Spatio-Temporal analysis of drought and return periods

over the East African region using **Standardized**

Precipitation Index from 1920 to 2016

1

2

3

4	Wilson Kalisa ^{1,2} , Jiahua Zhang ^{2,3*} , Tertsea Igbawua ⁴ , Fanan Ujoh ⁵ , Obas John Ebohon ⁵ ,
5	Jean Nepomuscene Namugize ⁶ , Fengmei Yao ⁷
6	1. Agricultural Climate Change Mitigation, College of Automation and Electrical
7	Engineering, Qingdao University, Qingdao, 266071, China
8	2. Remote Sensing and Digital Earth Center, College of Computer Science and Technology,
9	Qingdao University, Qingdao, 266071, China
10	3. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute,
11	Chinese Academy of Sciences, Beijing, 100094, China
12	4. Department of Physics, Federal University of Agriculture, Makurdi, Nigeria
13	5. Center for Sustainability and Resilient Infrastructure and Communities (SaRIC), School

of the Built Environment and Architecture, London South Bank 14 University, London, UK

15	6. Rwanda Polytechnic, Integrated Polytechnic Regional Center, College of Kigali, Rwanda
16	7. Key Laboratory of Computational Geodynamics, University of Chinese Academy of
17	Sciences, Beijing, 100049, China
18	*Corresponding- author: Prof. Jiahua Zhang, email address: zhangjh@radi.ac.cn

Revised to "Agriculture Water Management"

20 Abstract East African region is susceptible to drought due to high variation in monthly 21 precipitation. Studying drought at regional scale is vital since droughts are considered a 'creeping

22 ' disaster by nature with devasting and extended impact often requiring long periods to reverse the

recorded damages. This study assessed drought exceedance and return years over East Africa from

- 24 1920 to 2016 using Climate Research Unit (CRU) precipitation data records. Meteorological 25 drought, where precipitation is the central quantity of interest, was adopted in the work.
- 26 Standardize Precipitation Index (SPI) was used to study long term meteorological droughts and
- also to assess drought magnitude, frequency, exceedance probability and return years using Joint
- 28 Probability Density Function (JPDF). Also, Mann-Kendall trend analysis was applied to
- 29 precipitation and SPI to investigate the trend changes. Results showed that years with high drought
- 30 magnitude ranged from 1920-22, 1926-29, 1942-46 and 1947-51 with values corresponding to 2.2, 31 3.2, 3.4 and 2.6, respectively while years with low drought magnitude ranged from 1930-31, 198832 89 and 2001-02 with values as 0.2, 0.12 and 0.15, respectively. The longest droughts occurred
- from 1926-29, 1937-41, 1942-46, 1947-51, 1952-56, and 1958-61 with values in years as 3, 4, 4,

- 4, 4, and 3 years, respectively, while the shortest droughts occurred in time period of 1 year and
- ranged from 1930-31, 1964-65, 1979-80, 1981-82, 1983-84, 1988-89, 1991-92, 1993-94, 1996-97
- and 2001-02. Also, it was demonstrated that probability of drought occurrence is high when
- 37 severity is low and such droughts occur at short time intervals and not all severest drought took 38 longer periods. The SPI trends indicate high positive (negative) pixels above (below) the zero39 trend mark, indicating that drought prevails in both low and high elevation areas up to 2000 m.
- 40 There was no direct link between ENSO and drought but arguably the association of drought in
- 41 most El Niño and La Niña years suggests that the impact of ENSO cannot be ruled out since peak
- ENSO events occur during October to March periods which coincides with the short (SON) and
 long (MAM) rainy seasons of East Africa. The study is particularly relevant in being able
 to depict

44 continuous and synoptic drought condition all over East Africa, providing vital information to 45 farmers and policy makers, using very cost-effective method.

- 46 **Keywords** Meteorological Drought, Joint Probability Density Function (JPDF), SPI, ENSO,
- 47 **Drought Risk Mapping.**

48

49 Introduction

- 50 Several studies indicate that droughts are among the most destructive natural disasters, negatively
- 51 impacting livelihoods including crops and livestock, as well as other natural resources such as
- 52 water, ecology, and biodiversity 2016 (Haroon et al., ; Lei et al., 2016; Schubert et al., 2016;
- 53 Igbawua et al., 2018; Yao et al., 2018; Liu et al., 2020). The American Meteorological Society

- 54 (1997) categorizes droughts into meteorological, agricultural and hydrological mainly on the basis
- 55 of duration, impact and recovery rate. According to Ghulam et al. (2007) and Haroon et al. (2016),
- 56 meteorological drought refers to a sustained period of three months or more during which monthly
- 57 precipitation remains well below the long-term average. Agricultural drought occurs when there
- is an imbalance between water availability and demand in a farmland ecosystem, where water
- 59 demand by plants is more as compared to supply. Hydrological droughts occur when deficiencies
- in surface and subsurface water supplies become evident in terms of reduced stream flow and
- 61 reduction in ground water. For the purpose of this study however, the assumption is that "drought
- 62 occurs when precipitation deficit exceeds some critical level beyond which the prevailing adaptive
- 63 mechanisms fail to cope", as defined by Tarhule and Woo (1997). The occurrence of drought has
- been recorded across all continents and under all climatic regions with low and high mean
- 65 precipitation (Um et al., 2017) with varying degree, intensity, impact and duration.
- In recent decades, the occurrence and incidence of drought has been aggravated with the
- 67 increase in global climate change (IPCC, 2014). For Africa, O'Connor (1995) reported that
- remotely sensed data analysis from National Aeronautics and Space Administration (NASA)
- 69 reveal that about 900,000 km² of previous savanna grassland in the African region had been
- severely degraded between the early 1960s and 1986 due to persistent occurrences of drought,
- 71 while Bates et al., (2008) estimated that one-third of African population live in drought-prone

72	areas. Yang & Huntingford (2018) revealed historical precipitation estimated by Climate Hazards
73	Group InfraRed Precipitation with Station data (CHIRPS) (Funk et al., 2015) shows that during
74	August, September and October (ASO) of 2016, most of East Africa (particularly Somalia,
75	Ethiopia and Kenya) had a reduction of 40% or more in precipitation compared to a baseline ASO
76	period 1981–2015. Several studies confirm that the East African region ranks among the most
77	vulnerable drought-prone regions of the world with a high potential for increased risk of drought
78	related water and food shortages as recorded in as recent as year 2016/2017 (Love, 2009; Masih
79	et al., 2014; Funk et al., 2014, 2015; Yang and Huntingford, 2018). The threat of drought is
80	expected to further aggravate the existing widespread poverty and food insecurity (Funk et al.,
	81 2008, 2013, 2015; von Grebmer et al., 2016). The situation is similar within other regions of
	sub82 saharan Africa. In West Africa, Dai et al. (2004) reported that there is about 40% decline
	in annual

- precipitation total from the year 1968–1990 as compared with the 30 years between 1931 and
- 84 1960. Thus, frequent drought occurrences within the West African region have caused famine and
- 85 are threatening the human existence in African savanna regions and consequently making the 86 households highly vulnerable to drought (Eze, 2018).
- 87 Droughts are considered a 'creeping' disaster by nature with devasting and extended impact
- 88 often requiring long periods to reverse the recorded damages. It is therefore crucial that consistent 89 drought monitoring is carried out to provide decisive policy support for long- and medium-term
- 90 planning of mitigative measures. Typically, at the turn of the 20th century, scientific studies had
- 91 adopted climatic (temperature and precipitation) and hydrological (soil moisture and stream flow)

92	indicators as main input towards the generation of indices for quantitative modelling of drought
93	severity (Kincer, 1919; Munger, 1916; McQuigg, 1954; Waggoner and O'Connell, 1956).
94	However, further advances in the study of drought (beginning from the latter part of the 20 th
95	century into the 21st century) led to the identification of over 150 indices used for drought studies
96	(Niemeyer, 2008) across various regions with different climatic conditions. The most prominently
97	adopted contemporary indices for drought research include, but not limited to: decile index (DI)
98	by Gibbs and Maher (1967); Palmer drought severity index (PDSI) by Palmer (1968), standardized
99	precipitation index (SPI) applied by McKee et al. (1993); reclamation drought index (RDI) by
100	Weghorst (1996); US Drought Monitor (USDM) applied by Svoboda et al. (2002); optimized
101	meteorological and vegetation drought indices (OMDI and OVDI) proposed by Hao et al. (2015);
102	composite drought indices using multivariable linear regression (MCDIs) developed by Liu et al.
103	(2020)

o · · · ·

. ...

C 1

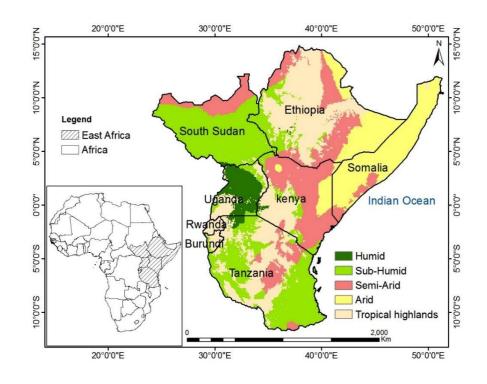
. ..

.

104 Recent drought studies have relied on the availability of data from different remote sensing 105 platforms due largely to the synoptic coverage it provides for analysis over a wide region.

106 Numerous methods have been developed for the application of remotely sensed data in drought

- studies. These include normalized difference vegetation index (NDVI) based conceptualization
- 108 such as vegetation condition index (VCI) (Kogan 1995), enhanced vegetation index (EVI) (Liu
- and Huete 1995), soil adjusted vegetation index (SAVI) (Huete 1988), temperature vegetation
- 110 index (TVX) (Lambin and Ehrlich, 1995), Deviations from NDVI (Anyamba et al., 2001),
- vegetation health index (VHI) (Kogan, 2001), temperature condition index (TCI) (Kogan, 1995;
 Kogan et al., 2003), and temperature vegetation dryness index (TVDI) (Sandholt et al., 2002).


- 113 More advanced methods now include satellite derived indices such as perpendicular drought index
- (PDI) (Ghulam et al., 2007a); modified perpendicular drought index (MPDI) (Ghulam et al.,
- 115 2007b); effective drought index (EDI) (Yao et al., 2010); and Drought severity index (DSI) 116 proposed by Mu et al. (2013) and applied by Haroon et al. (2016).
- 117 For the purpose of this study, the SPI proposed by McKee et al. (1993), and applied in Indonesia
- 118 by Pramudya and Onishi (2018) will be adopted for the analysis of drought across the East African
- region. The SPI is considered most applicable for this study because it provides for drought
- 120 analysis in multi-temporal levels such as monthly, single seasonal, multi-seasonal, and annual
- 121 basis. This level of spatio-temporal scale analysis allows for the SPI to provide accurate 122 meteorological and agricultural drought analysis.

123 **2.0 Methodology**

124 **2.1 Study Area**

- 125 The study area covers eight countries consisting of Ethiopia, Kenya, Rwanda, Uganda, Tanzania,
- 126 Burundi, Somalia and South-Sudan (Fig. 1). The climate of the region is influenced by a number
- 127 of factors ranging from combination of the high altitude and the westerly monsoon winds that
- 128 originate from the Ethiopian Highlands and Rwenzori Mountains. Generally, majority of the
- 129 region's countries experience two distinct precipitation regimes: "long rains" which extend during
- 130 March–May (MAM), and a season with "short rains", which lasts from October to December
- 131 (OND). Figure 1 shows that much of Uganda and Somalia are humid and arid, respectively while

much of Ethiopia is semi-arid and arid. South-Sudan and Tanzania are largely sub-humid, with
Kenya containing a vast area of aridity. Rwanda and Burundi are largely tropical highlands.
The major livelihood sources include pastoralism and agro-pastoralism, rangeland cultivation,
small-holder agriculture, milk production and dairy products processing (Morton and Kerven,
136 2013; Abbink et al., 2014).

Fig. 1 Study area (Harvest Choice, 2015)

139**2.2 Data sets and methods**

137

138

140

The precipitation data set used in this work is the Climate Research Unit (CRU) data developed

141	by was	University retrieved	of from	East	Anglia.	The	data	
142		ta.ceda.ac.uk/ba esolution of 0.5		data/cru	<u>ts/cru_ts</u>	4.00/data/	at	a

143	degrees covering a temporal range of 1920 to 2015. The Standardized Precipitation Index (SPI)
144	developed by McKee et al. (1993) is a popular index that is used to characterize drought at different
145	time scales. SPI is computed by fitting a gamma distribution function to precipitation data of given
146	frequency distribution over an area, and subsequently transforming the gamma distribution to a 147 normal distribution with a mean and variance of zero (0) and one (1) respectively (Suryabhagavan,

2016). The aim of doing this is to minimize skewness in the data to zero. The Gamma distribution 148 is widely used to represent precipitation time series (Guttman, 1999). The drought magnitude was 149 obtained as the cumulative SPI over the drought months taken as a positive value. The intensity 150 (drought severity) was computed as the magnitude divided by drought duration. The general 151 technique for detecting changes in precipitation and drought is trend analysis. In this work, Trend 152 analysis of precipitation and SPI will reveal will reveal the trends in drought over East Africa. 153 154 Since, the input parameter for SPI computation is precipitation, trend analysis of precipitation will be done in order to study the local changes in climate. The Mann-Kendall non-parametric test was 155 adopted in this work to assess the trends in precipitation and SPI and, also test the statistical 156 157 distribution of the data records. Mann-Kendall was most preferred because it works well to avoid 158 the problem caused by skewness of which precipitation is a kind of data that may be either negatively or positively skewed due to the existence of extreme values (Mahajan & Dodamani, 159 2015). 160 161

162 2.2.1 SPI

163 In calculating SPI, we adopt methods by Haroon, et al. (2016) and Guttman (1999), and fit a

164 probability distribution to long-term monthly precipitation records. The mean (x), standard 165 deviation (s) and skew (sk) are determined as follows:

 $\vec{x} = \sum_{n=1}^{\infty} \sum_{x=1}^{\infty} \sum_{x=1}^$ 166 (1) $\sqrt{\frac{\sum (X - \vec{X})^2}{N}}$ standard deviation (s) = $N \sum (X - \vec{X})^2$ 167 (2)skewness (sk) =(N-1)(N-2). N (3) 168 where, x is the precipitation time series and N is the length of data records. The precipitation 169 data are transformed by the log normal (ln) and the mean of those values is computed. The 170 transformed values are further subjected to the constant U, which is used to compute the shape 171 and

- 172 Scale parameter as follows:
- 173 $\operatorname{Log\,mean} = X_h = N = N$ (4)

174
$$U = \ln(X) - N$$
 (5)

175 Shape $\frac{1}{4U}[1 + \sqrt{\frac{4U}{3}} \ (\beta) = (6)$

176 and,
$$\frac{\vec{X}}{\beta}$$
 Scale $(\alpha) = (7)$

177 Further, the log values are transformed by the gamma distribution, incorporating the shape and178 scale values:

179 Cumulative Gamma function
$$G(x) = \alpha_{\beta} {}^{1}\Gamma_{\beta} \int_{x_{0}} \beta - 1e_{a} dx$$
 (8)

Similarly,
$$t = \ln \begin{pmatrix} 1 & x_{02} \end{pmatrix}$$
, where $0.5 < X_{g} \le 1.0$ 1
180 and, we perform T transform as $= \ln \begin{pmatrix} x_{g2} \end{pmatrix}$, where $0 < X_{g} \le 0.5$ (9)
 $\begin{pmatrix} 0 + Cit + Cztz \\ 182 \\ 0 \\ C0 + Cit + Cztz \\ 183 \\ Or SPI = t^{-1} \frac{1}{2} - 1 + dt + dtz + dzt + dzt + dzt + dzt = dzt + dzt$

Dм

$$D_l = __{Dd} \tag{13}$$

197 2.2.3 Mann-Kendall Trend Test

- 198 The Mann-Kendall trend test is given as $= \sum_{i=1}^{n-1} \sum_{j=1+1}^{n} S_{j-1+1} sgn(x_j - x_i) \qquad (14)$
- 200 where x_i is the time series ranked from $i=1, 2, \dots, n-1$ and x_j from $j=i+1,2,\dots,n$. All the data

201 values are taken as reference point to which comparison is done with the rest of the data values x_j

+ 1, >
$$(x_j - x_i)$$

203 $sgn(x_j - x_i) = 0, = (x_j - x_i)$ (15)
- 1, < $(x_j - x_i)$

204 The statistics of variance is given as

$$n^{(n-1)(2n+5) - \sum_{i=1}^{m} t_{i(i)(i-1)(2i+5)}} Var(S) = ____{18} (16)$$
206 where t_i is the number of ties up to sample value $i. Z_c$ is the test s

where t_i is the number of ties up to sample value *i*. Z_c is the test statistics and is calculated as $Z_c =$

$$S-1$$

$$\sqrt{Var(S)}, S > 0$$
2070, • $S = 0$

$$\sqrt{\frac{S-1}{\sqrt{Var(S)}}}, S < 0$$
(17)

208

209 Z_c describes a Standard Normal Distribution (SND) and positive and negative values of Z_c shows

210	an upward and downward trend respectively. According to Mondal et al. (2012), a significance
211	level is also used in testing either an upward or downward monotone trend, if $\gamma = Z_c$ is greater than 212 Z_{γ} then the trend is considered significant and vice versa. 2
213	
214	2.2.4 Sen's Trend Estimator

The Sen's trend estimator test was described by Sen (1968) and the magnitude of the trend is givenby

- 10 Uy
- $x_j x_k$
- 217 $T_i = __{j-k}$ (18)

218 where x_j and x_k are considered as data points j and k (j>k) compatibly. The median of these N

values of T_i is represented as Sen's estimator of slope which is given as

220
$$Q_i$$

$$\begin{array}{c}
T_{N+1} & N \text{ is} \\
\underline{odd}_2 \\
\underline{-1} \\
2 \\
T_{N2} + T_{N+22} \\
N \text{ is even}
\end{array}$$

221

228

- Positive and negative values of Q_i represent upward (increasing) and downward (decreasing)
- trends, respectively.

In order to assess the spatio-temporal occurrence of drought over East Africa, the 3-month, 6225 month and 12-month SPI was used to study drought in the long term. This period is enough for 226 drought frequency and intensity assessment. The SPI was computed on monthly scale so that the 227

consistency of drought duration and intensity can be determined according to Table 1.

 Table 1
 Standard SPI table (McKee et al., 1993)

SPI value	Description
2 >	Extremely wet
1.5 - 1.99	Very wet
1.0 - 1.49	Moderately wet
0 - 1.0	Mildly wet
-1.0 - 0	Mildly drought
-1.51.0	Moderately drought
-2.01.5	Severe drought
-2 <	Extreme drought

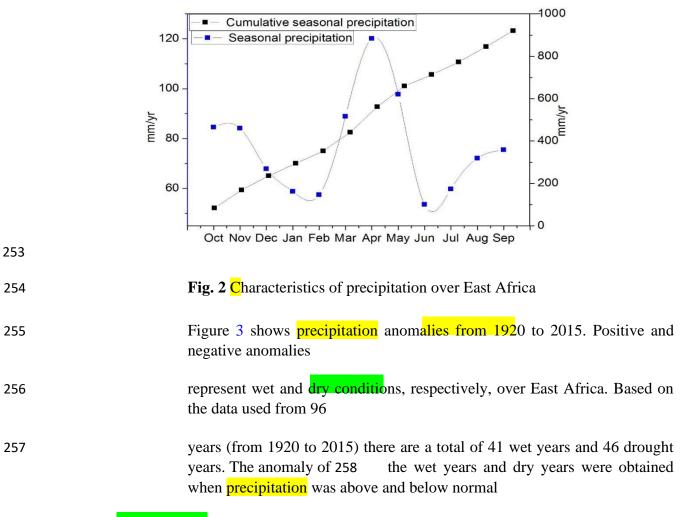
From a statistical point of view, droughts are considered as multivariate events whose dimension
and treatment depends on their characteristics such as the duration, severity and frequency
(Gonzalez et al., 2004). Most studies have proposed the Joint Probability Distribution Function
(JPDF) for determining probabilistic characteristic because drought severity and duration are often 234 difficult to treat separately.

235 Given a set of observations y_i y_n , a mathematical expression of bivariate Kernel probability 236 density estimator f_{SD} is given as (kim et al., 2003):

237
$$f_{SD}(s,d) = {}_{n} {}^{h_{d}\sum_{i=1}^{n} \left\{ K(\frac{S-S_{i}}{h_{s}}) K(\frac{d-d_{i}}{h_{d}}) \right\}} {}^{1} {}_{hs}$$
(20)

238 The joint return period of drought (T_{Sd}) is given as (kim et al., 2003):

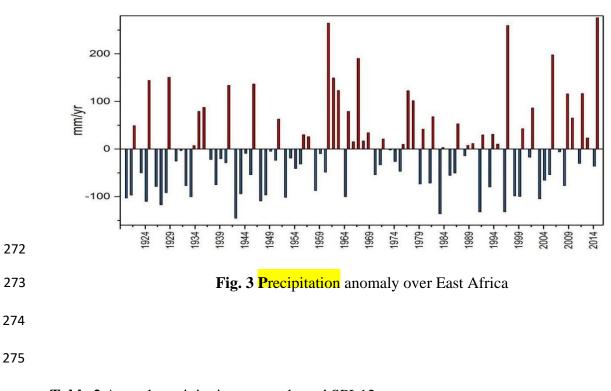
Ν

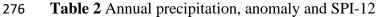

239 $Tsd = n[1_{-fsb}(s,d)]$ (21)

- 240 where $\frac{N}{N}$ is the numbers of years.
- 241
- 242 **3. Results**

3.1. Seasonal Characteristics of Precipitation and Precipitation Anomaly over East Africa

244 from 1920 to 2015


The seasonal characterization of precipitation over the East African region (Fig. 2) reveals that long precipitations occur during the period of March to May (MAM) while short precipitations occur from the period of October to December (OND). The study analysis revealed that peak annual precipitation from 1920 to 2015 is recorded as 120 mm/yr while average seasonal cumulative precipitation from 1920 to 2015 is about 920 mm/yr. Crop production over East Africa is highly dependent on the long rainy season, which accounts for more than 70% of total annual precipitation. It is therefore, understandably that fluctuations in precipitation within this period is 252 capable of altering and impacting food production across the region.



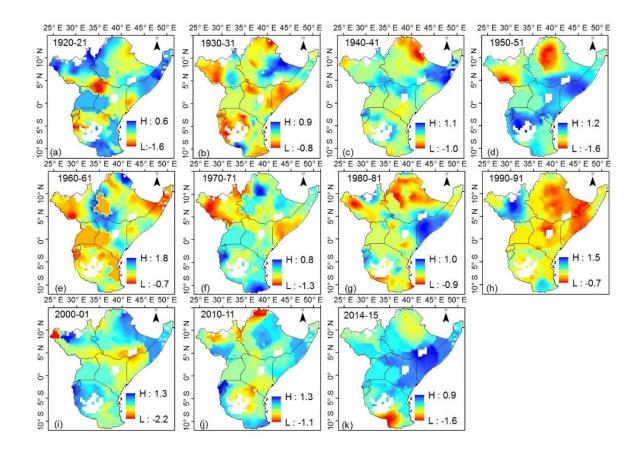
conditions, respectively, as seen in Fig. 3. The years 1961, 1967, 1997, 2007 and 2015 are the

260 wettest while 1943, 1983, 1993, 1997 and 2003 are the driest. The annual precipitation, anomalies and the corresponding SPI's for wet and dry years are presented in Table 2. Results show that 261 both wet and drought spells coincide with positive and negative anomalies over East Africa, 262 respectively. This shows that the reason for the drought periods was as a result of unavailability of 263 water in the soil. The magnitude of anomaly of the wet years was higher than that of the dry years 264 and both wet and dry years were obtained when precipitation was above and below normal 265 conditions, respectively. A detailed inspection of dry- and wet-year results also revealed that the 266 chances of occurrence of wet years are greater in comparison to dry years. This information is 267 268 important for the future planning and management of agricultural practices. This work has allowed us to identify years within the region that are prone to dry/wet conditions using available 270 269 precipitation data records from 1920 to 2015.

Condition	Yr			
		Annual <mark>p</mark> recipitation (mm/yr)	Anomaly (mm/yr)	SPI
	1920-21	817.7	-102.8	-1.2
	1021 22	9 22 5	06.0	-1.1
	1921-22	823.5	-96.9	-1.1
	1924-25	810.4	-110.0	-1.2
	1927-28	803.3	-117.2	-1.3
	1928-29	828.7	-91.7	-1.0
	1933-34	820.1	-100.3	-1.1
	1942-43	775.0	-145.4	-1.7*
Dry Spells	1943-44	826.4	-94.1	-1.0
	1947-48	811.3	-109.1	-1.2
	1948-49	823.7	-96.7	-1.1
	1952-53	818.9	-101.5	-1.1
	1964-65	820.4	-100.0	-1.1
	1983-84	784.2	-136.2	-1.6*
	1991-92	788.1	-132.3	-1.5*
	1996-97	788.2	-132.2	-1.5*
	1999-00	820.7	-99.7	-1.1
	2003-04	815.8	-104.7	-1.2
	Yr	Annual precipitation	Anomaly	SPI
		(mm/yr)	(mm/yr)	
	1925-26	1064.5	144.1	1.6
	1929-30	1071.0	150.6	1.6
	1941-42	1054.0	133.6	1.4
	1946-47	1056.9	136.5	1.5
	1961-62	1185.0	264.5	2.7**
	1962-63	1069.6	149.2	1.6
	1963-64	1043.2	122.8	1.3

Wet	1977-78	1042.9	122.4	1.3
Spells	1978-79	1021.9	101.5	1.1
	1997-98	1180.0	259.6	2.7**
	2002-03	1006.7	86.3	1.0
	2006-07	1118.2	197.8	2.1**
	2009-10	1036.0	115.6	1.3
	2012-13	1036.8	116.4	1.3
	2015-16	1196.4	275.9	2.8**

278 **3.2. Spatial and temporal representation of spatial SPI over East Africa**


Figure 4 shows the spatial representation of SPI for different hydrological years from 1920 to 2015 over

280 East Africa. Results show that Figs. 4a, d and k recorded the highest precipitation while Fig. 4b, e

and h recorded the least precipitation. It is critical to note that most of the regions that recorded

the highest precipitation in some years also recorded the least in other years, hence establishing

the fact that precipitation across most of the East African region is fluctuating and drought is not284 peculiar to one region.

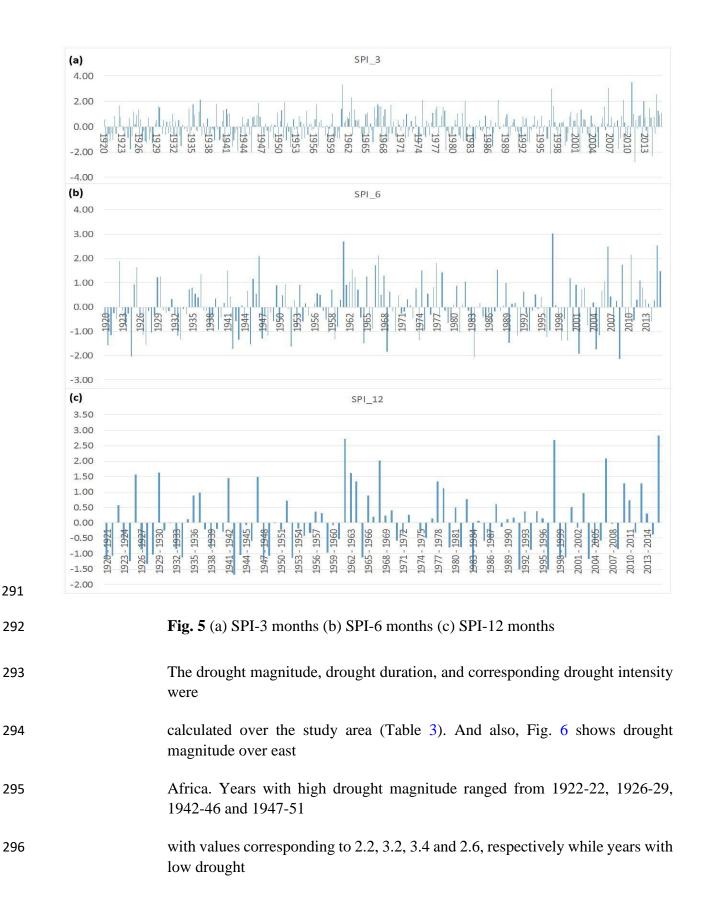
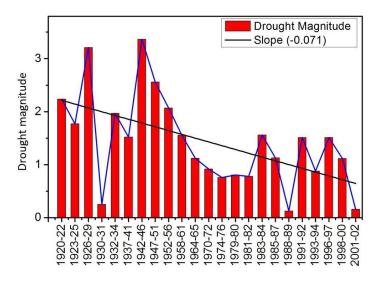
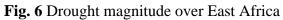
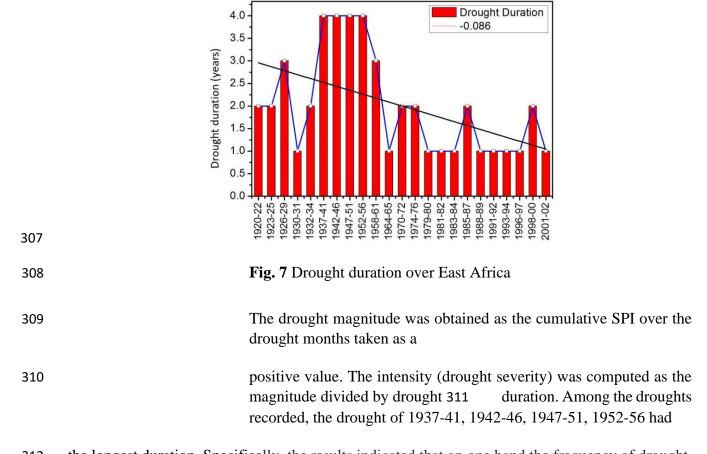

285

Fig. 4 Spatial representation of SPI for different hydrological years over East Africa

From Fig. 5, calculated SPI at different time scales of 3, 6 and 12 months indicated that for shorter time scales (i.e., 3 months, 6 months), there was a high temporal variability in dry and wet

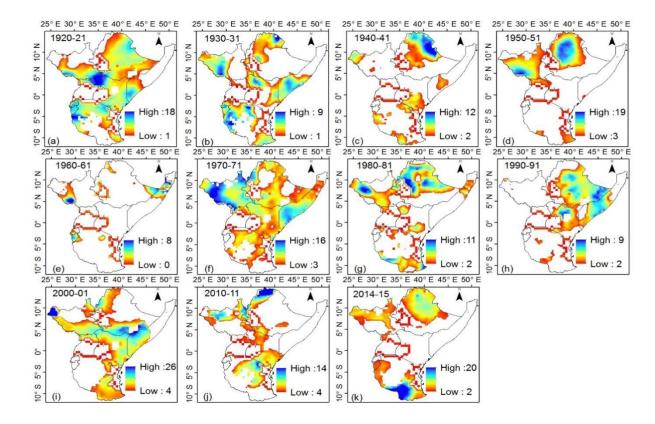

289 periods, whereas at longer time scales (12 months), frequency of dry and wet periods were


290 considerably decreased.


297		magnitude ranged from 1930-31, 1988-89 and 2001-02 with values as 0.2, 0.12 and 0.15,
298		respectively. Figure 7 shows drought duration in years over East Africa with the longest droughts
299		occurring from 1929-29, 1937-41, 1942-46, 1947-51, 1952-56, and 1958-61 with values in years 300 as 3, 4, 4, 4, and 3 years, respectively, while the shortest droughts occurred in time period of 1
301	year and ranged fr	om 1930-31, 1964-65, 1979-80, 1981-82, 1983-84, 1988-89, 1991-92, 1993-94,

- 302 1996-97 and 2001-02 (Also see Table 3). A comparison between Fig. 6 (drought magnitude) and
- Fig. 7 (drought duration) shows that not all the severest drought took longer and vice versa. Both
 304 drought magnitude and duration showed a negative slope of -0.071 and -0.086, respectively.

- the longest duration. Specifically, the results indicated that on one hand the frequency of drought
- events were high at shorter time scales but lasted for shorter durations at longer time intervals,


and 314 on the other hand droughts were less frequent but persisted for longer periods of time.

Hydrological year	Magnitude	Duration	Intensity
1920-22	2.2333	2.000	1.1167
1923-25	1.7703	2.000	0.8852
1926-29	3.2102	3.000	1.0701
1930-31	0.2493	1.000	0.2493
1932-34	1.9668	2.000	0.9834
1937-41	1.5215	4.000	0.3804
1942-46	3.3653	4.000	0.8413
1947-51	2.5589	4.000	0.6397

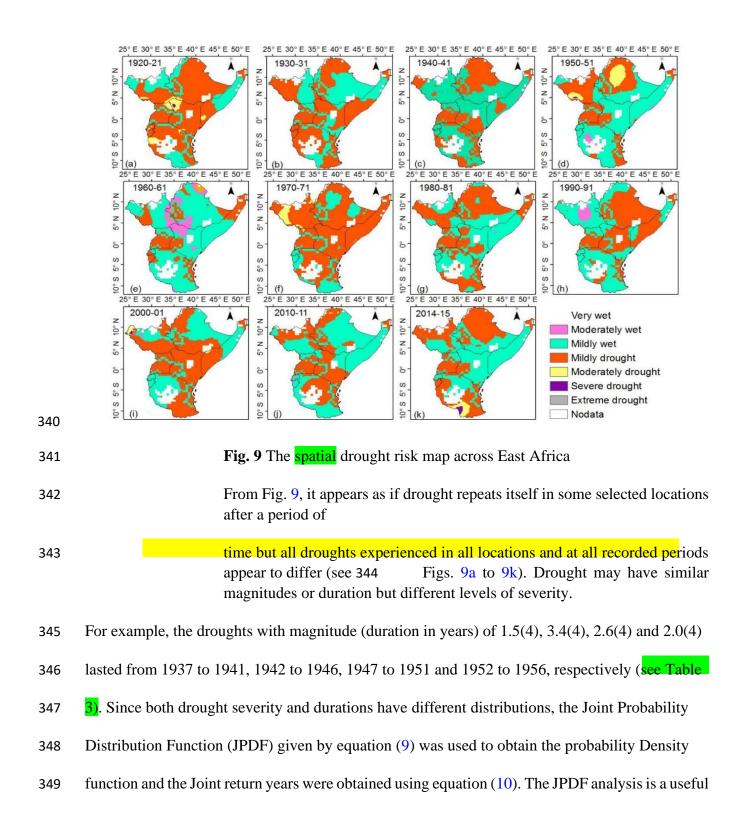
1952-56	2.0666	4.000	0.5166
1958-61	1.5564	3.000	0.5188
1964-65	1.1191	1.000	1.1191
1970-72	0.9154	2.000	0.4577
1974-76	0.7563	2.000	0.3781
1979-80	0.8044	1.000	0.8044
1981-82	0.7803	1.000	0.7803
1983-84	1.5593	1.000	1.5593
1985-87	1.1279	2.000	0.5640
1988-89	0.1257	1.000	0.1257
1991-92	1.5109	1.000	1.5109
1993-94	0.8771	1.000	0.8771
1996-97	1.5102	1.000	1.5102
1998-00	1.1151	2.000	0.5576
2001-02	0.1588	1.000	0.1588

Figure 8 shows the spatial map of drought magnitude across the East African region for different

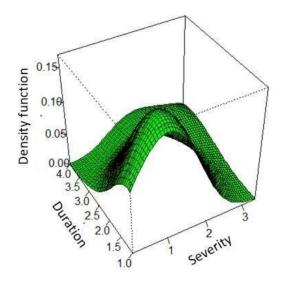
318 hydrological years.

319

Fig. 8 Spatial drought magnitude over East Africa for different hydrological years


- The results show that the drought magnitude is highest in 1920-21, 1950-51, 1970-71, 2000-01
- 322 and 2014-15 hydrological years. In 1920-21 hydrological year, regions that recorded high drought
- 323 magnitude include South Sudan, Uganda, Kenya, Rwanda, Burundi and Eastern Tanzania.
- 324 1950-51hydrological year, drought magnitude was highest over Ethiopia and South Sudan. In
- 325 1970-71 hydrological year, drought magnitude was highest over South Sudan, Ethiopia and
- 326 Somalia. In 2000-01 hydrological year, drought magnitude was highest in South Sudan, Ethiopia,
- 327 Somalia and Kenya. In 2014-15 hydrological year, drought magnitude was highest in Ethiopia and

- 328 Tanzania. This indicated that besides seasonal variability of spatial drought magnitude, there exist
- a strong variability of spatial drought magnitude across different decades.
- 330


331 3.3. Drought Risk Mapping and Joint Probability Distribution Function and Return years of

332 Drought over East Africa

The spatial drought risk map was got from the spatial SPI map and represented in Fig. 9. It shows the spatial drought levels over East Africa across different decades, and changes across the region's land mass suggested to be as a result of changes in climate and land cover. There is high variability in drought across the decades over the region. These droughts could be categorized as ranging from moderate to extreme, with different durations and magnitudes. Nevertheless, the total duration, severity and magnitude of occurrence of the drought episodes varied from one location 339 to another across the decades.

- multivariate tool needed for water resources management. Based on the drought characteristics,
 351 duration and magnitude using the 12-month SPI, the JPDF was estimated as shown in Figure 10.
- From Fig.10, it shows that probability of drought occurrence is high when severity is low and such
- droughts occur at short time intervals. Also, it takes so many years for a severe drought to repeat354 itself at short time intervals.

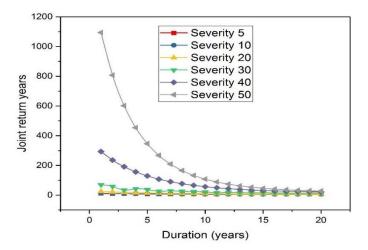


Fig.10 The JPDF for drought duration and severity (magnitude)

357 Once the JPDF for the bivariate return periods of drought was calculated, the drought severity358 duration frequency curve of East Africa was created (Fig.11). Fig.11 is a bivariate analysis of 359 drought severity for East Africa region showing return periods and different levels of severity.

Drought severity itself is a function of the different drivers of drought over particular area. Drought severity characterizes drought magnitude of dry events. The JPDF drought-based curves were developed for selected recurrence severity levels of 5, 10, 20, 30, 40 and 50 years are plotted in 363 Fig.11. It is observed that for any given duration, severe droughts have more return periods.

Fig. 11 Joint return years for severity (magnitude) corresponding to duration

- 366Table 4 shows the drought occurrence over East African countries. The result shows
that the
- 367 drought mechanism is complex and the drivers highly depend on the local environmental
- 368 conditions prevailing in a particular country. All drought episodes are associated with negative
- 369 precipitation anomalies, low precipitation values closely matching the SPI values. The SPI values
- 370 depicting drought levels (shown in Table 1) are applied to reveal the varying levels of drought
- experienced over specific countries in East Africa over the study period.

Table 4 Annual precipitation anomalies for various countries in East Africa from 1920-2015 373 with SPI-12. The value in parenthesis represents SPI

	Burundi	Rwanda	Ethiopia	Kenya	Somalia	Uganda	Tanzania	South Sudan
1020/21			Lunopia	Renyu	Somana	0	Tunzania	South Sudan
1920/21	-145 (-1.0)	-197 (-1.3)				-188(-1.4)		
1921/22	-383 (-3.0)							
1921/22	-385 (-3.0)							
1923/24	-174 (-1.2)	-231 (-1.5)						
1723/21	171(112)	201 (1.0)						
1924/25			-93 (-1.0)	-150 (-1.2)		-190 (-	-165 (-1.3)	-84 (-1.0)
						1.4)		
1926/27						-168 (-		-106 (-1.3)
						1.2)		

1927/28 1928/29	-259 (-1.9) -216 (-1.6)	-225 (-1.5) -158 (-1.0)		-125 (-1.0) -128 (-1.0)		-155 (- 1.1) -144 (-	-191 (-1.5)	
1920/29	-210 (-1.0)	-138 (-1.0)	-96 (-1.1)	-163 (-1.4)		1.0)	-171 (-1.5)	
	285(21)	201 (2.0)	-90 (-1.1)	-105 (-1.4)		162 (
1933/34	-285 (-2.1)	-291 (-2.0)	05 (1 0)		53 (1 0)	-163 (- 1.2)		
1938/39			-95 (-1.0)		-72 (-1.0)	-191 (- 1.4)		
1940/41			-102 (-1.1)					
1942/43	-203 (-1.5)	-237 (-1.6)	-146 (-1.7)	-129 (-1.0)		-215 (- 1.6)		-123 (-1.5)
1943/44		-158 (-1.0)			-109 (-1.7)	-139 (- 1.0)	-128 (-1.0)	
1945/46		-165 (-1.1)			-104 (-1.6)		-193 (-1.5)	
1947/48	-199 (-1.4)		-89 (-1.0)	-128 (-1.0)	-122 (-2.0)			
1948/49					-88 (-1.3)		-241 (-2.0)	
1950/51			-170 (-2.0)					-124 (-1.5)
1952/53			-100 (-1.1)			-177 (-	-222 (-1.8)	
1953/54					-72 (-1.0)	1.3)		
1954/55					-106 (-1.6)			
1955/56			-130 (-1.5)		-117 (-1.8)			
1958/59	-193 (-1.4)				-68 (-1.0)		-162 (-1.3)	
1960/61	-211 (-1.5)	-148 (-0.9)					-164 (-1.3)	
1964/65			-121 (-1.4)	-140 (-1.2)	-80 (-1.2)	-213 (-	-148 (-1.1)	
1970/71					-86 (-1.3)	1.6)		-99 (-1.2)
1971/72								-132 (-1.6)
1975/76				-183 (-1.6)				
1979/80			-113 (-1.3)	-149 (-1.2)	-77 (-1.1)	-189 (-		-110 (-1.3)
1981/82		-157 (-1.0)				1.4)		-121 (-1.5)
1982/83								-125 (-1.5)
1983/84			-151 (-1.7)	-248 (-2.2)	-83 (-1.2)	-177 (-		-228 (-2.9)
1985/86			-114 (-1.3)			1.3)		
1986/87			-105 (-1.2)					-218 (-2.8)

1989/90								-124 (-1.5)
1991/92	-144 (-1.0)	-151 (-1.0)	-155 (-1.8)	-147 (-1.2)	-156 (-2.7)	-154 (- 1.1)		-97 (-1.2)
1993/94	-161 (-1.1)				-84 (-1.2)	1.1)	-137 (-1.0)	
1996/97	-152 (-1.1)		-138 (-1.6)	-136 (-1.1)	-90 (-1.3)	-160 (-	-169 (-1.3)	-86 (-1.0)
1998/99		-166 (-1.1)	-104 (-1.2)	-171 (-1.4)	-87 (-1.3)	1.2)		
1999/00	-158 (-1.1)	-209 (-1.4)		-161 (-1.3)			-254 (-2.1)	
2003/04		-250 (-1.7)	-141 (-1.6)	-161 (-1.3)		-177 (-		
2004/05				-160 (-1.3)		1.3) -178 (-		
2005/06		-175 (-1.1)				1.3)	-139 (-1.1)	
2007/08						-142 (-		
2008/09						1.0)		-150 (-1.9)
2010/11				-119 (-1.0)			-150 (-1.2)	
2011/12	-204 (-1.5)							

374 Note: 1920/21 represents a hydrological year starting in 1920 and ending in 1921.

375

The spatial and temporal variability in drought trends is observed in the study area and shown

377 in Table 5 as the Negative and Positive SPI trends at multiple time scales across the East African 378 countries. Of all the SPI models tested, only SPI-12 indicated significant trend values in Burundi,

Rwanda and Uganda with Sen's slope (Kendal tau) values of 0.008 (0.143), 0.007 (0.144) and

380 0.008 (0.149) respectively. Basically, the SPI-12 shows the status of year-round water shortage

381 caused by drought while SPI-6 and SPI-3 are appropriate indicators of the status of seasonal water

382 shortage caused by drought (Tan et al., 2015).

383	Table 5 Mann-Kendall Trend and significance level of SPI-3, SPI-6 and SPI-12 over East African countries

Durati Parameter	Burundi Ethiopia	Kenya	Rwanda	South	Somalia	Tanzania	Uganda	Regional
on				Sudan				

	Kendal τ	0.060	0.017	-0.004	0.089	-0.058	0.026	-0.028	0.062	0.036
SPI-3	(Sign)	(0.086)	(0.635)	(0.914)	(0.011)	(0.097)	(0.450)	(0.419)	(0.074)	(0.307)
	Sen's slope	0.002	0.004	-0.0001	0.003	-0.005	0.002	-0.003	0.0002	-0.0001
	Trend	No								
	Kendal τ	0.073	0.008	0.006	0.087	-0.051	0.040	-0.057	0.087	0.037
SPI-6	(Sign)	(0.140)	(0.879)	(0.908)	(0.079)	(0.305)	(0.421)	(0.247)	(0.079)	(0.457)
	Sen's slope	0.004	0.0001	-0.0003	0.004	-0.003	0.002	-0.003	0.005	0.002
	Trend	No								
	Kendal τ	0.143	-0.009	0.031	0.144	-0.071	0.072	-0.016	0.149	0.103
SPI-12	(Sign)	(0.040)	(0.903)	(0.662)	(0.039)	(0.301)	(0.301)	(0.817)	(0.033)	(0.141)
	Sen's slope	0.008	-0.001	0.001	0.007	-0.004	0.004	-0.001	0.007	0.006
	Trend	Yes	No	No	Yes	No	No	No	Yes	No

385 Table 6 shows negative and positive precipitation trends at multiple time scales over East

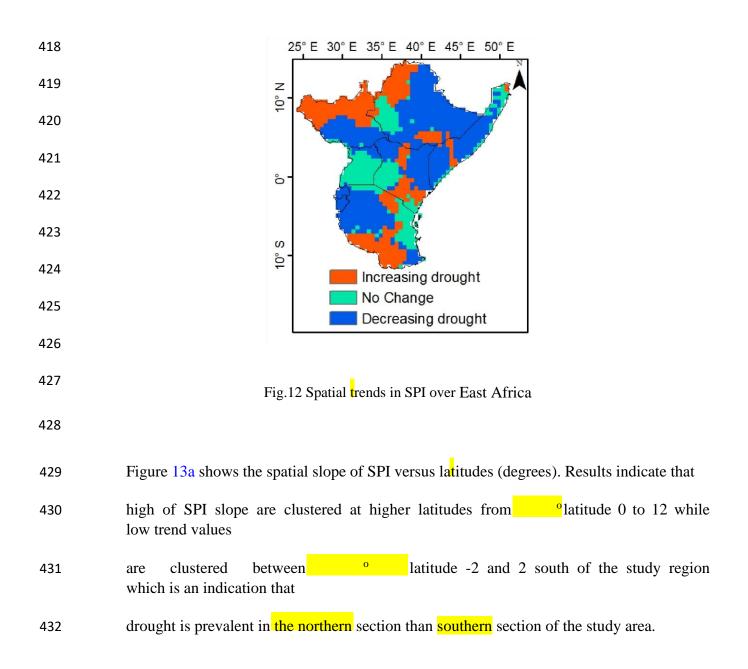
386 African countries. Out of eight countries, precipitation shows significant positive (insignificant

positive) trends over 1(4) countries and significant (insignificant) negative trends over 1(2) 388

countries from 1920 to 2015.

389

Table 6 Mann-Kendall Trend and significance level of precipitation over East African countries


	0	1 1	
Country	Kendal τ (sign)	Sen's slope	Trend
Burundi	0.023 (0.248)	0.021	No
Ethiopia	-0.001 (0.980)	-0.034	No
Kenya	0.005 (0.799)	0.006	No
Rwanda	0.034 (0.088)	0.092	No
South-Sudan	-0.044 (0.028)	-0.042	Yes
Somalia	0.048 (0.05)	0.007	Yes
Tanzania	-0.010 (0.603)	-0.010	No
Uganda	0.033 (0.101)	0.022	No
Regional	0.025 (0.216)	-0.005	No

390 391

392 **3.4 Spatial trends in drought across East Africa**

Figure 12 shows the spatial trend of SPI over East Africa. The approach involves running an
Ordinary Linear Regression model to the SPI maps generated. Results show that about 28, 22
and 50 % of the SPI indicated spatial increase, no change and decrease in SPI trends respectively

396	over the study area from 1920 to 2015. Increase (decrease) of SPI trends by our analysis means
397	an increase (decrease) in moisture conditions corresponding to decrease (increase) in drought
398	prevalence. Assessing the mean SPI drought characteristics over the region indicates that there
399	were some notable variations in SPI, consistent with the distribution of precipitation. Areas with
400	increase in SPI were located northeast, along the shores of the Indian Ocean and some few areas
401	in the Central part of the study area. Areas with no trend changes in SPI were located in
402	northwest, northeast, southeast parts of East Africa and close to the shores of the ocean. Also,
403	areas with decreasing SPI trend pixels were located around in the Northwest, Northeast, and
404	Southwest and along the shores of the study area. The 96-year precipitation records in areas with
405	spatial increase in SPI trend were 11.3, 136.5, 77.3 and 26.5 mm for minimum, maximum, mean
406	and standard deviation values respectively while the precipitation records in areas with spatial
407	decrease in SPI were 539, 138.3, 56.1 and 29.7 for minimum, maximum, mean and standard
408	deviation values respectively. For areas with no spatial trend changes in SPI were 7.2, 161.6,
409	93.2 and 31.9 for minimum, maximum, mean and standard deviation values, respectively. Areas
410	with improvement in drought indicated the low precipitation standard deviation. Our result 411
	confirms that areas with no SPI changes in drought were wetter from 1920 to 2015.
412	
413	
414	
415	

434 Fig.13 (a) SPI slope versus latitude (b) SPI slope versus DEM and (c) histogram of pixel count

435 Figure 13b shows SPI slope versus DEM where both high and low slope values of SPI are

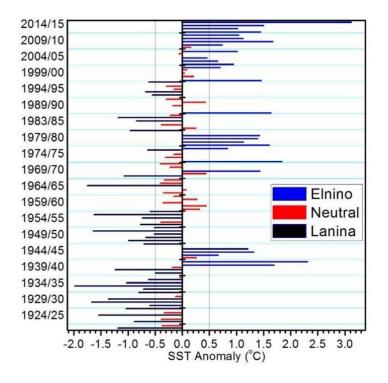
- 436 clustered at lower latitudes between 0 to 1500 m, and at the foot hills of mountains. The histogram
- 437 of the SPI trends is shown in Figure 13c. It can be observed that most of the SPI trends are clustered
- 438 around the 0.0 mark, which shows that the density curve of the pixels is symmetrical and centered

about its mean. The SPI trends indicate high positive (negative) pixels above (below) the
 zero440 trend mark, implying that drought prevails in both low and high elevation areas up
 to 2000 m. 441 3.5 ENSO-drought relationship

442 Drought is considered as one of the most complex and deleterious natural, with severe impacts on

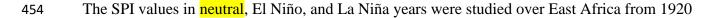
natural ecosystems, water resources and food security (Tan et al., 2015). In this study, we selected

the El Niño, neutral, and La Niña years based on data from sea surface temperature (SST)

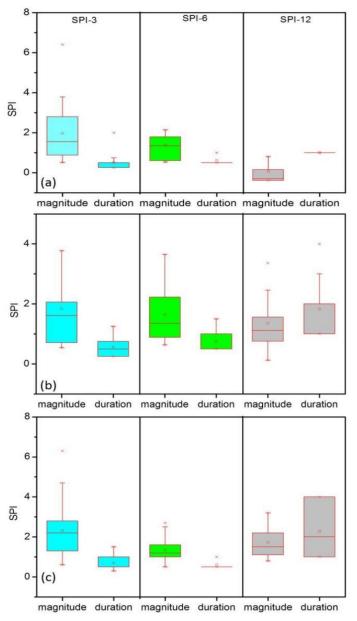

anomalies of the tropical Indian Ocean in the region + 0.5 °C and - 0.5 °C also known as the Niño

446 3.4 region. The gridded Extended Reconstructed Sea Surface Temperature version 4 (ERSSTv4)

temperature data was used to study the ENSO events. We considered El Niño (La Niña) years as


448 years with average SST anomalies above (below) temperature values of +0.5 °C (-0.5 °C) from
449 October to March. The October to March period typically coincides with peak ENSO
Conditions

450 Neutral years if the SST values are within $-0.5 \text{ }^{\circ}\text{C} < \text{SST} < 0.5 \text{ }^{\circ}\text{C}$ as shown in Fig. 14.



451

452 Fig. 14 Extended reconstructed sea surface temperature showing El Niño, neutral and La Niña years.

- to 2015. The mean drought characteristics, magnitude, duration and even the dispersion, of drought
- 456 magnitude in SPI-3, SPI-6 and SPI-12 are very similar in El Niño and La Niña events while the 457 neutral years presented high dispersion in both drought magnitude and duration (Fig.15).

458 Fig. 15 Boxplots of mean magnitude and duration for (a) El Niño (b) neutral and (c) La Niña years

Results shown on Fig. 15a indicate that the mean drought duration during El Niño years were
less than 1.5 years while the mean drought duration during neutral (La Niña) years was 3 (4)
years 461 (Figs. 15b and c).

462 In this study, there is no direct link between ENSO and drought over the East African region.

But the association of drought in most El Niño and La Niña years suggests that the impact of

464	ENSO cannot be ruled out. Our results have supported reports that present teleconnections between
465	drought and ENSO. Previous reports have shown that ENSO events normally peak during October
466	to March periods which coincides with the short (SON) and long (MAM) rainy seasons of East
467	Africa. This period coincides with the SON and MAM seasons and increased precipitation in East
468	Africa. Considering the major drought episodes over the East Africa, our analysis has only agreed
469	with the major droughts of 2011/12. Based on our results, 2011/12 was captured as an El Niño
470	year with drought magnitudes captured by SPI-3 and SPI-6 as 2.8 and 0.5 respectively with drought
471	duration of 3 and 6 months, respectively. The drought episode of 2011/12 affected countries like
	472 Somalia, Uganda, Kenya, Ethiopia, South-Sudan and other nearby countries.

473 **3.6. Discussion**

Generally, the actual precipitation expressed as a percentage deviation from normal (or long-term 474 average) is the most commonly used drought indicator, although it has limited use/reliability for 475 476 spatial comparison due to its dependence on the mean (Kumar et al., 2009). According to Solanki and Parekk (2014), the SPI represents a departure from the mean and is thus, expressed in standard 477 deviation units as a normalized index in time and space. The departure from the mean is a 478 479 probability indication of the severity of the wetness or drought that can be used for risk assessment. 480 The application of data from 1920 in this study is considered most desirable as long records provide 481 more reliable statistics for SPI, given that it is a statistical approach. As a result, SPI has gained 482 importance in recent years as a potential drought indicator permitting comparisons across different 483 precipitation zones (Kumar et al., 2009; Solanki and Parekk, 2014).

- 484 This study analyzed SPI values between 1920 and 2016 with actual precipitation and
- 485 precipitation deviation from normal in East Africa, a generally low precipitation and drought prone
- region. The objective is to establish whether or not SPI can be used as a suitable indicator (when
- 487 compared to conventionally adopted precipitation deviation-based approach for drought intensity 488 assessment) over an extended region such as East Africa.
- 489 The results of the analysis show that very low or very high precipitation corresponded to very
- low or very high SPI values. Thus, SPI values adequately estimated the dryness or wetness when
- 491 the precipitation is very low or very high, respectively. Table 2 shows that all periods that
- 492 experienced dry spells (or drought) recorded low/negative anomaly and SPI values with the periods
- 493 1942-1943 recording the driest (-1.7) followed by 1983-1984 (-1.6). Similarly, the periods of wet
- spells reveal positive anomaly and SPI values with the wettest period being 2014-2015. The
- 495 outcome of this study is in line with the SPI classes proposed by McKee et al. (1993). However,
- there is a marked variation between drought characteristics of magnitude, duration and intensity
- 497 when viewed against temporal scales. In essence, no time scale recorded the highest in all 3 drought
- 498 characteristics throughout the 95-year period of analysis (Table 3). This is similar to the
- 499 observation of SPI at different time scales of 3, 6 and 12 months which reveal that for shorter time
- scales, there was a high temporal variability in dry and wet periods, whereas at longer time scales 501 (12 months), frequency of dry and wet periods were considerably decreased (Fig.
 - 5).

502 The results of this study indicate that drought characteristics analysis (magnitude, duration and

intensity) using SPI can be adequately applied for drought intensity assessment particularly in

regions such as East Africa where low precipitation and vulnerability to droughts is prevalent.

505 The precipitation anomalies (Table 4), Mann-Kendall Trend and significance level of SPI-3,

506 SPI-6 and SPI-12 (Table 5) and Mann-Kendall Trend and significance level of precipitation (Table

507 6) reveal varying results both temporally and spatially across the eight countries comprising the

East African region covered in this study. For instance, the same drought level (SPI) may be

- 509 prevalent in a country but the precipitation anomaly values may differ (Table 4). The drought of 510 1942-43 was worst hit in countries like Burundi, Rwanda, Ethiopia, Uganda and South-Sudan.
- 511 From 1983-84, Ethiopia, Kenya, Somalia, Uganda and South-Sudan experienced the worst drought 512 episodes. Also, from 1991-92, Ethiopia, Kenya, and Somalia experienced worst drought spells, while in 1996-97, the highest effect was observed in Ethiopia. Table 5 reveals that out of eight 513 514 countries, SPI-12 detects significant positive (insignificant positive) trend over 3(2) countries and insignificant negative trends over 3 countries. SPI-6 detects insignificant positive trend over 6 515 516 countries and insignificant negative trend over 2 countries. SPI-3 detects insignificant positive 517 trends over 5 countries while insignificant negative trends in 3 stations. At regional (continental 518 scale), there was no significant trend in SPI-3, SPI-6 or SPI-12. The results in Table 6 show that most countries experience oscillations between wet and dry conditions while few countries are 519 520 getting wetter with few others getting more arid. At regional (continental scale), there was no 521 significant trend in precipitation. There was no significant change in precipitation in annual rainy seasons during the study period. As no annual trend was observed in the precipitation amount, we 522 523 applied SPI to study precipitation address potential changes in precipitation extremes.

- 524 There is expected to be some time lag due to the unique vegetation types which, according to
- 525 Abbas et al. (2014), should have different capacity of water storage. The humid area covering most
- 526 of Uganda as shown on Fig. 1 (with predominantly tall and dense forests) are expected to have a
- longest time lag because, according to Allen (2008), forests possess the best capacity of water
 retention with deeper roots to tap groundwater. Conversely, arid and semi-arid areas such as
- 529 Kenya, Somalia and Ethiopia are covered mostly by grasses and should have shorter time lag due
- to the lower capacity of water retention for grasses. South-Sudan and a significant area of Tanzania
- are sub-humid areas largely covered by crops. Generally, the water storage capacity of crops is
- 532 likely similar to or even lower than that of grasses, and Grünzweig et al. (2015) posits that artificial
- 533 irrigation could alter the time lag for regions engaged in irrigation agriculture. It is therefore,
- expected that semi-arid areas should have a time lag similar to or longer than arid areas (Cong et
- al., 2017). This pattern is largely similar to the outcome of the study as shown on Tables 4, 5 and536 6, and Figs 4, 8 and 9.

538 4. Conclusions

539 In this study, the SPI approach applied to this study adequately explained the drought conditions

across the East African region between 1920 and 2015. The drought characteristics of magnitude,

- 541 duration and intensity collectively explained the severity levels of drought within the study area.
- 542 It is expected that the outcome of this study could be applied elsewhere in sub-Saharan Africa 543 where precipitation is limited and likelihood of drought is high.
- The result from the 96 years (from 1920 to 2015) data records shows that there are a total of 41

- 545 wet years and 46 drought years. The anomaly of the wet years and dry years were obtained when
- 546 precipitation was above and below normal conditions respectively. The years 1961, 1967, 1997,
- 547 2007 and 2015, were adjudged the wettest while 1943, 1983, 1993, 1997 and 2003 were adjudged
- the driest. Both the positive and negative peak of SPI coincided with the positive and negative
- anomaly peaks, respectively. The computed SPI at different time scales of 3, 6 and 12 months
- indicated that for shorter time scales, there was high temporal variability in dry and wet periods,
 551 whereas at longer time scales (12 months), frequency of dry and wet periods were considerably 552 decreased.
- 553 Years with high drought magnitude ranged from 192<mark>0</mark>-22, 1926-29, 1942-46 and 1947-51 with
- 554 SPI values corresponding to 2.2, 3.2, 3.4 and 2.6, respectively while years with low drought
- magnitude ranged from 1930-31, 1988-89 and 2001-02 with values as 0.2, 0.12 and 0.15,
- 556 respectively. The longest droughts occurred from 1929-29, 1937-41, 1942-46, 1947-51, 1952-56,
- and 1958-61 with values in years as 3, 4, 4, 4, and 3 years, respectively, while the shortest
- 558droughts occurred in time period of 1 year and ranged from 1930-31, 1964-65, 1979-80, 1981-82, 5591983-84, 1988-89, 1991-92, 1993-94, 1996-97 and 2001-02.
- 560 Our study also indicated that high values of SPI slope are clustered at higher latitudes from 0 to
 - 12°561 while low trend values are clustered between -2 and 2° south of the study region which is an
- 562 indication that drought is prevalence in the northern section than southern section of the study area.
- Both high and low slope values of SPI are clustered at lower latitudes between 0 to 1500 meters,

- and at the foot hills of mountains. The SPI trends showed high positive (negative) pixels above
- 565 (below) the zero-trend mark, indicating that drought prevails in both low and high elevation areas 566 up to 2000 m.
- 567 In terms of ENSO impacts on drought over the region, the mean characteristics, magnitude,
- 568 duration and even the dispersion, of drought magnitude in SPI-3, SPI-6 and SPI-12 are very similar
- in El Niño and La Niña years while the neutral years presented high dispersion in both drought
- 570 magnitude and duration. The mean drought duration during El Niño years were less than 1.5 years
- 571 while the mean drought duration during neutral (La Niña) years was 3 (4) years which suggest that
- 572 there is no direct link between ENSO and drought over the East African region. But the association
- 573 of drought in most El Niño and La Niña years suggests that the impact of ENSO cannot be ruled 574 out since peak ENSO events occur during October to March periods which coincides with the short 575 (SON) and long (MAM) rainy seasons of East Africa.
- 576 Furthermore, the outcome of this study indicates that SPI can be reliably suitable and most
- 577 applicable in drought studies within the study area as it provides for analysis in multi-temporal
- 578 levels such as monthly, single seasonal, multi-seasonal, and annual droughts, thereby allowing for
- 579 a spatio-temporal scale of analysis that creates the room for SPI to provide accurate meteorological
- and agricultural drought analysis. To this extent, the study provides policy makers the necessary
- 581 information that is critical to local adaptation, increased resilience and mitigation measures in the

582	face of a vulnerable eco-climatic system triggered by a continuously changing climate within
	East 583 Africa as well as other parts of sub-Saharan Africa.

584 Our study is particularly relevant in its ability to depict continuous and synoptic drought

- 585 conditions all over East Africa, providing vital information to farmers and policy makers, using
- 586 very cost-effective method. This is particularly the case in view of the assertion by Karavitis et al.
- 587 (2011) that "effective (and reliable) information and early warning systems based on indicators
- 588 such as the SPI are the foundation for overall effective drought adaptation (and resilience) plans".
- 589 Finally, the adoption of SPI for this study demonstrates the fact that it is a robust concept,
- unambiguous in calculation and understanding, temporally flexible, spatially meaningful, and
- widely applicable, a basis for which it is considered a powerful tool for drought studies as clearlyamplified by Cheval (2015).
- 593

594 Acknowledgements

- 595 This work was jointly supported by the CAS Strategic Priority Research Program (No.
- 596 XDA19030402), the National Key Research and Development Program of China (no.
- 597 2016YFD0300101), and "Taishan Scholar" Project of Shandong Province (No. TXXD 201712).
- 598 The authors would like to show great appreciations to the anonymous reviewers and the editor
- 599 for their valuable comments and suggestions.
- 600

601 **References**

602 Abbas, S., Nichol, J.E., Qamer, F.M., Xu, J. (2014). Characterization of drought development

603	through remote sensing: A case study in central Yunnan, China. Remote Sens. 6(6):
604	4998–5018.
605	Abbink, J., K. Askew, D.F. Dori, E. Fratkin, E.C. Gabbert, J. Galaty, S. LaTosky, J. Lydall, et al.,
606	(2014). Lands of the Future: transforming pastoral lands and livelihoods in eastern 607
	Africa. Working Paper No. 154, Max Planck Institute for Social Anthropology. 608
	Allen, C.D. (2008). Mechanisms of plant survival and mortality during drought: why
	do some
609	plants survive while others succumb to drought? New Phytol. 178 (4), 719.
610	
611	American Meteorological Society (1997). Meteorological drought-policy statement. Bull Am
612	Meteorol Soc 78:847-849
613	Bates, B.C., Kundzewicz, Z.W., Wu, S.and Palutikof, J.P. (eds.). (2008). Climate Change and
614	Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC
615	Secretariat, Geneva. Available from https://www.ipcc.ch/pdf/technical-papers/climate-
616	change-water-en.pdf - 28/doc13.pdf (accessed: June, 2018).
617	Cong, D., S. Zhao, C. Chen and Z. Duan (2017). Characterization of droughts during
	2001–2014 618 based on remote sensing: A case study of Northeast China. Ecological
	Informatics 39:
619	56–67
620	Dai, A., Lamb, P., Trenberth, K.E., Hulme, M., Jones, P.D. and Xie, P. (2004) The
	Recent Sahara 621 Drought is Real. International Journal of Climatology 24: 1323-
	1331

622		Eze, J.N. (2018) Drought occurrences and its implications on the households in Yobe state,
623		Nigeria. Geoenvironmental Disasters 5:18, 1-10
624		Funk, C., Dettinger, M. D., Michaelsen, J. C., Verdin, J. P., Brown, M. E., Barlow, M., & Hoell,
625		A. (2008). Warming of the Indian Ocean threatens eastern and southern African food
626		security but could be mitigated by agricultural development. Proceedings of the 627
		National Academy of Sciences, 105(32), 11081-11086.
628		Funk, C., Hoell, A., Shukla, S., Bladé, I., Liebmann, B., Roberts, J. B., Robertson, F. R., and
629		Husak, G. (2014) Predicting East African spring droughts using Pacific and Indian
630 <mark>-</mark> 49	978,	Ocean sea surface temperature indices, Hydrol. Earth Syst. Sci., 18, 4965
631		https://doi.org/10.5194/hess-18-4965-2014.
632 Fu	n <mark>k, C., Hus</mark>	ak, G., Michaelsen, J., Shukla, S., Hoell, A., Lyon, B., et al. (2013). Attribution of 633
634 <mark>a</mark> perspe		2012 and 2003-12 rainfall deficits in eastern Kenya and southern Somalia. In Explaining extreme events of 2012 from Bulletin of the
635		American Meteorological Society. 94, S45-S48.
636	Funk, C., F	Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J.,
637	Harrison, I	L., Hoell, A., and Michaelsen, J. (2015) The climate hazards infrared 638 precipitation
	with statio	ns-a new environmental record for monitoring extremes, Sci.
639		Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66
640		Ghulam A, Qin Q, Zhan Z (2007a) Designing of the perpendicular drought index. Environ Geol
641		52(6):1045-1052

642	Ghulam A, Qin Q, Teyip T, Li Z-L (2007b) Modified perpendicular drought index (MPDI): a real-	
643	m time drought monitoring method. ISPRS J Photogramm Remote Sens 62:150-164	
644	Gibbs W., Maher J. (1967) Rainfall deciles as drought indicators. Australian Bureau of	
	645 Meteorology Bulletin, Melbourne: 48	
646	Grünzweig, J.M., Valentine, D.W., Chapin III, F.S. (2015). Successional changes i carbon stocks	
647	after logging and deforestation for agriculture in Interior Alaska: implications for	
648	boreal climate feedbacks. Ecosystems 18 (1), 132-145	
649	Hao, C., Zhang, J., Yao, F. (2015). Combination of multi-sensor remote sensing dat	
	monitoring over Southwest China. J. Appl. Earth Obs. Geoinf. In for drought 650	
651	https://doi.org/10.1016/j.jag.2014.09.011.	
652	Harvest Choice (2015). "AEZ tropical (5-class, 2009)." International Food Polic Research	
653	Institute, Washington, DC., and University of Minnesota, St. Paul, MN. Available	
654	online at http://harvestchoice.org/data/aez5_clas	
655	Haroon, M.A., Zhang, J. and Yao, F. (2016). Drought monitoring and performance	
	evaluation of 656 MODIS-based drought severity index (DSI) over Pakistan. Natura	
	Hazards 84(2):	
657	1349- 1366	
658	Huete, A (1988) soil- adjusted	

vegetatio

							n index (SAVI). Remote Sens Environ 25:295– 309
659							Igbawua, T., Zhang, J., Yao, F., Zhang, D. (2018). Assessme nt of moisture budget over West
	Africa	using MERRA- 2's	aerological r	nodel and s	atellite	data. Climate	
660							Dynamics
661							https://doi .org/10.1 007/s003 82-018- 4126-2
662							Kalisa,
							W.,
							Igbawua,
							Т.,
							Henchiri,
							M., Ali,
							S., Zhang,
							S., Bai,

Y., Zhang, T. (2019) Assessme nt 663 of climate impact on vegetatio n dynamics over East Africa from 1982 to

2015.

664	Scientific Reports, 9:16865 https://doi.org/10.1038/s41598-019-53150-0		
665	Karavitis, C.A., S. Alexandris, D.E. Tsesmelis and G. Athanasopoulos (2011). Application of the		
666	Standardized Precipitation Index (SPI) in Greece. Water, 3: 787-805;		
667	doi:10.3390/w3030787		
668	Kim, T., Yoo, C., Valdes, J.B. (2003) Non parametric Approach for estimating effects		
	of ENSO 669 on return periods of Drought, Water Engineering, 7(5), 629-636.		

670	Kogan, F.N. (1995) Application of vegetation index and brightness temperature for drought
671	detection. Adv Space Res 15:91–100
672	Kogan, F.N. (2001) Operational space technology for global vegetation assessment. Bull Am
673	Meteorol Soc 82:1949–1964
674	Kogan, F.N., Gitelson, A., Zakarin, E., Spivak, L., Lebed L (2003) AVHRR-based
	spectral 675 vegetation index for quantitative assessment of vegetation state and
	productivity: 676 calibration and validation. Photogramm Eng Remote Sens 69:899-
	906
677	Kumar, M.N., C.S. Murthy, M.V.R. Sesha-Saib and P.S. Roy (2009). On the use of Standardized
678	Precipitation Index (SPI) for drought intensity assessment Wiley Inter Science
679	Meteorol. Appl. 16: 381–389
680	Lambin, E., Ehrlich, D. (1995) Combining vegetation indices and surface temperature for land-
681	cover mapping at broad spatial scales. Int J Remote Sens 16:573-579
682	Lei, T., Pang, Z., Wang, X., Li, L., Fu, J., Kan, G., et al. (2016). Drought and carbon cycling of
683	grassland ecosystems under global change: a review. Water 8(10), 460.
684	Liu, H.Q., Huete, A. (1995) A feedback based modification of the NDVI to minimize canopy
685	background and atmospheric noise. IEEE Trans Geosci Remote Sens 33:457-465
686	Liu, Q., Zhang, S., Zhang, H., Bai, Y., Zhang, J. (2019) Monitoring drought using
	drought indices based on remote sensing. Science of the Total Environment 711 (2020) composite 687

134585.

- 689 Love, R. (2009) Economic Drivers of Conflict and Cooperation in the Horn of Africa, Chatham
- 690 House Briefing Paper, December, available at: <u>www.chathamhouse.org/</u> 691 publications/papers /view/109208 (last access: 18 April 2012).
- Masih, I., Maskey, S., Mussá, F.E.F. a0nd Trambauer, P. (2014) A review of droughts on the
- 693 African continent: a geospatial and long-term perspective, Hydrol. Earth Syst. Sci., 18, 694 3635–3649, https://doi.org/10.5194/hess-18-3635-2014
- 695 McKee, T.B., Doesken, N.J. and Kleist, J. (1993) The relationship of drought frequency and
- duration to time scales. *In*: Eighth conference on applied climatology. American
- 697 Meteorology Society, Anaheim, CA, 179–184
- 698 McQuigg, J. (1954). A simple index of drought conditions. Weather Wise 7:64–67
- 699 Morton, J. and Kerven, C. (2013). Livelihoods and basic service support in the drylands of the 700 Horn of Africa. Brief prepared by a Technical Consortium hosted by CGIAR in

701 partnership with the FAO Investment Centre. Technical Consortium Brief 3. Nairobi: 702 International Livestock Research Institute.

703 Mu, Q., Zhao, M., Kimball, J.S., McDowell, N.G., Running, S.W. (2013). A remotely sensed 704 global terrestrial drought severity index. Bull Am Meteorol Soc 94:83–98

Munger, T.T. (1916). Graphic method of representing and comparing drought intensities. Monthly
Weather Rev 44:642–643
Niemeyer, S. (2008). New drought indices. Options Mditerranennes Sri A Sminaires Mditerranens

- 80:267-274
- O'Connor, T.G. (1995). Transformation of a savanna grassland by drought and grazing.African 710 Journal of Range and Forage Science. 12 (2): 53–60.

711 Palmer, W.C. (1968). Keeping track of crop moisture conditions, nationwide: the new crop 712 moisture index. Weather Wise 21: 156–161

713	Pramudya, Y. and T. Onishi (2018). Assessment of the Standardized Precipitation Index (SPI) in
714	Tegal City, Central Java, Indonesia. IOP Conf. Series: Earth and Environmental
715	Science 129: 1-9
716	Sandholt, I., Rasmussen, K., Andersen, J. (2002). A simple interpretation of the surface
717	temperature/vegetation index space for assessment of surface moisture status. Remote
718	Sens Environ 79:213–224
719	Schubert, S.D., Stewart, R.E., Wang, H., Barlow, M., Berbery, E.H., Cai, W., et al.,
	(2016). Global 720 meteorological drought: a synthesis of current understanding with
	a focus on SST 721 drivers of precipitation deficits. J. Clim. 29 (11), 3989–4019.
722	Solanki, J.K. and F, Parekh (2014) Drought Assessment Using Standardized Precipitation Index
723	International Journal of Science and Research, 3(7): 1073-1076
724	Svoboda, M.D., LeComte, D., Hayes, M.J. (2002). The drought monitor. Bull Am Meteorol Soc
725	93:1181–1190
726	Tan, C., Yang, J., Li, M., 2015 Temporal-Spatial Variation of Drought Indicated by SPI and SPEI
727	in Ningxia Hui Autonomous Region, China, Atmosphere, 6, 1399-1421;

728	doi:10.3390/atmos6101399
729	Tarhule, A., Woo, MK. (1997). Towards an interpretation of historical droughts in northern
730	Nigeria. Climatic Change 37: 601–616
731	Um, M., Y. Kim, D. Park, and J. Kim. (2017). Effects of different reference periods on drought
732	index estimations from 1901 to 2014. Hydrology and Earth System Sciences 21: 4989-
733	5007
734	von Grebmer, K., Bernstein, J., Nabarro, D., Prasai, N., Amin, S., Yohannes, Y., Sonntag, A.,
735	Patterson, F., Towey, O., Thompson, J. (2016). Global Hunger Index: Getting to Zero
736	Hunger. Welthungerhilfe, International Food Policy Research Institute, and Concern
737	Worldwide, Bonn, Washington, DC, and Dublin
738	Waggoner, M.L. and O'Connell, T.J. (1956). Antecedent precipitation index. Weekly Weather
739	Crop Bull XLIII: 6–7
740	Weghorst, K. (1996) The reclamation drought index: guidelines and practical applications. Bureau
741	of Reclamation, Denver
742	Yang, H. and Huntingford, C. (2018). Drought likelihood for East Africa. Nat. Hazards Earth Syst.
743	Sci., 18: 491–497
744	Yao, N., Y. Li., T. Lei. and L. Peng. (2018). Drought evolution, severity and trends in
	mainland 745 China over 1961–2013. Science of the Total Environment 616–617: 73–
	89

746 Yao, Y., Liang, S., Qin, Q., Wang, K. (2010). Monitoring drought over the conterminous United 747 States using MODIS and NCEP Reanalysis-2 data. J. Appl. Meteorol. Climatol. 49:

748 1665–1680

Highlights

- 1. Assessment of drought exceedance and return years over East Africa from 1920 to 2016.
- 2. Probability of drought occurrence is high when severity is low and such droughts occur at short time intervals and not all severest drought took longer periods.
- 3. ENSO impacts on East Africa's drought in most El Niño and La Niña years.
- 4. Drought prevails in both low and high elevation areas up to 2000 m over study area.
- 5. Drought magnitude, frequency, exceedance probability and return years assessed by Joint Probability Density Function (JPDF).

Spatio-Temporal analysis of drought and return periods

over the East African region using Standardized

Precipitation Index from 1920 to 2016

Wilson Kalisa ^{1,2} , Jiahua Zhang ^{2,3*} , Tertsea Igbawua ⁴ , Fanan Ujoh ⁵ , Obas
John Ebohon ⁵ ,

Jean Nepomuscene Namugize⁶, Fengmei Yao⁷

1

2

3

4

5

6

7

8

9

- 1. Agricultural Climate Change Mitigation, College of Automation and Electrical
- Engineering, Qingdao University, Qingdao, 266071, China
- 2. Remote Sensing and Digital Earth Center, College of Computer Science and Technology,
- Qingdao University, Qingdao, 266071, China
 - 3. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute,
- 11 Chinese Academy of Sciences, Beijing, 100094, China
- 124. Department of Physics, Federal University of Agriculture, Makurdi,
Nigeria
- 135. Center for Sustainability and Resilient Infrastructure and Communities
(SaRIC), School
- 14 of the Built Environment and Architecture, London South Bank University, London, UK

15	6. Rwanda Polytechnic, Integrated Polytechnic Regional Center, College of Kigali, Rwanda
16	7. Key Laboratory of Computational Geodynamics, University of Chinese Academy of
17	Sciences, Beijing, 100049, China
18	*Corresponding- author: Prof. Jiahua Zhang, email address: zhangjh@radi.ac.cn

Revised to "Agriculture Water Management"

20 Abstract East African region is susceptible to drought due to high variation in monthly 21 precipitation. Studying drought at regional scale is vital since droughts are considered a 'creeping

22 ' disaster by nature with devasting and extended impact often requiring long periods to reverse the

recorded damages. This study assessed drought exceedance and return years over East Africa from

24 1920 to 2016 using Climate Research Unit (CRU) precipitation data records. Meteorological 25 drought, where precipitation is the central quantity of interest, was adopted in the work.

26 Standardize Precipitation Index (SPI) was used to study long term meteorological droughts and

also to assess drought magnitude, frequency, exceedance probability and return years using Joint

28 Probability Density Function (JPDF). Also, Mann-Kendall trend analysis was applied to

29 precipitation and SPI to investigate the trend changes. Results showed that years with high drought

30 magnitude ranged from 1920-22, 1926-29, 1942-46 and 1947-51 with values corresponding to 2.2, 31 3.2, 3.4 and 2.6, respectively while years with low drought magnitude ranged from 1930-31, 198832 89 and 2001-02 with values as 0.2, 0.12 and 0.15, respectively. The longest droughts occurred

from 1926-29, 1937-41, 1942-46, 1947-51, 1952-56, and 1958-61 with values in years as 3, 4, 4,

34	4, 4, and 3 years	, respectively	, while the shortest of	droughts occurred	in time	period of 1	year and
----	-------------------	----------------	-------------------------	-------------------	---------	-------------	----------

35 ranged from 1930-31, 1964-65, 1979-80, 1981-82, 1983-84, 1988-89, 1991-92, 1993-94, 1996-97

and 2001-02. Also, it was demonstrated that probability of drought occurrence is high when

37 severity is low and such droughts occur at short time intervals and not all severest drought took 38 longer periods. The SPI trends indicate high positive (negative) pixels above (below) the zero39 trend mark, indicating that drought prevails in both low and high elevation areas up to 2000 m.

40 There was no direct link between ENSO and drought but arguably the association of drought in

- 41 most El Niño and La Niña years suggests that the impact of ENSO cannot be ruled out since peak
- ENSO events occur during October to March periods which coincides with the short (SON) and
 long (MAM) rainy seasons of East Africa. The study is particularly relevant in being able
 to depict
- 44 continuous and synoptic drought condition all over East Africa, providing vital information to
- 45 farmers and policy makers, using very cost-effective method.
- 46 Keywords Meteorological Drought, Joint Probability Density Function (JPDF), SPI, ENSO,
- 47 Drought Risk Mapping.

48

49 Introduction

- 50 Several studies indicate that droughts are among the most destructive natural disasters, negatively
- 51 impacting livelihoods including crops and livestock, as well as other natural resources such as
- 52 water, ecology, and biodiversity (Haroon et al., 2016; Lei et al., 2016; Schubert et al., 2016;
- 53 Igbawua et al., 2018; Yao et al., 2018; Liu et al., 2020). The American Meteorological Society
- 54 (1997) categorizes droughts into meteorological, agricultural and hydrological mainly on the basis

- 55 of duration, impact and recovery rate. According to Ghulam et al. (2007) and Haroon et al. (2016),
- 56 meteorological drought refers to a sustained period of three months or more during which monthly
- 57 precipitation remains well below the long-term average. Agricultural drought occurs when there
- is an imbalance between water availability and demand in a farmland ecosystem, where water
- 59 demand by plants is more as compared to supply. Hydrological droughts occur when deficiencies
- in surface and subsurface water supplies become evident in terms of reduced stream flow and
- 61 reduction in ground water. For the purpose of this study however, the assumption is that "drought
- 62 occurs when precipitation deficit exceeds some critical level beyond which the prevailing adaptive
- 63 mechanisms fail to cope", as defined by Tarhule and Woo (1997). The occurrence of drought has
- been recorded across all continents and under all climatic regions with low and high mean
- 65 precipitation (Um et al., 2017) with varying degree, intensity, impact and duration.
- In recent decades, the occurrence and incidence of drought has been aggravated with the
- 67 increase in global climate change (IPCC, 2014). For Africa, O'Connor (1995) reported that
- remotely sensed data analysis from National Aeronautics and Space Administration (NASA)
- reveal that about 900,000 km^2 of previous savanna grassland in the African region had been
- severely degraded between the early 1960s and 1986 due to persistent occurrences of drought,
- while Bates et al., (2008) estimated that one-third of African population live in drought-prone
- 72 areas. Yang & Huntingford (2018) revealed historical precipitation estimated by Climate Hazards
- 73 Group InfraRed Precipitation with Station data (CHIRPS) (Funk et al., 2015) shows that during

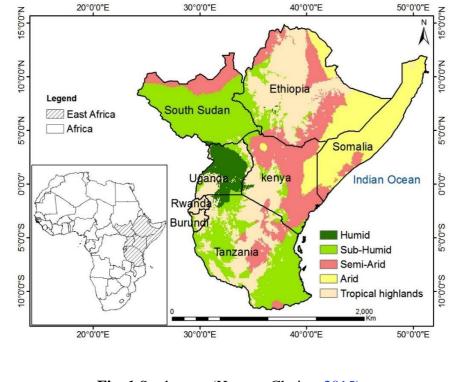
75	Ethiopia and Kenya) had a reduction of 40% or more in precipitation compared to a baseline ASO
76	period 1981–2015. Several studies confirm that the East African region ranks among the most
77	vulnerable drought-prone regions of the world with a high potential for increased risk of drought
78	related water and food shortages as recorded in as recent as year 2016/2017 (Love, 2009; Masih
79	et al., 2014; Funk et al., 2014, 2015; Yang and Huntingford, 2018). The threat of drought is
80	expected to further aggravate the existing widespread poverty and food insecurity (Funk et al.,
	81 2008, 2013, 2015; von Grebmer et al., 2016). The situation is similar within other regions of
	sub82 saharan Africa. In West Africa, Dai et al. (2004) reported that there is about 40% decline
	in annual

August, September and October (ASO) of 2016, most of East Africa (particularly Somalia,

- precipitation total from the year 1968–1990 as compared with the 30 years between 1931 and
- 84 1960. Thus, frequent drought occurrences within the West African region have caused famine and
- 85 are threatening the human existence in African savanna regions and consequently making the 86 households highly vulnerable to drought (Eze, 2018).
- 87 Droughts are considered a 'creeping' disaster by nature with devasting and extended impact
- 88 often requiring long periods to reverse the recorded damages. It is therefore crucial that consistent 89 drought monitoring is carried out to provide decisive policy support for long- and medium-term
- 90 planning of mitigative measures. Typically, at the turn of the 20th century, scientific studies had
- 91 adopted climatic (temperature and precipitation) and hydrological (soil moisture and stream flow)
- 92 indicators as main input towards the generation of indices for quantitative modelling of drought
- 93 severity (Kincer, 1919; Munger, 1916; McQuigg, 1954; Waggoner and O'Connell, 1956).
- 94 However, further advances in the study of drought (beginning from the latter part of the 20th

96	(Niemeyer, 2008) across various regions with different climatic conditions. The most prominently		
97	adopted contemporary indices for drought research include, but not limited to: decile index (DI)		
98	by Gibbs and Maher (1967); Palmer drought severity index (PDSI) by Palmer (1968), standardized		
99	precipitation index (SPI) applied by McKee et al. (1993); reclamation drought index (RDI) by		
100	Weghorst (1996); US Drought Monitor (USDM) applied by Svoboda et al. (2002); optimized		
101	meteorological and vegetation drought indices (OMDI and OVDI) proposed by Hao et al. (2015);		
102	composite drought indices using multivariable linear regression (MCDIs) developed by Liu et al.		
103	(2020).		
104	Recent drought studies have relied on the availability of data from different remote sensing 105		
	platforms due largely to the synoptic coverage it provides for analysis over a wide region.		
106	platforms due largely to the synoptic coverage it provides for analysis over a wide region. Numerous methods have been developed for the application of remotely sensed data in drought		
106 107			
	Numerous methods have been developed for the application of remotely sensed data in drought		
107	Numerous methods have been developed for the application of remotely sensed data in drought studies. These include normalized difference vegetation index (NDVI) based conceptualization		
107 108	Numerous methods have been developed for the application of remotely sensed data in drought studies. These include normalized difference vegetation index (NDVI) based conceptualization such as vegetation condition index (VCI) (Kogan 1995), enhanced vegetation index (EVI) (Liu		
107 108 109	Numerous methods have been developed for the application of remotely sensed data in drought studies. These include normalized difference vegetation index (NDVI) based conceptualization such as vegetation condition index (VCI) (Kogan 1995), enhanced vegetation index (EVI) (Liu and Huete 1995), soil adjusted vegetation index (SAVI) (Huete 1988), temperature vegetation		
107 108 109 110	Numerous methods have been developed for the application of remotely sensed data in drought studies. These include normalized difference vegetation index (NDVI) based conceptualization such as vegetation condition index (VCI) (Kogan 1995), enhanced vegetation index (EVI) (Liu and Huete 1995), soil adjusted vegetation index (SAVI) (Huete 1988), temperature vegetation index (TVX) (Lambin and Ehrlich, 1995), Deviations from NDVI (Anyamba et al., 2001), vegetation health index (VHI) (Kogan, 2001), temperature condition index (TCI) (Kogan, 1995; 112 Kogan et al., 2003), and temperature vegetation dryness index (TVDI) (Sandholt et al.,		

century into the 21st century) led to the identification of over 150 indices used for drought studies


95

- 115 2007b); effective drought index (EDI) (Yao et al., 2010); and Drought severity index (DSI) 116 proposed by Mu et al. (2013) and applied by Haroon et al. (2016).
- 117 For the purpose of this study, the SPI proposed by McKee et al. (1993), and applied in Indonesia
- 118 by Pramudya and Onishi (2018) will be adopted for the analysis of drought across the East African
- region. The SPI is considered most applicable for this study because it provides for drought
- 120 analysis in multi-temporal levels such as monthly, single seasonal, multi-seasonal, and annual
- 121 basis. This level of spatio-temporal scale analysis allows for the SPI to provide accurate 122 meteorological and agricultural drought analysis.

123 **2.0 Methodology**

- 124 **2.1 Study Area**
- 125 The study area covers eight countries consisting of Ethiopia, Kenya, Rwanda, Uganda, Tanzania,
- Burundi, Somalia and South-Sudan (Fig. 1). The climate of the region is influenced by a number
- 127 of factors ranging from combination of the high altitude and the westerly monsoon winds that
- 128 originate from the Ethiopian Highlands and Rwenzori Mountains. Generally, majority of the
- 129 region's countries experience two distinct precipitation regimes: "long rains" which extend during
- 130 March–May (MAM), and a season with "short rains", which lasts from October to December
- 131 (OND). Figure 1 shows that much of Uganda and Somalia are humid and arid, respectively while
- much of Ethiopia is semi-arid and arid. South-Sudan and Tanzania are largely sub-humid, with
- 133 Kenya containing a vast area of aridity. Rwanda and Burundi are largely tropical highlands.

- 134 The major livelihood sources include pastoralism and agro-pastoralism, rangeland cultivation,
- small-holder agriculture, milk production and dairy products processing (Morton and Kerven,

136 2013; Abbink et al., 2014).

137

138

139

140

Fig. 1 Study area (Harvest Choice, 2015)

2.2 Data sets and methods

- The precipitation data set used in this work is the Climate Research Unit (CRU) data developed
- 141 by University of East Anglia. The data retrieved from was 142 http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.00/data/ at a spatial resolution of 0.5 x 0.5
- 143degrees covering a temporal range of 1920 to 2015. The Standardized
Precipitation Index (SPI)

144	developed by McKee et al. (1993) is a popular index that is used to characterize drought at different
145	time scales. SPI is computed by fitting a gamma distribution function to precipitation data of given
146	frequency distribution over an area, and subsequently transforming the gamma distribution to a 147 normal distribution with a mean and variance of zero (0) and one (1) respectively (Suryabhagavan,

2016). The aim of doing this is to minimize skewness in the data to zero. The Gamma distribution 148 is widely used to represent precipitation time series (Guttman, 1999). The drought magnitude was 149 obtained as the cumulative SPI over the drought months taken as a positive value. The intensity 150 151 (drought severity) was computed as the magnitude divided by drought duration. The general 152 technique for detecting changes in precipitation and drought is trend analysis. In this work, Trend analysis of precipitation and SPI will reveal will reveal the trends in drought over East Africa. 153 Since, the input parameter for SPI computation is precipitation, trend analysis of precipitation will 154 be done in order to study the local changes in climate. The Mann-Kendall non-parametric test was 155 adopted in this work to assess the trends in precipitation and SPI and, also test the statistical 156 157 distribution of the data records. Mann-Kendall was most preferred because it works well to avoid the problem caused by skewness of which precipitation is a kind of data that may be either 158 159 negatively or positively skewed due to the existence of extreme values (Mahajan & Dodamani, 2015). 160 161

162 2.2.1 SPI

¹⁶³ In calculating SPI, we adopt methods by Haroon, et al. (2016) and Guttman (1999), and fit a

164 probability distribution to long-term monthly precipitation records. The mean (x), standard 165 deviation (s) and skew (sk) are determined as follows:

166
$$\operatorname{mean}(x) = N$$
 (1)
 $\sqrt{\frac{\sum(X - \vec{X})^2}{N}}$

167	standard deviation (s) = \underline{N}	$\underline{\Sigma(X-\vec{X})^2}$	(2)
168	skewness (sk) = $(N - 1)(N - 2)$. N	(3)	

169 where, x is the precipitation time series and N is the length of data records. The precipitation

data are transformed by the log normal (ln) and the mean of those values is computed. The

- 171 transformed values are further subjected to the constant U, which is used to compute the shape and
- 172 Scale parameter as follows:
- 173 $\operatorname{Log\,mean} = X_h = N = N$ (4)

174
$$U = \ln(X) - N$$
 (5)

175 Shape
$$\frac{1}{4U} [1 + \sqrt{\frac{4U}{3}} \ (\beta) = (6)$$

176 and,
$$\frac{\vec{X}}{\beta}$$
 Scale (α) = (7)

177 Further, the log values are transformed by the gamma distribution, incorporating the shape and178 scale values:

179 Cumulative Gamma function
$$G(x) = \alpha_{\beta} {}^{1} {}_{\Gamma\beta} \int_{x_{0}} \beta - 1e_{a} dx$$
 (8)

Similarly,
$$t = \ln \begin{pmatrix} 1 & 181 \\ (1 - X_{0})^{2} \end{pmatrix}$$
, where $0.5 < X_{g} \le 1.0$ 1
180 and, we perform T transform as $= \ln \begin{pmatrix} x_{\theta} \\ x_{\theta} \end{pmatrix}$, where $0 < X_{g} \le 0.5$ (9)

$$\frac{C_{0} + C_{11} + C_{212}}{1 - 2}$$
182 and the SPI= $-t + \frac{1}{2}$ $-1 + dt + dt_{2} + ds_{13}$ where $0 < X_{g} \le 0.5$ (10)
 $C_{0} + C_{11} + C_{212}$
183 or SPI= $t^{-1} - \frac{1}{2}$ $-1 + dt + dt_{2} + ds_{13}$ where $0.5 < X_{g} \le 1.0$ (11)
184 The constants expressed in equations (10) and (11) are given as follows
185 $C_{0} = 2.515517$, $d_{1} = 1.432788$
186 $C_{1} = 0.802853$, $d_{2} = 0.189269$
187 $C_{2} = 0.010328$, $d_{3} = 0.001308$
189 2.2.2 Drought Magnitude, Duration and Intensity
190 The drought magnitude (D_{M}) was obtained as follows
191 $D_{M} = -\sum_{ni} = 1SPI_{ij}$ (12)
192 where D_{M} is the drought magnitude, n is the number of months with drought event at j timescale.
193 Drought intensity (D_{i}) is the ratio of drought magnitude (D_{M}) to drought duration (D_{d}) as
194 follows:
 $D_{M} = -D_{M}$ (13)

197 2.2.3 Mann-Kendall Trend Test

198 The Mann-Kendall trend test is given as

$$= \sum_{i=1}^{n-1} \sum_{\substack{n \\ 199}}^{n} S_{j-1+1} Sgn(x_j - x_i)$$
(14)

200 where is the time series ranked from x_i $i=1, 2, \dots, n-1$ and x_j from $j=i+1,2,\dots,n$. All the data

201 values are taken as reference point to which comparison is done with the rest of the data values x_j

$$+ 1, > (x_j - x_i)

 203 sgn(x_j - x_i) = 0, = (x_j - x_i)

 - 1, < (x_j - x_i)$$
(15)

The statistics of variance is given as

206 where is the number of ties up to sample value t_i *i*. Z_c is the test statistics and is calculated as $Z_c =$

$$S-1$$

$$\sqrt{Var(S)}, S > 0$$
2070, • $S = 0$

$$\sqrt{\frac{S-1}{\sqrt{S-1}}}$$

$$Var(S), S < 0$$
(17)

208

204

209 Z_c describes a Standard Normal Distribution (SND) and positive and negative values of Z_c shows 210 an upward and downward trend respectively. According to Mondal et al. (2012), a significance 211 level is also used in testing either an upward or downward monotone trend, if γZ_c is greater than 212 Z_{γ} then the trend is considered significant and vice versa. 2

213

214 2.2.4 Sen's Trend Estimator

The Sen's trend estimator test was described by Sen (1968) and the magnitude of the trend is given

216 by

217

- $T_i = \underbrace{x_j x_k}_{j k} \tag{18}$
- where x_j and x_k are considered as data points j and k (j>k) compatibly. The median of these N

values of T_i is represented as Sen's estimator of slope which is given as

220
$$Q_i$$

$$\begin{array}{c}
T_{N+1} & N \text{ is} \\
\underbrace{odd}_2 \\
\swarrow \\
= 1 \\
\underbrace{1}_{N_2+T_{N+22}} \\
N \text{ is even}
\end{array}$$

221

Positive and negative values of *Q_i* represent upward (increasing) and downward (decreasing)

trends, respectively.

In order to assess the spatio-temporal occurrence of drought over East Africa, the 3-month, 6225 month and 12-month SPI was used to study drought in the long term. This period is enough for 226 drought frequency and intensity assessment. The SPI was computed on monthly scale so that the 227

consistency of drought duration and intensity can be determined according to Table 1.

228	Table 1 Standard SPI table (McKee et al., 1993)		
	SPI value	Description	
	2 >	Extremely wet	

1.5 - 1.99	Very wet
1.0 - 1.49	Moderately wet
0 - 1.0	Mildly wet
-1.0 - 0	Mildly drought
-1.51.0	Moderately drought
-2.01.5	Severe drought
-2 <	Extreme drought

From a statistical point of view, droughts are considered as multivariate events whose dimension
and treatment depends on their characteristics such as the duration, severity and frequency
(Gonzalez et al., 2004). Most studies have proposed the Joint Probability Distribution Function
(JPDF) for determining probabilistic characteristic because drought severity and duration are often 234 difficult to treat separately.

235 Given a set of observations y_i y_n , a mathematical expression of bivariate Kernel probability 236 density estimator f_{SD} is given as (kim et al., 2003):

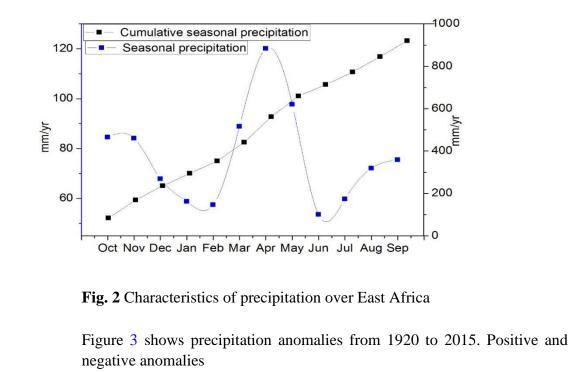
237
$$f_{SD}(s,d) = {}_{n} {}^{h_{d}\sum_{i=1}^{n} \left\{ K(\frac{S-S_{i}}{h_{s}}) K(\frac{d-d_{i}}{h_{d}}) \right\}} {}^{1} {}_{hs}$$
(20)

The joint return period of drought (T_{Sd}) is given as (kim et al., 2003):

$$TSd = n[1 - fSD(s,d)]$$
(21)

240 where N is the numbers of years.

241


242 **3. Results**

243 **3.1. Seasonal Characteristics of Precipitation and Precipitation Anomaly over East Africa**

244 **from 1920 to 2015**

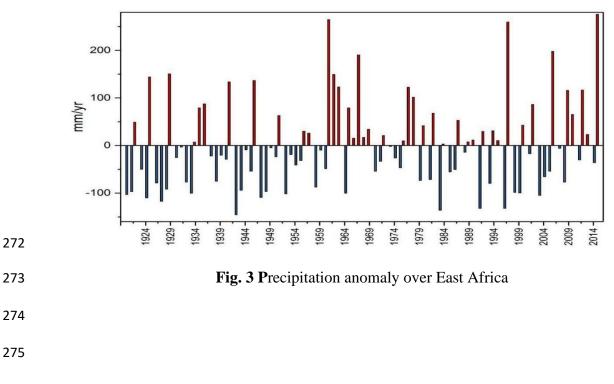
245 The seasonal characterization of precipitation over the East African region (Fig. 2) reveals that

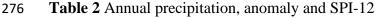
long precipitations occur during the period of March to May (MAM) while short precipitations
occur from the period of October to December (OND). The study analysis revealed that peak
annual precipitation from 1920 to 2015 is recorded as 120 mm/yr while average seasonal
cumulative precipitation from 1920 to 2015 is about 920 mm/yr. Crop production over East Africa
is highly dependent on the long rainy season, which accounts for more than 70% of total annual
precipitation. It is therefore, understandably that fluctuations in precipitation within this period is
252 capable of altering and impacting food production across the region.

256 represent wet and dry conditions, respectively, over East Africa. Based on the data used from 96

253

254


255


257 years (from 1920 to 2015) there are a total of 41 wet years and 46 drought years. The anomaly of 258 the wet years and dry years were obtained when precipitation was above and below normal

conditions, respectively, as seen in Fig. 3. The years 1961, 1967, 1997, 2007 and 2015 are the

wettest while 1943, 1983, 1993, 1997 and 2003 are the driest. The annual precipitation, anomalies

261 and the corresponding SPI's for wet and dry years are presented in Table 2. Results show that both wet and drought spells coincide with positive and negative anomalies over East Africa, 262 respectively. This shows that the reason for the drought periods was as a result of unavailability of 263 water in the soil. The magnitude of anomaly of the wet years was higher than that of the dry years 264 265 and both wet and dry years were obtained when precipitation was above and below normal conditions, respectively. A detailed inspection of dry- and wet-year results also revealed that the 266 chances of occurrence of wet years are greater in comparison to dry years. This information is 267 268 important for the future planning and management of agricultural practices. This work has allowed us to identify years within the region that are prone to dry/wet conditions using available 270 269 precipitation data records from 1920 to 2015.

Condition	Yr			
		Annual precipitation		SPI
	1000 01	(mm/yr)	Anomaly (mm/yr)	1.0
	1920-21	817.7	-102.8	-1.2
	1921-22	823.5	-96.9	-1.1
	1924-25	810.4	-110.0	-1.2
	1927-28	803.3	-117.2	-1.3
	1928-29	828.7	-91.7	-1.0
	1933-34	820.1	-100.3	-1.1
	1942-43	775.0	-145.4	-1.7*
Dry Spells	1943-44	826.4	-94.1	-1.0
	1947-48	811.3	-109.1	-1.2
	1948-49	823.7	-96.7	-1.1
	1952-53	818.9	-101.5	-1.1
	1964-65	820.4	-100.0	-1.1
	1983-84	784.2	-136.2	-1.6*
	1991-92	788.1	-132.3	-1.5*
	1996-97	788.2	-132.2	-1.5*
	1999-00	820.7	-99.7	-1.1
	2003-04	815.8	-104.7	-1.2
	Yr	Annual precipitation	Anomaly	SPI
	1925-26	(mm/yr) 1064.5	(mm/yr)	1.6
	1925-20	1004.3	144.1	1.6
	1929-30	1071.0	150.6	1.6
	1941-42	1054.0	133.6	1.4
	1946-47	1056.9	136.5	1.5
	1961-62	1185.0	264.5	2.7**
	1962-63	1069.6	149.2	1.6
	1963-64	1043.2	122.8	1.3
	1967-68	1110.8	190.4	2.0**

Wet	1977-78	1042.9	122.4	1.3
Spells	1978-79	1021.9	101.5	1.1
	1997-98	1180.0	259.6	2.7**
	2002-03	1006.7	86.3	1.0
	2006-07	1118.2	197.8	2.1**
	2009-10	1036.0	115.6	1.3
	2012-13	1036.8	116.4	1.3
	2015-16	1196.4	275.9	2.8**

3.2. Spatial and temporal representation of spatial SPI over East Africa 279 Figure 4 shows the spatial representation of SPI for different hydrological years from 1920 to 2015 over

East Africa. Results show that Figs. 4a, d and k recorded the highest precipitation while Fig. 4b, e

and h recorded the least precipitation. It is critical to note that most of the regions that recorded

the highest precipitation in some years also recorded the least in other years, hence establishing

283 the fact that precipitation across most of the East African region is fluctuating and drought is not 284 peculiar to one region.

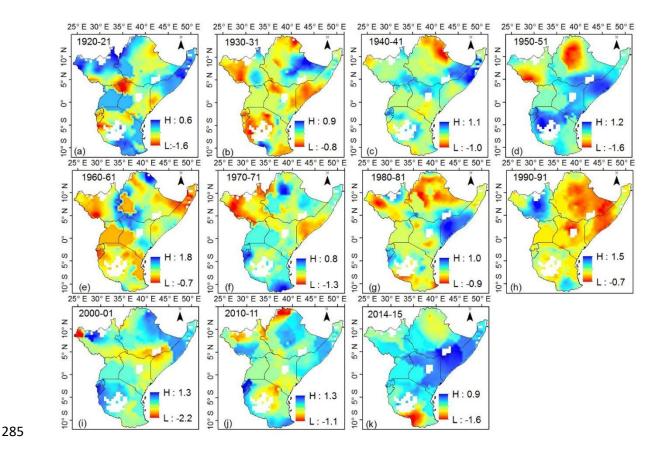
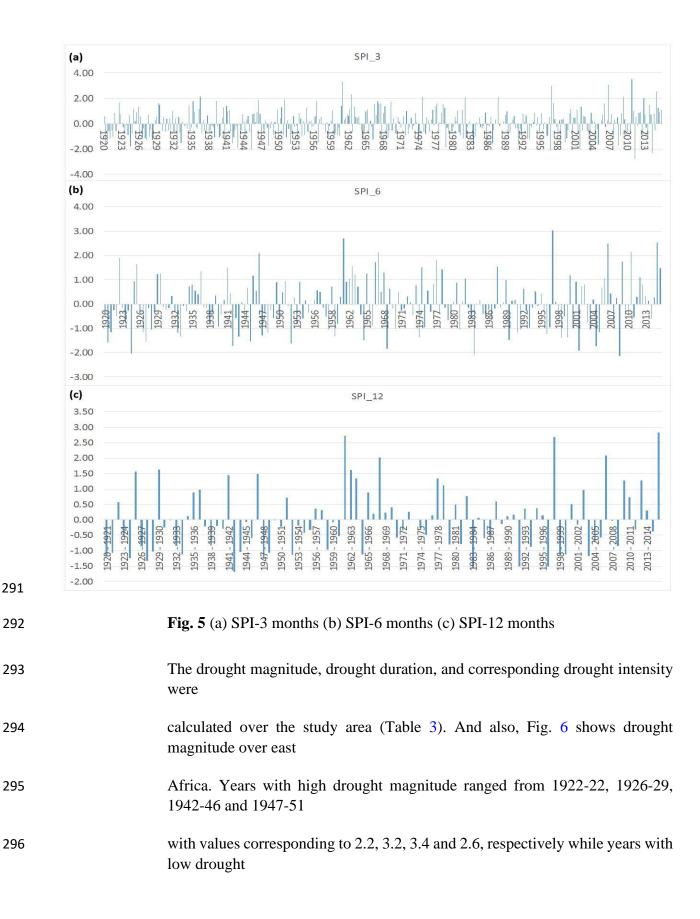
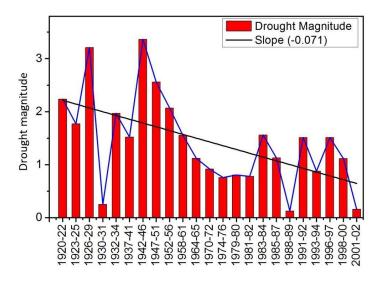
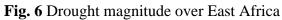



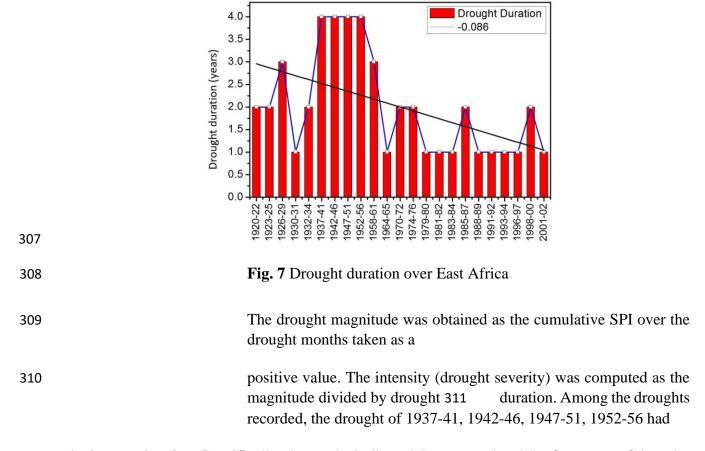
Fig. 4 Spatial representation of SPI for different hydrological years over East Africa

From Fig. 5, calculated SPI at different time scales of 3, 6 and 12 months indicated that for shorter time scales (i.e., 3 months, 6 months), there was a high temporal variability in dry and wet


289 periods, whereas at longer time scales (12 months), frequency of dry and wet periods were


290 considerably decreased.

297	magnitude ranged from 1930-31, 1988-89 and 2001-02 with values as 0.2, 0. and 0.15,
298	respectively. Figure 7 shows drought duration in years over East Africa with t longest droughts
299	occurring from 1929-29, 1937-41, 1942-46, 1947-51, 1952-56, and 1958- with values in years 300 as 3, 4, 4, 4, 4, and 3 years, respectively, while t shortest droughts occurred in time period of 1
301	year and ranged from 1930-31, 1964-65, 1979-80, 1981-82, 1983-84, 1988-89, 1991-92, 1993-9


- 302 1996-97 and 2001-02 (Also see Table 3). A comparison between Fig. 6 (drought magnitude) and
- Fig. 7 (drought duration) shows that not all the severest drought took longer and vice versa. Both304 drought magnitude and duration showed a negative slope of -0.071 and -0.086, respectively.

- the longest duration. Specifically, the results indicated that on one hand the frequency of drought
- events were high at shorter time scales but lasted for shorter durations at longer time intervals,

and 314 on the other hand droughts were less frequent but persisted for longer periods of time.

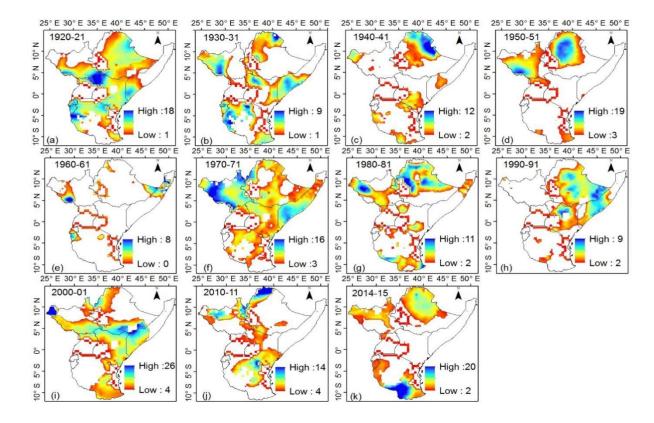

		-B	
Hydrological year	Magnitude	Duration	Intensity
1920-22	2.2333	2.000	1.1167
1923-25	1.7703	2.000	0.8852
1926-29	3.2102	3.000	1.0701
1930-31	0.2493	1.000	0.2493
1932-34	1.9668	2.000	0.9834
1937-41	1.5215	4.000	0.3804
1942-46	3.3653	4.000	0.8413
1947-51	2.5589	4.000	0.6397
1952-56	2.0666	4.000	0.5166

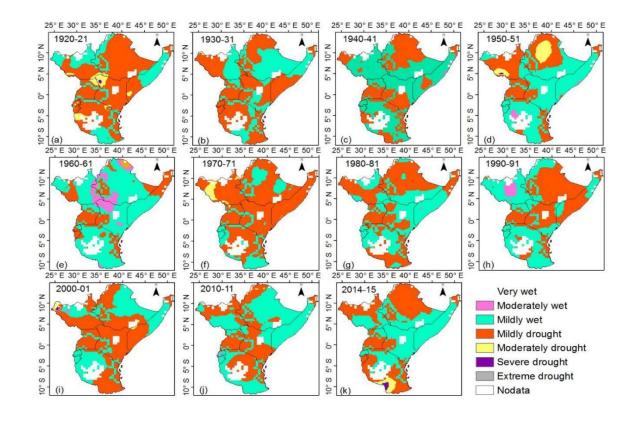
Table 3 Extraction of drought characteristics

1958-61	1.5564	3.000	0.5188
1964-65	1.1191	1.000	1.1191
1970-72	0.9154	2.000	0.4577
1974-76	0.7563	2.000	0.3781
1979-80	0.8044	1.000	0.8044
1981-82	0.7803	1.000	0.7803
1983-84	1.5593	1.000	1.5593
1985-87	1.1279	2.000	0.5640
1988-89	0.1257	1.000	0.1257
1991-92	1.5109	1.000	1.5109
1993-94	0.8771	1.000	0.8771
1996-97	1.5102	1.000	1.5102
1998-00	1.1151	2.000	0.5576
2001-02	0.1588	1.000	0.1588
	•		

Figure 8 shows the spatial map of drought magnitude across the East African region for different

318 hydrological years.

319

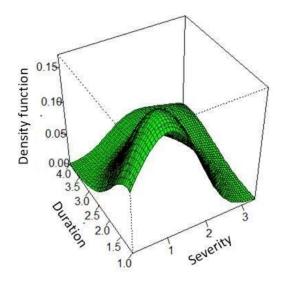

Fig. 8 Spatial drought magnitude over East Africa for different hydrological years

- The results show that the drought magnitude is highest in 1920-21, 1950-51, 1970-71, 2000-01
- and 2014-15 hydrological years. In 1920-21 hydrological year, regions that recorded high drought
- 323 magnitude include South Sudan, Uganda, Kenya, Rwanda, Burundi and Eastern Tanzania.In
- 324 1950-51hydrological year, drought magnitude was highest over Ethiopia and South Sudan.In
- 325 1970-71 hydrological year, drought magnitude was highest over South Sudan, Ethiopia and
- 326 Somalia. In 2000-01 hydrological year, drought magnitude was highest in South Sudan, Ethiopia,
- 327 Somalia and Kenya. In 2014-15 hydrological year, drought magnitude was highest in Ethiopia and

Tanzania. This indicated that besides seasonal variability of spatial drought magnitude, there exist 329 a strong variability of spatial drought magnitude across different decades. 330

331 3.3. Drought Risk Mapping and Joint Probability Distribution Function and Return years of332 Drought over East Africa

The spatial drought risk map was got from the spatial SPI map and represented in Fig. 9. It shows the spatial drought levels over East Africa across different decades, and changes across the region's land mass suggested to be as a result of changes in climate and land cover. There is high variability in drought across the decades over the region. These droughts could be categorized as ranging from moderate to extreme, with different durations and magnitudes. Nevertheless, the total duration, severity and magnitude of occurrence of the drought episodes varied from one location 339 to another across the decades.



341

Fig. 9 The spatial drought risk map across East Africa

- 342 From Fig. 9, it appears as if drought repeats itself in some selected locations after a period of
- 343time but all droughts experienced in all locations and at all recorded periods
appear to differ (see 344 Figs. 9a to 9k). Drought may have similar
magnitudes or duration but different levels of severity.
- For example, the droughts with magnitude (duration in years) of 1.5(4), 3.4(4), 2.6(4) and 2.0(4)
- lasted from 1937 to 1941, 1942 to 1946, 1947 to 1951 and 1952 to 1956, respectively (see Table
- 347 3). Since both drought severity and durations have different distributions, the Joint Probability
- 348 Distribution Function (JPDF) given by equation (9) was used to obtain the probability Density
- function and the Joint return years were obtained using equation (10). The JPDF analysis is a useful

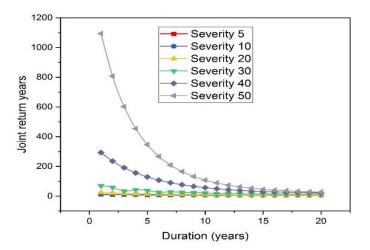

- multivariate tool needed for water resources management. Based on the drought characteristics,
 351 duration and magnitude using the 12-month SPI, the JPDF was estimated as shown in Figure
 10.
- From Fig.10, it shows that probability of drought occurrence is high when severity is low and such
- droughts occur at short time intervals. Also, it takes so many years for a severe drought to repeat354 itself at short time intervals.

Fig.10 The JPDF for drought duration and severity (magnitude)

357 Once the JPDF for the bivariate return periods of drought was calculated, the drought severity358 duration frequency curve of East Africa was created (Fig.11). Fig.11 is a bivariate analysis of 359 drought severity for East Africa region showing return periods and different levels of severity.

Drought severity itself is a function of the different drivers of drought over particular area. Drought severity characterizes drought magnitude of dry events. The JPDF drought-based curves were developed for selected recurrence severity levels of 5, 10, 20, 30, 40 and 50 years are plotted in 363 Fig.11. It is observed that for any given duration, severe droughts have more return periods.

Fig. 11 Joint return years for severity (magnitude) corresponding to duration

- 366Table 4 shows the drought occurrence over East African countries. The result shows
that the
- 367 drought mechanism is complex and the drivers highly depend on the local environmental
- 368 conditions prevailing in a particular country. All drought episodes are associated with negative
- 369 precipitation anomalies, low precipitation values closely matching the SPI values. The SPI values
- 370 depicting drought levels (shown in Table 1) are applied to reveal the varying levels of drought
- experienced over specific countries in East Africa over the study period.
- 372**Table 4** Annual precipitation anomalies for various countries in East Africa from 1920-
2015 373 with SPI-12. The value in parenthesis represents SPI

BurundRwand Ethiopi Kenya	Somali Ugand Tanzani So			
i a a	а	а	а	Suda
				n
1920/2 -145 (197 (-		-188	(-	
1 1.0) 1.3)		1.4)		
1921/2 -383 (-				
2 3.0)				
1923/2 -174 (231 (-				
4 1.2) 1.5)				

1924/2 -93 (- -150 (-1.2) -190 (--165 (- -84 (-5 1.4) 1.3) 1.0) 1.0) 1926/2 -168 (--106 7 1.2) (-1.3) 1927/2 -259 (- -225 (--125 (-1.0) -155 (-8 1.9) 1.5) 1.1) 1928/2 -216 (- -158 (--128 (-1.0) -144 (- -191 (-9 1.6) 1.0) 1.0) 1.5) 1932/33 -96 (- -163 (-1.4) 1.1) 1933/34 -285 (- -291 (--163 (-2.1) 2.0) 1.2) -95 (--72 (- -191 (-1938/39 1.0) 1.4) 1.0) 1940/41 -102 (-1.1)1942/43 -203 (- -237 (- -146 (- -129 (-1.0) -215 (--123 1.5) 1.6) 1.7) 1.6) (-1.5) -109 (- -139 (- -128 (-1943/44 -158 (-1.7) 1.0) 1.0) 1.0) -104 (-1945/46 -165 (--193 (-1.6) 1.1) 1.5) 1947/48 -199 (--122 (--89 (- -128 (-1.0) 1.4) 1.0) 2.0) 1948/49 -241 (--88 (-1.3) 2.0) 1950/51 -170 (--124 2.0) (-1.5) -100 (--177 (--222 (-1952/53 1.1) 1.3) 1.8) -72 (-1953/54 1.0) 1954/55 -106 (-1.6) -130 (-1955/56 -117 (-1.5) 1.8) 1958/59 -193 (--68 (--162 (-1.0) 1.4) 1.3) 1960/61 -211 (- -148 (--164 (-1.5) 0.9) 1.3) -121 (- -140 (-1.2) -80 (- -213 (- -148 (-1964/65 1.4) 1.2) 1.6) 1.1) 1970/71 -99 -86 (-(-1.3) 1.2) 1971/72 -132 (-1.6) 1975/76 -183 (-1.6) 1979/80 -113 (- -149 (-1.2) -77 (- -189 (--110 1.3) 1.1) 1.4) (-1.3)

1981/82	-157 (- 1.0)		-121 (- 1.5)
1982/83			-125 (- 1.5)
1983/84	-151 (248 (-2.2) 1.7)	-83 (177 (- 1.2) 1.3)	-228 (- 2.9)
1985/86	-114 (- 1.3)		
1986/87	-105 (- 1.2)		-218 (- 2.8)
1989/90			-124 (- 1.5)
	(151 (155 (147 (-1.2) 1.0) 1.8)	-156 (154 (- 2.7) 1.1)	-97 (- 1.2)
1993/94 -161 1.1)	(-	-84 (137 (- 1.2) 1.0)	
1996/97 -152 1.1)	(138 (136 (-1.1) 1.6)	-90 (160 (169 (- 1.3) 1.2) 1.3)	-86 (- 1.0)
1998/99	-166 (104 (171 (-1.4) 1.1) 1.2)	-87 (- 1.3)	1.0)
1999/00 -158 (1.1)		-254 (- 2.1)	
2003/04	-250 (141 (161 (-1.3) 1.7) 1.6)	-177 (- 1.3)	
2004/05	-160 (-1.3)	-178 (- 1.3)	
2005/06	-175 (- 1.1)	-139 (- 1.1)	
2007/08		-142 (- 1.0)	
2008/09			-150 (- 1.9)
2010/11	-119 (-1.0)	-150 (- 1.2)	
2011/12 -204 (1.5)	<u>/-</u>		

374 Note: 1920/21 represents a hydrological year starting in 1920 and ending in 1921.

375

The spatial and temporal variability in drought trends is observed in the study area and shown

- 377 in Table 5 as the Negative and Positive SPI trends at multiple time scales across the East African 378 countries. Of all the SPI models tested, only SPI-12 indicated significant trend values in Burundi,
- Rwanda and Uganda with Sen's slope (Kendal tau) values of 0.008 (0.143), 0.007 (0.144) and
- 380 0.008 (0.149) respectively. Basically, the SPI-12 shows the status of year-round water shortage
- caused by drought while SPI-6 and SPI-3 are appropriate indicators of the status of seasonal water382 shortage caused by drought (Tan et al., 2015).

Table 5 Mann-Kendall Trend and significance level of SPI-3, SPI-6 and SPI-12 over East African countries

Durati on	Parameter	Burundi	Ethiopia	Kenya	Rwanda	South Sudan	Somalia	Tanzania	Uganda	Regional
	Kendal τ	0.060	0.017	-0.004	0.089	-0.058	0.026	-0.028	0.062	0.036
SPI-3	(Sign)	(0.086)	(0.635)	(0.914)	(0.011)	(0.097)	(0.450)	(0.419)	(0.074)	(0.307)
	Sen's slope	0.002	0.004	-0.0001	0.003	-0.005	0.002	-0.003	0.0002	-0.0001
	Trend	No	No	No	No	No	No	No	No	No
	Kendal τ	0.073	0.008	0.006	0.087	-0.051	0.040	-0.057	0.087	0.037
SPI-6	(Sign)	(0.140)	(0.879)	(0.908)	(0.079)	(0.305)	(0.421)	(0.247)	(0.079)	(0.457)
	Sen's slope	0.004	0.0001	-0.0003	0.004	-0.003	0.002	-0.003	0.005	0.002
	Trend	No	No	No	No	No	No	No	No	No
	Kendal τ	0.143	-0.009	0.031	0.144	-0.071	0.072	-0.016	0.149	0.103
SPI-12	(Sign)	(0.040)	(0.903)	(0.662)	(0.039)	(0.301)	(0.301)	(0.817)	(0.033)	(0.141)
	Sen's slope	0.008	-0.001	0.001	0.007	-0.004	0.004	-0.001	0.007	0.006
	Trend	Yes	No	No	Yes	No	No	No	Yes	No

Table 6 shows negative and positive precipitation trends at multiple time scales over East

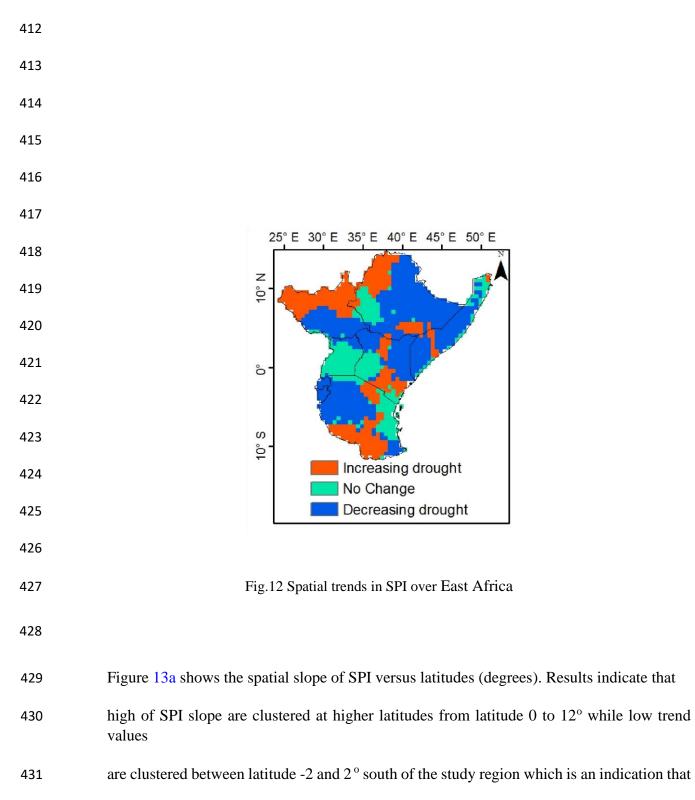
386 African countries. Out of eight countries, precipitation shows significant positive (insignificant

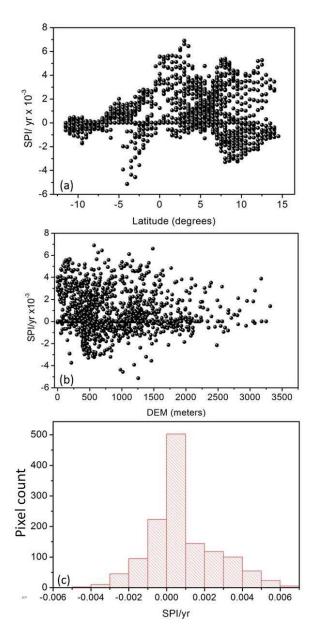
positive) trends over 1(4) countries and significant (insignificant) negative trends over 1(2) 388

countries from 1920 to 2015.

3	89	
-	05	

 Table 6 Mann-Kendall Trend and significance level of precipitation over East African countries

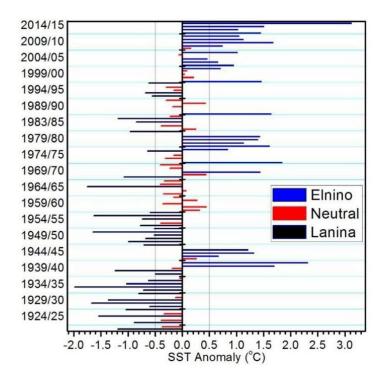

Kendal τ (sign)	Sen's slope	Trend
0.023 (0.248)	0.021	No
-0.001 (0.980)	-0.034	No
0.005 (0.799)	0.006	No
0.034 (0.088)	0.092	No
	0.023 (0.248) -0.001 (0.980) 0.005 (0.799)	0.023 (0.248) 0.021 -0.001 (0.980) -0.034 0.005 (0.799) 0.006


South-Sudan	-0.044 (0.028)	-0.042	Yes
Somalia	0.048 (0.05)	0.007	Yes
Tanzania	-0.010 (0.603)	-0.010	No
Uganda	0.033 (0.101)	0.022	No
Regional	0.025 (0.216)	-0.005	No

392 3.4 Spatial trends in drought across East Africa

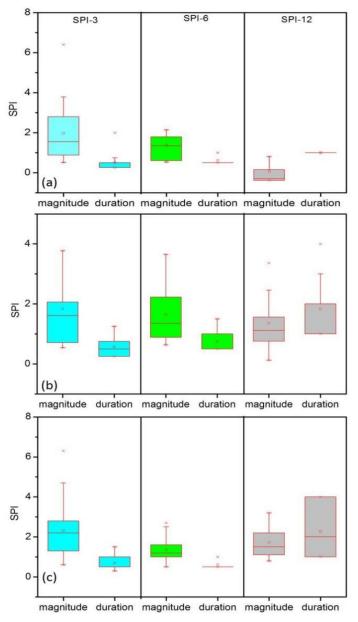
393 Figure 12 shows the spatial trend of SPI over East Africa. The approach involves running an 394 Ordinary Linear Regression model to the SPI maps generated. Results show that about 28, 22 and 50 % of the SPI indicated spatial increase, no change and decrease in SPI trends respectively 395 over the study area from 1920 to 2015. Increase (decrease) of SPI trends by our analysis means 396 397 an increase (decrease) in moisture conditions corresponding to decrease (increase) in drought 398 prevalence. Assessing the mean SPI drought characteristics over the region indicates that there were some notable variations in SPI, consistent with the distribution of precipitation. Areas with 399 increase in SPI were located northeast, along the shores of the Indian Ocean and some few areas 400 in the Central part of the study area. Areas with no trend changes in SPI were located in 401 northwest, northeast, southeast parts of East Africa and close to the shores of the ocean. Also, 402 403 areas with decreasing SPI trend pixels were located around in the Northwest, Northeast, and Southwest and along the shores of the study area. The 96-year precipitation records in areas with 404 405 spatial increase in SPI trend were 11.3, 136.5, 77.3 and 26.5 mm for minimum, maximum, mean and standard deviation values respectively while the precipitation records in areas with spatial 406 decrease in SPI were 539, 138.3, 56.1 and 29.7 for minimum, maximum, mean and standard 407 408 deviation values respectively. For areas with no spatial trend changes in SPI were 7.2, 161.6, 93.2 and 31.9 for minimum, maximum, mean and standard deviation values, respectively. Areas 409

410 with improvement in drought indicated the low precipitation standard deviation. Our result 411 confirms that areas with no SPI changes in drought were wetter from 1920 to 2015.



434 Fig.13 (a) SPI slope versus latitude (b) SPI slope versus DEM and (c) histogram of pixel count

- 435 Figure 13b shows SPI slope versus DEM where both high and low slope values of SPI are
- 436 clustered at lower latitudes between 0 to 1500 m, and at the foot hills of mountains. The histogram
- 437 of the SPI trends is shown in Figure 13c. It can be observed that most of the SPI trends are clustered


- 438 around the 0.0 mark, which shows that the density curve of the pixels is symmetrical and centered
- 439 about its mean. The SPI trends indicate high positive (negative) pixels above (below) the zero440 trend mark, implying that drought prevails in both low and high elevation areas up to 2000 m. 441 **3.5 ENSO-drought relationship**

Drought is considered as one of the most complex and deleterious natural, with severe impacts on 442 443 natural ecosystems, water resources and food security (Tan et al., 2015). In this study, we selected 444 the El Niño, neutral, and La Niña years based on data from sea surface temperature (SST) anomalies of the tropical Indian Ocean in the region + 0.5 °C and - 0.5 °C also known as the Niño 445 3.4 region. The gridded Extended Reconstructed Sea Surface Temperature version 4 (ERSSTv4) 446 temperature data was used to study the ENSO events. We considered El Niño (La Niña) years as 447 years with average SST anomalies above (below) temperature values of +0.5 °C (-0.5 °C) from 448 October to March. The October to March period typically coincides with peak ENSO Conditions 449 450 Neutral years if the SST values are within - $0.5 \degree C < SST < 0.5 \degree C$ as shown in Fig. 14.

452 Fig. 14 Extended reconstructed sea surface temperature showing El Niño, neutral and La Niña years.

- 454 The SPI values in neutral, El Niño, and La Niña years were studied over East Africa from 1920
- to 2015. The mean drought characteristics, magnitude, duration and even the dispersion, of drought
- 456 magnitude in SPI-3, SPI-6 and SPI-12 are very similar in El Niño and La Niña events while the457 neutral years presented high dispersion in both drought magnitude and duration (Fig. 15).

458 Fig. 15 Boxplots of mean magnitude and duration for (a) El Niño (b) neutral and (c) La Niña years

459 Results shown on Fig. 15a indicate that the mean drought duration during El Niño years were

460 less than 1.5 years while the mean drought duration during neutral (La Niña) years was 3 (4) years 461 (Figs. 15b and c).

462 In this study, there is no direct link between ENSO and drought over the East African region.

But the association of drought in most El Niño and La Niña years suggests that the impact of

464	ENSO cannot be ruled out. Our results have supported reports that present teleconnections between
465	drought and ENSO. Previous reports have shown that ENSO events normally peak during October
466	to March periods which coincides with the short (SON) and long (MAM) rainy seasons of East
467	Africa. This period coincides with the SON and MAM seasons and increased precipitation in East
468	Africa. Considering the major drought episodes over the East Africa, our analysis has only agreed
469	with the major droughts of 2011/12. Based on our results, 2011/12 was captured as an El Niño
470	year with drought magnitudes captured by SPI-3 and SPI-6 as 2.8 and 0.5 respectively with drought
471	duration of 3 and 6 months, respectively. The drought episode of 2011/12 affected countries like
	472 Somalia, Uganda, Kenya, Ethiopia, South-Sudan and other nearby countries.

473 **3.6.** Discussion

Generally, the actual precipitation expressed as a percentage deviation from normal (or long-term 474 average) is the most commonly used drought indicator, although it has limited use/reliability for 475 476 spatial comparison due to its dependence on the mean (Kumar et al., 2009). According to Solanki and Parekk (2014), the SPI represents a departure from the mean and is thus, expressed in standard 477 deviation units as a normalized index in time and space. The departure from the mean is a 478 479 probability indication of the severity of the wetness or drought that can be used for risk assessment. 480 The application of data from 1920 in this study is considered most desirable as long records provide 481 more reliable statistics for SPI, given that it is a statistical approach. As a result, SPI has gained 482 importance in recent years as a potential drought indicator permitting comparisons across different 483 precipitation zones (Kumar et al., 2009; Solanki and Parekk, 2014).

484	This study anal	yzed SPI values be	etween 1920 ar	nd 2016 with a	ctual precipitation and
-----	-----------------	--------------------	----------------	----------------	-------------------------

- 485 precipitation deviation from normal in East Africa, a generally low precipitation and drought prone
- region. The objective is to establish whether or not SPI can be used as a suitable indicator (when
- 487 compared to conventionally adopted precipitation deviation-based approach for drought intensity 488 assessment) over an extended region such as East Africa.
- 489 The results of the analysis show that very low or very high precipitation corresponded to very

low or very high SPI values. Thus, SPI values adequately estimated the dryness or wetness when

- the precipitation is very low or very high, respectively. Table 2 shows that all periods that
- 492 experienced dry spells (or drought) recorded low/negative anomaly and SPI values with the periods
- 493 1942-1943 recording the driest (-1.7) followed by 1983-1984 (-1.6). Similarly, the periods of wet
- spells reveal positive anomaly and SPI values with the wettest period being 2014-2015. The
- 495 outcome of this study is in line with the SPI classes proposed by McKee et al. (1993). However,

there is a marked variation between drought characteristics of magnitude, duration and intensity

- 497 when viewed against temporal scales. In essence, no time scale recorded the highest in all 3 drought
- 498 characteristics throughout the 95-year period of analysis (Table 3). This is similar to the
- 499 observation of SPI at different time scales of 3, 6 and 12 months which reveal that for shorter time
- scales, there was a high temporal variability in dry and wet periods, whereas at longer time scales 501 (12 months), frequency of dry and wet periods were considerably decreased (Fig.

5).

502 The results of this study indicate that drought characteristics analysis (magnitude, duration and

intensity) using SPI can be adequately applied for drought intensity assessment particularly in

regions such as East Africa where low precipitation and vulnerability to droughts is prevalent.

505 The precipitation anomalies (Table 4), Mann-Kendall Trend and significance level of SPI-3,

506 SPI-6 and SPI-12 (Table 5) and Mann-Kendall Trend and significance level of precipitation (Table

507 6) reveal varying results both temporally and spatially across the eight countries comprising the

East African region covered in this study. For instance, the same drought level (SPI) may be

- 509 prevalent in a country but the precipitation anomaly values may differ (Table 4). The drought of 510 1942-43 was worst hit in countries like Burundi, Rwanda, Ethiopia, Uganda and South-Sudan.
- 511 From 1983-84, Ethiopia, Kenya, Somalia, Uganda and South-Sudan experienced the worst drought 512 episodes. Also, from 1991-92, Ethiopia, Kenya, and Somalia experienced worst drought spells, while in 1996-97, the highest effect was observed in Ethiopia. Table 5 reveals that out of eight 513 countries, SPI-12 detects significant positive (insignificant positive) trend over 3(2) countries and 514 insignificant negative trends over 3 countries. SPI-6 detects insignificant positive trend over 6 515 516 countries and insignificant negative trend over 2 countries. SPI-3 detects insignificant positive 517 trends over 5 countries while insignificant negative trends in 3 stations. At regional (continental 518 scale), there was no significant trend in SPI-3, SPI-6 or SPI-12. The results in Table 6 show that most countries experience oscillations between wet and dry conditions while few countries are 519 520 getting wetter with few others getting more arid. At regional (continental scale), there was no 521 significant trend in precipitation. There was no significant change in precipitation in annual rainy seasons during the study period. As no annual trend was observed in the precipitation amount, we 522 523 applied SPI to study precipitation address potential changes in precipitation extremes.

- 524 There is expected to be some time lag due to the unique vegetation types which, according to
- 525 Abbas et al. (2014), should have different capacity of water storage. The humid area covering most
- 526 of Uganda as shown on Fig. 1 (with predominantly tall and dense forests) are expected to have a
- longest time lag because, according to Allen (2008), forests possess the best capacity of water
 retention with deeper roots to tap groundwater. Conversely, arid and semi-arid areas such as
- 529 Kenya, Somalia and Ethiopia are covered mostly by grasses and should have shorter time lag due
- to the lower capacity of water retention for grasses. South-Sudan and a significant area of Tanzania
- are sub-humid areas largely covered by crops. Generally, the water storage capacity of crops is
- 532 likely similar to or even lower than that of grasses, and Grünzweig et al. (2015) posits that artificial
- 533 irrigation could alter the time lag for regions engaged in irrigation agriculture. It is therefore,
- expected that semi-arid areas should have a time lag similar to or longer than arid areas (Cong et
- al., 2017). This pattern is largely similar to the outcome of the study as shown on Tables 4, 5 and536 6, and Figs 4, 8 and 9.

538 4. Conclusions

539 In this study, the SPI approach applied to this study adequately explained the drought conditions

across the East African region between 1920 and 2015. The drought characteristics of magnitude,

- 541 duration and intensity collectively explained the severity levels of drought within the study area.
- 542 It is expected that the outcome of this study could be applied elsewhere in sub-Saharan Africa 543 where precipitation is limited and likelihood of drought is high.
- The result from the 96 years (from 1920 to 2015) data records shows that there are a total of 41

545	wet years and 46 drought years. The anomaly of the wet years and dry years were obtained whe	en

- 546 precipitation was above and below normal conditions respectively. The years 1961, 1967, 1997,
- 547 2007 and 2015, were adjudged the wettest while 1943, 1983, 1993, 1997 and 2003 were adjudged
- the driest. Both the positive and negative peak of SPI coincided with the positive and negative
- anomaly peaks, respectively. The computed SPI at different time scales of 3, 6 and 12 months
- indicated that for shorter time scales, there was high temporal variability in dry and wet periods,
 551 whereas at longer time scales (12 months), frequency of dry and wet periods were considerably 552 decreased.
- 553 Years with high drought magnitude ranged from 1920-22, 1926-29, 1942-46 and 1947-51 with
- 554 SPI values corresponding to 2.2, 3.2, 3.4 and 2.6, respectively while years with low drought
- magnitude ranged from 1930-31, 1988-89 and 2001-02 with values as 0.2, 0.12 and 0.15,
- 556 respectively. The longest droughts occurred from 1929-29, 1937-41, 1942-46, 1947-51, 1952-56,
- and 1958-61 with values in years as 3, 4, 4, 4, and 3 years, respectively, while the shortest
- droughts occurred in time period of 1 year and ranged from 1930-31, 1964-65, 1979-80, 198182, 559 1983-84, 1988-89, 1991-92, 1993-94, 1996-97 and 2001-02.
- 560 Our study also indicated that high values of SPI slope are clustered at higher latitudes from 0 to
- 561 12° while low trend values are clustered between -2 and 2° south of the study region which is an
- indication that drought is prevalence in the northern section than southern section of the study area.
- Both high and low slope values of SPI are clustered at lower latitudes between 0 to 1500 meters,
- and at the foot hills of mountains. The SPI trends showed high positive (negative) pixels above

- 565 (below) the zero-trend mark, indicating that drought prevails in both low and high elevation areas 566 up to 2000 m.
- 567 In terms of ENSO impacts on drought over the region, the mean characteristics, magnitude,
- 568 duration and even the dispersion, of drought magnitude in SPI-3, SPI-6 and SPI-12 are very similar
- in El Niño and La Niña years while the neutral years presented high dispersion in both drought
- 570 magnitude and duration. The mean drought duration during El Niño years were less than 1.5 years
- 571 while the mean drought duration during neutral (La Niña) years was 3 (4) years which suggest that
- 572 there is no direct link between ENSO and drought over the East African region. But the association
- 573 of drought in most El Niño and La Niña years suggests that the impact of ENSO cannot be ruled 574 out since peak ENSO events occur during October to March periods which coincides with the short 575 (SON) and long (MAM) rainy seasons of East Africa.
- 576 Furthermore, the outcome of this study indicates that SPI can be reliably suitable and most
- 577 applicable in drought studies within the study area as it provides for analysis in multi-temporal
- 578 levels such as monthly, single seasonal, multi-seasonal, and annual droughts, thereby allowing for
- 579 a spatio-temporal scale of analysis that creates the room for SPI to provide accurate meteorological
- and agricultural drought analysis. To this extent, the study provides policy makers the necessary
- 581 information that is critical to local adaptation, increased resilience and mitigation measures in the
- face of a vulnerable eco-climatic system triggered by a continuously changing climate withinEast 583 Africa as well as other parts of sub-Saharan Africa.

584	Our study is particularly relevant in its ability to depict continuous and synoptic drought	
585	conditions all over East Africa, providing vital information to farmers and policy makers, using	
586	very cost-effective method. This is particularly the case in view of the assertion by Karavitis et al.	
587	(2011) that "effective (and reliable) information and early warning systems based on indicators	
588	such as the SPI are the foundation for overall effective drought adaptation (and resilience) plans".	
589	Finally, the adoption of SPI for this study demonstrates the fact that it is a robust concept,	
590	unambiguous in calculation and understanding, temporally flexible, spatially meaningful, and	
591	widely applicable, a basis for which it is considered a powerful tool for drought studies as clearly	
	592 amplified by Cheval (2015).	
593		
594	Acknowledgements	
595	This work was jointly supported by the CAS Strategic Priority Research Program (No.	
596	XDA19030402), the National Key Research and Development Program of China (no.	
597	2016YFD0300101), and "Taishan Scholar" Project of Shandong Province (No. TXXD 201712).	
598	The authors would like to show great appreciations to the anonymous reviewers and the editor 599	
	for their valuable comments and suggestions.	
600		
601	References	
602	Abbas, S., Nichol, J.E., Qamer, F.M., Xu, J. (2014). Characterization of drought development	
603	through remote sensing: A case study in central Yunnan, China. Remote Sens. 6(6):	
604	4998–5018.	

605	Abbink, J., K. Askew, D.F. Dori, E. Fratkin, E.C. Gabbert, J. Galaty, S. LaTosky, J. Lydall, et al.,
606	(2014). Lands of the Future: transforming pastoral lands and livelihoods in eastern 607
	Africa. Working Paper No. 154, Max Planck Institute for Social Anthropology. 608
	Allen, C.D. (2008). Mechanisms of plant survival and mortality during drought: why
	do some
609	plants survive while others succumb to drought? New Phytol. 178 (4), 719.
610	American Matagralagical Society (1007) Matagralagical drought policy statement
611	American Meteorological Society (1997). Meteorological drought-policy statement. Bull Am
612	Meteorol Soc 78:847–849
613	Bates, B.C., Kundzewicz, Z.W., Wu, S.and Palutikof, J.P. (eds.). (2008). Climate Change and
614	Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC
615	Secretariat, Geneva. Available from https://www.ipcc.ch/pdf/technical-papers/climate-
616	change-water-en.pdf - 28/doc13.pdf (accessed: June, 2018).
617	Cong, D., S. Zhao, C. Chen and Z. Duan (2017). Characterization of droughts during
	2001–2014 618 based on remote sensing: A case study of Northeast China. Ecological
	Informatics 39:
619	56–67
620	Dai, A., Lamb, P., Trenberth, K.E., Hulme, M., Jones, P.D. and Xie, P. (2004) The
	Recent Sahara 621 Drought is Real. International Journal of Climatology 24: 1323-
	1331
622	Eze, J.N. (2018) Drought occurrences and its implications on the households in Yobe state,

623	Nigeria. Geoenvironmental Disasters 5:18, 1-10
624	Funk, C., Dettinger, M. D., Michaelsen, J. C., Verdin, J. P., Brown, M. E., Barlow, M., & Hoell,
625	A. (2008). Warming of the Indian Ocean threatens eastern and southern African food
626	security but could be mitigated by agricultural development. Proceedings of the 627
	National Academy of Sciences, 105(32), 11081-11086.
628	Funk, C., Hoell, A., Shukla, S., Bladé, I., Liebmann, B., Roberts, J. B., Robertson, F. R., and
629	Husak, G. (2014) Predicting East African spring droughts using Pacific and Indian
630	Ocean sea surface temperature indices, Hydrol. Earth Syst. Sci., 18, 4965–4978, 631
	https://doi.org/10.5194/hess-18-4965-2014.
632	Funk, C., Husak, G., Michaelsen, J., Shukla, S., Hoell, A., Lyon, B., et al. (2013). Attribution of
633	2012 and 2003-12 rainfall deficits in eastern Kenya and southern Somalia. In
634	Explaining extreme events of 2012 from a climate perspective. Bulletin of the 635
	American Meteorological Society. 94, S45-S48.
636	Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J.,
637	Harrison, L., Hoell, A., and Michaelsen, J. (2015) The climate hazards infrared 638 precipitation
	with stations-a new environmental record for monitoring extremes, Sci.
639	Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66
640	Ghulam A, Qin Q, Zhan Z (2007a) Designing of the perpendicular drought index. Environ Geol
641	52(6):1045-1052
642	Ghulam A, Qin Q, Teyip T, Li Z-L (2007b) Modified perpendicular drought index (MPDI): a real-

643	m time drought monitoring method. ISPRS J Photogramm Remote Sens 62:150-164
644	Gibbs W., Maher J. (1967) Rainfall deciles as drought indicators. Australian Bureau of
	645 Meteorology Bulletin, Melbourne: 48
646	Grünzweig, J.M., Valentine, D.W., Chapin III, F.S. (2015). Successional changes in carbon stocks
647	after logging and deforestation for agriculture in Interior Alaska: implications for
648	boreal climate feedbacks. Ecosystems 18 (1), 132-145
649	Hao, C., Zhang, J., Yao, F. (2015). Combination of multi-sensor remote sensing data for drought
650	monitoring over Southwest China. J. Appl. Earth Obs.
	Geoinf. Int. 651 https://doi.org/10.1016/j.jag.2014.09.011.
652	Harvest Choice (2015). "AEZ tropical (5-class, 2009)." International Food Policy Research
653	Institute, Washington, DC., and University of Minnesota, St. Paul, MN. Available
654	online at http://harvestchoice.org/data/aez5_clas
655	Haroon, M.A., Zhang, J. and Yao, F. (2016). Drought monitoring and performance
	evaluation of 656 MODIS-based drought severity index (DSI) over Pakistan. Natural
	Hazards 84(2):
657	1349-1366
658	Huete, A. (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295-309
659	Igbawua, T., Zhang, J., Yao, F., Zhang, D. (2018). Assessment of moisture budget over West
660	Africa using MERRA-2's aerological model and satellite data. Climate Dynamics
661	https://doi.org/10.1007/s00382-018-4126-2

662	Kalisa, W., Igbawua, T., Henchiri, M., Ali, S., Zhang, S., Bai, Y., Zhang, T. (2019)
	Assessment 663 of climate impact on vegetation dynamics over East Africa from 1982
	to 2015.
664	Scientific Reports, 9:16865 https://doi.org/10.1038/s41598-019-53150-0
665	Karavitis, C.A., S. Alexandris, D.E. Tsesmelis and G. Athanasopoulos (2011). Application of the
666	Standardized Precipitation Index (SPI) in Greece. Water, 3: 787-805;
667	doi:10.3390/w3030787
668	Kim, T., Yoo, C., Valdes, J.B. (2003) Non parametric Approach for estimating effects
	of ENSO 669 on return periods of Drought, Water Engineering, 7(5), 629-636.
670	Kogan, F.N. (1995) Application of vegetation index and brightness temperature for drought
671	detection. Adv Space Res 15:91–100
672	Kogan, F.N. (2001) Operational space technology for global vegetation assessment. Bull Am
673	Meteorol Soc 82:1949–1964
674	Kogan, F.N., Gitelson, A., Zakarin, E., Spivak, L., Lebed L (2003) AVHRR-based
	spectral 675 vegetation index for quantitative assessment of vegetation state and
	productivity: 676 calibration and validation. Photogramm Eng Remote Sens 69:899-
	906
677	Kumar, M.N., C.S. Murthy, M.V.R. Sesha-Saib and P.S. Roy (2009). On the use of Standardized
678	Precipitation Index (SPI) for drought intensity assessment Wiley Inter Science
679	Meteorol. Appl. 16: 381–389

680	Lambin, E., Ehrlich, D. (1995) Combining vegetation indices and surface temperature for land-
681	cover mapping at broad spatial scales. Int J Remote Sens 16:573-579
682	Lei, T., Pang, Z., Wang, X., Li, L., Fu, J., Kan, G., et al. (2016). Drought and carbon cycling of
683	grassland ecosystems under global change: a review. Water 8(10), 460.
684	Liu, H.Q., Huete, A. (1995) A feedback based modification of the NDVI to minimize canopy
685	background and atmospheric noise. IEEE Trans Geosci Remote Sens 33:457–465
686	Liu, Q., Zhang, S., Zhang, H., Bai, Y., Zhang, J. (2019) Monitoring drought using composite
687	drought indices based on remote sensing. Science of the Total Environment 711 (2020)
688	134585.
689	Love, R. (2009) Economic Drivers of Conflict and Cooperation in the Horn of Africa, Chatham
690	House Briefing Paper, December, available at: <u>www.chathamhouse.org/</u> 691
	publications/papers /view/109208 (last access: 18 April 2012).
692	Masih, I., Maskey, S., Mussá, F.E.F. a0nd Trambauer, P. (2014) A review of droughts on the
693	African continent: a geospatial and long-term perspective, Hydrol. Earth Syst. Sci., 18, 694 3635-
	3649, <u>https://doi.org/10.5194/hess-18-3635-2014</u>
695	McKee, T.B., Doesken, N.J. and Kleist, J. (1993) The relationship of drought frequency and
696	duration to time scales. In: Eighth conference on applied climatology. American
697	Meteorology Society, Anaheim, CA, 179–184
698	McQuigg, J. (1954). A simple index of drought conditions. Weather Wise 7:64-67

699 Morton, J. and Kerven, C. (2013). Livelihoods and basic service support in the drylands of the 700 Horn of Africa. Brief prepared by a Technical Consortium hosted by CGIAR in

701 partnership with the FAO Investment Centre. Technical Consortium Brief 3. Nairobi: 702 International Livestock Research Institute.

703 Mu, Q., Zhao, M., Kimball, J.S., McDowell, N.G., Running, S.W. (2013). A remotely sensed 704 global terrestrial drought severity index. Bull Am Meteorol Soc 94:83–98

705	Munger, T.T. (1916). Graphic method of representing and comparing drought intensities. Monthly
706	Weather Rev 44:642–643
707	Niemeyer, S. (2008). New drought indices. Options Mditerranennes Sri A Sminaires Mditerranens
708	80:267–274
709	O'Connor, T.G. (1995). Transformation of a savanna grassland by drought and grazing.
	African 710 Journal of Range and Forage Science. 12 (2): 53–60.
711 Palmer. W.C	C. (1968). Keeping track of crop moisture conditions, nationwide: the new crop 712

711 Palmer, W.C. (1968). Keeping track of crop moisture conditions, nationwide: the new crop 712 moisture index. Weather Wise 21: 156–161

713	Pramudya, Y. and T. Onishi (2018). Assessment of the Standardized Precipitation Index (SPI) in
714	Tegal City, Central Java, Indonesia. IOP Conf. Series: Earth and Environmental
715	Science 129: 1-9
716	Sandholt, I., Rasmussen, K., Andersen, J. (2002). A simple interpretation of the surface
717	temperature/vegetation index space for assessment of surface moisture status. Remote
718	Sens Environ 79:213–224

719	Schubert, S.D., Stewart, R.E., Wang, H., Barlow, M., Berbery, E.H., Cai, W., et al.,
	(2016). Global 720 meteorological drought: a synthesis of current understanding with
	a focus on SST 721 drivers of precipitation deficits. J. Clim. 29 (11), 3989–4019.
722	Solanki, J.K. and F, Parekh (2014) Drought Assessment Using Standardized Precipitation Index
723	International Journal of Science and Research, 3(7): 1073-1076
724	Svoboda, M.D., LeComte, D., Hayes, M.J. (2002). The drought monitor. Bull Am Meteorol Soc
725	93:1181–1190
726	Tan, C., Yang, J., Li, M., 2015 Temporal-Spatial Variation of Drought Indicated by SPI and SPEI
727	in Ningxia Hui Autonomous Region, China, Atmosphere, 6, 1399-1421;
728	doi:10.3390/atmos6101399
729	Tarhule, A., Woo, MK. (1997). Towards an interpretation of historical droughts in northern
730	Nigeria. Climatic Change 37: 601–616
731	Um, M., Y. Kim, D. Park, and J. Kim. (2017). Effects of different reference periods on drought
732	index estimations from 1901 to 2014. Hydrology and Earth System Sciences 21: 4989-
733	5007
734	von Grebmer, K., Bernstein, J., Nabarro, D., Prasai, N., Amin, S., Yohannes, Y., Sonntag, A.,
735	Patterson, F., Towey, O., Thompson, J. (2016). Global Hunger Index: Getting to Zero
736	Hunger. Welthungerhilfe, International Food Policy Research Institute, and Concern
737	Worldwide, Bonn, Washington, DC, and Dublin

738	Waggoner, M.L. and O'Connell, T.J. (1956). Antecedent precipitation index. Weekly Weather
739	Crop Bull XLIII: 6–7
740	Weghorst, K. (1996) The reclamation drought index: guidelines and practical applications. Bureau
741	of Reclamation, Denver
742	Yang, H. and Huntingford, C. (2018). Drought likelihood for East Africa. Nat. Hazards Earth Syst.
743	Sci., 18: 491–497
744	Yao, N., Y. Li., T. Lei. and L. Peng. (2018). Drought evolution, severity and trends in
	mainland 745 China over 1961–2013. Science of the Total Environment 616–617: 73–
	89

746 Yao, Y., Liang, S., Qin, Q., Wang, K. (2010). Monitoring drought over the conterminous United 747 States using MODIS and NCEP Reanalysis-2 data. J. Appl. Meteorol. Climatol. 49:

748 1665–1680

Conflict of Interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Correspond author: Jiahua Zhang email: <u>zhangjh@radi.ac.cn</u> Tel: 0086-13683576879