a statistical approach. As a result, SPI has gained 

482 importance in recent years as a potential drought indicator permitting comparisons across 

different 483 precipitation zones (Kumar et al., 2009; Solanki and Parekk, 2014). 
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484 This study analyzed SPI values between 1920 and 2016 with actual precipitation and  

485 precipitation deviation from normal in East Africa, a generally low precipitation and drought 

prone  

486 region. The objective is to establish whether or not SPI can be used as a suitable indicator (when  

487 compared to conventionally adopted precipitation deviation-based approach for drought 

intensity 488 assessment) over an extended region such as East Africa.  

489 The results of the analysis show that very low or very high precipitation corresponded to very  

490 low or very high SPI values. Thus, SPI values adequately estimated the dryness or wetness when  

491 the precipitation is very low or very high, respectively. Table 2 shows that all periods that  

492 experienced dry spells (or drought) recorded low/negative anomaly and SPI values with the 

periods  

493 1942-1943 recording the driest (-1.7) followed by 1983-1984 (-1.6). Similarly, the periods of 

wet  

494 spells reveal positive anomaly and SPI values with the wettest period being 2014-2015. The  

495 outcome of this study is in line with the SPI classes proposed by McKee et al. (1993). However,  

496 there is a marked variation between drought characteristics of magnitude, duration and intensity  

497 when viewed against temporal scales. In essence, no time scale recorded the highest in all 3 

drought  

498 characteristics throughout the 95-year period of analysis (Table 3). This is similar to the  

499 observation of SPI at different time scales of 3, 6 and 12 months which reveal that for shorter 

time  

500 scales, there was a high temporal variability in dry and wet periods, whereas at longer time 

scales 501 (12 months), frequency of dry and wet periods were considerably decreased (Fig. 

5). 

502 The results of this study indicate that drought characteristics analysis (magnitude, duration and  
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503 intensity) using SPI can be adequately applied for drought intensity assessment particularly in  

504 regions such as East Africa where low precipitation and vulnerability to droughts is prevalent. 

505 The precipitation anomalies (Table 4), Mann-Kendall Trend and significance level of SPI-3,  

506 SPI-6 and SPI-12 (Table 5) and Mann-Kendall Trend and significance level of precipitation 

(Table  

507 6) reveal varying results both temporally and spatially across the eight countries comprising the  

508 East African region covered in this study. For instance, the same drought level (SPI) may be  

509 prevalent in a country but the precipitation anomaly values may differ (Table 4). The drought 

of 510 1942-43 was worst hit in countries like Burundi, Rwanda, Ethiopia, Uganda and South-

Sudan.  

511 From 1983-84, Ethiopia, Kenya, Somalia, Uganda and South-Sudan experienced the worst drought  

512 episodes. Also, from 1991-92, Ethiopia, Kenya, and Somalia experienced worst drought spells,  

513 while in 1996-97, the highest effect was observed in Ethiopia. Table 5 reveals that out of eight  

514 countries, SPI-12 detects significant positive (insignificant positive) trend over 3(2) countries and  

515 insignificant negative trends over 3 countries. SPI-6 detects insignificant positive trend over 6  

516 countries and insignificant negative trend over 2 countries. SPI-3 detects insignificant positive  

517 trends over 5 countries while insignificant negative trends in 3 stations. At regional (continental  

518 scale), there was no significant trend in SPI-3, SPI-6 or SPI-12. The results in Table 6 show that  

519 most countries experience oscillations between wet and dry conditions while few countries are  

520 getting wetter with few others getting more arid. At regional (continental scale), there was no  

521 significant trend in precipitation. There was no significant change in precipitation in annual rainy  

522 seasons during the study period. As no annual trend was observed in the precipitation amount, we 

523 applied SPI to study precipitation address potential changes in precipitation extremes. 
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524 There is expected to be some time lag due to the unique vegetation types which, according to  

525 Abbas et al. (2014), should have different capacity of water storage. The humid area covering 

most  

526 of Uganda as shown on Fig. 1 (with predominantly tall and dense forests) are expected to have 

a  

527 longest time lag because, according to Allen (2008), forests possess the best capacity of water 

528 retention with deeper roots to tap groundwater. Conversely, arid and semi-arid areas such 

as  

529 Kenya, Somalia and Ethiopia are covered mostly by grasses and should have shorter time lag due  

530 to the lower capacity of water retention for grasses. South-Sudan and a significant area of Tanzania  

531 are sub-humid areas largely covered by crops. Generally, the water storage capacity of crops is  

532 likely similar to or even lower than that of grasses, and Grünzweig et al. (2015) posits that artificial  

533 irrigation could alter the time lag for regions engaged in irrigation agriculture. It is therefore,  

534 expected that semi-arid areas should have a time lag similar to or longer than arid areas (Cong et  

535 al., 2017). This pattern is largely similar to the outcome of the study as shown on Tables 4, 5 and 

536 6, and Figs 4, 8 and 9. 

537 

538 4. Conclusions 

539 In this study, the SPI approach applied to this study adequately explained the drought conditions  

540 across the East African region between 1920 and 2015. The drought characteristics of magnitude,  

541 duration and intensity collectively explained the severity levels of drought within the study area.  

542 It is expected that the outcome of this study could be applied elsewhere in sub-Saharan Africa 543 

where precipitation is limited and likelihood of drought is high.  

544 The result from the 96 years (from 1920 to 2015) data records shows that there are a total of 41  
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545 wet years and 46 drought years. The anomaly of the wet years and dry years were obtained when  

546 precipitation was above and below normal conditions respectively. The years 1961, 1967, 1997,  

547 2007 and 2015, were adjudged the wettest while 1943, 1983, 1993, 1997 and 2003 were 

adjudged  

548 the driest. Both the positive and negative peak of SPI coincided with the positive and negative  

549 anomaly peaks, respectively. The computed SPI at different time scales of 3, 6 and 12 months  

550 indicated that for shorter time scales, there was high temporal variability in dry and wet periods, 

551 whereas at longer time scales (12 months), frequency of dry and wet periods were 

considerably 552 decreased.  

553 Years with high drought magnitude ranged from 1920-22, 1926-29, 1942-46 and 1947-51 with  

554 SPI values corresponding to 2.2, 3.2, 3.4 and 2.6, respectively while years with low drought  

555 magnitude ranged from 1930-31, 1988-89 and 2001-02 with values as 0.2, 0.12 and 0.15,  

556 respectively. The longest droughts occurred from 1929-29, 1937-41, 1942-46, 1947-51, 1952-

56,  

557 and 1958-61 with values in years as 3, 4, 4, 4, 4, and 3 years, respectively, while the shortest  

558 droughts occurred in time period of 1 year and ranged from 1930-31, 1964-65, 1979-80, 1981-

82, 559 1983-84, 1988-89, 1991-92, 1993-94, 1996-97 and 2001-02.  

560 Our study also indicated that high values of SPI slope are clustered at higher latitudes from 0 to  

561 12o while low trend values are clustered between -2 and 2o south of the study region which is 

an  

562 indication that drought is prevalence in the northern section than southern section of the study 

area.  

563 Both high and low slope values of SPI are clustered at lower latitudes between 0 to 1500 meters,  

564 and at the foot hills of mountains. The SPI trends showed high positive (negative) pixels above  
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565 (below) the zero-trend mark, indicating that drought prevails in both low and high elevation 

areas 566 up to 2000 m. 

567 In terms of ENSO impacts on drought over the region, the mean characteristics, magnitude,  

568 duration and even the dispersion, of drought magnitude in SPI-3, SPI-6 and SPI-12 are very 

similar  

569 in El Niño and La Niña years while the neutral years presented high dispersion in both drought  

570 magnitude and duration. The mean drought duration during El Niño years were less than 1.5 

years  

571 while the mean drought duration during neutral (La Niña) years was 3 (4) years which suggest 

that  

572 there is no direct link between ENSO and drought over the East African region. But the 

association  

573 of drought in most El Niño and La Niña years suggests that the impact of ENSO cannot be ruled 

574 out since peak ENSO events occur during October to March periods which coincides with 

the short 575 (SON) and long (MAM) rainy seasons of East Africa.  

576 Furthermore, the outcome of this study indicates that SPI can be reliably suitable and most  

577 applicable  in drought studies within the study area as it provides for analysis in multi-temporal  

578 levels such as monthly, single seasonal, multi-seasonal, and annual droughts, thereby allowing 

for  

579 a spatio-temporal scale of analysis that creates the room for SPI to provide accurate 

meteorological  

580 and agricultural drought analysis. To this extent, the study provides policy makers the necessary  

581 information that is critical to local adaptation, increased resilience and mitigation measures in 

the  

582 face of a vulnerable eco-climatic system triggered by a continuously changing climate within 

East 583 Africa as well as other parts of sub-Saharan Africa.  
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584 Our study is particularly relevant in its ability to depict continuous and synoptic drought  

585 conditions all over East Africa, providing vital information to farmers and policy makers, using  

586 very cost-effective method. This is particularly the case in view of the assertion by Karavitis et 

al.  

587 (2011) that “effective (and reliable) information and early warning systems based on indicators  

588 such as the SPI are the foundation for overall effective drought adaptation (and resilience) 

plans”.  

589 Finally, the adoption of SPI for this study demonstrates the fact that it is a robust concept,  

590 unambiguous in calculation and understanding, temporally flexible, spatially meaningful, and  

591 widely applicable, a basis for which it is considered a powerful tool for drought studies as clearly 

592 amplified by Cheval (2015). 

593 

594 Acknowledgements 

595 This work was jointly supported by the CAS Strategic Priority Research Program (No.  

596 XDA19030402), the National Key Research and Development Program of China (no.  

597 2016YFD0300101), and “Taishan Scholar” Project of Shandong Province (No. TXXD 201712). 

598 The authors would like to show great appreciations to the anonymous reviewers and the editor 599

 for their valuable comments and suggestions. 

600 

601 References 

602 Abbas, S., Nichol, J.E., Qamer, F.M., Xu, J. (2014). Characterization of drought 

development  

603 through remote sensing: A case study in central Yunnan, China. Remote Sens. 6(6):  

604 4998–5018. 



45 

605 Abbink, J., K. Askew, D.F. Dori, E. Fratkin, E.C. Gabbert, J. Galaty, S. LaTosky, J. 

Lydall, et al.,  

606 (2014). Lands of the Future: transforming pastoral lands and livelihoods in eastern 607 

Africa. Working Paper No. 154, Max Planck Institute for Social Anthropology. 608 

Allen, C.D. (2008). Mechanisms of plant survival and mortality during drought: why 

do some  

609 plants survive while others succumb to drought? New Phytol. 178 (4), 719. 

610 

611 American Meteorological Society (1997). Meteorological drought-policy statement. 

Bull Am  

612 Meteorol Soc 78:847–849 

613 Bates, B.C., Kundzewicz, Z.W., Wu, S.and Palutikof, J.P. (eds.). (2008). Climate 

Change and  

614 Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC  

615 Secretariat, Geneva. Available from https://www.ipcc.ch/pdf/technical-papers/climate- 

616 change-water-en.pdf - 28/doc13.pdf (accessed: June, 2018). 

617 Cong, D., S. Zhao, C. Chen and Z. Duan (2017). Characterization of droughts during 

2001–2014 618 based on remote sensing: A case study of Northeast China. Ecological 

Informatics 39:  

619 56–67  

620 Dai, A., Lamb, P., Trenberth, K.E., Hulme, M., Jones, P.D. and Xie, P. (2004) The 

Recent Sahara 621 Drought is Real. International Journal of Climatology 24: 1323-

1331 

622 Eze, J.N. (2018) Drought occurrences and its implications on the households in Yobe 

state,  



46 

623 Nigeria. Geoenvironmental Disasters 5:18, 1-10 

624 Funk, C., Dettinger, M. D., Michaelsen, J. C., Verdin, J. P., Brown, M. E., Barlow, M., 

& Hoell,  

625 A. (2008). Warming of the Indian Ocean threatens eastern and southern African food  

626 security but could be mitigated by agricultural development. Proceedings of the 627 

National Academy of Sciences, 105(32), 11081-11086. 

628 Funk, C., Hoell, A., Shukla, S., Bladé, I., Liebmann, B., Roberts, J. B., Robertson, F. 

R., and  

629 Husak, G. (2014) Predicting East African spring droughts using Pacific and Indian  

630 Ocean sea surface temperature indices, Hydrol. Earth Syst. Sci., 18, 4965–4978, 631 

https://doi.org/10.5194/hess-18-4965-2014. 

632 Funk, C., Husak, G., Michaelsen, J., Shukla, S., Hoell, A., Lyon, B., et al. (2013). 

Attribution of  

633 2012 and 2003-12 rainfall deficits in eastern Kenya and southern Somalia. In  

634 Explaining extreme events of 2012 from a climate perspective. Bulletin of the 635 

American Meteorological Society.  94, S45-S48. 

636 Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J.,  

637 Harrison, L., Hoell, A., and Michaelsen, J. (2015) The climate hazards infrared 638 precipitation 

with stations-a new environmental record for monitoring extremes, Sci.  

639 Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66 

640 Ghulam A, Qin Q, Zhan Z (2007a) Designing of the perpendicular drought index. 

Environ Geol  

641 52(6):1045–1052 

642 Ghulam A, Qin Q, Teyip T, Li Z-L (2007b) Modified perpendicular drought index 

(MPDI): a real- 

https://doi.org/10.5194/hess-18-4965-2014
https://doi.org/10.1038/sdata.2015.66


47 

643 m time drought monitoring method. ISPRS J Photogramm Remote Sens 62:150–164 

644 Gibbs W., Maher J. (1967) Rainfall deciles as drought indicators. Australian Bureau of 

645 Meteorology Bulletin, Melbourne: 48 

646 Grünzweig, J.M., Valentine, D.W., Chapin III, F.S. (2015). Successional changes in 

carbon stocks  

647 after logging and deforestation for agriculture in Interior Alaska: implications for  

648 boreal climate feedbacks. Ecosystems 18 (1), 132–145 

649 Hao, C., Zhang, J., Yao, F. (2015). Combination of multi-sensor remote sensing data 

for drought  

650 monitoring  over  Southwest  China.  J.  Appl.  Earth  Obs. 

 Geoinf.  Int. 651 https://doi.org/10.1016/j.jag.2014.09.011. 

652 Harvest Choice (2015). "AEZ tropical (5-class, 2009)." International Food Policy 

Research  

653 Institute, Washington, DC., and University of Minnesota, St. Paul, MN. Available  

654 online at http://harvestchoice.org/data/aez5_clas 

655 Haroon, M.A., Zhang, J. and Yao, F. (2016). Drought monitoring and performance 

evaluation of 656 MODIS-based drought severity index (DSI) over Pakistan. Natural 

Hazards 84(2):  

657 1349-1366 

658 Huete, A. (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 

25:295–309 

659 Igbawua, T., Zhang, J., Yao, F., Zhang, D. (2018). Assessment of moisture budget over 

West  

660 Africa using MERRA-2’s aerological model and satellite data. Climate Dynamics  

661 https://doi.org/10.1007/s00382-018-4126-2 



48 

662 Kalisa, W., Igbawua, T., Henchiri, M., Ali, S., Zhang, S., Bai, Y., Zhang, T. (2019) 

Assessment 663 of climate impact on vegetation dynamics over East Africa from 1982 

to 2015.  

664 Scientific Reports, | 9:16865 | https://doi.org/10.1038/s41598-019-53150-0   

665 Karavitis, C.A., S. Alexandris, D.E. Tsesmelis and G. Athanasopoulos (2011). 

Application of the  

666 Standardized  Precipitation  Index  (SPI)  in  Greece.  Water,  3: 

 787-805;  

667 doi:10.3390/w3030787 

668 Kim, T., Yoo, C., Valdes, J.B. (2003) Non parametric Approach for estimating effects 

of ENSO 669 on return periods of Drought, Water Engineering, 7(5), 629-636.  

670 Kogan, F.N. (1995) Application of vegetation index and brightness temperature for 

drought  

671 detection. Adv Space Res 15:91–100 

672 Kogan, F.N. (2001) Operational space technology for global vegetation assessment. 

Bull Am  

673 Meteorol Soc 82:1949–1964 

674 Kogan, F.N., Gitelson, A., Zakarin, E., Spivak, L., Lebed L (2003) AVHRR-based 

spectral 675 vegetation index for quantitative assessment of vegetation state and 

productivity: 676 calibration and validation. Photogramm Eng Remote Sens 69:899–

906 

677 Kumar, M.N., C.S. Murthy, M.V.R. Sesha-Saib and P.S. Roy (2009). On the use of 

Standardized  

678 Precipitation Index (SPI) for drought intensity assessment Wiley Inter Science  

679 Meteorol. Appl. 16: 381–389 



49 

680 Lambin, E., Ehrlich, D. (1995) Combining vegetation indices and surface temperature 

for land- 

681 cover mapping at broad spatial scales. Int J Remote Sens 16:573–579 

682 Lei, T., Pang, Z., Wang, X., Li, L., Fu, J., Kan, G., et al. (2016). Drought and carbon 

cycling of  

683 grassland ecosystems under global change: a review. Water 8(10), 460. 

684 Liu, H.Q., Huete, A. (1995) A feedback based modification of the NDVI to minimize 

canopy  

685 background and atmospheric noise. IEEE Trans Geosci Remote Sens 33:457–465 

686 Liu, Q., Zhang, S., Zhang, H., Bai, Y., Zhang, J. (2019) Monitoring drought using 

composite  

687 drought indices based on remote sensing. Science of the Total Environment 711 (2020)  

688 134585. 

689 Love, R. (2009) Economic Drivers of Conflict and Cooperation in the Horn of Africa, 

Chatham  

690 House Briefing Paper, December, available at: www.chathamhouse.org/ 691 

publications/papers /view/109208 (last access: 18 April 2012). 

692 Masih, I., Maskey, S., Mussá, F.E.F. a0nd Trambauer, P. (2014) A review of droughts on the  

693 African continent: a geospatial and long-term perspective, Hydrol. Earth Syst. Sci., 18, 694 3635–

3649, https://doi.org/10.5194/hess-18-3635-2014 

695 McKee, T.B., Doesken, N.J. and Kleist, J. (1993) The relationship of drought frequency 

and  

696 duration to time scales. In: Eighth conference on applied climatology. American  

697 Meteorology Society, Anaheim, CA, 179–184 

698 McQuigg, J. (1954). A simple index of drought conditions. Weather Wise 7:64–67 

http://www.chathamhouse.org/
https://doi.org/10.5194/hess-18-3635-2014


50 

699 Morton, J. and Kerven, C. (2013). Livelihoods and basic service support in the drylands 

of the 700 Horn of Africa. Brief prepared by a Technical Consortium hosted by CGIAR 

in  

701 partnership with the FAO Investment Centre. Technical Consortium Brief 3. Nairobi: 702 International 

Livestock Research Institute. 

703 Mu, Q., Zhao, M., Kimball, J.S., McDowell, N.G., Running, S.W. (2013). A remotely sensed 704 

global terrestrial drought severity index. Bull Am Meteorol Soc 94:83–98 

705 Munger, T.T. (1916). Graphic method of representing and comparing drought 

intensities. Monthly  

706 Weather Rev 44:642–643 

707 Niemeyer, S. (2008). New drought indices. Options Mditerranennes Sri A Sminaires 

Mditerranens  

708 80:267–274 

709 O'Connor, T.G. (1995). Transformation of a savanna grassland by drought and grazing. 

African 710 Journal of Range and Forage Science. 12 (2): 53–60. 

711 Palmer, W.C. (1968). Keeping track of crop moisture conditions, nationwide: the new crop 712 

moisture index. Weather Wise 21: 156–161 

713 Pramudya, Y. and T. Onishi (2018). Assessment of the Standardized Precipitation 

Index (SPI) in  

714 Tegal City, Central Java, Indonesia. IOP Conf. Series: Earth and Environmental  

715 Science 129: 1-9 

716 Sandholt, I., Rasmussen, K., Andersen, J. (2002). A simple interpretation of the surface  

717 temperature/vegetation index space for assessment of surface moisture status. Remote  

718 Sens Environ 79:213–224 



51 

719 Schubert, S.D., Stewart, R.E.,Wang, H., Barlow,M., Berbery, E.H., Cai,W., et al., 

(2016). Global 720 meteorological drought: a synthesis of current understanding with 

a focus on SST 721 drivers of precipitation deficits. J. Clim. 29 (11), 3989–4019. 

722 Solanki, J.K. and F, Parekh (2014) Drought Assessment Using Standardized 

Precipitation Index  

723 International Journal of Science and Research, 3(7): 1073-1076 

724 Svoboda, M.D., LeComte, D., Hayes, M.J. (2002). The drought monitor. Bull Am 

Meteorol Soc  

725 93:1181–1190 

726 Tan, C., Yang, J., Li, M., 2015 Temporal-Spatial Variation of Drought Indicated by 

SPI and SPEI  

727 in Ningxia Hui Autonomous Region, China, Atmosphere, 6, 1399-1421;  

728 doi:10.3390/atmos6101399 

729 Tarhule, A., Woo, M.-K. (1997). Towards an interpretation of historical droughts in 

northern  

730 Nigeria. Climatic Change 37: 601–616 

731 Um, M., Y. Kim, D. Park, and J. Kim. (2017). Effects of different reference periods on 

drought  

732 index estimations from 1901 to 2014. Hydrology and Earth System Sciences 21: 4989– 

733 5007 

734 von Grebmer, K., Bernstein, J., Nabarro, D., Prasai, N., Amin, S., Yohannes, Y., 

Sonntag, A.,  

735 Patterson, F., Towey, O., Thompson, J. (2016). Global Hunger Index: Getting to Zero  

736 Hunger. Welthungerhilfe, International Food Policy Research Institute, and Concern  

737 Worldwide, Bonn, Washington, DC, and Dublin 



52 

738 Waggoner, M.L. and O’Connell, T.J. (1956). Antecedent precipitation index. Weekly 

Weather  

739 Crop Bull XLIII: 6–7 

740 Weghorst, K. (1996) The reclamation drought index: guidelines and practical 

applications. Bureau  

741 of Reclamation, Denver 

742 Yang, H. and Huntingford, C. (2018). Drought likelihood for East Africa. Nat. Hazards 

Earth Syst.  

743 Sci., 18: 491–497 

744 Yao, N., Y. Li., T. Lei. and L. Peng. (2018). Drought evolution, severity and trends in 

mainland 745 China over 1961–2013. Science of the Total Environment 616–617: 73–

89 

746 Yao, Y., Liang, S., Qin, Q., Wang, K. (2010). Monitoring drought over the conterminous United 747 

States using MODIS and NCEP Reanalysis-2 data. J. Appl. Meteorol. Climatol. 49:  

748 1665–1680 



 

Conflict of Interest 

We declare that we do not have any commercial or associative 

interest that represents a conflict of interest in connection with the 

work submitted. 

Correspond author: Jiahua 

Zhang email: zhangjh@radi.ac.cn 

Tel: 0086-13683576879 


