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ABSTRACT
Automatic target detection (ATD) of a small target along with its true shape from
highly cluttered forward-looking infrared (FLIR) imagery is crucial. FLIR imagery
is low contrast in nature, which makes it difficult to discriminate the target from
its immediate background. Here, pulse coupled neural network (PCNN) is extended
with auto-convergent criteria to provide an efficient ATD tool. The proposed auto-
convergent PCNN (AC-PCNN) segments the target from its background in an
adaptive manner to identify the target region when the target is camouflaged or
contains higher visual clutter. Then, selection of region of interest followed by tem-
plate matching are augmented to capture the accurate shape of a target in a real
scenario. The outcomes of proposed method are validated through well-known sta-
tistical methods and found superior performance over other conventional methods.

1. Introduction

Automatic target detection (ATD) is able to identify targets automatically based
on the obtained data from different sensor such as RAdio Detection And Rang-
ing (RADAR), Synthetic-Aperture Radar (SAR), Forward-Looking Infrared (FLIR),
etc Bhanu (1986). These sensors are mostly set very far from the original object hence
there is a high possibility of affecting the data by massive clutters of the environmental
hazard. Therefore, the data produced by these sensors are tremendously rigorous and
hard to find out the target by human expert in a real-time manner. The ATD system
using FLIR is able to locate and identify suspected objects at night, where infrared
wavelength plays a pivotal role though identifying small targets from it is a challeng-
ing task Gao, Zhang, and Li (2012); Shi et al. (2018). FLIR sensor can see through in
various atmospheric conditions more specifically, it captures the heat signature from
an object, which even makes easier to detect camouflaged object. Thus, this system
widely used in military field as most of surveillance and targeting occurs at darkness
or low lighting environments.

The rapid expansion of the practical applications, traditional methods of ATD for
small target detection like top hat Bai and Zhou (2010), max-mean or median fil-
ter Deshpande et al. (1999) and morphological filter Shaoa, Zhua, and Liub (2008)
are vastly used to deal with background clutter. In addition, a small target detection
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Figure 1.: The framework of proposed ATD work.

technique based on sparse ring representation (SRR) is offered in Gao, Zhang, and Li
(2012). SRR can define the difference between the targets and background through its
active graphical structure. Meanwhile, the feature based approaches such as, Zernike
moment, multi-feature, fusion based physical relevant feature, etc. are focused on in-
variance properties, robustness, and powerful discriminatory of the target feature for
ATD. These are mostly applied to SAR imagery Clemente et al. (2015); Kim, Song,
and Kim (2018). So far, numerous methods based on neural network Cheng, Zhou,
and Han (2016), and manifold learning Li et al. (2010) are applied for target detec-
tion. However, small target detection from cluttered background is still very burden-
some. In recent times, bio-inspired processes like the hierarchical model Serre et al.
(2007) and derived kernel Li et al. (2012) are getting more attention. Visual cortex
model (VCM) is another physiological motivated information processing prototype
that makes predictions and also acts like scientific eye. This helped to design a neural
network named PCNN Subashini and Sahoo (2014), an effective simulation tool for
learning synchronous dynamic pulse that can solve the above-mentioned challenges
in an adaptive way. The pivotal challenge of the PCNN is to decide the convergence
criteria through experimental and/or manual procedure, which is problem specific
till now and results huge time and space complexity burden. In this paper, a robust
and adaptive ATD is proposed by employing improved PCNN to solve both of the
purposes: target detection along with clutter rejection. This work is introducing an
auto-convergence criteria to extend the segmentation potentiality of PCNN and create
powerful ATD tool from low-contrast imagery in an adaptive way. Subsequently, pro-
posed algorithm is validated through statistical measurements and obtained significant
detection performance over three other techniques.

2. Proposed methodology

Here, PCNN model has been modified to propose an automatically converged pulse
coupled neural network (AC-PCNN) that provides a robust ATD tool. The flow chart
of the proposed work is shown in Figure 1. The proposed ATD process has been
accomplished by following these consecutive stages: data processing from the FLIR
image sequence, adaptive segmentation through PCNN, ROI selection, and template
matching.

2.1. Auto convergent - pulse coupled neural network

In Eckhorn et al. (1990), Eckhorn et al. first developed a neural model on cat visual
cortex that produce binary images from the visual impression. Then, this network
had been modified and developed to create an image by effective simulation of a
synchronous behaviour Subashini and Sahoo (2014). PCNN is a third generation, single
layer, two-dimensional, and laterally connected neural network. PCNN is consists of
three parts: input, modulation, and pulse generator. In the input part, each neuron
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receives signals through feeding (Fi,j) and linking (Li,j) channel, where i, j stands
for location of the neurons of the image in nth iteration. Feeding consists of external
sources (Si,j) which is the normalized pixel value of input image. Linking is being
represented by the constant synaptic weights from neuron (wi,j,k,l) and linked with
its specified neighbour neurons refer as Ni,j , where k, l indicate the location of the
neighbour neuron of i, j. The modulation part, is the nonlinear combination of both
feeding and linking signals through the linking coefficient β in internal activity (Ui,j).
Finally, the pulse generator part produces pulse to fire neurons using an adaptive
threshold variable (Ti,j) as a step function to control the firing event. After thresholding
it produces the pulse output Oi,j based on this mathematical models shown in Eqs.
(1) to (5).

Fi,j [n] = Si,j , (1)

Li,j [n] =
∑

k,l∈Ni,j

wi,j,k,lOk,l[n− 1], (2)

Ui,j [n] = Fi,j [n](1 + βLi,j [n]), (3)

Oi,j [n] =

{
1 if Ui,j [n] > Ti,j [n− 1],

0 otherwise,
(4)

Ti,j [n] = e−αTTi,j [n− 1] + VTOi,j [n− 1], (5)

where, αT is the threshold decay time constant and VT is the threshold normaliza-
tion constant. By handling large number of PCNN parameters, an auto convergence
criterion has been introduced here to reduce the computational overhead and make
simulation simpler. Target chip size has been utilized as a prior knowledge to make
the convergence automatic. After each iteration, the output image of the previous
iteration has been compared with the target chip to decide the cardinality of the tar-
get using the relationship,

∑r
i=1

∑c
j=1Oi,j [n] >target size(m× n), where, r and c are

the number of rows and columns of the output image. It works in a way when, the
threshold decreases exponentially by it causes more firing in next step. For instance,
if any iteration fires more neurons than the size of target chip then network has been
converged and previous iteration has been considered as the final outcomes.

2.2. Region of interest and template matching

This final iteration produces an image with bright intensity regions which may con-
tain the target called region of interest (ROI). ROI has been then cropped and target
template has been moved through these ROIs to identify the target location more
specifically. Template matching has been done to find out best similarity within the
ROI upon which the template is placed, using Euclidean similarity measure by follow-
ing the formula in Eq. (6),

d =

√√√√ Tr∑
u=1

Tc∑
v=1

(R[u, v] −Tm[u, v])2 (6)
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where, d represents the similarity between ROI and template, R denotes ROI, Tm

indicates the selected image template, u and v are the coordinates of R and Tm. Tr
and Tc are the number of rows and columns of the Tm. Here, the dimension mismatch
between ROI and template may occur, specifically where the template size is slightly
larger than ROI. To avoid this circumstance three times larger than the target chip
has been selected as the size of ROI, shown in Figure 2(a), where, m and n are the
width and height of target chip, 3m and 3n are the size of ROI. Figure 2(b) shows
the different sample templates of target vehicles used for this experiment. This figure
depicts the various angular views of a target, where brighter portions show the vehicle’s
headlights and rest are the body of the target vehicles.
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Figure 2.: Demonstration of (a) ROI selection process and (b) eight different target
templates.

3. Experimental and result analysis

This section demonstrates the impact of the proposed AC-PCNN method which has
been later compared with other existing methods by performing statistical measure-
ments such as precision, recall, accuracy and receiver operating characteristic (ROC)
curve Davis and Goadrich (2006). The study has been tested on a large number of
FLIR images and the visual outcomes have been analysed through template matching
on selected ROIs. This process has been executed for all the compared methods to
evaluate the results and make fair judgement.

3.1. Data description

The FLIR dataset SENSIAC (2008) has been used for this investigation. It contains
real-time videos and information about the army vehicles in ground scenario. The
videos (later extracted as images) comprises situations like different weather condition,
night time, engine on/off, with various aspect angles (0◦ to 360◦), far targets, nearby
targets, and camouflaged targets. Here, the experiment has been conducted on the
data collected through MWIR sensor. The army vehicles were driven within a specific
range from the sensor during night for data collection, detailed in Table 1. The nine
types of battle tank targets have been considered and the results shows here only for
the battle tank T72 is marked bold.

Forty night vision videos have been tested with two different scenes: high and low
cluttered background based on the target range from sensors. Further, image frames
have been extracted from these videos. Each video consists of 1024 frames that contains
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Table 1.: Details of the target vehicles are included in SENSIAC dataset.

Look No. Target Type Scenario No. Range (m)

1 Pickup 1923 1000

2 Sport Utility Vehicle 1925 1500

5 BTR70 Armored Personnel Carrier 1927 2000

6 BRDM2 Infantry Scout Vehicle 1929 2500

9 BMP2 Armored Personnel Carrier 1931 3000

10 T62 Main Battle Tank 1933 3500

11 T72 Main Battle Tank 1935 4000

12 ZSU23-4- Anti-Aircraft Weapon 1937 4500

13 2S3 Self-Propelled Howitzer 1939 5000

various viewpoint and different angles of a moving target. Twenty frames have been
selected from them at a fixed interval to cover all possible views of a target. The
original image size is 640 × 512 pixels with two types of target chip size: 10 × 5 pixels
for high and 30×20 pixels for low cluttered background. This study has been conducted
entirely on 800 distinct images. The experiment has been carried out using Matlab
R2016b tool on an Intel(R) Core(TM) i5 processor@ 3.30GHz running Windows 7
Enterprize 64 bit operating system with a 7856 MB NVIDIA Graphics Processing
Unit (GPU).

3.2. Parameter fitting

Proposed AC-PCNN algorithm includes some parameters that have been fixed by the
method of successive estimation. The parameters are threshold decay constant (αT),
normalization constant (VT), and linking strength (β) denoted in Section 2. The value
of VT is set as 20 because it must be high enough to prevent the neurons from firing
instantly. Experimentally the value of β and αT are being set to 3 and 0.2. This
parameter selection phase makes the algorithm able to find out the correct position
of a target with less computational complexity. Therefore, the quantitative analysis
of parameters is considered to achieve optimum performance by the network for true
target detection. The parameters of AC-PCNN have been tuned to deliver best results
within the considered data. The selection of parameters make the model capable to
achieve optimal results and is essential for the correctness of the proposed ATD.

3.3. Result analysis and comparison

AC-PCNN produces segmented images after each iteration based on the intensity level
of the input images. The obtained results from the iterations of AC-PCNN have been
shown in Figure 3. In first iteration all neurons are fired, as the variables are initialized
with zero except Fi,j . Then, the threshold normalization constant VT have increased
the Ti,j . Thus, this high threshold value restricts the immediate firing of neurons.
Associated decay parameter αT reduced Ti,j exponentially over the iterations that the
minor changes in resultant binary images could be identified significantly. It has been
observed that, the network takes approximately twenty-one iterations to fire the neuron
again after first iteration as shown in Figure 3. It has been found that, the output of
the 23rd iteration contains the brighter intensity values which became greater than the
threshold and consequently neurons started firing. The resultant images from iteration
23 to 29 illustrate the increment of the target region along with firing of neuron. Over
the iterations, Ti,j has decayed and the 30th iteration shows more background portions.
As a result, it produces insignificant boundary regions, which include the background
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or clutter. Therefore, the 29th iteration met the convergence criteria (described in
Section 2.1) and has considered as final output. All frames have been processed in the
same way to reach their converged iterations.

Original Image Iteration 1 Iteration 23 Iteration 24 Iteration 25

Iteration 26 Iteration 27 Iteration 28 Iteration 29 Iteration 30

Figure 3.: Outcomes from PCNN iterations for a single image.

The other established detection methods such as, Otsu thresholding Otsu (1979),
centre surround difference (CSD) Sun et al. (2005), saliency extraction Hou and Zhang
(2007) and fuzzy energy based active contour (FEAC) Mondal, Ghosh, and Ghosh
(2016) have been applied to the FLIR data to compare them with the results of
PCNN. The performance comparison with AC-PCNN and CSD have been displayed
in Figure 4. Here, two low and two high cluttered FLIR images have been chosen for
presenting the difficulty of handling noisy input images and prove the robustness of
the proposed method.

Figure 4 demonstrates the results of low and high cluttered images. Figure 4a(i)-(iv)
is the original input image and the associated spatial distributions have been displayed
in Figure 4b(i)-(iv) which has reflected maximum of 40 intensity value approximately.
The 3D spatial distribution with consequent colour bar indicates the different intensity
level of thermal variabilities of target and background. Figure 4a(i) and 4a(iii) have the
similar spatial characteristics in terms of homogeneous 3D perspective view. Although
a sharp peak has been detected in both the cases, due to the head light of the tank
though the detection of the shape of the whole target is the most challenging task of
this detection process. In case of, Figure 4a(ii) and 4a(iv) both contain more visible
regions than the other two. But, the thermal variability of these images makes it more
imperceptible for target selection from the immediate background. The distribution
edges of the object and background have been realized from Figure 4b(ii) where no
clearly separate peak has been found for target, but the colour bar indicates the
presence of the target by high intensity values (shown in yellow colour).

The obtained results from CSD have been shown in Figure 4c(i)-(iv) and corre-
sponding 3D histograms are plotted in Figure 4d(i)-(iv). The peaks of the distribution
indicate the tentative target region, which contains huge amount of false alarms. Pro-
gressive sub-sampling and low pass filtering have created the difference between fine
and coarse scales of pixel towards the intensity feature map. However, due to the in-
tensity overlap, it could not reveal contrasts between the target tanks and back bush
properly which have the similar intensity and reflectivity. Often it missed the actual
target position because of the prominent background, which might be occurred due
to the thermal inconsistency of the input images. As a result, it has produced binary
output images with target along with more number of false alarms per scene. Figure
4e(i)-(iv) shows AC-PCNN results which converged in 27th, 23rd, 20th, and 21st it-
eration respectively (from left to right). The intensity distribution have been shown
in Figure 4f(i)-(iv), where the target regions are found accurately and realized from
the peak. . Thus, it implies that the high difference between target and background
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intensity (in case of high cluttered images) insists the rate of firing neuron and con-
verge the proposed method earlier. Successively, to acquire the true shape of target,
ROI has been cropped and template matching has been being implemented using the
target chip in an overlapping manner. The lowest distance between ROI and target
chip has been considered as best matching region. Then the final results have been
shown in Figure 4g(i)-(iv) by using a bounding box on the target region. In addition,
histogram equalization have been performed to enhance the visibility of the output
images which are the final results of the proposed ATD.

3.4. Performance evaluation

Following baseline methods: Otsu thresholding Otsu (1979), CSD Sun et al. (2005),
saliency extraction Hou and Zhang (2007), and fuzzy energy based active contour
(FEAC) Mondal, Ghosh, and Ghosh (2016) have been explored to compare and assess
the results of the proposed method. Furthermore, ROI and template matching have
been included for all baseline methods in final ATD process for justified evaluation.
Experimental results have been validated through confusion matrix, precision, recall,
and accuracy measurement. Confusion matrix has been determined by the true posi-
tive (TP), false positive (FP), false negative (FN), and true negative (TN) measures.
Potential targets have been categorized in two cases, actual target (shown in column)
and predicted target (shown in row).

The results of proposed method have been compared with different methods and
tabulated in Table 2, where it can be seen that the CSD is able to detect 421 targets
accurately among 800 targets. CSD performs the adaptive image thresholding by
using the Gaussian pyramid as progressive low-pass filter and sub-sampling of an
input image. The number of false alarms obtained in each scene is quite high thus,
the detection rate is very low compared to other ATD method. In the case of Otsu
thresholding and saliency extraction, both detected 434 number of true targets but
the type I and type II errors are different because, they use different approach for
detecting targets. Otsu uses the thresholding for segmentation whereas, saliency
employs feature mapping to detect targets. The selection of threshold in Otsu is
solely depends on the nature of the pixel intensity. So, if the global distribution
of target image and background varies widely the target detection performance
degrades automatically. However, in case of saliency, it employs feature mapping at a
given scale by using feature vectors for each pixel, instead of using separate saliency
maps for scalar values of each feature. But it fails to detect the targets from FLIR
imagery due to the low contrast and thermal variability between the target and
background. Also, FEAC is an active contour based method has been implemented
for comparing the result of proposed work. This method is focused on fuzzy energy
based active contour by considering local spatial information. It is capable to deal
with noisy, blurred, discontinuous edged, and high intensity inhomogeneity images.
However, it struggled extensively to segment small size targets from low-contrast
and high cluttered FLIR images. FEAC has detected 484 true targets from the
given FLIR images. Thus, this method is also failed to compete with the obtained
performance from proposed work in terms of ATD. Therefore, Table 2 infers that
the proposed method has detected highest number of accurate targets 718 out of
800 targets, which is the acquired optimal performance from this experiment. The
accuracy has been measured for all the methods by measuring total truly detected
and not detected targets among the complete experimental dataset. The detection
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Figure 4.: Results of two low and two high cluttered images from (i) to (iv), (a) original
images (b) 3D spatial histogram distribution of original images (c) resultant images of
CSD (d) 3D spatial histogram distribution after applying CSD (e) output images of
proposed AC-PCNN (f) 3D spatial histogram distribution after applying AC-PCNN
(g) final detected result of proposed method.
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rate and the probability of accuracy have been calculated via precision and recall
measurements, tabulated in Table 3 and the values have been plotted in a bar graph,
shown in Figure 5(a). It has been observered from the results that the proposed
method achieved high precision, recall, accuracy, and area under the curve (AUC)
values (mark in bold in Table 3) compared to the existing methods. In addition,
ROC curve has been displayed in Figure 5(b) to demonstrate the performance
of proposed method in a graphical way. It infers that, the overall performance of
our proposed method is superior than the other baseline methods explored in this work.

Table 2.: Confusion matrix to demonstrate
the performance of the proposed method
over other existing methods.

Methods Actual Not Target

CSD
Predicted 421 186
Not Target 158 35

Otsu
Predicted 434 179

Not Target 147 40

Saliency
Predicted 434 186
Not Target 133 42

FEAC
Predicted 484 143
Not Target 117 56

AC-PCNN
Predicted 718 13
Not Target 32 37

Table 3.: Performance comparison of dif-
ferent methods through statistical metrics.

Methods Precision Recall Accuracy AUC

CSD 0.693 0.727 0.570 0.473

Otsu 0.707 0.746 0.592 0.475

Saliency 0.700 0.765 0.595 0.467

FEAC 0.772 0.805 0.675 0.601

AC-PCNN 0.982 0.957 0.943 0.735

-
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Figure 5.: Performance measurements by (a) accuracy comparison method and (b)
ROC curve.

4. Conclusions and future work

Proposed method demonstrates the ability of the AC-PCNN to segment the highly
cluttered FLIR images by an efficient adaptive thresholding method. In addition, this
work contributes to convert the PCNN to an auto-convergent PCNN (AC-PCNN)
towards ATD process. The combination of the ROI and template matching for this
work gives a good approximation of the accurate target shape. The promising results
have been obtained from the proposed work compared to the existing methods.
Although, this work is limited to identification of a target image and underway to
extend for target recognition towards making a full automatic target recognition
(ATR) system.
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