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Abstract 

The distribution of fixed steel offshore platforms around the world reveal a global fleet that 

has exceeded or is approaching the end of the design life. In many operating areas, there is an 

attraction to continue using these aging facilities due to continued production or as an 

adjoining structure to facilitate a new field development or expansion. To justify continued 

life extension of the fixed platform, various integrity assessment techniques are often used. 

One of the major techniques incorporated is the phenomena of Local Joint Flexibility (LJF). 

The derivations of existing LJF equations have evolved in many ways, including use of finite 

element methods to predict the joint behaviour. There has been insufficient credible 

benchmarking to large scale experimental test data.  

 In the early 1980s, AMOCO performed the only large scale test results of LJF which, prior 

to this research, has not been in the public domain. A major objective of this research is to 

develop a suite of improved LJF equations that have been appropriately benchmarked to large 

scale tests. In addition, with the issue of the API RP 2SIM (2014) 1st Edition and the 

development of the ISO 19901-09 SIM (DIS), this research also provides a basis for further 

Asset Life Extension (ALE) of an aging fixed offshore platform in terms of ultimate strength 

by using an improved suite of LJF equations. Furthermore, the research puts the structural 

assessments such as LJF in the context of a structural integrity management framework, 

which enables operators to manage their facilities holistically rather than isolated processes.  

The research within this thesis critically examined the suitability of the existing LJF 

equations, reviewed the guidance provided in the existing studies and described their 

limitations for gapped K-type tubular joints. A comparison study and benchmarking study 

demonstrated that a proposed finite element model provides a good fit with large scale 

experimental data (AMOCO) and was used to develop a suite of improved LJF equations for 
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gapped K-type tubular joints. The LJF equations derived from this research were validated 

against the BOMEL large scale structural frame tests in terms of ultimate strength and 

demonstrated an improvement on the current MSL-1SO equations for uni-planar K-type 

tubular joints in the ISO 19902.2007 Fixed Offshore Structures code of practice. This 

research also provides a basis to update current offshore structures codes and standards for 

uni-planar gapped K-joints and also provide a standardized methodology for the derivation of 

LJFs from credible large scale test data for other tubular joint configurations including multi-

planar K-joints, T-joints, Y-joints and X-joints. 

The LJF equations developed in this research will have high impact in terms of the structural 

integrity management of fixed offshore structures for OGPs globally, as they provide an 

improvement to the current MSL-ISO joint equations, for gapped uni-planar joints. Offshore 

structures are now able to operate more safely without compromising structural integrity and 

incurring costly underwater repairs and inspections as before. OGPs are now able to prioritize 

limited resources to other areas of concerns based on ALARP principles.  
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Symbols 

D   Chord diameter 

d               Brace diameter 

δ                Axial displacement of the brace  

δF  Displacement attributable to joint flexibility 

E               Young‟s Modulus of Elasticity 

F               Axial force 

fkj                 Flexibility matrix terms  

T                   Chord Thickness 

t                 Brace thickness 

ϕ                    Angle between brace and x-z plane (degrees) 

θ                    Angle between the brace and the x-axis 

K               Joint stiffness coefficient  

L               Chord length 

M              Bending moment  
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gt              Transverse gap length  

λ                Cross sectional area of the brace 

τ                Brace to chord wall thickness ratio 

β               Brace to chord diameter ratio 

α               Chord length to chord radius ratio 

γ                 Radius to wall thickness ratio of the chord 

δ                      Gap parameter for K-joints 
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CHAPTER 1 

Introduction 

1.1 Background 

The vintage of fixed offshore steel structures globally range from those installed in the 1950s 

to those designed to the latest code of practice. A great variety of the grandfather type 

structures are still operating well beyond their design life and leading the industry to believe 

they are still fit for purpose with regards to fatigue lives and ultimate strength. However, this 

needs further qualification for structural integrity, which is the research question addressed 

within this thesis. Figure 1.1 shows that as of 2005, 48% (1947 of 4024) of the fixed offshore 

structures currently operating in the Gulf of Mexico have exceeded their design life (of 25 

years). Interestingly, another 40% will be at the end of their design life by 2015. 
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Nichols et al (2006) also identified a similar trend in the aging of offshore facilities in 

Malaysian waters. They provided the following table as evidence of an aging fleet for 3 

operating regions in Malaysia. 

 Age Distribution, x (Years) 

 x < 10 10 < x < 20 20 < x < 25 25 < x < 30 x > 30 

Region A 13 5 13 4 

 

Region B 1 3 7 10 6 

Region C 1 33 17 19 33 

Table 1.1 Petronas Carigali Snd Bhd Platform Profile, 2006 – Age Distribution 

(Nichols et al, 2006) 

Table 1.1 indicate that of the 165 offshore structures operating by Petronas Carigali Snd Bhd 

(as of 2006), approximately 44% are operating beyond 25 years and approximately 24% were 

operating beyond 30 years. While the offshore oil and gas industry has been in existence for 

the past 75 years, there has been a lack of understanding of assessment engineering 

techniques with regards to fitness for purpose and acceptance criteria around offshore 

structures.  

1.2 Fixed Offshore Structures 

The most common type of offshore structure in service today is the jacket (or template) 

structure, illustrated in Figure 1.2. The template was derived from the function of the first 

offshore structures to serve as a guide for the piles and has now become commonplace in the 

industry. The template or jacket structure is a steel space frame composed of tubular 

members welded at joints that supports, above water, a superstructure comprising one or 

more decks for production equipment and facilities needed to support and maintain 

production. The production tasks may include separation of oil, gas, water and sand, 
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treatment and measurement of oil and/or gas for sales and treatment of water and/or solids for 

disposal. 

 

Figure 1.2 Conventional fixed steel jacket structure 

(Adapted from Lalani et al, 2001) 

1.3 Tubular Joints  

The design of fixed offshore platforms depends upon the service and environmental loads 

including wave, current, wind and seismic, in the region of which the structure is operating. 

Tubular members (within the substructure or platform jacket structure) are mainly used to 

withstand these loads since they are hollow and can effectively produce buoyancy upon 

installation, compared to other steel members. 

Tubular members are applicable not only in the offshore industry, but also in the 

manufacturing of space truss structures, telecommunication towers and crane structures. 
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Moreover, tubular members are superior in comparison with other cross sections in several 

aspects such as high torsional strength, symmetry in cross section, almost perfect in welding 

of connections and being economical when used in design. Considering these parameters, the 

study of tubular connections has become increasingly important over the past three decades, 

as they are the major sectional type for jacket template structures (substructure) for fixed 

offshore structures. The general classification of tubular joints is shown on Figure 1.3 and the 

geometric parameters in Figure 1.4. 

 

Figure 1.3 Classification of tubular joints 

(Adapted from Makino et al, 1986) 

 

Figure 1.4 Gapped K-Type tubular joint 

(Adapted from Ultigude, 1999) 

Note 1: The definitions for each of the geometric properties are provided under Symbols 
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1.4 Remaining Life of Fixed Offshore Structures 

In 1993, Buitrago concluded that the inclusion of local joint flexibility in the global structural 

analysis of offshore structures leads to significant redistribution of calculated member-end 

forces and moments, which in turn, may result in lesser structural demands on the tubular 

joints. It is through this phenomenon of localized joint flexibility, that operators are able to 

justify the remaining life of structural critical joints, because the original design analysis 

omitted this secondary effect. In providing a Remaining Life Assessment (RLA) for an aging 

structure, operators are required to provide a long-term inspection plan, mitigation plan to 

manage the residual structural risk of the structure, which is based on the findings of the 

assessment engineering incorporating localized joint flexibility in the global analysis. 

The majority of aging jacket type structures around the world are primarily of the tubular K-

joint type (Figure 1.4), as this was the joint configuration that was used over the first 40 years 

of the offshore structural industry. Some of these structures are in existence today and are still 

producing assets for many Oil and Gas Producers (OGPs). It is from this perspective that this 

study concentrates on the K-type joint, as local joint flexibility can provide ample 

justification for continued operations of these predominately K-type jacket type structures. 

MSL Engineering in 2001, on behalf of the UK Health and Safety Executive, undertook the 

study “The effects of local joint flexibility on the reliability of fatigue life estimates and 

inspection planning.” The findings of this study supported the industry view that 

conventional rigid joint analysis under-predicts fatigue life, while implementing local joint 

flexibility allows for a more accurate fatigue life prediction and closer agreement with results 

from underwater inspection and reducing the requirement for costly underwater inspections 

by approximately 75%. It is through studies such as these that the benefits of local joint 

flexibility can be realized and provide a basis for further research on local joint flexibility, as 

operators are faced with fitness for purpose engineering evaluations for an aging global fleet. 
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The decision to continue operating by OGPs will generally adopt a model similar to that 

proposed by Aven (2003), Figure 1.5. 

 

Figure 1.5 Basic structure of the decision making process 

(Aven, 2003) 

For most OGPs, they normally practice the As Low As Reasonably Practicable (ALARP) 

principles when making decisions on the risk analysis as proposed by Aven (2003). For aging 

structures, tools such as LJF, allow operators to make better informed decisions with their 

aging assets by better understanding their operating risk. O‟Connor et al (2005) has argued 

that the structural integrity management (SIM) of fixed offshore structures is about 

understanding structural risk and seeking for continuous risk reduction of the structure while 

it operates (Figure 1.6). If technological achievements such as LJF are used when assessing 

structures, then operators may be able to avoid costly frequent inspections (by adopting a 

Risk Based Inspection (RBI) approach) and hazardous and costly strengthening, modification 

and underwater repair schemes. 
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Figure 1.6 Continuous risk reduction to manage structural risk 

(O’Connor et al, 2005) 

1.5 Problem Description  

In many cases, integrity management is viewed as restoring to the as-built condition and 

considerable sums are invested in inspections, or platforms are shut down due to Health, 

Safety and Environmental (HSE) requirements, when they need not be. Additionally, drilling 

operations over the past decade has indicated that offshore oil and gas exploration is 

proceeding to the deeper waters using floating structures rather than the fixed types, 

predominantly used in the shallower waters. Therefore, more and more the emphasis from 

operators is to provide justification to continue operating their aging fixed assets while they 

move strategically to floating assets in deeper waters. An offshore facility which is well 

managed under an operator structural integrity management system and the use of assessment 

techniques ensures that the operator has an in-depth knowledge of the structure from 

installation/acquisition to decommissioning and can make informed decisions on platform life 

extension especially for aging structures. 

A major objective of this thesis is to demonstrate that operating lives of offshore structures 

can be extended appropriately in the context of structural integrity management of fixed 

offshore structures, with an improved suite of LJF equations. The suite of LJF equations is 

applicable to uni-planar K-type joints which will have a significant impact to the industry by 
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demonstrating greater ultimate strength capacity of fixed offshore jacket template structures. 

Greater ultimate strength would mean extension of the intervals between the platform 

underwater inspections and avoidance of costly underwater repairs. 

1.6 Scope of Present Research  

In 1983, AMOCO conducted an experimental study primarily to determine stress 

concentration factors associated with gapped K-type steel tubular joints. The LJFs were also 

calculated as part of the study by using the chord and brace displacements observed of two 

specimens under eleven load cases. The LJFs calculated were based on the effects of in-plane 

bending, out-of-plane bending and axial compression and tension. Torsional effects are 

considered as chord and brace rotations for the out-of-plane condition and defined on Figure 

5.4. These test results represent the only published large scale test data on LJF. 

Presently there are ten sets of LJF equations that have been used since the 1980s to predict 

fatigue life and ultimate strength. The derivations of these equations have evolved in many 

ways to predict the joint behaviour. There is a clear gap in the derivation of all LJF equations 

currently used in the offshore industry as they are not benchmarked to credible LJF test data 

but rather to finite element analysis, engineering judgment and ultimate strength test data. 

Furthermore, the LJF application studies, including codes of practices published, provide 

limited guidance on the finite element modeling, the incorporation of LJF in the framework 

to demonstrate its effect on the overall frame mechanism and the applicability of LJF for 

ultimate strength and fatigue life predictions.  

This thesis critically examines the suitability of the existing LJF equations, reviews the 

guidance provided in the existing studies and describes their limitations for gapped K-type 

tubular joints. A comparison study and benchmarking study demonstrate that a proposed 

finite element model provides a good fit with large scale experimental data and is used to 

develop a suite of improved LJF equations for gapped uni-planar K-type tubular joints. Apart 
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from producing an improved suite of LJF formulations, the thesis provides a basis to update 

current offshore structures codes and standards for uni-planar gapped K-joints but also 

provides a methodology for the derivation of LJFs from credible large scale test data for other 

tubular joint configurations including multi-planar K-joints, T-joints, Y-joints and X-joints. 

1.7 Organization of the Thesis  

This thesis presents the research carried out to achieve the above goals in nine chapters. This 

chapter introduces the subject of study. Brief outlines of the other chapters are presented 

below. 

 Chapter 2 describes the role of LJF within the Structural Integrity Management (SIM) 

framework for fixed offshore structures.  

 Chapter 3 provides a critical literature review of the currently existing LJF 

formulations showing the merits and limitations of each. 

 Chapter 4 provides a critical review of the various LJF studies that have been used in 

the structural assessments for fixed offshore structures  

 Chapter 5 provides a critical review of the AMOCO K-Joint tests and discusses the 

limitations of the test results and recent studies that have been used to validate the use 

of the test results within this study. 

 Chapter 6 provides details to the development of a finite element model that has been 

benchmarked to the AMOCO K-Joints and provides a comparison of existing LJF 

formulations with regards to the AMOCO K-Joint test geometric parameters. 

 Chapter 7 provides details on the methodology for the development, by the author, 

Riaz Khan (RK) LJF equations for uni-planar K-joints which is representative of the 

geometric ranges of in-service uni-planar gapped K-type joints. 
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 Chapter 8 provides a validation study of the new RK-LJF equations to demonstrate 

their appropriateness to ultimate strength against large scale frame test results and 

fatigue considerations against current industry practices. 

 Chapter 9 provides a summary of conclusions and the major findings of the thesis are 

highlighted. It also provides some suggestions for future work based on the findings 

of the thesis. 

A Glossary of offshore engineering terminologies, relevant to this thesis, is provided in 

Appendix 1. Appendix 2 provides the details on the thin shell finite elements that have been 

used extensively in this research. Appendix 3 provides calculations used in developing an 

initial finite element tubular joint model (RK-FEA) as outlined in Chapter 6. Appendix 4 

provides detailed calculations to support the development of the RK-LJF equations. 

Appendix 5 provides the USFOS input model files for the validation of the RK-LJF 

equations.  
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CHAPTER 2  

The Role of Local Joint Flexibility in the Structural Integrity 

Management (SIM) of Fixed Offshore Structures 

2.1 Introduction  

This Chapter provides the a basis for the inclusion of LJF in the assessment of fixed offshore 

structures and demonstrates the role of assessment in the structural integrity management 

(SIM) framework of fixed offshore structures. 

 

Figure 2.1 The role of LJF in the Structural Integrity Management of Offshore Structures 

Note 2: The definitions for offshore engineering terminologies are provided in the Glossary, Appendix 1 

2.2 Structural Integrity Management (SIM) 

The design process has evolved since offshore platforms were first installed in the Gulf of 

Mexico in the late 1940s. The first edition of the American Petroleum Institute, API RP 2A 

used for designing fixed offshore platforms in 1971 to the most recently published API RP 

2A 22nd Edition (2014), shows an evolution of the code borne out of significant catastrophic 
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events, such as the destruction left by Hurricane Camille in 1969 to Hurricanes Ivan, Katrina 

and Rita in 2004 and 2005. In the case of the latter, over 120 offshore structures were 

destroyed and an equal number was damaged, with most of these platforms being fixed based 

structures installed prior to 1980. Figure 2.2 shows the evolution of the API RP Structures 

Codes up to 2006. 

84

1950 1960 1970 1980 1990

78 93 97

Hilda

Failures
Camille

Failures

Juan

Failures

(sudden

hurricane)

Andrew

Failures

H
u

rr
ic

a
n

e
s

RP 2A

1
st
 Ed.

In
d

u
s

tr
y

S
ta

n
d

a
rd

s

Quality

Joint

Equations

Modern

Design

Code

Operator

Specific

Criteria

25yr to 100yr

return periods

Reassessment

Activities (AIM)

Updated

Wave

Recipe

Platform

Assessment

MMS

Inspection

Program

Pre-RP2A

918948

In
d

u
s

tr
y

P
ra

c
ti

c
e

Early-

RP2A
Modern-RP2A

2000

64 69

RP 2A

9
th
 Ed.

RP 2A

19
th
 Ed.

RP 2A

20
th
 Ed.

RP 2A

Sect. 17

RP 2A

21
st
 Ed.

Consequence

Based

Design

05

Katrina/

Rita

Failures

Ivan

Failures

Lili

Failures

02

API SIM

Task

Group

API HEAT 

Initiative

06

 

Figure 2.2 Evolution of the API RP structures codes 

(O’Connor et al, 2006) 

Fixed offshore structures are often classified as pre-API, early API designed up to 1979, 

modern design API designed from 1980 to 2013 and then 2014 onwards, which will conform 

to the new API RP 2A 22nd Edition. The majority of structures in existence today will not be 

able to comply with the most recent design codes of practices as some of them do not have 

the capacity to pass a code check, especially those designed with K-type, diagonal (D) 

bracing configurations (Table 2.1). It does not mean that structures with these configurations 

are not fit for purpose, but there needs to be a further level of assessment to justify continued 
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operations. Generally, structures designed to current codes exhibit higher levels of structural 

performance due to better framing systems which introduce higher levels of redundancy into 

the jacket truss framework. Current design codes tend to be more conservative than 

assessment codes, as the design process is confined to linear elastic code checks of 

components such as structural beams, columns and tubular joints. The design of each of these 

components will have high levels of safety characterized by design factors of safety. 
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XH type bracing with 
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Edition promotes using 

a baseline ultimate 

strength analysis at the 

design stage. 

Table 2.1 Classification of fixed offshore structures, based on their design 

 

Figure 2.3 Bracing configurations for fixed offshore jacket structures 
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When performing structural fitness for purpose assessments using such technologies as LJF, 

the focus is on reducing the high levels of design factors of safety to within a tolerable level. 

These fitness for purpose assessments are usually performed in the form of non-linear 

analysis and results are required to comfortably exceeded the regional acceptance criteria for 

collapse of the structure. In such cases, the safety of the personnel and offshore structures are 

never compromised. 

 

Figure 2.4 Platform robustness based on bracing configuration 

(O’Connor, 2005) 

O‟Connor (2005) defines the platform robustness is the term used to determine an offshore 

structure‟s tolerance to damage and loading beyond its design criteria. Figure 2.4 shows that 

K-braced structures are considered less tolerant to damage and less robust compared to other 

configurations. As the K-braced structure becomes older and it becomes susceptible to loss of 

strength due to corrosion and fatigue, it becomes more important to understand its robustness 

against its fitness for purpose.  

Since the late 1980s and early 1990s, there has been a great debate in the offshore structures 

community on the format for assessing the integrity of an existing structure. Kreiger et al 

(1994), Kallaby and O‟Connor (1994) and Turner et al (1994) have all put forth methods of 

assessing and mitigating the effects of an aging structure. O‟Connor et al (2005) proposed a 

framework for the Structural Integrity Management (SIM) framework for fixed offshore 



15 

 

structures, which was the genesis of the current API RP 2SIM. O‟Connor et al (2005) 

discussed the need for having a clear management system for the Data, Evaluation, 

Strategy, Program processes within the lifecycle of an offshore structure. As such, all tools 

including assessment methods and the LJF approach, found their way under the Evaluation 

and Strategy processes of the SIM framework (Figures 2.5 and 2.6). O‟Connor has 

specifically acknowledged Local Joint Flexibility (LJF) as a primary tool in both fatigue life 

estimation and ultimate strength capacity for continuous operations. 

 

Figure 2.5 The SIM process 

(O’Connor, 2005) 

 

 

 

 

 

Figure 2.6 Assessment methods in the Structural Integrity Management framework 

(O’Connor et al, 2005) 

In 2007, ISO 19902 proposed a flowchart for the assessment process for aging structures, 

(Figure 2.7). If design level checks are not met, then further assessments have to be 

performed to determine fitness for purpose. There are many assessment initiators that may 

Data Evaluation Strategy Program
Initiator

Triggered

Assessment

Yes
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trigger a structural assessment. For fixed offshore structures, fundamentally a change in met-

ocean loading (i.e. wind, wave or current) acting on the structure will be such a trigger. 

Structural assessments range from the linear elastic in-place analysis (design level checks) to 

the non-linear ultimate strength or pushover analysis. The inclusion of LJF in the assessment 

process is within the Perform ultimate strength analysis in the process flow of Figure 2.7. More 

detail explanation on the relationship between LJF and ultimate strength is provided within 

Chapters 7 and 8. 



17 

 

 

Figure 2.7 Flowchart of the assessment process 

(Adapted from ISO 19902, 2007) 
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2.3 Assessment versus Design Approach 

This design approach to fatigue life determination is a conservative approach based on the 

original design some 30 years ago. It considers the stress concentration factor (SCF), the S-N 

curve, the modeling of the loading and response of the structure and, most significantly, 

ignores the flexibility of the joints. In the design approach, the joints are modeled as rigid 

joints with little or no movement. A modified approach uses a more accurate and less 

conservative combination of S-N curve (i.e. the 1995 T‟ curve) and SCF formulation than 

that provided in the API code. The full assessment approach uses the improved SCF and S-N 

curve but also accounts explicitly for joint flexibility in the analysis. Table 2.2 shows a 

comparison of the design approach with a modified design approach and a full-blown 

assessment approach. 

 Design Approach 
Modified Design 

Approach 

Assessment 

Approach 

S-N Curves API X‟  HSE 1995 T‟  HSE 1995 T‟  

SCF API  Efthymiou  Efthymiou  

Joint Flexibility Rigid Rigid Flexible 

Table 2.2 Comparison of design and assessment approaches 

(O’Connor, 2005) 

This conservatism of original design has been responsible for the extended service of many 

thousands of platforms operating beyond their design lives without suffering fatigue damage. 

Since the fatigue design practice is generally adequate for design of new structures, the true 

fatigue performance of tubular joints is not always widely understood in the design 

community. When the design approach is used for assessing existing older structures, the 

implications for project teams can be costly, including unnecessary underwater repairs or 

strengthening, to return it to as-built condition or perhaps prevention of the project altogether. 

In assessing an existing older platform the conservatism will inevitably identify many joints 

well below the desired remaining life of the facility due to micro-cracks and corroded 
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sections. This is true in all regions of the world, which show consistent distribution in 

damage and defect trends and damage tolerance. A comparison of damage types in the UK 

Southern and Central North Sea with damage on Gulf of Mexico (GoM) platforms is shown 

in Figure 2.8. It is from this perspective that it can be deduced that offshore platforms 

operating in all regions globally show similar trends in structural performance and studies 

generated in one operating region can be applicable to other regions. 

Weld Defects 10%

Corrosion 23%

Mechanical Defects 67% 

Weld Defects 10%

Corrosion 23%

Mechanical Defects 67% 
 

US Gulf of Mexico 

Weld/Joint Defects 17%

Corrosion 27%

Mechanical Defects 56% 
Weld/Joint Defects 17%

Corrosion 27%

Mechanical Defects 56% 

 

 

UK Southern and 

Central North Sea 

Figure 2.8 Defect/damage trends in UK and US Gulf of Mexico Waters 

(O’Connor et al, 2005) 

Kallaby and O‟Connor (1994) made clear distinction in the analytical techniques for design 

level and assessment (integrity) level checks on an offshore facility and proposes the use of 

joint flexibility during the assessment approach as demonstrated by their simplified chart 

(Figure 2.9), under Stress Analysis. With the advent of climate change creating higher waves 

and wind loads, the use of LJF in any new designs will retain safety factors without 

excessively increasing costs. 

 



20 

 

 

Figure 2.9 Assessment techniques vs design techniques 

(Adapted from Kallaby and O’Connor, 1994)  
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Figure 2.10 Assessment refinement, including LJF 

(Adapted from Dier, 2003) 

Note 3: The definitions for offshore engineering terminologies are provided in the Glossary, Appendix 1 

Dier (2003) refers to LJF as an assessment refinement and is generally classified as a complex analysis 

for joint analysis. Figure 2.10 illustrates the role to LJF by Dier within the assessment process. 

2.4 Codes and Standards 

The main codes and standards used in the offshore structural engineering industry have been the 

American Petroleum Institute (API), Det Norske Veritas, DNV, NORSOK and International 

Standards, ISO. The API has been an industry leader in codifying the offshore structural design since 

the advent of Hurricane Camille in 1969. Since then, API have consistently developed the API RP 2A 

Working Stress Design (WSD) borne out of the demands of the severe metocean (wind, wave and 

currents) in the Gulf of Mexico (GoM). Figure 2.10, shows the evolution of the API RP Structures 

codes up to 2006. Since many of the world‟s operating regions do not have their own codes and 

standards, they have used the API RP 2A to design their structures to the GoM standard. In recent 

years, OGPs have acknowledged this is not a good practice and in the early 2000s attempted to 

improve this by coming together under various task groups to develop a global standard. The ISO 

19902, issued in 2007, became the first global code of practice for design of fixed offshore structures. 
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The main advantage of the 1SO 19902 is that it included regional annexes of site specific data 

(metocean, seismic, vessel collision, etc.) to be used for each of the world‟s operating regions for 

design. Furthermore, ISO 19902 provided the then new MSL-ISO joint capacity equations which have 

been benchmarked to the BOMEL frames tests (1993, 1995). This allowed practicing engineers to 

consider the effects and benefits of global pushover analyses to determine safety levels rather than 

relying solely on the classical component design of individual structural components (e.g. beams, 

bracing, joints, etc.) of the structure.  

With a growing aging global fleet, the OGPs realized that guidance must also be provided to consider 

the structural integrity of existing structures and not only new designs. In recent years, API 

Recommended Practice, Structural Integrity Management, API RP 2SIM, has been developed to 

provide guidance to operators for an aging fleet, with some elements of ISO 19902, API RP 21st Ed 

(Sections 14 and 17)  incorporated within it. The publishing of API RP 2SIM took considerable time 

from its inception in 2006 to final issue in 2014. Due to the many perspectives of each OGP involved 

in the code development with regards to their then current practices, it was very difficult to gain 

consensus on a prescribed format for managing the integrity of the fixed structures. As such, there 

were still areas of ambiguity in API RP 2SIM at the time of issue. In 2014, a new OGP/ISO 19901-09 

Task Force was launched to present the format for a new ISO SIM code of practice and to build on the 

work done by API RP 2SIM to have a more global reach as with ISO 19902. The author of this thesis 

(Riaz Khan) is a Committee Chair of the ISO 19901-09 SIM Code of Practice. As of mid-2016, the 

ISO 19901-09 SIM has proceeded for ballot and is currently a DIS (Draft Industry Standard) with an 

intended issue in late 2016. The codes of practice for offshore structures have specifically mentioned 

the use of local joint flexibility of tubular joints, but in each case the guidance is fairly limited in scope 

and not well defined. The only standard that explicitly quotes equations for use is the DNV Offshore 

Standard (2010), which only makes reference to the Buitrago‟s suite of equations.  

DNV-SINTEF-BOMEL (1999) published the findings of their ultimate strength study entitled “Best 

Practices for use of Non-Linear Analysis Methods in Documentation of Ultimate Limit States for 
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Jacket Type Offshore Structures.” or Ultiguide. BOMEL et al encouraged the use of Local Joint 

Flexibility (LJF) and they acknowledged “For typical structures the joints may be modeled as rigid 

connections at the brace to chord intersections. For conventional structures this introduces some 

conservatism in the analysis results. Joint Flexibility may be modeled by separate finite elements 

introduced between a node at the chord to brace intersection and the chord center node. The flexibility 

properties may be assigned to formulae developed by various researchers”. Table 2.3 provides some 

of the limited guidance that is provided within the current codes with regards to joint flexibility. 

Code of Practice 
Clause relevant to local joint 

flexibility 
Interpretation 

API Recommended Practice 

for the “Planning, Designing 

and Constructing Fixed 

Offshore Platforms - WSD”. 

RP 2A 

 

Under the general heading of tubular 

joints, a self-explanatory section 

reads: 

“Brace axial loads and bending 

moments essential to the integrity of 

the structure * should be included in 

the calculation of acting punching 

shear”. 

 

 

 

 

 

The asterisk refers to “Reductions 

in secondary (deflection-induced) 

bending moments due to joint 

flexibility or inelastic relaxation 

may be considered”  

Thus the design engineer may carry 

out a global analysis which 

incorporates the inherent flexibility 

of tubular joints. However, no 

guidance is given on how to obtain 

the flexibility coefficients. The 

inelastic relaxation permits the 

design engineer to redistribute 

moment loads prior to checking 

joint strengths. 

API RP 2A permits an eccentricity 

of +/- D/4 for normally concentric 

tubular joints (e = 0 in global 

analysis) for the purposes of joint 

detailing. However, API RP 2A 

requires that for tubular joints 

where the eccentricity exceeds +/- 

D/4, the secondary moments caused 

by this eccentricity should be 

considered in the global analysis. 

This is particularly relevant to 

tubular joints with members of 

similar diameter.  
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Det Norske Veritas, DNV 

“Rules for the Design, 

Construction and Inspection of 

Offshore Structures”  

 

 

 

 

 

 

 

Under the section entitled “Buckling 

of Frames”, DNV require that “Any 

joint flexibility in the connection of a 

member to a joint which is of 

importance for the force distribution 

in the structure, should be accounted 

for in the stiffness of the flexibility 

matrix of the total structure”. 

DNV further states that, “The 

rotational flexibility in the 

connection of the brace to a leg 

should be taken into account in the 

global analysis to secure a better 

estimate of frame bending stresses 

and bending stresses due to lateral 

wave and current loading”. 

To enable the design engineer to 

obtain flexibility coefficients, DNV 

gave two formulae for the rotational 

spring stiffness for T-joints for in-

plane and out-of-plane bending. 

These formulae are presented as 

equations (1) and (2) in Section 

2.5.1. 

British Standards International 

Standards Organization, ISO 

19902 (2007): Fixed Steel 

Offshore Structures 

 

 

 

 

 

 

 

 

 

 

In Section A.12.3.3.3, ISO 19902 

states that “Joint flexibility does not 

significantly affect the primary axial 

loading in the framework. However, 

joint flexibility does tend to reduce 

member end bending moments and 

increase mid-span moments. The 

exclusion of joint flexibility will 

therefore cause an overestimation of 

end moments and have a 

conservative effect when checking 

the framework against joint and 

member strength requirements”. 

ISO 19902 further states that “The 

inclusion of joint flexibility and 

member end offsets may reduce the 

global stiffness of the framework and 

thus increase the fundamental 

periods of vibration (lateral sway 

modes) by 3%-6%. Where measured 

periods are available (e.g. for 

assessment of existing structures) the 

structural model may be modified to 

reflect the measured values”.  
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API RP 2SIM 

“Recommended Practice for 

the Structural Integrity 

Management of Fixed 

Offshore Structures” , 2014 

 

 

 

Section C7.6.2 “Analysis 

Procedures”. The section explicitly 

states that “Significant redistribution 

of member forces can result if joint 

flexibility is accounted for, especially 

for short bracing with small length-

to-depth ratios, and for large leg 

joint can diameters where skirt piles 

are used. Joint flexibility analysis 

may use finite element methods as 

appropriate”. 

 

ISO 19901-09 

Specific Requirements for 

Offshore Structures. 

Structural Integrity 

Management  (DIS) 

Section A13-1 

“Use of theoretical fatigue life in 

establishing the extent and frequency 

of joint inspection should account for 

the actual in-service performance of 

the surveyed member / joint 

connections, the effects of joint 

flexibility on fatigue life, and the 

influence of each connection on the 

overall platform safety. Historical 

inspection data indicates that joint 

fatigue is not a common occurrence 

in complex multi-planar connections 

of older platforms. However, fatigue 

could be more common in fixed 

platforms having stiffer joint 

connections” 

 

Table 2.3 Code of Practice guidance on joint flexibility 

(ISO 19902, API RP 2SIM, API RP 2A, ISO 19901-09 (DIS)) 

The existing codes and standards often consider the use of LJF only in the assessment approach and 

ignore the benefits that can be derived by using LJF at the design stage, especially in operating regions 

where the metocean and environmental requirements are severe and thicker and larger sections can be 

avoided if LJF is implemented. Optimized sections using LJF can provide tremendous cost benefits for 

large projects, without compromising the inherent safety in design. 

Nichols and Khan (2015), while managing the integrity of a fleet of over 200 fixed offshore platforms 

in South East Asia, have used the API RP 2SIM (2014) as the basis for developing their company‟s 

SIM program. Their structures range from pre-API to those designed to modern API and ISO. They 
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have also adopted an approach of combining the use of ultimate strength pushover analyses together 

with LJF to continuously demonstrate fitness for purpose (FFP) as prescribed by ISO 19902. This 

approach has proved quite beneficial as limited resources can be reallocated, without compromising 

the integrity and safety of their existing structures, due to LJF implementation. A paper entitled 

“Structural Integrity Management System (SIMS) Implementation within PETRONAS’ Operations” 

was published by Nichols and Khan (2015) through the Journal of Marine Engineering and 

Technology (JMET) to demonstrate the holistic implementation of structural integrity management 

within a global operating company.  

In the context of the structural integrity management of fixed offshore structures, there is little 

published literature on the concept of LJF as a subset to structural assessment process and the 

limitation of current LJF equations. A paper entitled “The Role of Local Joint Flexibility (LJF) in the 

Structural Assessments of Aging Offshore Structures” by Khan et al (2016) has been accepted for 

presentation and inclusion of the proceedings at the 12th International Standards of Petroleum 

Engineers (ISOPE) Conference in Brisbane and provides a summarization of the key concepts on LJF 

based on the Literature Review (Chapters, 2, 3, 4 and 5) in this thesis.  

2.5 Summary and Conclusions 

Local Joint Flexibility analysis is an assessment method which is an integral part of the evaluation and 

strategy processes, within a wider SIM framework, for the continuous operation of an aging structure. 

It is required to assess the structure for its structural risk at the operating stage of its lifecycle, taking 

into consideration the structure‟s tolerance to damage and corrosion. Early structures were designed to 

a K-brace type configuration with the K-type tubular joints being a key feature of this configuration. 

To continue operations for these K-braced structures that have exceeded or are approaching their 

design life, LJF provides an assessment tool that can refine the structural analysis of the K-joint and 

provide justification for OGPs to continue operating. The existing codes of practice provide limited 

guidance on the applicability of LJF and formulations.  
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The development of codes and standards may have not been comprehensive enough to provide 

sufficient guidance to design and integrity engineers to manage fixed offshore structures. It is only 

with the advent of work done by MSL (1994, 1998) that the industry has been moving to a deeper 

understanding of the overall system strength for the jacket structures, rather than individual structural 

components. API RP 2A 22nd Edition Working Stress Design (2014) now advocates the use of 

ultimate strength analysis at the design stage to consider a baseline risk level for all new installations. 

There is also an opportunity for OGPs to further combine the ultimate strength analysis with the LJF 

to get a more effective solution to managing their aging assets especially if the fleet is large in number 

and resources are limited.  

In principle, the current codes and standards do not provide sufficient guidance on the use of LJF but 

merely makes reference to the possibility of using LJF as an assessment tool. Furthermore, due to this 

lack of guidance in the codes and standards, many practicing offshore engineers are reluctant to use 

LJF as they are unsure of its applicability for both the fatigue and ultimate strength considerations. 

This thesis will address both concepts of structural assessments and demonstrate the applicability of 

the proposed RK-LJF equations.  

The new ISO 19901-09 SIM (DIS) also provides limited guidance on the use of LJF (Table 2.3),  but a 

recently formed ISO task group on tubular joints for ISO 19902 (second edition), has considered a 

more detailed explanation to be included on LJF in the second edition. This thesis is the most current 

research with regards to LJF for uni-planar K-type joints and will provide appropriate guidance on the 

use of the RK-LJF equations and a methodology for developing further LJF formulations for other 

joint configurations, which can be included in a future ISO 19901-02 second edition, scheduled for 

issue in early 2017. 
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CHAPTER 3  

Literature Review: Parametric Equations and Empirical Formulae for 

Local Joint Flexibility 

3.1 Introduction 

The body of existing literature on local joint flexibility (LJF) is varied. However, it can be categorized 

under five major areas, with some overlap from one area to the other. These areas of interest include: 

 guidance from offshore structures codes of practices 

 finite element modeling  

 a series of studies where local joint flexibilities have been applied 

 derivation of empirical formulae for local joint flexibility calculations  

 tests and experimental data 

Figure 3.1 provides an overview of the various studies and guidance that has been reviewed and 

included as part of this Literature Review. Presently, there are ten published sets of LJF equations that 

have been used since the 1980s to predict fatigue life and ultimate strength of the jacket structures. 

The LJF derivations have evolved in many ways, including use of finite element methods to predict 

the joint behaviour. There has been insufficient benchmarking exercise to large scale experiment. The 

details of the existing LJF formulations are provided in Table 3.1. This Chapter provides a 

summarization of each of the ten parametric equations and discusses the merits and limitations of 

each. From the basic geometry of tubular joints shown in Figure 1.4, the following are definitions to 

the key parameters that are established within LJF parametric equations. They include β = d/D where d 

is the diameter of the brace, D the diameter of the chord. γ = D/T, where T is the chord thickness. The 

gap parameter δ = g/D, where g is the gap size and θ represents angle between brace and chord.  
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Figure 3.1 Overview of Local Joint Flexibility Literature Review 

No. 
Year of 

Study 
Researcher Research/Study 

1 1977 
Det Norske 

Veritas (DNV) 

Proposed formulae for the translational and rotational spring 

stiffness for T-joints within the DNV (1977) “Design, 

Construction and Inspection of Offshore Structures” 

2 

1983   

&   

1986 

Fessler et al. at 

Nottingham 

University 

Published a set of LJF formulae for T/Y joints based on tests on 

precision-cast epoxy specimens. The formulae have been 

updated in 1986 and are generally referred to as the Fessler 

improved equations. Formulations have now been adopted 

within the SACS software. 

3 1985 Efthymiou 
Produced a series of LJF expressions for the bending load 

cases. 

4 1987 Ueda et al 
Published LJF equations for 90 degree T-joints under axial load 

and in-plane bending. 

5 1993 
Hoshyari and 

Kohoutek 

Published expressions for the flexibility of tubular T-joints 

studied using a dynamic method of analysis. 

6 1993 Chen et al 

Modified the earlier work on the semi-analytical method to 

account for T/Y, K symmetric and K non-symmetric joints and 

extended the work to cater for multi planar braces. 

7 1993 Buitrago et al. 

Developed LJF parametric equations which showed a strong 

dependency on the β and γ with a lesser influence on the τ and 

θ parameters. Formulations have now been adopted within the 

SACS software. 
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8 2002 MSL-Joint 

Developed as a part of JIP for ultimate strength, the 

formulations are now adopted within the SACS and USFOS 

Software. 

9 2013 Qian et al 

Attempted to benchmark current research at National 

University Singapore to MSL equations and BOMEL Frame 

Tests. 

10 2014 Asgarian et al 
An FE based study of uni-planar multi-brace tubular Y-T and 

K-Joints 

Table 3.1 Parametric Equations developed to calculate the effects of local joint flexibilities 

3.2 Det Norske Veritas (1977)  

The earliest documented work on LJF equations came from a DNV publication in 1977. In Appendix 

C, Section C1.5.1 entitled “Buckling of braced frames” within the 1977 DNV Rules for the Design, 

Construction and Inspection of Offshore Structures, formulae for the rotational spring stiffness for T-

joint are presented. In terms of Local Joint Flexibilities (LJF), these equations are expressed as: 

LJF OPB = 5000 (215-135β)
-1

(γ
-1

 - 0.02)
(1.6β-2.45)

/ED
3
       (3.1) 

LJF IPB = 18.6 (γ
-1

 -0.01)
(1.5β-2.96)

/ED
3
         (3.2) 

The applicability of the above formulae is for the range  

10 ≤ γ ≤ 30,   0.33 ≤ β ≤ 0.80,   θ = 90
◦
  

DNV explains that there are benefits to frame structures by including LJF as part of global 

performance by considering the performance of joints in relation to the in-plane bending and out-of-

plane bending conditions. DNV states that “Any local flexibility in the connection of a member to a 

joint which is of importance for the force distribution in the structure should be accounted for in the 

stiffness or flexibility matrix of the total structure.” DNV also stated that “The rotational flexibility in 

the connection of the brace to a leg should be taken into account in the global analysis to secure a 

better estimate of frame bending stresses and bending stresses due to lateral wave and current 

loading.” DNV considered the effects of LJF on the ultimate strength of the jacket template and 

ignores any possible effects of LJF on the fatigue prediction of tubular joints. There is also no 
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background to these formulae that were presented within the DNV document, although Buitrago 

(1993) did state that these formulae were based on a limited number of finite element analyses. The 

formulae are limited to the IPB and OPB conditions of T-type joints and no guidance is provided to 

the axial loaded braces.  

As an initial starting point, DNV‟s work is critical as it links the performance of tubular joints to the 

IPB and OPB conditions and proposes equations that can be used to consider the effects of LJF on the 

global performance of a frame structure. 

3.3 Fessler et al (1983) 

By the early 1980s, the DNV equations had been widely used by the OGPs to explain the phenomenon 

of LJF. However, there was a need to expand the work to develop a full suite of equations for axial, 

OPB and IPB loading effects for other joint configurations. While the 1983 equations were published 

by Fessler et al, the work was initiated by OGPs from the North Sea operating region in the form of a 

major Joint Industry Project (JIP). As funding levels decreased from the OGPs, due to decreased 

revenues from oil production in the North Sea at the time, Fessler migrated the research fully to the 

University of Nottingham for completion. In 1983, Fessler of Nottingham University completed a set 

of joint flexibility formulae for T/Y joints based on precision-cast epoxy resin specimens. The 

equations were later published in a UEG publication (1985) UR33, “Design of Offshore Tubular 

Joints of Offshore Structures.”  

Fessler‟s formulae for T/Y joints are: 

LJF Axial = 2.3 γ 
2.3

exp (-3.3β) sin 
2
 θ/ED                    (3.3) 

LJF OPB = 48.1 γ 
2.5

exp (-3.7β) sin
2 

θ/ ED
3
                    (3.4) 

LJF IPB = 171 γ 
1.65

exp (-4.6β) sin 
1.7 

θ /ED
3
                                      (3.5) 
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Figure 3.2 Test Rig used by Fessler (1981) 

There was no range of applicability for these formulae given in the report. Fessler‟s early work 

considered the effects of axial loading to improve on the DNV suite of equations and the effects of 

LJF on the global structure, a fundamental benefit stated in the previous work by DNV. However, the 

time consuming nature for the experimental work and the high cost of equipment (Figure 3.2), he 

concluded that there was a need for simpler apparatus to measure the effects of LJF for bending and 

axial conditions in the future. It is from this perspective that future researchers on LJF performed 

experimental work on tubular joints rather than the entire frame structure, unless funded by OGPs. 

3.4 Efthymiou (1985) 

In 1985, Efthymiou of Shell/KSEPL attempted to build on the work done by DNV and early Fessler. 

A fundamental inclusion on this work is that he considered a variety of joint configurations including 

T, Y and K-type joints. Furthermore, he measured rotations at the end of the brace as shown in Figure 

3.3. This is different from all the previous methods where the measurements were made on the chord 

wall. Fundamentally, Efthymiou did not limit the effects of LJF to the chord only, but demonstrated 

that the brace deflections also contribute to the overall LJF of the entire joint. He produced a series of 

joint flexibility expressions for the bending and moment load cases. The report was originally 

confidential within Shell/KSEPL but is now available to use without confidential restrictions. Twenty 

four joints were investigated using the finite element method. Thin-shell elements for the members 
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were combined with brick elements at the weld region. Efthymiou analyzed the linear behaviour of the 

twenty four tubular joints under out-of-plane bending and in-plane bending. For comparison, one type 

of geometry was also analyzed using the SATE finite element program which describes the mid-

surface of an element. Twelve T-joints, three Y-joints and nine 90
◦
/45

◦
 gap/overlap K-joints (with only 

the 90
◦
 brace loaded) were investigated covering a parametric range of: 

0.31 ≤ τ ≤ 0.75,                                0.35 ≤ β ≤ 0.75                           12.5 ≤ γ ≤ 30 

45
◦
 ≤ θ ≤ 90

◦
,                                   -0.50 ≤ δ ≤ 0.75,                           6 ≤  α ≤ 16 

Efthymiou‟s formulae for LJF are: 

LJF OPB = 3.478 β 
2.12γ(2.2 - 0.7(0 .55β)

sin 
(β + 1.31)

 θ /ED
3        

(3.6) 

For T/Y and K-Joints, and  

LJF IPB (T/Y) = 6.154 β - 
(-2.25 + γ/125)

 γ 1.44 sin 
(β +0.4)

 θ /ED
3
                (3.7a) 

LJF IPB (K Gap) = LJF INP (T/Y) / [1 + 0.4τ β 
1.1

exp (-1.2δ)]                (3.7b) 

LJF IPB (K Overlap) = LJF INP (T/Y) / [1+ 1.9 τβ 
1.1

exp (-0.8 {δ sin θ A/ βA)}]              (3.7c) 

 

Figure 3.3 Efthymiou’s measured rotations for LJF calculation 

Efthymiou presents his LJF formulae in a paper as joint stiffness K, where K = M/φ = 1/LJF; however 

they do not address axial compression and tension loading, which is also a primary load effect for 
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tubular joints in the offshore industry. When comparing the predicted stiffness values to those in a 

curve fitting exercise, the values are within 15% for T and Y-joints. For K-type joints, the values are 

within 30% of the measured stiffness values. His work was inclusive of the common types of joints in 

the industry but the database of joint geometric parameters is limited. He confined his research to β 

and γ parameters from the database. A key element to developing a suite of LJF equations is to use an 

extensive database with a wide range of geometric parameters for the finite element modeling and 

curve fitting exercise, which will be addressed within this thesis. Furthermore, Efthymiou‟s work was 

based on finite element analysis and does not have any comparison with experimental findings, which 

has proved a limitation on the credible use of his LJF equations.   

3.5 Fessler et al (1986) 

Based on the previous work by Efthymiou and feedback on the applicability of early Fessler‟s 

equations, Fessler (1986) re-published his work based on an extensive curve fitting exercise. His 

database considered more permutations of geometric ranges than did either Efthymiou or early Fessler. 

Furthermore, Fessler attempted to include the effects of braces and chords on the overall LJF of the 

joint and presented them as coefficients in a flexibility matrix. Additionally, Fessler extended the 

knowledge of LJF by not limiting to the effects of uni-planar joints, but proposed additional equations 

to consider the effects of multi-planar joints. Fesslers‟s formulae were updated in 1986 and the new 

equations were generally referred to as the Fessler improved formulae: 

LJF Axial = 1.95 γ 
2.15

 (1-β)
1.3

 sin 
2.19

θ/ED                     (3.8) 

LJF OPB = 85.5 γ 
2.2

exp (-3.85β) sin 
2.16

 θ/ED
3
                    (3.9) 

LJF IPB = 134 γ 
1.73

exp (-4.52β) sin 
1.22

 θ/ED
3
                                  (3.10) 

The proposed range of applicability for these improved expressions is: 

10 ≤ γ ≤ 20,              0.30 ≤ β ≤ 0.80,           30
◦
 ≤ θ ≤ 90

◦
  

By locating displacement gauges along the chord and not just near the brace/chord footprint, Fessler 

determined the displacement at brace locations caused by loading the single brace. Fessler et al 
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defined the joint flexibilities as the displacements of the braces per unit load attributable to local 

distortion of the chord cross-section only. The displacements of the brace are determined from the 

displacements of the four points under the brace on the chord surface. Although a joint may have up to 

twelve braces (three in each orthogonal plane), only two braces are ever considered at one time, when 

deriving the flexibility matrix. The displacements, under the unloaded brace, are used to obtain a 

flexibility sub-matrix (of the complete 6x6 matrix of a two-brace joint) defined by the following 

equation: 

 

                                                                         (3.11) 

 

 

Where: 

P is the tension applied to the brace 

Mi is the in-plane bending moment applied to the brace 

Mo is the out-of-plane bending moment applied to the brace 

Φi is the in-plane tilt of the brace 

Φo is the out-of-plane tilt of the brace 

It should be noted that while these formulae cover e/D in the range -0.25 ≤ e/D ≤ 0.25, overlapping 

braces were specifically excluded. The factors f11, f22 and f53 are the single brace T/Y joint equations.  

Fessler also concluded that any flexibility matrix, which has a displacement ratio less than 0.1 were 

assumed to be insignificant. For braces in all three planes, no significant values were obtained for the 

f63 flexibilities, and for braces in the 180
◦
 plane, no significant values were obtained for the f43 
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flexibilities either. It was found that above displacement ratio criterion excluded all data for the f62 

term for braces in the 90
◦
 plane except that for γ = 20. Hence it was not possible to establish a 

relationship between the remaining data and γ. However, as the largest value of the displacement ratio 

for this term for any of the data was still only 0.14, it was assumed that this flexibility could also the 

neglected. Parametric equations were derived for all of the non-zero terms. Figures 3.4 through 3.7 

show the direction of positive loads and displacements to typical joints and the relevant joint 

parameters. 

 

Figure 3.4 Joint with loaded and unloaded braces in the same plane 

(Fessler) 

Fessler compared the results of his uni-planar equations (Equations 3.8–3.10) with the existing 

formulations at that time, notably DNV and Efthymiou. He also compared with the values obtained 

from Tebbett‟s (1982) experimental work. He reported that Fessler‟s, Efthymiou‟s and DNV‟s LJFs 

under-predict the axial flexibility term f11 by 15% - 30%. For the OPB condition, both DNV and 

Efthymiou overestimate by approximately 30% compared to experimental results. For the IPB 

condition, both DNV and Efthymiou overestimate by approximately 25%. He further concluded that 

the Fessler‟s equations give a better agreement (within 20%) with the experimental work compared to 

the existing LJF equations at the time. Fessler does not consider the brace thickness as having any 

major contribution to the LJF. The results is not altogether unexpected, as his research is confined to 
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addressing the chord thickness in the LJF formulation, but brace thickness also has contributing factor 

to the overall LJF of the system and cannot simply be ignored. 

To simplify his LJF formulations, Fessler ignored flexibility matrix terms that he considered 

insignificant. Since the early 2000s, the advances in computing power have improved considerably to 

perform structural analysis of tubular joints via finite element modeling. The flexibility matrix terms 

that Fessler ignored are f11, f43 and f63 during his LJF formulation development can now be considered 

when a modern FE analysis is performed on the tubular joint, to represent the overall LJF flexibility.  

In 1986, in a companion paper, Fessler published a set of equations (Equations 3.12-3.14) which 

relates to the contribution of multi-planar joints or to determine cross-flexibility between any two 

braces, which may be at orthogonal planes at a joint (Figures 3.6-3.7). As with the work on uni-planar 

joints, Fessler ignores the thickness of the brace when developing his equations. 

 

Figure 3.5 Joint with unloaded brace in the 90
◦
 plane 

(Fessler) 
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Figure 3.6 Joint with unloaded brace in the 180
◦
 plane 

 

Figure 3.7 Joint with unloaded brace in the 270
◦
 plane 
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In these expressions, subscripts L and U apply to loaded and unloaded braces respectively. It should be 

noted that e refers to the exponential function in these equations while the joint eccentricity (e) is 

always referred to in the ratio e/D. 

a) Braces in 0
◦
 plane (θ L ≤ 90

◦
, θ U ≥ 90

◦
) (See Figure 3.4) 

f41 = 1.26 γ 
2.3

 (1-βL) 
0.71

 sin 
1.58

 θ L (1-βu)
 0.48 

sin 
1.76

 θ U e
-0.58 e/D

               (3.12a) 

f43 = 9.42 γ 
1.84

 sin 
0.79

 θ L e 
-1.67 βL

 e 
-0.81 βu

cos (0.52θ U ) e
-0.52 e/D

                          (3.12b) 

f52 = 67.9 γ 
2.04

 sin 
1.61

 θ L e 
-1.22 βL

e
-1.55 βu

sin 
2.34

θ U e
-0.94 e/D

                (3.12c) 

f61 = -16.5 γ 
1.2

 (1-βL) 
1.62

 sin 
0.71

 θ L (1-βu)
 0.08 

sin -0.36  θ U e
-0.42 e/D

               (3.12d) 

b) Braces in 90
◦
 plane (θ L ≤ 90

◦
) (See Figure 3.5) 

f41 = -0.77 γ 
2.3

 sin 
1.11

 θ L (1-βL)
 0.58 

sin 
1.35

 θ U (1-βu)
 0.41

e
-0.22 e/D

               (3.13a) 

f42 = 8.67 γ 
2.06

 sin θ L e 
-2.97 βL

 sin 
1.36

  θ U  e 
-1.76 βu

 e
-0.24 e/D

               (3.13b) 

f43 = 1.39 γ 
1.49

 sin 
0.15

θ Lcos (1.56θ U) e
0.14 e/D

                 (3.13c) 

f51 = -58.4 γ
1.23 

sin 
1.18

 θ L(1-βL)
 1.60

 sin 
1.20

θU (1-βu)
 1.22

                (3.13d) 

f52 = -5.48 γ 
2.29

 sin 
1.13 

θ Le 
-0.14 βL

 sin 
1.28

 θ Ue 
-0.79βu

 e
-0.22 e/D

                  (3.13e) 

f53 = 34.2 γ sinθ LcosθUe
0.66 e/D

                              (3.13f) 

f61 = -5.83 γ
1.36 

sin 
1.19

 sinθ L (1-βL)
 0.29

cos (1.02 θU) (1-βu)
 0.10

 e
 0.60 e/D

               (3.13g) 

c) Braces in 180
◦
 plane (θ L ≤ 90

◦
) (See Figure 3.6) 

f41 = -0.85 γ 
2.24

 sin 
1.14

 θ L (1-βL)
 0.49

 sin 
1.41

 θ U(1-βu)
 0.31

e
-0.28 e/D

                (3.14a) 

f52 = 3.06 γ
2.32

 sin 
1.21

 θ L e 
-0.73 βL

 sin 
1.15

 θ U e
-0.14 e/D

                (3.14b) 

f61 = 2.42 γ 
1.61

 sin 
1.07

 sinθ L (1-βL)
 0.27

cos (1.03 θU) (1-βu)
 0.11

 e
 0.69 e/D

                         (3.14c) 

d) Braces in the 270
◦
 plane (See Figure 3.7) 

Equations for braces in the 90
◦
 plane, (Figure 3.4) above, can be applied when the unloaded brace is in 

the 270
◦
 plane. However, the signs of the f42, f51 and f53 terms have been reversed when the unloaded 

brace is in the 270
◦
. The results from the sign conventions which define the directions of the loads and 

displacements are shown in Figures 3.6 and 3.7 for the two load cases respectively. 
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For the multi-planar joints, Fessler reported that the LJF equations gave an overestimation of up to 

70% for joints of high flexibility where a small diameter brace is surrounded by larger diameter 

braces. While Fessler considered multi-planar configurations when developing his LJF equations, the 

overall effects of distortion of the chord and the contribution of all braces to this distortion needed 

further investigation. This work will be addressed further by Chen (1993) and Buitrago (1993) when 

developing their suite of LJF equations.  

Fessler‟s equations are primarily based on epoxy resins but have not been derived or benchmarked 

against the performance of tubular steel joints. The performance of steel tubular joints has always the 

primary concern of the offshore industry and this thesis will address LJF with regards to steel uni-

planar gapped K-joints and validate its derived LJF equations against large scale testing. For the multi-

planar work, Fessler uses the same limited database as that used in his uni-planar derivation of LJF 

equations and also ignores the effects of brace thickness in both formulations. While the experimental 

methods may have been applicable for the time of testing, the main criticism of the derivation of 

Fessler‟s LJF equations comes from him ignoring terms in the flexibility matrix that he considered 

insignificant, but may not be so. His assumptions were partly due to the lack of advanced computing 

and engineering software available to researchers at that time. Therefore, Fessler opted for a 

conservative approach to derive his LJF formulations, which lead to discrepancies between other 

formulations and experimental results at the time for both uni-planar and multi-planar joints. 

This thesis will address the shortcomings of the Fessler work for uni-planar K-type joints, by using 

appropriate finite element software, like the ABAQUS suite which is a well-established suite for 

structural engineering applications, a selection of tubular joints that represents a global in service fleet 

and comparison to tubular joint test results and validation against a 2D frame test results.   
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3.6 Ueda, Rashed and Nakacho (1987) 

In 1987, Ueda et al published LJF equations for 90
◦
 T-joints under 7 axial load tests at the braces and 

eleven tests on in-plane bending based conditions. The joint flexibility formulae published by Ueda for 

T-joints are: 

LJF Axial = 0.312 γ 
2.3

 β
1.2

sin
2
θ/ED                  (3.15a) 

LJF IPB = 4.22 γ
1.7 

β
-2.2

sinθ/ED
3
                             (3.15b) 

Their main improvement to the previous work is to provide a suite of LJF equations that are applicable 

in both the elastic as well as the elastic-plastic ranges and present them on a series of load 

displacement curves (Figure 3.9) for T and Y-type tubular joints.   

 

Figure 3.8 Joint Model, T and Y Joint 

(Ueda, 1987) 

 

Figure 3.9 Load displacement relationship for one load case 

(Ueda, 1987) 
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The finite element model was developed similar to Efthymiou model using thin shell elements and 

compared to the experimental test results. The experimental database is limited to IPB and axial 

loading but does not consider the OPB condition. No comparison of results is made to the other 

researchers at the time, such as DNV, Efthymiou or Fessler. These equations are very restrictive as far 

as the relative size of the members is concerned with the β varying from β = 0.35-0.55. These 

expressions are valid within the following range: 

0.35 ≤ β ≤ 0.55,                  8 ≤ γ ≤ 30,                      θ = 90
◦
  

and are only applicable for in-plane bending and axial loading effects. Further work was required to 

the applicability of the LJF equations to other joint configurations and validation in a large scale 

tubular testing or ultimate strength of large scale frames. 

3.7 Hoshyari and Kohoutek (1993) 

In 1993, Hoshyari and Kohoutek of the University of Wollongong, Australia, published the 

expressions for the flexibility of tubular T-joints studies. They built their research on the work done by 

Fessler, Efthymiou and Ueda. Their fundamental contribution to the knowledge on the subject of LJF 

was to study the effects of LJF on dynamic sensitive structures. Joint flexibility was calculated using a 

dynamic method using measured natural frequencies. In this study, the in-plane and out-of-plane 

rigidity of T-joints are investigated experimentally. The test set up to determine the joint rigidity is 

shown in Figure 3.10. 

 

Figure 3.10 Diagrammatic test set-up for frequency measurements of T-joints 

(Hoshyari and Kohoutek, 1993) 
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From Figure 3.10, the vibration induced by impacting the cantilever, was picked up by an 

accelerometer mounted on the tip of the cantilever at the joint. The output signal from the 

accelerometer was amplified and then processed by the Fourier analyzer. The natural frequencies can 

now be determined from the experimental data. The method used to determine the stiffness or rigidity 

of the joints via dynamic measurements is the free vibration method. Free vibration method considers 

the natural frequencies of the structure. Natural frequencies are the eigenvalues of the stiffness matrix 

of a structure and include the interaction of the members meeting at a joint. Therefore, by knowing the 

natural frequencies, the rigidity of a joint can be determined by 

Kx = 0 or Det [K] = 0                                                                                                 (3.16) 

Using the ALGOR finite element package, 90 degree T-joint configurations with D = 219 mm and α = 

13.7 were modeled under three load cases. Stiffness formulae for T-joints are presented based on the 

finite element results obtained and the effect upon stiffness of the τ parameter has been incorporated 

(the first set of empirical stiffness formulae to do so). Good correlation between the finite element 

analysis and these formulae were reported, although the finite element data has yet to be published. 

The stiffness formulae derived are presented in terms of LJF: 

LJF Axial = 0.436 τ 
-0.74

 γ 
(3.1.1.38β)

 β 
(0.31+γ/27.7)

/ED                (3.17a) 

LJF OPB = 11.36 τ 
-0.312

γ 
(3.27 -1.87β)

γ 
(0.31+γ/86.4)

/ED
3
                 (3.17b) 

LJF IPB = 6.99 τ 
-0.205

γ 
(1.75 -β/2.31)

γ 
(1.51+γ/109.8)

/ED
3
                 (3.17c) 

For the following range of validity  

13 < τ < 30,    0.3 < β < 0.9 

0.2 ≤ τ ≤ 1.0,    θ = 90
◦
 

The experimental measurements and the finite element modeling of the T-joint were compared. With 

no published finite element data published, the credibility of the derived equations can easily be 
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questioned. The equations are limited to T-joints and are not applicable to K-joints, which is a major 

bracing mechanism for aging structures. At this time, there has been little research performed on the 

effects of dynamics and LJF on the overall performance on fixed offshore structures. The majority of 

LJF researchers have confined their efforts to the effects of LJF in the static realm. There is an 

opportunity for more research in this area as some structures are now being installed in deeper waters 

and some display natural frequencies greater than 3.0 seconds. API RP 2A 22
nd

 Edition (2014) 

classifies dynamically sensitive structures as those having a natural frequency greater than 3.0 

seconds. 

3.8 Chen, Hu and Ma (1993) 

In 1990, Chen et al at Shanghai Jiao Tong University, China, used closed form equations together with 

finite element methods to evaluate components of the joint flexibility matrix. The basis of the work 

builds on the flexibility equations published by Ueda previously. In 1993, Hu et al modified the earlier 

work by Chen to account for T/Y, K symmetric and K non-symmetric joints and extended his 

approach to cater for multi-planar braces, which was introduced previously by Fessler. For T/Y joints, 

local joint flexibilities were derived based on the local transitional displacement/rotation in the 

direction of the brace axis. 

 

Figure 3.11 The equivalent element method by Chen (1993) 



45 

 

LJFAxial = δ/P = 1/P [ 1/4 {Δa + Δb + Δc+ Δd} - Vo] sin θ                   (3.18) 

Where Δa + Δb + Δc+ Δd are the displacements at the two saddles and the crown positions (defined in 

the glossary in Appendix 1) and Vo is the transitional displacement at the mid-brace point on the chord 

due to the bending of the chord as a beam. Similarly, for the moment load cases, the joint flexibilities 

may be derived. By regression, analysis of the joint flexibility estimates from finite element analysis, 

the following formulae were derived: 

LJFAxial = 3.27 γ 
2.26

 e
-3.05β

 sin 
1.89

 θ/ ED                 (3.19a) 

LJFOPB = 52.19 γ 
2.48

 e 
-3.95β

 sin 
2.01

 θ / ED
2
                             (3.19b) 

LJFIPB = 132.49 γ 
1.70

 e 
-4.32β

 sin 
1.22

 θ / ED
 3

                                        (3.19c) 

The equivalent element was proposed by Chen et al to represent the LJF behaviour by introducing a 

finite element (with LJF properties) into the tubular joint model. The equivalent element was formed 

from a triangle linking the intersection points on the chord surface under the two braces with the third 

point on the chord axis, see Figure 3.11. The resulting stiffness matrix [K], can be deduced such that 

[K] = [B] [A] 
-1

 [B] 
T
                                                                                                                    (3.20) 

Where [A] is the LJF matrix  

And [B] gives the relative translational elements, thereby giving three force components and three 

moment components at each of the three points of the equivalent element. 

No limitations were proposed on the range of application for these equations. For K-joints the relations 

between the local displacements are expressed in matrix form, 

{δ} = [F] {P}                       (3.21) 

Where {δ} is a vector composed of the local displacements at the intersections between the braces and 

the chord wall. 

And {P} is the vector composed of the external loads. 

{δ} = [ δ1, φ01, φ11, δ2, φ02, φ12] 
T
                     (3.22) 

{P} = [P1, M01, M11, P2, M02, M12] 
T
                     (3.23) 
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And the 6x6 local flexibility matrix [F] can be reduced to only eleven independent variables to 

include: 

 

                     (3.24) 

 

 

Again, formulae for each element in the matrix were developed from the finite element analysis. By 

performing a regression analysis on these results, simple LJF equations for symmetric and non-

symmetric K-joints were developed: 

a) Empirical Formulae for Symmetric K-Joints  

f11 = f44 = 3.66 γ 
2.19

 e 
-2.74β

 sin 
2.11

 θ/ ED                 (3.25a) 

f22 = f55 = 49.59 γ 
2.48

 e 
-3.80β

 sin 
2.10

 θ/ED
3
                  (3.25b) 

f33= f66= 111.49 γ 
1.73

 e
-3.98β

 sin 
1.42

 θ/ED
3
                             (3.25c) 

f41 = 1.37 γ 
2.43

 e 
-2.22β

 sin 
3.00

θ/ED                                         (3.25d) 

f43= -4.76 γ
1.84 

e 
-2.23β

 sin 
1.61

 θ/ED
2
                              (3.25e) 

f52 = 5.61 γ 
2.81

 e 
-1.84β 

sin 
3.43

θ/ED
3
                                         (3.25f) 

f61= 4.76 γ
1.84 

e 
-2.22β

 sin 
1.61

 θ/ED
2
                  (3.25g) 

f63 = -26.33 γ 
1.33

 e 
-3.44β 

sin 
0.29

θ/ED
3
                 (3.25h) 

b) Empirical Formulae for Non-Symmetric K-Joints  

f11 = 4.54 γ 
2.16

 e 
-2.85β

 sin 
2.48

 θ/ ED                   (3.26a) 

f22 = 55.37 γ 
2.45

 e 
-3.82β

 sin 
2.22

 θ/ED
3
                  (3.26b) 
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f33= 115.57 γ 
1.74

 e
-4.08β

 sin 
1.52

 θ/ED
3
                  (3.26c) 

f44 = 3.55 γ 
2.21

 e 
-2.85β

 sin 
0.03 

θ/ED                  (3.26d) 

f55 = 58.07 γ 
2.43

 e 
-3.85β

 sin 
0.03

 θ/ED
3
                  (3.26e) 

f66= 170.02 γ 
1.62

 e
-4.43β

 sin 
-0.01

 θ/ED
3
                  (3.26f) 

f41 = 1.30 γ 
2.55

 e 
-2.68β

 sin 
2.44

θ/ED                   (3.26g) 

f43= -2.78 γ
1.99

e 
-1.97β

 sin 
0.43

 θ/ED
2
                              (3.26h) 

f52 = 5.56 γ 
2.86

 e 
-2.10β 

sin 
2.64 

θ/ED
3
                   (3.26i) 

f61= 3.96 γ
1.91

e 
-2.10β

 sin 
1.97

 θ/ED
2
                   (3.26j) 

f63 = -20.90 γ 
1.44

e 
-3.21β 

sin 
0.59

θ/ED
3
                   (3.26k) 

Chen‟s formulae were developed for symmetrical K-type joints and later developed for non- 

symmetric K-type joints and later to include the axial and in-plane bending for T and Y-joints. Chen 

used twenty-one points from a structural database, which is not referenced, and the finite element 

models are developed from this undisclosed source. He develops all terms in the flexibility matrix for 

K-type joints only and ignores the terms for other joint configurations. The inclusion of an equivalent 

element to represent an element displaying joint flexibility behaviour is a forward step in modeling the 

effects of LJF in tubular joints. This work was used by future researchers, including Buitrago, to 

develop the short beam (flex) element. The work by Chen et al focuses on the finite element method 

and there is no attempt to benchmark and compare results with experimental work or with other 

existing LJF formulations available at the time. With the above mentioned shortcomings on Chen‟s 

equations, they are rarely used due to lack of confidence in the benchmarking and completeness of the 

structural database used to develop the equations.   
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3.9 Buitrago, Healy and Chang (1993) 

In 1993, Buitrago, Healy and Chang reviewed local joint flexibility of tubular joints. They considered 

the short comings from previous research on LJF and attempted to improve upon them. Buitrago‟s 

equations considered single-braced, cross and gapped and overlapping K-type joints. Apart from 

developing a suite of LJF equations, Buitrago et al compared the use of the spring element vs a short 

beam (flex) element. The short beam (flex) element is a beam finite element incorporated in the frame 

analysis to demonstrate the effects on LJF, by having the effects of axial, IPB and OPB in terms of 

moments of inertia and cross-sectional area and length of the element. Buitrago‟s work built on the 

then recent work done by Chen et al on their equivalent element to represent LJF behaviour. Buitrago 

provided simple expressions for the short stub (flex) element in Equations 3.27 and 3.28 for bending 

(IPB, OPB) and axial loading respectively. The Area, A, and the moments of Inertia, I, of the short 

beam (flex) element are calculated as follows: 

I =    L / E (LJFm)                                                                                                        (3.27) 

A = L / E (LJFP)                                                                                                          (3.28) 

Where 

 L is the length of the flex-element 

 LJFm is either the in-plane or out-of-plane local joint flexibility 

 LJFP is the axial loading local joint flexibility  

In the work comparing short beam (flex) elements to spring elements, Buitrago reported values are 

within 10% of each other, but the main limitation of the spring element is that it doesn‟t lend itself 

easily to be included in most modern finite element computer packages.  

Buitrago‟s paper introduced new parametric equations to calculate the local joint flexibility (LJF) of 

tubular joints. The parametric joint flexibility equations have been derived from finite element analysis 

work, which are expressed as a function of the conventional tubular joint parameters, apply to planar 
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single brace, cross, and gapped and overlapped K-joints. He considers each of the direct or cross terms 

developed as influence functions. Direct terms are the LJF terms derived from the brace that is directly 

loaded. Cross terms are those from the unloaded brace. These influence functions when combined 

provide the overall LJF of the joint.  

Using the PMBSHELL finite element program generally employing thick shell elements with some 

brick elements at the weld region, a total of 192 joints were analyzed: 30 T/Y, 30 X and 63 K Gap and 

69 K overlap joints. The joints considered showed a strong dependency on the β and γ parameters with 

a lesser influence from the τ and θ parameters. Comparisons of new joint flexibility derived from these 

data with other equations suggested similar trends, although some differences in IPB LJFs were 

attributed to the modeling of β = 1 joints. For the X and K-joints, direct and cross terms were derived 

to allow an influence function approach to be adopted. The direct term relates to the reference brace 

and the cross term being the effect of loading the second brace. The general terminology used by 

Buitrago for joint definitions are provided within Figure 3.12. 

 

Figure 3.12 General Joint Geometry, Loads and Degrees of Freedom 

(Buitrago 1993) 
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The LJF formulae and range of applicability for T/Y and X-joints are: 

T/Y-joints  

LJF Axial = 5.69 τ 
-0.111

exp (-2.251β) γ 
1.898

 sin 
1.769θ

/ED               (3.29a) 

LJF OPB = 55.0 τ 
-0.22

exp (-4.076β) γ 
2.417

 sin 
1.883

 θ/ED
3
                (3.29b) 

LJF IPB = 1.39 τ
-0.238

 β
-2.245

 γ
1.898 

sin 
1.240

 θ/ED
3
                 (3.29c) 

X-Joints (Direct terms) 

LJF Axial = 8.94τ 
-0.198

exp (-2.759 β) γ
1.791

 sin
1.700

 θ/ED                (3.30a) 

LJF OPB = 73.95τ 
-0.300

exp (-4.478 β) γ 
2.367

 sin 
1.926

 θ/ED
3
                           (3.30b) 

LJF IPB = 67.60 τ 
-0.063

exp (-4.056 β) γ 
1.892

 sin 
1.255 

θ/ED
3
                (3.30c) 

X-Joints (Cross terms) 

LJF Axial = τ 
-0.1

(-353 +1197 β -1108 β sin θ - 40 βγ +50 γ sin θ)/ED             (3.31a) 

LJF OPB = τ 
-0.1

(2249 +5879 β +5515β sin θ + 221 βγ -358 γ sin θ)/ED
3
              (3.31b) 

LJF IPB = τ 
-0.1

(26 - 75β
2
 - 8.5β

2
 sin θ + 85 β

2
 -7.4 γ sin θ)/ED

3
               (3.31c) 

A total of sixty-three gapped K-joints and thirty-nine overlapping K-joints were considered again with 

direct and cross terms. 

Gap K-Joints (Direct Terms) 

LJF Axial = 5.90 τ 
-0.114

exp (-2.163β) γ
1.869

 δ 
0.009

 sin 
1.869

 θ1 sin
-0.089

 θ2/ED              (3.32a) 

LJF OPB = 49.7 τ 
-0.251

exp (-4.165β) γ
2.449

 δ
0.004

 sin
1.865

θ1sin 
0.054

θ2/ED
3
                         (3.32b) 

LJF IPB = 52.2 τ 
-0.119

exp (-3.835β) γ 
1.934

 δ 
0.011

 sin 
1.417

 θ1 sin 
-0.108

 θ2/ED
3
              (3.32c) 

Gap K-Joints (Cross Terms) 

LJF‟ Axial = 3.93 τ 
-0.113

exp (-2.198β) γ 
1.847

 δ 
-0.056

 sin 
0.837

 θ1 sin 
0.784

 θ2 /ED             (3.33a) 

LJF‟ OPB = 4.37 τ 
-0.295

exp (-3.814β) γ 
2.875

 δ 
-0.149

 sin 
0.885

 θ1sin 
1.109

 θ2 /ED
3
             (3.33b) 

LJF‟ IPB =   LJF IPB - 1.83 τ 
-0.212

 β 
-2.102

 γ 
1.872

 δ 
0.020

 sin 
1.249

 θ1sin 
0.060

 θ2 /ED
3
             (3.33c) 

For Overlapping K braces (Direct Terms) 

LJF Axial = 3.91 exp (-2.265β) γ 
2.010

 δ 
-0.009

 sin 
1.811

 θ1sin 
-0.029

 θ2               (3.34a) 

LJF OPB = 54.2 exp (-3.959β) γ 
2.403

 δ 
0.001

 sin 
1.856

 θ1sin 
-0.009

 θ2               (3.34b) 
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LJF IPB = 1.86 β 
-2.093

 γ 
1.766

 δ 
-0.029

 sin 
0.711

 θ1 sin 
0.036

 θ2                (3.34c) 

For Overlapping K braces (Cross Terms) 

LJF Axial = 0.48 β 
-1.269

 γ 
2.032

 δ 
0.072

 sin 
0.949

 θ1 sin 
0.954

 θ2                (3.35a) 

LJF OPB = 1.16 β 
-2.068

 γ 
2.550

 δ 
0.117

 sin 
1.090 

θ1 sin 
1.089

 θ2                                      (3.35b) 

LJF IPB = 0.75 β 
-3.000

 γ 
2.063

 δ 
1.079

 sin 
0.533 

θ1 sin 
0.586

 θ2                (3.35c) 

The range of applicability of these formulae are: 

10 ≤ γ ≤ 30,   0.25 ≤ τ ≤ 1.00,   30
◦
 ≤ θ ≤ 90

◦
 

-0.5 ≤ δ ≤ 0.5,   0.3 ≤ β ≤ 1.0,    (≤ 0.9 for overlap K-joints) 

Buitrago considered the use of a gap parameter δ, in his LJF formulations. He reported that for gap 

sizes above 50mm, the K-joint begins to display properties of a Y-joint. Further work included in ISO 

19902 disproved Buitrago‟s view on the gap parameter. ISO 19902 (2007) considers that for good 

joint detailing of a gapped uni-planar joint, the minimum distance (gap) between both braces at the 

chord is 50mm. Therefore the joint can display K-type properties beyond 50mm. Buitrago did not 

perform a gap sensitivity study to test his hypothesis and this is a limitation on the work he has 

performed. A major improvement on the work done by Buitrigo in this thesis will be to perform a gap 

sensitivity study to determine the range of applicability of the suite of RK-LJF equations.   

To validate the LJF equations, Buitrago compared the finite elements results to the database Fessler 

used to develop his LJF equations. Fessler‟s limited data base included 27 Y-type joint and only 3 K-

type joints. This comparison exercise is insufficient as it does not consider a variety of geometric 

parameters to adequately validate the LJF equations. In this thesis, a larger database reflective of all 

the geometric parameters of uni-planar K-type joints will be used to validate the RK-LJF equations. 

Buitrago concluded that the inclusion of local joint flexibility in the global structural analysis of 

offshore structures can lead to significant redistribution of calculated member-end forces and 

moments, which in turn may result in lesser structural demands on the tubular joints. In particular, 

joints to which relatively short members are attached, as in the case of horizontal conductor bracing, 
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tend to benefit the most. In the re-analysis of existing structures, accounting for LJF may obviate the 

need of costly, underwater strengthening schemes. To use LJF, however, it is necessary that numerical 

values for the LJFs be calculated and the plausible models be implemented in the frame analysis 

software. Incorporating LJF in structural frame models can be done using a short beam (flex) element 

which displays the properties of LJF and inserted into the joint. This is now a well-established 

procedure based on Buitrago‟s work, with many offshore structural software such as USFOS 

(Ultimate Strength Finite Element Software) and SACS (Structural Analysis Computer Software) 

having adopted this approach to simulate LJF behaviour in frame structures. 

3.10 MSL - JOINT Module (2002) 

MSL Engineering (1994, 1998) proposed new joint capacity equations for tubular joints in fixed 

offshore structures. These were derived from finite element analysis and were validated through 

databases on tubular joints from Boone et al (1982) and Makino and Kurobane (1986). BOMEL 

Engineering (1995) published the results of the large scale testing of structural frames, also called the 

BOMEL frames tests, around the same time. Both projects were conducted on behalf of OGPs. These 

OGPs in the UK then considered the linkages between the MSL new joint formulations and large scale 

testing of frames. The MSL joint formulations would later be developed in to the MSL-ISO joint 

equations and included in the ISO 19902 (2007) Fixed Steel Offshore Structures 1st Edition. 

The development of the MSL-JOINT module was achieved in a Joint Industry Project (JIP), which 

encompassed two phases. In Phase I, all test and numerical data on the load behaviour of tubular joints 

were collated and carefully screened. From the screened database, robust static strength provisions 

were derived. From those data where full load deformation (Pδ or Mθ) curves were reported, 

formulations were developed whereby the load deformation curve, (against Pδ or Mθ) could be 

recreated from all joint geometry and material properties. These formulations were developed from a 

range of simple joints which occur in practice. 
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The success of the new load deformation formulations in predicting Pδ and Mθ responses compared to 

the previous joint capacity equations, gave confidence in moving the JIP to the second phase. Phase II 

developed the Phase I load deformation formulations to address pertinent influencing factors such as: 

interaction with chord, joint classification of axial loads, interaction (coupling) between Pδ and Mθ, 

ductility limits and unloading behaviour, which were lacking from previous joint capacity 

formulations.   

The studies resulted in a set of mathematical formulations or algorithms which were then coded up in 

a series of sub-routines leading to a joint module (MSL-JOINT). The module was tested to ensure 

correct function against individual joint test/numerical data then calibrated against test data for steel 

frames. The SINTEF analysis package, USFOS, was the vehicle used to develop, test and calibrate the 

module.  

In 2002, Adrian Dier (MSL Engineering) and Oyvind Hellan (SINTEF) proposed this non-linear 

tubular joint response model for pushover analysis. The work reported concerned the development, 

testing and calibration of an efficient analysis tool (a joint module called MSL-JOINT) that allows the 

behaviour of tubular joints within a space frame structure to be appropriately accounted for. Since the 

MSL-JOINT represents the overall performance of the joint, then the effects of LJF has been 

accounted for its load displacement responses under axial, IPB and OPB.  

The attention was directed at representing the Pδ curve by a single continuous function with 

coefficients related to the joint geometric parameters β, γ and τ and material properties. Following 

trials with a few mathematical functions, an exponential expression was selected. In its simplest form, 

this can be written as 

P = d-a (1-b. exp {-c δ})
2
                                    (3.36) 

Where a, b, c and d are constants (or more correctly, functions of joint geometry) to be fitted. The 

more important findings for the analysis were noted as  
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 The constant „d‟ is directly associated with Pu the maximum constant load 

 The constant „a‟ is the magnitude of the drop in load following the peak 

 The initial stiffness of the Pδ curve (at the origin) is given by: 

K = 2 a b c (b-1)                       (3.37) 

Fitting to the experimental data was performed with a non-dimensional form of the Equation (3.36). 

Taking into account the dependency of one of the constants on the others, the final Pδ and Mθ 

formulations from Phase I were: 

P = Pu (1-A [1- (1+1 (A) 
-2

) exp{-Bδ/fyd}]
2
)                              (3.38) 

M= Mu (1-A [1- (1+1 (A) 
-2

) exp{-Bθ/fyd}]
2
)                  (3.39) 

Where: 

P, M  = joint load 

Pu, Mu  = joint mean strength 

δ  =  joint deformation (aligned to an individual brace) 

θ             =  joint rotation (radians) 

D             =  chord diameter 

Fy            =  chord yield stress (N/mm2) 

A, B        =  fitted “constants” for any joint geometry and load type. 



55 

 

 

Figure 3.13 FE Mesh for K-Joint β = 0.4 

(Dier 2002) 

 

Figure 3.14 Pδ curves for K-Joint β = 0.4, γ = 15, τ = 0.81 

(Dier 2002) 

MSL performed the Phase II work building on their own MSL formulation and benchmarking the 

formulation against the BOMEL frame tests; however, Dier et al still investigated the role of joint 

classification on joint stiffness, or its reciprocal the Local Joint Flexibility (LJF). He performed a 

series of pushover analyses for rigid joints, MSL formulations and BOMEL tests to compare the 

results (Figure 3.15). 
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For predicting frame behaviour, the MSL-JOINT must necessarily be used in conjunction with a frame 

analysis finite element package. The frames are modeled as beam-column elements. When performing 

the frame analysis, only the joint of interest was selected to be analyzed with the MSL-JOINT and the 

remaining joints were treated as rigid. Despite the good performance of capturing individual joint 

behaviour in order to have more accurate simulations of frame behaviour, certain adjustments were 

made to the module. These adjustments are mainly concerned with the value of the chord stress factor 

(Qf). It should be noted that the Qf factor is one of the least researched areas in tubular joint 

technology. 

 

Figure 3.15 BOMEL Frame Tests VII behaviour compared to test measurements 

MSL reported that the MSL JOINT frame is about 4 times more flexible than the rigid frame and is in 

good agreement with the BOMEL Frame test data. Dier then concluded that since the Local Joint 

Flexibility (LJF) for a given joint will change during a complete pushover analysis e.g. due to load 

redistribution following non-linear behaviour, it will be necessary to apply platform loads 

incrementally. For the initial increment or increments, the structure will be elastic and member loads 

generally small. During this phase of the LJFs for axial, in-plane bending (IPB) and out-of-plane 
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bending (OPB), behaviour will be uncoupled and the effects of the load negligible. There is difficulty 

with the selection of the axial LJFs for the first increment, as the axial LJF for each brace is dependent 

on the joint classification which, in turn, is dependent on the loads in all braces at the joint, which are 

unknown at the outset of the analysis. The difficulty does not arise with the moment LJFs as, in 

common with the moment capacity, these are not dependent on joint classification. The mean joint 

capacities for use in the Pδ and Mθ Equations are provided in Table 3.2. Dier et al concluded that the 

testing and calibration exercises have demonstrated that in general the MSL-JOINT is successful, 

leading to more accurate analyses than the traditional approach of using rigid joint assumptions. Better 

correlation with the test data is achieved with respect to initial global stiffness, component failure 

sequence, peak global load and post-peak global response. Dier et al further concluded that in addition 

to the global system response, use of the MSL-JOINT will lead to increased accuracy of member/joint 

loads with attendant benefits for component checking, including fatigue life estimation. 

Joint Type Load Type Pu or Mu 

T/Y Compression 1.27 (1.9 + 19β) Qβ
0.5

QfFy T
2
/ sinθ               (3.40a) 

 Tension (42.3 β + 17.6) QfFy T
2
/ sinθ                        (3.40b) 

 IPB 5.5 β γ 0.5 QfFy T
2
 d / sinθ                           (3.40c) 

 OPB 4.2 γ 
(0.5 β2)

QfFy T
2
 d / sinθ                            (3.40d) 

DT/X Compression 1.16 (2.8 + 14β) QβQfFy T
2
 /sin θ                (3.40e) 

 Tension 
(4)

 

(37.3β +6.6) QfFy T
2
/ sin θ   for β ≤ 0.9        (3.40f) 

[ 40 + (β -0.9) (37.6 γ -364)] QfFy T
2
 /sin θ 

for β > 0.9                                                    (3.40g) 

 IPB 5.5 β γ 0.5 QfFy T
2
 d / sinθ                           (3.40h) 

 OPB 4.2 γ 
(0.5 β2)

QfFy T
2
 d / sinθ                             (3.40i) 

K Balanced 

Axial 
(5)

 
1.30 (1.9 + 19β) Qβ

0.5
QgQyyQf T

2
 /sin θ        (3.40j) 

 IPB 5.5 β γ 0.5 QfFy T
2 
d / sinθ                           (3.40k) 

 OPB 4.2 γ 
(0.5 β2)

QfFy T
2
 d / sinθ                             (3.40l) 
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1.  Qβ = 0.3 /(β (1.0 - 0.833β))      for β > 0.6                                                                                      (3.40m) 

         = 1.0                                 for β ≤ 0.6 

2. Qg = 1.9 - (g/D) 
0.5

                    for g/T ≥ 2.0                                                                                   (3.40n) 

         = 0.13 + 0.65 φ γ 
0.5

          for g/T ≤ - 2.0 

         Where φ = t Fyb/ (TFy) 

3. Qyy  = 1.0                                when θt ≤ 4θc - 90
◦
                                                                          (3.40o) 

            = (110
◦
 + 4 θc - θt)/200

◦
    when θt> 4θc - 90

◦
 

4. The expression for tension loaded X-joints when β > 0.9 should only be applied when the braces are 

reasonably co-liner (say e/D ≤ 0.2). If the braces are not reasonably co-linear, the expression for β ≤ 

0.9 should be invoked. 

5. The expression for a K-Joint under balanced axial loading relates to the compression brace. For the     

tension brace, increase the calculated value of Pu by 10%. 

Table 3.2 Mean joint capacities for use in Pδ and Mθ Equations 

(MSL, 2002) 

While the MSL Joint formulation can be used for frame behaviour for ultimate strength, it does not 

explicitly demonstrate and measure the contribution of LJF to ultimate strength. Furthermore, no 

guidance is provided on MSL-JOINT in the calculation of fatigue life prediction of tubular joints. The 

primary objective of Phase II study was to provide a basis for adopting the MSL-JOINT formulation 

as a joint strength equation considering both linear and non-linear behaviour of tubular joints. The 

main focus was on benchmarking against large scale testing, but additional work by Dier revealed that 

the LJF is considered in the MSL-JOINT formulation. It does not draw on previous studies on LJF 

with no reference to LJF considerations for multi-planar joints or the effects of cross and direct terms. 

In frame analysis, the MSL-JOINT module has to make certain adjustments (within the USFOS 

software, selection tool) to account for the Qf factor and is therefore reliant on the software package to 
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be effectively used. With regards to this research, the RK-LJF parametric equations is a major 

improvement of the MSL-JOINT module, as it can be used for fatigue life predictions as its basic 

inputs are geometric properties of tubular joints. The RK-LJF equations are effectively benchmarked 

to large scale frame testing and can be used to determine the ultimate strength results of the K-joints 

without any adjustment to the chord stress factor. 

3.11 Qian, Zhang and Yoo Sang (2013) 

Developed with similar intent as the MSL formulations, Qian et al seeks to benchmark its 

formulations for ultimate strength with the BOMEL 2D Frames Tests. The lists of specimens used in 

the finite element and experimental work were the ones provided by Vegte (1995) and Kurobane 

(1986). These specimens do not represent an exhaustive list of in-service tubular joints. The load 

deformation formula provides responses to CHS X and K-type joints. 

 

Figure 3.16 (a) Joint Spring representation in the global frame analysis 

(b) Load deformation characteristics of the joint spring (for axial and bending) 

Spring elements were used to simulate the joint behaviour in the structural models (Figure 3.16). 

Figure 3.17 shows the FE mesh and the load deformation curves of the joint tests performed at 

National University of Singapore. Figure 3.16 presents the BOMEL Frames I, II and III that were used 

to benchmark the FE work and joint test results against. The parametric FE analysis covers a β range 

of 0.30 to 1.0 and a γ range from 7 to 25. The finite element models have been developed without joint 

cans (thickened sections) included as the BOMEL Frames tests did not include these sections. 
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Figure 3.17 CHS K-Joint Test 

(a) loading and boundary conditions (b) uni-axial true stress and true strain curve (c) FE Mesh                

(d) Comparison of the load deformation of the tests and FE analysis (with LJF) 

 

 

Figure 3.18 Configuration of BOMEL 2D Frames 

(a) Frame I (b) Frame II, and (c) Frame III 
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Figure 3.19 Comparison of the Global load deformation response between numerical analysis and 

experimental records 

(a) Frame I (b) Frame II, and (c) Frame III 

 

Table 3.3 Coefficient in the proposed formulation for K-joints 

Further work was undertaken to incorporate in the BOMEL 3D frames and perform ultimate strength 

analysis (pushover analysis) and the MSL formulations (Figure 3.20). The proposed Qian joint 

formulations incorporate LJF implicitly as part of the load displacement curve generated from the 

formulation. As with MSL formulations, they do not call out the contributions made by axial 

compression or tension, in-plane and out-of-plane bending impacts. Additionally, they cannot be used 

in the contribution to enhanced fatigue life predictions and only used as part of joint strength equations 

for ultimate strength. 
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Figure 3.20 Comparison of the Global load deformation response between numerical analysis and 

experimental records for BOMEL 3D Tests 

(a) Load Case 1 (b) Load Case II, and (c) Load Case III 

From Figure 3.20, the rigid joint assumption leads to a different failure mechanism in the frames 

because some joint capacities show higher utilizations and even failure, because stresses are unable to 

be re-distributed to other parts of the framework and concentrated at the tubular joint level. In the 

flexible joint analysis, moments are often re-distributed appropriately throughout the frame via LJF. In 

such cases, this would lead to a more realistic understanding of joint capacities and a more realistic 

representation of frame failure mechanisms.  

The good relationship with the 2D frames, 3D BOMEL model and the MSL equations, provide 

sufficient evidence that the Qian formulations can be used appropriately for joint ultimate capacity of 

X and K-type joints. It, however, does not add anything new to the body of knowledge on LJF that 

MSL has reported. 
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3.12 Asgarian, Mokarram and Alanjari (2014) 

In 2014, Asgarian et al provided an up-to-date set of LJF equations called the AMA-LJF equations. 

Based primarily on finite element analysis, it investigates the work done by previous researchers, 

including Fessler, Chen and Buitrago, and concludes that the key element for the AMA equations 

(Equation 3.41) being an improvement of the previous work is that AMA investigated the gap length 

and the interaction between braces to improve on the previous equations. Asgarian et al provides little 

or no basis on the joint database used in the analysis, but does state that the AMA-LJF equations were 

developed from regression analysis of a given database. Furthermore, the equations (Equation 3.41) 

represent the flexibility matrix coefficients for isolated joints for uni-planar multi-brace Y-T and K-

type joints. There is little evidence to suggest that AMA would give a satisfactory result when 

included in a large scale Frame Test under ultimate strength or fatigue life prediction. Such 

formulations as AMA requires proper benchmarking against large scale tests to verify its validity to 

frame system performance. As with most researchers, Asgarian ignores the inclusion of joint cans or 

thickened sections in the finite element modeling. 

                  (3.41) 
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Figure 3.21 Mesh generation for the intersection areas between chord and braces 

(ANSYS model) 

 

Figure 3.22 Deformed and unformed shape of a model under loading 

(ANSYS model) 

3.13 Summary and Conclusions  

Joint flexibility parametric equations have been published by Det Norske Veritas (DNV), Fessler, 

Efthymiou, Ueda, Kohoutek, Chen, Buitrago, MSL, Qian and Asgarian. There are considerable 

differences in their range of application and in their estimations of joint flexibilities for joint 

configurations. Given the significant differences that can occur for different boundary conditions, such 

differences between empirical formulae are not unexpected. From Table 3.3, the existing parametric 

equations for local joint flexibility do not cover the full range of loading conditions and joint 

parameters and some are limited in their applicability.  

While the Buitrago parametric equations seem applicable to most loading applications, they have been 

predominantly derived from finite element analysis alone and it should be noted that these equations 
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should all be benchmarked against measured test data for joint flexibility. Considering gapped K-type 

joints, only Fessler, Efthymiou, Buitrago and Chen provide formulations that are applicable, although 

MSL and Qian cannot be used to calculate LJF explicitly, as they are only benchmarked to large scale 

frame testing for ultimate strength. Only Fessler and Buitrago considers all three loading effects of 

axial, in-plane bending and out-of-plane bending, while Asgarian does not address the axial loading 

condition. With the exception of Asgarian, none of the researchers above have a considered gap study 

to determine the applicability of their proposed formulations. None of the researchers have considered 

the effects of joint cans (thickened sections) in their LJF formulations as these thickened sections 

improve on joint rigidity and therefore the effects of LJF are often misleading.  

Fundamentally, none of the above mentioned LJF equations addresses a standardized methodology for 

the derivation and validation of their parametric equations. In this thesis, a benchmarking study is 

undertaken on the best available large scale testing to develop a finite element model, small scale 

laboratory testing has been undertaken to develop a deeper understanding on the in-plane condition, 

finite element modeling is performed on an in-service database of K-type joints to demonstrate 

applicability across all parametric ranges, gap parameter study and finally, validation of the derived 

RK-LJF equations against large scale test results where LJF have been incorporated within the failure 

and collapse mechanisms. All of these represent a refinement to the existing methodology for the 

development of LJF parametric equations of uni-planar K-type joints. 
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Source Ref Basis Single Brace Cross Gapped K 
Overlapped 

K 

Gap 

Study 

   AXL IPB OPB AXL IPB OPB AXL IPB OPB AXL IPB OPB  

DNV 1977 
Not 

applicable 
 X X           

UEG 1985 

Epoxy 

Models 

27 points 

X X X           

Fessler et 

al 
1986 

Epoxy 

Models 

27 T & Y 

joints 

X X X X X X X X X     

Efthymiou 1985 

FE 

PMBSHELL 

12 T Joints 

3 Y Joints 

9 (90-45)    

K Joints 

 X X     X X  X   

Ueda et al 1990 
FE 

11 points 
X X            

Chen et al 1990 
FE 

21 points 
      X X      

Kohoutek 1992 

FE and Lab 

Tests 

11steel 

models 

 X            

Buitrago 1993 FE Analysis X X X X X X X X X X X X  

MSL 2002 FE Analysis The formulations for MSL address ultimate strength considerations  

Qian et al 2009 
Lab Tests & 

FE Analysis 

Similar to MSL Study, the formulations are based on ultimate strength 

considerations 
 

Asgarian 2014 FE Analysis  X X  X X  X X  X X X 

Table 3.4 Summary of the applicability of Local Joint Flexibility Equations 
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CHAPTER 4  

Literature Review: Local Joint Flexibility Studies  

4.1 Introduction 

This Chapter provides the few experimental and application studies that have been conducted on Local 

Joint Flexibility, some based on the LJF parametric equations discussed in Chapter 3. The Chapter 

focuses primarily on developments in experimental testing, LJF application studies and analytical 

methods. The key application studies are focused on fitness for purpose (FFP) and asset life extension 

studies (ALE) for aging structures for fatigue and ultimate strength considerations. 

4.2 Laboratory Testing  

Laboratory testing in the area of LJF has been limited. The main tests include Wimpey offshore tests 

(1982), work on araldite models by Fessler at Nottingham University, AMOCO K-Joint tests (1983), 

BOMEL Frames tests, where LJF was not measured explicitly but included in the collapse mechanism 

and recent small scale testing by Da Silva to investigate the in-plane condition of LJF. The Da Silva 

tests (2015) were performed to have a deeper understanding of the in-plane condition with regards to 

the findings of the AMOCO K-Joint tests. Both tests and their results are discussed in more detail in 

Chapter 5.  

In his 1982 Offshore Technological Conference (OTC) paper on the behaviour of grouted joints in 

offshore structures, Tebbett (1982), at Wimpey Offshore Laboratories, stated that joint flexibility 

coefficients had been measured on all steel joints. However, while some sixty tests were performed, 

only sample joint flexibility results have been published. Joint Flexibilities on five 90
◦
 joints have been 

reported and the results from these tests in both the as-welded and grouted states are presented in 

Table 4.1. The results show a significant reduction in LJF with increasing β values, and expected a 
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significant reduction in flexibility due to the addition of grout. The results are expressed coefficients 

and no units for each of the LJF are reported. 

 

Geometry Local Joint Flexibility Coefficients 

   
Axial Tension x 

ED 

Axial 

Compression x 

ED 

OPB x ED
3
 IPB x ED

3
 

Conf. γ β Weld Grout Weld Grout Weld Grout Weld Grout 

T 32 0.59 - - - - 22060 2910 4280 2725 

T 20 0.33 900 480 825 - 25870 - 5320 - 

T 20 0.54 575 392 333 - - - 3125 - 

T 20 0.92 154 10 142 - - - - - 

X 48 0.53 1685 272 1970 127 11295 1545 5580 3270 

Table 4.1 Measured LJF coefficients for as-welded and grouted tubular joints by Wimpey (1982) 

In 1986, Fessler et al of Nottingham University, reported joint flexibility results from a series of 27 

T/Y and non-symmetric KT joint tests using precision cast epoxy resin tubes. All models had D = 

132mm and L = 838mm (i.e. α > 12). The araldite models were clamped between sturdy steel supports 

with the loading rig used to apply pure tension, in-plane and out-of-plane bending to the brace end. At 

any cross section of the chord, twenty-one linear displacement transducers, evenly spread around 270
◦
 

of the circumference measured the displacements of the chord. Measurements were taken at thirty 

equally spaced sections covering most of the length of the chord. Polynomial functions were fitted to 

the test data to allow the flexibility of the joint to be determined at all locations. Thus the twenty-seven 

uni-planar joints covered all combinations of γ = 10, 15 and 20; β = 0.33, 0.53 and 0.76 and θ = 35
◦
, 

50
◦
 and 90

◦
. A further six multi-brace models were tested to examine the validity of Fessler multi-

brace LJF formulae derived from uni-planar brace models. 
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Reference No Joint Type γ β θ e/D 

1 KT 20 0.53/0.33/0.76 50
◦
/90

◦
/35

◦
 0.11/0.21 

2 KT 20 0.53/0.53/0.33 50
◦
/90

◦
/35

◦
 0.21/0 

3 KTKT 20 0.53/0.33/0.53 50
◦
/90

◦
/35

◦
 0.11/0.25 

4 KY 15 0.53/0.33/0.76 50
◦
/90

◦
/35

◦
 0.11/0.21 

5 N 20 0.53/0.33 50
◦
/90

◦
 0.11 

6 N 20 0.53/0.53 50
◦
/90

◦
 0 

Table 4.2 Fessler’s Tests on Multi-brace Joints 

The parametric values presented of these six joints are given in Table 4.2. Four KT joints were tested 

with variation in γ, βb, βc, θ and gap (e/D), where “e” is the brace eccentricity (i.e. the gap between 

brace centerlines on the chord axis). One KT joint (denoted KTKT) had identical braces in both the 0
◦
 

and 90
◦
 brace planes. The remaining two joints were non-symmetrical K joints (N joints) with the 

braces overlapping in one case. 

Fessler concluded at this time that the parameter τ (= t/T) was not considered significant and was not 

reported. However, in an accompanying paper on experimental technique, he demonstrated the stock 

of tube sizes used in these tests allows the τ values to be reduced. These tests are the basis for Fessler‟s 

improved LJF equations documented in Chapter 3.3. More work in the area of large scale tests are 

required on tubular joints and also on the effects of LJF on the overall framing of the jacket structure. 

4.3 Analytical Methods  

The key work done in analytical methods include the work by Bijlaard (1955), Kellogg (1956), 

Tebbett (1982), Holmans (1985, 1987), Soussi (1989) and Romeyn (1991, 1992). Kellogg (1956) and 

Bijlaard (1955) used similar methods to model tubular joints. Kellogg replaced the brace load of the 

joint with an equivalent distributed load based on elastic foundation theory. Kellogg derived the stress 

under the equivalent load which provided approximate stress values for the chord and ignored the 

brace (Figure 4.1). A major drawback of this method is that it considers the axial load and/or in-plane 

bending on the brace alone. It does not consider full interaction between the brace and the chord. 
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Bijlaard (1955) work used a double Fourier series to show the displacement field of the cylinder 

subjected to a rectangular distributed field. However, for this method to be accurate, a substantial 

number of terms is required for the Fourier series (Figure 4.2). It is highly impractical and only 

provides an approximate solution. It does not consider a full tubular joint with both chord and brace 

interactions. 

 

Figure 4.1 Tubular joint model 

(Kellogg, 1956) 

 

Figure 4.2 Cylindrical vessel model 

(Bijlaard.1955) 
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Figure 4.3 Alternative Methods for modeling joints 

(Adapted from Tebbett 1982) 

Tebbett (1982) proposed five alternatives, covering a wide range of possible requirements for the 

inclusion of joint cans in plane-frame structural analysis programs. These are shown on Figure 4.3. It 

consists of a horizontal member joining a vertical leg at each end, framing into vertical diagonal 
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braces at mid-point. The main leg has a local joint can with a thick wall stub for the brace. The brace 

wall changes wall thickness along its length and tapers close to the centerline. 

The methods are: 

1. Rigid joints with cans not represented. This uses simple tubular members of uniform cross-

section and requires nodes in the analysis at each change in section.  

2. Flexible joint cans not represented. Method 1 is modified to include local joint flexibility by 

the addition of spring elements. This involves additional nodes or degrees of freedom.  

3. Rigid joints and cans as offsets. The basic tubular element is provided with optional offsets at 

either end so that brace lengths for wave loading calculation and member stability checks are 

correct so that joint forces are generated at the chord wall.  

4. Flexible joints with cans and offsets. A segmented tubular element which eliminates the need 

for nodes along a variable section can be used. In this example, this reduces the number of 

nodes from seven to two, a considerable saving. This can in the main leg can also be modeled 

by segments. The element is also provided with the offset capability and an in-built spring 

element into which the LJF coefficients can be entered.  

5. Flexible joint using substructures. A substructure consisting of an internally generated finite 

element mesh is added to the overall analysis. 

Three of the five methods include joint flexibility. Method 4 provides the most economical solution 

and the LJF can be included with a relatively small increase in computing cost and reduced modeling 

effect. Care must be exercised in the implementation of the above LJF representations, in particular 

Method 4 requires a LJF matrix for joints with more than one brace. 

The methods employed by Tebbett (1982) above are fundamental to how tubular joints have been 

modeled over the past thirty years and in essence are still used today. The common drawback on the 

limitation of Tebbett‟s studies is the lack of experimental studies to adequately support the finite 
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element results. The offshore industry has benefitted tremendously from the work by Tebbett in that 

the LJF represented as a matrix can be used in most finite element software packages through the 

direct stiffness method of structural analysis. Both Tebbett and Lalani (1986) concluded that LJF 

should be incorporated in all joint modeling but suggested a more standardized approach to joint 

modeling be adopted. 

 

Figure 4.4 LJF as a spring element in K-Joints 

(Ultigude, 1999) 

The concept of including LJF equations (in Chapter 3) into a structural framework has often been the 

concern for many practicing offshore engineers. An early attempt to model global structural behaviour 

used the concept of spring elements (Figure 4.4) to consider the effects of axial, in-plane and out-of-

plane bending effects. 

As computing power increased in the late 1980s, it was expected that the use of spring elements was 

not an easily practicable exercise for most finite element software packages. To consider the use of 

finite element software, special purpose finite elements have been developed by Holmans (1985, 

1987) using classical shell theory. In Figure 4.5, the shell is represented as a shell property element 

between the chord-brace interface and the chord interface node. Buitrago (1993) used a similar 

approach to Holmans in developing a flex-beam type element to consider the effects of LJF within a 

tubular joint. Hellan (1995) also used this approach and claims good agreement with the parametric 

equations for ultimate strength.   
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Figure 4.5 Shell Element 

(Holmans, 1985, 1987) 

In the Ultimate Strength Finite Element Software (USFOS), the software developers, SINTEF used the 

flex-beam element for non-linear behaviour, (Figure 4.6), similar to Buitrago. It is an approach that is 

currently being used today and provides the basis for incorporating the effects of LJF for global frame 

analysis. The flex-element is modeled as an interaction between the brace and chord. The properties of 

the flex-element are representative of the effects of axial, IPB and OPB of the LJF equation used. 

 

Figure 4.6 Joint Flexibility Model 

(Adapted from Holmans, 1985, 1987) 

Souissi (1989) also presented the local joint coefficients of eighteen T-joints under the three loading 

modes. Following the work by Efthymiou, Souissi modeled the joints using the finite element method 

with specimens having a chord length six times the chord diameter (i.e. α = 12), thereby eliminating 

the ovalization effects of tubular sections. He established a super-element to model a joint. It can be 
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assumed that the weld region was not well modeled. Souissi provided no details of the finite element 

program that was used. 

 

Figure 4.7 Joint super element used by Souissi (1989) 

Souissi considered the LJF effects IPB, OPB and axial loading and reported that the results were in 

good agreement with Efthymiou‟s work. This is not entirely unexpected as the finite element models 

are similar. He also reported that correction factors to each loading case are required to consider the τ 

parameter.  

In 1990, Romeyn et al, of the Deft University of Technology, investigated the flexibility of multi-

planar K (KK) and multi-planar X (XX) joints. By 1991, the results of numerical work on uni-planar 

T/Y and K-joints and multi-planar KK gap and KK overlap joints were presented, the KK joints being 

identical K-joint configurations for 0
◦
 and 90

◦
 planes. Romeyn et al (1991) stated that three approaches 

may be used for defining joint stiffness coefficients in a beam model, where joint stiffness (K) is the 

inverse of the joint flexibility. Stiffness coefficients for sixteen T-joints are given for the three modes 

of loading, derived using the three analytical approaches summarized by: 

In Approach A, joint stiffness coefficients are determined from the difference between the 

displacements at the brace member end of a joint modeled with beam elements and thin shells at unit 

load. For Approach B, joint stiffness coefficients are determined in an identical way to Approach A; 

however the restraint condition is different from Approach A as the brace and the chord ends are 

always fixed against translation and rotation (i.e. fully clamped). 
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Figure 4.8 Joint Definitions 

(Adapted from Romeyn 1991) 

For Approach C, it is based on classical theory of thin shells and the finite element methods. Romeyn 

(1991) concluded that this was theoretically the correct approach since no approximations are used. 

The results from these three analyses indicate that for a T-joint under axial load (0.2 ≤ β ≤ 0.65), 

differences between Approaches A to C is less than 10%. However, under out-of-plane bending and 

in-plane bending, coefficients for Approach C are 50-600 times larger than Approach A and 10-150 

times larger than Approach B. Romeyn states that “although Approach C is theoretically the correct 

approach, it is found to be cumbersome to use, because of excessive matrix handling that is necessary. 

Approach B, in spite of it being an approximation of Approach C, has been found to give better 

stiffness coefficients for general use than Approach A,” which has been used by others including 

UEG, Fessler, Efthymiou and DNV. In the X-joint models, the approach is not specified. This 

subsequent work covering Y-joints, K-joints and multi-planar KK gap/overlap joints is presented in 

pictorial form. The following points from Approach A results were noted: 

• For 0.2 ≤ β ≤ 0.65, LJF reduces with increasing β value. 

• LJF increases with increasing γ values. 

LJF values under axial load reduce from T-joints to Y-joints to K-joints to multi-planar K-joints, 

although it should be assumed that the K-joint is under balanced loading.  
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In 1992, Romeyn et al considered the method of finite element modeling and displacements for sixty 

multi-planar XX joint configurations (i.e. braces in 0
◦
, 90

◦
, 180

◦
 and 270

◦
 planes). These displacements 

are converted to joint flexibilities based on a shell model with solid elements at the weld (Model 4). 

The research was an attempt to standardize the use of FE modeling to joint behaviour to obtain results 

better than approximate values. The following FE models were used in Romeyn‟s study. 

 

FE model Description 

Model 1 
Joint modeled with four (4)-noded quadrilateral linear shell elements and weld shape 

not included. 

Model 2 
Joint modeled with eight (8)-noded quadrilateral quadratic shell elements and the 

weld shape not included. 

Model 3 
Joint modeled with twenty (20)-noded hexahedral quadrilateral quadratic shell 

elements and the weld shape included. 

Model 4 

Joint modeled with eight (8)-noded quadrilateral quadratic shell elements and the 

welded shape included by twenty (20)-noded hexahedral quadratic solid elements. 

Between the shell and the solid elements, thirteen (13)-noded quadrilateral quadratic 

transition elements were used. 

Model 5 
Joint modeled with two (2)-noded beam elements and all member ends rigidly 

connected. 

Table 4.3 Joint model criteria 

(Romeyn, 1992) 
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Figure 4.9 Finite Element Models 1-5 

(Adapted from Romeyn 1992) 

For each model, four mesh refinements ranging from fine mesh to coarse mesh was considered. In 

addition, four integration schemes were reviewed: 2x2x2, 2x2x3, 2x2x5 and 3x3x3. 

Romeyn (1992) concluded that: 

• The use of eight (8)-noded shell elements exhibit more flexible behaviour than the four (4)-

noded shell elements and are considered more accurate. 

• No general conclusion can be made on the accuracy of twenty (20)-noded solid elements 

against eight (8)-noded shell elements because this depends entirely on the geometry and type 

of loading.  

• When using integration scheme 3x3x3, a large decrease of joint flexibility occurs. 

• Integration scheme 2x2x2 is preferred for joint flexibility behaviour and integration scheme 

2x2x3 is preferred when the results are obtained directly from the nodes for obtaining Stress 

Concentration Factors (SCFs), compared to other integration schemes. 

• The joint flexibility increases with mesh density but after a certain mesh refinement, the joint 

flexibility converges to an optimum. 
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• A finite element model with the weld shape included, behaves more stiffly than a finite 

element model without the weld shape included. Differences up to 20% have been found for 

some X-joints. DNV (2011) concluded that when performing analytical work (where nodal 

displacements are the objective) the weld has negligible effect on the overall displacements of 

the joint. For tubular joints where the ratio of the chord thickness (T) to brace thickness (t) is 

low and in the region of 1 -2, then the DNV statement is applicable. For higher T/t ratios (for 

the OPB condition), the weld is more likely to contribute to the overall stiffness of the tubular 

joint.  

The work by Romeyn provides a standardized approach to modeling tubular joints. Software 

developers have used this work as a pioneering work in their development of finite element packages 

to this day. For the design of tubular joints, the Structural Analysis Computer Software (SACS) is 

generally used. Embedded in the joint code check, is the ability to activate a LJF module. The module 

incorporates Fessler, Buitrago and MSL‟s equations. Limited guidance is provided in the SACS 

manuals on the applicability of these equations and their use. The Ultimate Strength Finite Element 

Offshore Software (USFOS) suite of software has also adopted the MSL formulations as part of the 

pushover analysis. This feature is also optional and is dependent of the user needs. From Romeyn‟s 

studies, thin shell elements are generally preferred and are widely adopted by engineers and analysts 

today.  

Apart from the use of the appropriate finite elements and mesh refinement, decisions on the number of 

brace/chord intersections to be separately modeled are often a compromise between increased 

accuracy (i.e. whether secondary moments will be significant) and the cost/time penalty of defining 

extra nodes, are often required.   

The UEG Report (1982) on the determination of the effect of LJF has shown that working point 

eccentricities of D/4 have a significant effect on the load distribution when coupled with the effect of 

local joint flexibility. The need to model working point offsets, i.e where distance between the 
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centerline of node to node connects and the face to face lengths of the brace and chords depend 

primarily on the diameter of the chord and the effect of the change in stiffness to the brace member. 

The effect of modeling an offset is to ensure that wave and current loading on the member are not 

overestimated.  

It is generally accepted that offsets must be specified on short members framing into chords with 

diameters greater than 1.5m. The inclusion of all thickened sections (joint cans) in a computer grid can 

be time consuming and does not necessarily improve accuracy in calculating the LJF. Most of the 

major computing packages available to engineers are now fully equipped with appropriate mesh 

refinement tools and host a series of finite elements that can be used to represent LJF behaviour. 

4.4 Fatigue Studies  

Prior to the early 2000s, it was generally accepted that the effects of fatigue was the key driver in the 

remaining life assessments of fixed offshore structures. Gibstein, Baehem and Osean (1990) reported a 

refined fatigue analysis approach for the Veslefrikk jacket, where the jacket and the deck structure was 

modeled using beam elements with the capability of including tubular joint super-elements at selected 

locations. These super-elements are finite elements which exhibit the axial, IPB and OPB effects due 

to LJF. Local finite element analyses were performed with the joint stiffness concentrating at nodes at 

the center of each tube end. The reduced joint stiffness matrices were included as separate super-

elements in the global beam-frame model. Therefore, local flexibilities are properly accounted for in 

the global finite element model. Adoption of this approach, including estimation of stress 

concentration factors (SCFs) from the mesh, rather than one of the generally conservative SCF 

equations, and the more accurate determination of the location of the hot-spot stress that results, led to 

the calculated fatigue lives 5-10 times larger than from conventional analysis due to the effects of LJF. 

While only selected joints were studied, the most appropriate approach was to include LJF on all joints 

but this would be time consuming. Through LJF, moments at the joints are redistributed to other 
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members and joints, thus reducing the stresses at any one joint. This reduced moments and thus 

stresses at the joint allow for greater fatigue lives to be predicted.  

MSL (2001) investigated the effects of LJF on fatigue life inspections and adopted these findings to 

develop a more in-depth underwater inspection plan. The platform chosen was a structure in-service 

for thirty years and a 3D structural model (Figure 4.10) was developed to perform the spectral fatigue 

analysis. To implement LJF, a flex-element was introduced at the fatigue susceptible joints based on 

the Buitrago‟s formulations. A factor of life is determined using the LJF which is a ratio of the life 

calculated using LJF to the life calculated using the rigid joint analysis. Typically the average factors 

on life were reported and summarized in Table 4.4. Figure 4.11 shows the comparison of the fatigue 

life predictions using rigid joint analysis and flexible joint analysis at one of the jacket frames. 

 

Figure 4.10 3D Isometric Structure 

(Adapted from MSL 2001) 

Location Average Factor on life 

Transverse frames (A to F) 19.3 

Longitudinal Frames (1 & 2) 9.2 

Horizontal framing (-24‟ elevation) 8.0 

Table 4.4 Average Factor on Fatigue Life (MSL 2001) 
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The results have led to a more detailed review of the inspection whereby the following inspection 

categories were determined based on the LJF analysis. 

• Category 1 – Highest Priority, predicted fatigue lives of less than 10 years 

• Category 2 – High Priority, predicted fatigue lives between 10 and 30 years 

• Category 3 – Medium Priority, predicted fatigue lives 30 and 60 years 

• Category 4 – Inspection not justified on the basis of fatigue assessment.  

MSL concluded that for Category 1 and 2 joints included in the periodic inspections, the 

implementation of LJF has reduced the requirement for underwater inspection by approximately 75%. 

 

Figure 4.11 Joint Fatigue Life Comparison 

(MSL engineering 2001) 

Nichols (2006) adopted a similar approach to another offshore platform located in South East Asia. 

The platform was approximately thirty years old at the time. The Buitrago LJF joint flex model was 
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also included in the SACS model and average fatigue life comparison between the rigid joint and the 

flexible joint analysis were determined. Nichols reported that the average factors on life for each of the 

framing components were typically as follows - Transverse frames: >10, Longitudinal frames: >5, 

Horizontal framing: >5. To complete the study, a further categorization similar to that of MSL was 

also adopted and by extension incorporated into the long term inspection planning of that platform.  

O‟Connor et al (2005) undertook fitness for purpose assessments on the Cassia A platform. He 

demonstrated that the platform has sufficient reserve capacity in terms of a Reserve Strength Ratio 

(RSR) for ultimate capacity. O‟Connor (2005) et al also demonstrated the numerical benefits of having 

used local joint flexibility analysis for a platform exceeding design fatigue lives at critical joints. Table 

4.5 provides the results of the Cassia A LJF Study and how the use of joint flexibility was used to 

justify increase in the fatigue lives when using the assessment approach as outlined in Section 2.2. The 

design approach identifies eleven joints with fatigue lives less than the target eighty years (2x by 

required platform life extension). The shortest fatigue life is 0.3 years at the time of the study and the 

structure has been in operation for twenty years at this stage. When using the assessment approach, 

including the application of joint flexibility analysis, the shortest fatigue life is 106 years. 
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Figure 4.12 bpTT Cassia A platform 

(O’Connor et al, 2005) 

 

Table 4.5 bpTT Cassia A Comparison of Fatigue Life Assessments 

The results of this LJF study was a game changer on the way British Petroleum (bp) conducted their 

fitness for purpose in the future for aging assets. LJF has demonstrated that aging facilities can remain 

operating, provided that an adequate structural integrity management program is in place for the 

facility. This is especially so in the North Sea operations, where some of bp assets are older facilities 

from heritage AMOCO (in the 1970s) before both companies merged to form one major operator. 

Chakrabarti et al (2005) performed similar type of studies on over twenty platforms in the Bay of 

Campeche, Mexico. He reported having used Buitrago‟s LJF equations for the fatigue assessments and 
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having used a short flex-element at the end of the brace to represent the axial and bending stiffness at 

the joint. While Chakrabarti et al (2005) used LJF in their analyses they did not perform a comparison 

of joint behaviour without the LJF. As expected, the assessed joints performed well under fatigue LJF 

analysis with design fatigue lives exceeding the required 2 times fatigue life requirement of the API 

RP 2A. Figure 4.13 shows a typical frame in one the structures analyzed and its calculated fatigue life 

of some joints. 

 

Figure 4.13 Calculated Fatigue Lives of Joints 

(Chakrabarti, et al, 2005) 

Samandani et al (2009) conducted a study on two older structures to compare the effects of LJF on the 

structures to demonstrate the significance of joint cans. For fatigue assessments, the structures without 

joint cans tend to provide larger values of fatigue life predictions than those with cans. This is 

expected as the thickened sections provide a stiffer section with less ability to “flex” and also 

increased stress concentrations at sectional changes from joint can to tubular adversely affect the 

performance of joints for fatigue life predictions. These structures are typical of pre-1979 API 

structures. In many cases, these older structures perform quite well for fatigue driven assessments but 

may need to be strengthened for continuous operations for ultimate strength. 
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4.5 Global Effects of LJF on Frame Structures 

The earliest type of studies to determine the global effects of LJF on frame structures were performed 

by Bouwkamp et al (1980) who sought to determine the joint flexibility effects on the overall response 

of a 2-D tower structure. Chord and brace substructures were referenced to a master node located at 

the axis of the member (Figure 4.14). The FACTS package was employed to determine the local joint 

flexibilities. Bouwkamp reported the use of the nine (9)-node doubly curved iso-parametric degenerate 

shell elements, using quadratic Lagrange polynomials. In the degeneration concept, the displacements 

and rotations of the shell mid-surface are independent variables. 

 

Figure 4.14 Model of Joint Substructures 

(Bouwkamp 1980) 

The 2-D tower frame considered by Bouwkamp and reproduced in Figure 4.15 was analyzed using the 

usual super-element approach and a simple rigid joint analysis where the local joint was not modeled. 

Wave and dead load including the deck load and effective jacket weight were considered with 

displacements initially assessed for a flexible pile-supported base versus a rigid base configuration. 
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Figure 4.15 Tower Frame 

(Bouwkamp, 1980) 

Bouwkamp showed that the inclusion of LJF can lead to: 

• Up to 30% larger calculated displacements at the lower framing levels, although at upper levels 

the calculation deflections were within 1% of rigid joints nodal predictions. Bouwkamp 

suggests that this is due firstly to the effect of longer brace members at upper levels which 

reduces the axial stiffness of the members and secondly to the modeling of increased joint can 

thickness which increases the relative stiffness. 

• Slight increases in calculated leg axial forces (up to 2% higher) and considerable reductions in 

calculated brace axial forces (up to 20%). 

WS Atkins and Partners, under contract to the Underwater Engineering Group, UEG (1982) carried 

out a project to determine the effects of LJF on the three 2-D frames shown in Figures 4.17, 4.18 and 

4.19 with regard to: 

1. Member axial force and bending moment distribution 
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2. Member Buckling 

3. Natural Frequencies 

Furthermore, the effects of local joint flexibility corresponding to joint geometric variations (i.e. τ, β, 

e) were examined. The approach used differs from that used by Bouwkamp in that the test data 

obtained by Fessler et al were used to generate the flexibility matrix. The frames were analyzed using 

the general purpose stiffness method program „ASAS‟ (Atkins Structural Analysis System). Each 

frame was the subject of at least two analyses: the first is of the conventional type where no allowance 

is made for joint flexibility. The second analysis allows for joint flexibility. 

Flexibility coefficients were determined in the model tests, for only three degrees of freedom for each 

brace of a joint - those freedoms where local joint flexibilities are considered to be most interesting. 

The study only addressed the axial and in-plane flexibility effects. A tubular joint is more flexible 

under out-of-plane loads and the effects could therefore be more significant. 

 

Figure 4.16 Nodal points considered for UEG Study 

A simple representation of the joints was selected for the study with one nodal point provided on the 

chord and one on the brace. The nodal points 2, 3, and 4 were all connected by a stiffness matrix 

derived from the flexibility matrices by Fessler (Figure 4.16). 
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Figure 4.17 Structure 1 
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Figure 4.18 Structure 2 



91 

 

 

Figure 4.19 Structure 3 

The authors concluded that: 

• Deflection changes are significant on Structure 2 partly because of the large number of flexible 

joints (γ = 25.3 and β = 0.53) and partly because of the small height-to-width ratio of the 

frame. The deflection increases for the structures (γ = 25.3 and β = 0.53) range from 1 and 3, to 

13% for Structure 2 with respect to conventional rigid-frame analysis.  



92 

 

• In terms of percentage change for in-plane moment effects, Structure 1 shows the largest 

increase in the horizontal braces at the KT joints. The 90
◦
 brace member is rotated by opposite 

axial forces in the adjacent 45
◦
 braces. An increase of 34N/mm

2 
resulted, which represents an 

increase of 200% on the conventional rigid frame analysis. 

• The greatest changes in natural frequency of similar modes between the conventional and most 

flexible (γ = 25.3 and β = 0.53) analyses is 82% and occurred for Structure 3. 

O‟Connor et al (2005) also reported ultimate strength analysis on the bpTT Cassia A as a part of the 

fitness for purpose assessments. The analysis included LJF and the USFOS package was used in the 

analysis. The results of the analysis indicate that the structure has an unusually high safety factor 

(reserve strength) with a capacity of over 5 times the design capacity load, with all members intact. 

Figures 4.20 and 4.21 illustrate the USFOS ultimate strength model and load displacement curves for 

bpTT Cassia A platform and the load deformation curves from the series of analysis performed. 

 

Figure 4.20 bpTT Cassia A Platform 

(USFOS model) 
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Figure 4.21 bpTT Cassia A Platform, Load Deformation curves 

In 2009, Mirtaheri et al investigated the effects of joint flexibility of tubular joints based on the finite 

element method. In this study, in analogous to Bouwkamp (1980), individual full scale tubular 

connections are modeled with the aid of multi-axial shell elements and loaded to reach moment-

rotation relations. Two types of offshore connections which are frequently used in the offshore 

platforms are examined, namely T and Y connections and loaded to test their rotations in comparison 

with the fully rigid assumption (Figure 4.22). 

 

Figure 4.22 Y-type Tubular Joint Model 

(Mirtaheri, 2009) 
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Figure 4.23 Finite Element model and mesh discretization for Y and T type connections 

Figure 4.23 illustrates the finite element model of typical connections generated through the use of 

shell elements and dense mesh discretization in intersection region to capture nonlinear strains as 

accurately as possible. After performing nonlinear static analyses, one can obtain moment-rotation 

relationships of several connections with different intersection angles. Two finite element models of a 

2D frame of an offshore platform are designed, and generated analytically and studies comparatively 

to gain insights about performance of platforms with rigid and flexible connections. The first model is 

made by means of uniaxial beam-column elements in which connections are assumed to be fully rigid, 

whereas the second model is generated through the use of 3D shell elements in which case, joint 

flexibility are accounted for automatically. 
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Figure 4.24 General configuration and member sizes for 2D frame 

 

Figure 4.25 Results of Ultimate Strength Analysis 
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Mitaheri et al concluded that: 

• Tubular connections used in the offshore industry are intrinsically flexible. These flexible 

joints are able to dissipate energy when subject to cyclic forces. 

• Compressive axial forces in struts reduces the strength of the end connections as they increase 

the susceptibility of local buckling of joints unlike the tensile forces which assist the strength 

of the connections and prevent local buckling occurrence.  

• Results of pushover analysis (ultimate strength) indicate that effect of joint flexibilities become 

more apparent when the structure undergoes strain beyond the elastic region and shows 

nonlinear behaviour. 

4.6 Summary and Conclusions 

The variations of the results in Table 4.6 indicate that joint flexibilities have different results on the 

analysis results of tubular structures. The effects vary with structural geometry, loading, configuration 

and height of the structure. For ultimate strength studies, the global effects of LJF are determined in 

terms of global collapse and deflection of the structure. For fatigue life predictions, these are more 

localized effects as the main concern is at the tubular joint level. While fatigue life prediction is a 

localized effect, to ensure moment redistribution of loads due to LJF, all joints in the frame must be 

modeled with a flex-element or the super element to represent the overall effects of LJF in the frame 

structure. 
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Study Loading 
Global 

Deflection 

Axial 

Load 

Bending 

Moments 

Natural 

Frequencies 

Fatigue 

Life 

Prediction 

(Local) 

Bouwkamp 

(1980) 

Dead Load + 

Point Load at 

the top 

+ 1% at the 

top 

30% at 

lower 

framing 

levels 

Leg axial 

forces 2% 

higher 

Reductions  

of 20% in 

brace axial 

forces 

   

UEG (1982) 
Point Load + 

Wave Load 
+13% +1.5% -90% -45%  

Soussi 

(1989) 

Dead Load + 

Point Load 
+ 10%     

Gibstein et 

al (1990) 

Dead Load + 

Wind, Wave 

and Current 

    + 5-10% 

O’Connor 

(2005) 

Dead Load + 

Wind, Wave 

and Current 

    + 212% 

Table 4.6 Maximum Responses when including LJFs compared to conventional design 

The finite element method offers the practicing engineer the capacity to model many joint 

configurations and to obtain accurate measurements of displacement under low nominal brace load. 

However, substantial differences in the joint flexibility analyses can be obtained depending on the 

boundary conditions, particularly under moment loading. Significant differences in joint flexibility 

results can also result from using an inappropriate mesh density, element type and integration scheme. 

The standardized approach to finite element modeling proposed by Romeyn has been adopted in many 

finite element software packages to model the effects of LJF.  

For determining joint flexibilities from numerical methods, it is recommended that finite element 

methods should be benchmarked to physical tests whenever possible, particularly prior to 

comprehensive finite element analysis test programs being undertaken and shell type finite elements 

are preferred when developing FE models for LJF. For fatigue life prediction, there is considerable 

benefit in using LJF compared to the conventional design spectral approach. O‟Connor on a full jacket 
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analysis predicted over 200% improvement to fatigue lives for high fatigue critical joints of an aging 

structure.  

The oil and gas industry has been slow to incorporate this structural assessment tool LJF, and led to 

costly repairs and inspections. Since 2006, with the initiation of the API RP 2SIM, a global committee 

has now been educating each other with similar global operating experiences and the LJF concept and 

applications are becoming more popular. The concept of LJF also offers the practicing engineer the 

facility of employing a full assessment method when requiring fitness for purpose to continue 

operating beyond a design threshold.  

In many cases, this FFP requires two key analyses, i.e. fatigue assessments and ultimate strength 

analyses. The use of one LJF formulation over another can be confusing, as the codes and standards do 

not explicitly spell out which formulation to use and when. For ultimate strength considerations, the 

use of MSL joint formulation in the USFOS software is the most appropriate, as it is benchmarked to 

large scale testing of the BOMEL frames. The RK-LJF equations developed within this research are 

validated against large scale frame tests and can be used for both fatigue life assessment and ultimate 

strength of gapped uni-planar tubular joints. 
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CHAPTER 5  

Gapped K-Joint Testing and Local Joint Flexibility  

5.1 Introduction 

Gapped K-type tubular joint testing has been the subject of investigation with regards to offshore 

jacket structures since the early 1980s. In this Chapter, the main K-joint tests will be reviewed as they 

relate to LJF and accuracy of testing methods. The main experimental testing undertaken include: 

1. The AMOCO K-Joint tests (1983) 

2. BOMEL frame testing and isolated gapped K-joint tests (1994) 

3. National University Singapore, (NUS) - large scale testing of grouted K-joints (2009) 

4. Da Silva  small scale testing to investigate LJF with a main focus on the IPB condition (2015) 

The AMOCO K-Joint test represents the only large scale test results where LJF has been measured. 

The tests, while performed in the early 1980s, are limited by modern testing standards, but represent 

the best testing methods available to the offshore industry at that time. BOMEL Engineering 

Consultants (1994), while performing the BOMEL Frames Test as a Joint Industry Project (JIP), also 

provided a Specification for the testing of isolated K-joints. This specification provided an industry 

standard by which large scale testing of isolated joints should adhere to and forms the basis of 

subsequent work carried out by NUS in the late 2000s. From this specification the Amoco K-Joint 

tests are critically reviewed as to the applicability and accuracy of the testing methods. 

The NUS large scale testing of gapped K-type joints is limited to grouted joints due to a limitation in 

funding to explore other concerns such as LJF. Although not discussed in this thesis with regards to 

LJF, it provides a consistent approach to large scale testing that adheres to the BOMEL specification 

for isolated joint testing. It should be noted that the experimental work and findings outlined in the 

Amoco K-Joint tests and the BOMEL frame testing and isolated gapped K-joint tests are not generally 

in the public domain. The author of this thesis has worked as a consultant within BP (formerly BP 
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AMOCO) and GL Noble Denton (an organization that acquired BOMEL in the 1990s), so was privy 

to these extensive studies and also had informal interaction with the personnel who were involved in 

developing these experimental works. Furthermore, the Da Silva small scale testing of IPB for the Y-

type joint was initiated and developed by the author to further investigate any areas of concerns of the 

AMOCO joint tests. 

5.2 AMOCO K-Joint Tests 

In 1983, Wimpey Laboratories, together with AMOCO UK Exploration Company, conducted joint 

flexibility tests on K-joints for full scale representation of existing joints on Amoco platforms in the 

southern North Sea, called the AMOCO K-Joint Tests. The principal objective of the tests was to 

determine the ultimate strength of the joints in the as-welded condition, under static loading for 

comparison with strengths predicted by existing design codes and parametric equations. In addition, 

stress concentration factors and local joint flexibilities, under elastic loading, were determined for the 

as-welded condition. 

5.3 Rationale for the AMOCO K-Joint Study 

Detailed structural analysis using the then design codes show that some K-joints had become 

overstressed. Most of the design codes at that time provided joint strength formula for T and Y type 

steel tubular joints and can be applicable to K-joints with large gaps (large gap being g/D greater than 

0.15) developed by Marshall et al (1970). Smaller gap joints under axial loading have strengths greater 

than the equivalent large gap joint. While the API RP 2A (used at that time) gave an enhancement 

factor of up to 1.3 for axial loading, work done at that time by Billington, Lalani and Tebbett (1982) 

shows an enhancement factor of 1.9 and Nakajima (1971) of 3.0 (albeit for very small joints, i.e. 

chords less than 150mm). The g/D parameter alone is insufficient to determine the strength of small 

gap K-joints. The design code at that time was conservative for its strength determination of small gap 

K-joints but no reliable data was available at that time to support this view. In performing the 
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AMOCO K-Joint study, the intention was to determine the parameters that affect the strength of small 

gap K-joint, stress concentrations associated with these parameters and any effects of local joint 

flexibility. 

5.4 AMOCO K-Joint Geometry 

The joints of principal concern were the non-overlapping K configuration and consist of 18 inch 

(457mm) Outer Diameter (OD) chords and 16 inch (406mm) Outer Diameter (OD) braces. The chord 

wall thicknesses are either 0.394 inch (10mm) or 0.375 inch (9.5mm) and the brace thickness is 0.394 

inch (10mm). The angles of intersection vary but are, typically, in the range of 40
◦
 to 60

◦
. It was 

Amoco‟s intention that the tests should be carried out on the heavily loaded K-joint, which is the one 

with an intersection angle of 60
◦
 between the chord and the braces. The geometry of this joint is given 

in Figure 5.1. The Amoco jacket structures in the southern North Sea had many K-joints of similar 

geometries. 

 

Figure 5.1 Geometry of the Specimens 

(AMOCO K-Joint Tests, 1983) 
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The geometrical parameters for the AMOCO K-Joints include the following: 

β = d/D = 0.89 

γ = D/T = 22.8 

δ = g/D = 0.12 

 40
◦
 ≤ θ ≤ 60

◦
 

5.5 Local Joint Flexibility Definition 

Most structural analysis of the jacket structures at the time assumed that members were rigidly 

attached to each other at discrete points. This assumption was necessary because of the lack of 

published data relating to the flexible nature of the tubular joints. In essence, Local Joint Flexibility is 

a measure of the flexibility within the joint itself due to the local deformations of the chord under load. 

Local joint flexibility measurements have been made for the eleven load cases as shown on Figure 

5.10. The definitions of local joint flexibility for axial load, in-plane bending and out-of-plane bending 

are given in Figures 5.2 through 5.4. The loading convention for the K-joint test is provided in Figure 

5.5. These definitions are fundamental to all LJF calculations and are used to develop the LJF 

formulations discussed in Chapters 6 through 8. 
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5.5.1 LJF for Axial Brace Loads 

 

Figure 5.2 Definition of Local Joint Flexibility for Brace Axial Loads 

(AMOCO K Joint Tests 1983) 

δT = Total Measured Displacement                                                                                                    (5.1) 

δe = Elastic Brace Displacement = ML/AE                                                                                        (5.2) 

δc = Chord Displacement                                                                                                                    (5.3) 

δf = Rigid Body Displacement = δT-δc-δe                                                                                         (5.4) 

Local Joint Flexibility = δf/P (units: mm/KN)                                                                                    (5.5) 
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5.5.2 LJF for In-Plane Bending 

 

Figure 5.3 Definition of Local Joint Flexibility for In-Plane Bending 

(AMOCO K-Joint Tests 1983) 

δT = Total Measured Brace Displacement                                                                                          (5.6) 

δe = Displacement at the Brace due to Elastic Bending of brace = ML
2
/3EI                                     (5.7) 

δc = Displacement at Brace End due to Chord Rotation                                                                    (5.8) 

δf = Rigid Body Displacement = δT-δe-δc                                                                                         (5.9) 

Local Joint Flexibility = f/M (units: Rad/KNm)                                                                             (5.10) 
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5.5.3 LJF for Out-of-Plane Bending 

   

Figure 5.4 Definition of Local Joint Flexibility for Out-of-Plane Bending 

(AMOCO K-Joint Tests 1983) 

δT = Total Measured Brace Displacement                                                                                        (5.11) 

δe = Displacement at the Brace due to Elastic Bending of brace = ML
2
/3EI                                   (5.12) 

δc = Displacement at Brace End due to Chord Rotation                                                                  (5.13) 

δf = Rigid Body Displacement = δT-δe-δc                                                                                       (5.14) 

Local Joint Flexibility = f/M (units: Rad/KNmm)                                                                          (5.15) 
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Figure 5.5 K-Joint Loading Configuration 

5.6 Test Specimens 

The AMOCO K-Joint test specimens were fabricated by Research Models and Equipment Ltd at full 

scale from standard tubular sections conforming to API Specification 5L Grade B. The fabrication 

procedures were in conformance with AWS D1.1-82 which was used on fabrication work for steel 

structures in the North Sea at the time. Steel coupons were tested to determine the yield stress and 

ultimate strength of the material. A spectrographic analysis was carried out to determine the chemical 

composition of the steel. For fabrication QA, all work was witnessed by a representative from Lloyds 

Register of Shipping, signed and appended to the AMOCO K-Joint Test Report. 
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Figure 5.6 Position of the Transducers and Gauges on Specimen 1, during Axial Loading 

(AMOCO K-Joint Tests 1983) 

Figure 5.6 shows the position of the transducers and strain gauges on one of the specimens. Compared 

to the arrangement prescribed by BOMEL one decade later (Figure 5.7), there is substantially more 

transducers at the chord region. It was understood at this time that both braces and chord interact 

together to contribute to the LJF on the joint. The gauges in the BOMEL joint tests provide a closer 

rosette arrangement to ensure the displacements across both chord and braces are adequately recorded. 
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Figure 5.7 Displacement transducer numbers 

(BOMEL Isolated K-Joint Tests, 1994) 

 

Figure 5.8 Strain Gauge by number reference 

(BOMEL Isolated K-Joint Tests, 1994) 
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5.7 Test Procedures 

The test rig consists of two 36 inch x 16.5 inch (914mm x 419mm) universal beams, side by side, 

bolted together so to make a rectangular frame which is 181.1 inch x 114.2 inch (4.6m x 2.9m) internal 

size, (Figures 5.14, 5.15 & 5.16). At each end, the specimen chord is bolted to a hinge unit, which in 

turn, is bolted to the rig. The hinge unit cannot transfer moment, hence the chord can be considered to 

be pin ended. The rig takes the form of a closed rectangle, hence any loads applied to the specimen are 

reacted within the rig itself. The specimen is supported in the vertical plane with its chord horizontal. 

The combinations of loading which were used for the elastic tests on Specimen 1 and ultimate tests on 

Specimens 1 and 2 are given within Figure 5.10. 

 

Figure 5.9 Specimen 1 under Ultimate Strength 

(Amoco K Joint Tests 1983) 

The elastic load test on Specimen 1 used 4 No 300 kN jacks per brace, but the ultimate tests on 

Specimens 1 and 2 all use 4 No 900 kN jacks per brace. The 300 kN jacks were used for elastic tests to 

obtain greater sensitivity for loading within the elastic load range which was much smaller than the 

range of loading for the ultimate tests. On the compression brace, the jacks were placed directly onto 

the brace top hat and reacted against the rig through ball seatings to get axial load. A load cell of 0.1% 

accuracy was placed on one of the jacks applying load to the brace, this load cell was used to 
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accurately monitor the loads being applied by the hydraulic loading cabinet. To put tension into a 

brace, it is necessary to place the hydraulic jacks on the outside face of the rig and connect the jack to 

the specimen with Macalloy bars. A load cell was placed on one of the jacks to monitor the load being 

applied to the brace. The jacks reacted through cross beams which had adjustable mountings onto the 

rig so that they could be accurately positioned at the start of the test. Bending load is applied to the end 

of each brace by a nominal 4.4 tonne jack acting in the appropriate direction. The jack acts on the 

small rectangular frame on the end of the brace producing a force perpendicular to the axis of the 

brace.  

Electrical resistance strain gauges were bonded to the chord member and both brace members to 

determine the strain and stress distributions and obtain estimates of stress concentration factors (Figure 

5.16). Displacement measurements were taken with a combination of self-temperature compensating 

transducers with a nominal accuracy of +/- 0.025mm and dial gauges with a nominal accuracy of +/-

0.01mm. For the accuracy, BOMEL prescribed +/- 0.025mm for all gauges as well, so the AMOCO 

tests results adhered to this. BOMEL prescribed that all transducers and strain gauges be connected to 

a computer controlled data logging system which will record and reduce all readings. In this case, 

AMOCO tests are reliant on more manual recording of readings and are more prone to errors.  

Local Joint Flexibility measurements were made for the eleven load cases shown in Figure 5.10. The 

measured and predicted values for local joint flexibility under axial load, in-plane and out-of-plane 

bending are shown in Table 5.1. The LJF calculations have been developed from the UEG (1982) 

report for Y-type joints. The UEG used then unpublished work by Fessler and Spooner (1981) as a 

basis to develop the LJF calculations. The Fessler and Spooner, then unpublished work, was the most 

current methodology at the time for developing the effects of LJF and was later developed further into 

the Fessler equations (1983) and improved Fessler (1986) a few years later. 
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Load Case 

Brace 1 Brace 2  

Local Joint 

Flexibility 

Local Joint 

Flexibility 
Units 

1-Axial 1.7 3.8 x10
-3

 mm/kN 

2-Axial -1.2 1.4 x10
-3

 mm/kN 

3-Axial 2.6 2.5 x10
-3

 mm/kN 

4-Axial 8.4 6.7 x10
-3

 mm/kN 

5-Axial 1.6 3.9 x10
-3

 mm/kN 

6-In Plane Bending 2.7 2.3 x10-
5
rad/kNm 

7-In Plane Bending 0.8 3.7 x10-
5
rad/kNm 

8-In Plane Bending 4.1 4.9 x10-
5
rad/kNm 

9-Out of Plane Bending 17.4 16.3 x10-
5
rad/kNm 

10-Out of Plane Bending 11.2 12.1 x10-
5
rad/kNm 

11-Out of Plane Bending 26.3 3.0 x10-
5
rad/kNm 

Table 5.1 Local Joint Flexibility for Specimen 1 

(AMOCO K-Joint Test Results 1983) 

To derive the LJF values for specimen 1, detailed calculations have been performed to determine the 

contributions made by the chord and brace deflections based on expressions 5.6 through 5.15. The total 

displacements for the joint have been extracted from measured results from the transducers and recordings from 

the tests. The detailed calculations for the LJF for all eleven load cases in specimen 1 have been included in 

Appendix 3 for the axial, in-plane bending and out-of-plane bending conditions and included in Table 5.1. 



112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Loadings on Specimens 1 & 2 

(AMOCO K-Joint Tests 1983) 

5.8 Loading  

The test loading frame and arrangements shown in Figures 5.11 through 5.13 are in good agreement 

with that prescribed by BOMEL in Figure 5.14. All external load cells have been calibrated within 12 

months and have an accuracy of better than +/- 0.005, but no record exists if the calibration was 

performed directly before and after the Amoco test results. 
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5.8.1 Axial Load  

Axial Load was applied to the braces in the arrangement shown on Figure 5.11. The compression 

brace is on the left hand side of the drawing and the tension brace is on the right hand side. The elastic 

load test on Specimen 1 used 4 No 30 tonne jacks per brace, but the ultimate strength tests on 

Specimens 1 and 2 all used 4 No 90 tonne jacks per brace. 

5.8.2 Compression Loading  

On the compression brace, the jacks were placed directly onto the brace top hat and reacted through 

the rig through ball seatings. The ball seatings allow rotation of the brace to occur during the best 

without bending moments being set up in the brace. This arrangement is shown on Figure 5.11. 

 

Figure 5.11 Brace Compression only 

(AMOCO K-Joint Tests 1983) 

5.8.3 Tension Loading  

To put tension into a brace, it was necessary to place the hydraulic jacks on the outside face of the rig 

and connect the jacks to the specimen with Macalloy bars. Ball seatings were not required since the 

bending stiffness is sufficiently low that they will not restrain rotational movement of the brace. This 

arrangement is shown on Figure 5.12. 
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Figure 5.12 Brace Tension only or Tension and Compression 

(AMOCO K-Joint Tests 1983) 

5.8.4. Bending Load  

Bending load is applied to the end of each brace by a nominal 4.4 tonne jack acting in the appropriate 

direction. The jack acts on the small rectangular frame on the end of the brace producing a force 

perpendicular to the axis of the brace. The jack force is multiplied by the lever arm of the jack from 

the joint to give the applied bending moment. Two identical arms are used which can apply in-plane or 

out-of-plane bending. This arrangement is found on Figure 5.13. 
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Figure 5.13 Bending 

(AMOCO K-Joint Tests 1983) 

 

Figure 5.14 Schematic Drawing of Test Rig 

(BOMEL Isolated K-Joint Tests, 1994) 

Note: The actual angle of the braces was 60
◦
 instead of 45

◦
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Figure 5.15 General Arrangement of Test Rig and Specimen 

(AMOCO K-Joint Tests 1983) 

 

Figure 5.16 Compression and Tension Loading Arrangement 

(AMOCO K-Joint Tests 1983) 
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Figure 5.17 Details of Strain Gauges 

(AMOCO K-Joint Tests 1983) 

5.9 Da Silva LJF Small Scale Tests  

In 2015, Da Silva conducted LJF tests on a small scale model to address the in-plane bending 

condition (IPB). The results of the tests and findings are reported in an MSc thesis by Da Silva (2015). 

The author of this thesis (Riaz Khan) was responsible for setting up the research statement and the test 

procedures for the Da Silva tests. The testing of the in-plane condition was selected on the basis that 

the major source of ambiguity in the AMOCO K-Joint tests was in the comparison of the in-plane 

condition experimental results and the finite element results. It should be noted that a scaling factor of 

¼ the size of the dimensions of the large scale specimen was used which is deemed acceptable, as a 

rule of thumb, by former Lloyds Register‟s laboratory researcher Nigel Nichols. Through his many 

conversations with Nichols, the author (Riaz Khan) was able to obtain an insight on the IPB condition 

as it has proven difficult to measure appropriately, especially on a small scale. The main source of 

difficulty in measuring IPB stems from an inability to appropriately position the transducers at the 

brace and chord to simulate the chord distortion, especially when ultimate capacity has been achieved, 

but more importantly for the LSBU tests, is that they were able to show similar deformed shape to that 
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of the Amoco K-Joints for IPB. This was quite useful as it indicated consistency between both tests in 

terms of their modes of failure. 

 

Figure 5.18 Transducer position 

(LSBU, 2015) 

Using a series of the Mitutoyo 543-690 transducers, their arrangement shown on Figure 5.18, Da Silva 

was able to record a good relationship between the loaded brace and the applied bending moment for 

the IPB condition.  

When calculating the effects of LJF using a comparison with the experimental tests results and 

Buitrago‟s equations, LSBU reported a 185% difference. There are many reasons for the possible 

differences in the experimental work vs the finite element modeling. Da Silva used the STRAND 7 

software to perform the finite element work which does not carry the LJF module as with other 

offshore structures software such as SACS and USFOS. In such a case, it is expected that the 

STRAND 7 model represents a slightly more rigid joint compared to the measured values in the LSBU 
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tests. In many cases, the gap size in modern design of tubular joints is generally greater than 50mm 

(based on ISO 19902) thus K-joint configurations begin to exhibit behaviour of Y-type joints. The Da 

Silva tests, while based on Y-type joints, provide a good reference for the performance of K-joints 

with very large gap sizes or those based on modern design criteria. From the experiments, it was noted 

that linear strain gauges were used, but the use of rosette strain gauges to properly record the rosette 

deflections around the chord and brace would have been ideal to calculate LJF. 

5.10 Summary and Conclusions  

The AMOCO K-Type joint tests represent the only published test results for local joint flexibilities 

for large scale tests. To derive the RK-LJF equations, they will serve as a basis for experimental work 

for finite element benchmarking. The following should be noted: 

• The AMOCO K-Joint tests were subjected to rigorous test specimen preparation and the rig 

configuration for load testing, which proved consistent with the BOMEL specification for large 

scale testing. However, AMOCO K-Joint tests gauges and transduces were not connected to a 

computer logging system to record displacements and were subject to manual error at times 

when recording data.  

• Furthermore, the LJF values for all eleven load cases are determined through test data and 

calculations using the methods outlined in the UEG report (1982). The predictions of LJF were 

based on unpublished Fessler and Spooner (1981) work, which was subsequently updated to 

reflect the Fessler (1983) and improved Fessler equations (1986). The results of the measured 

LJF should be treated as indicative values for LJFs and any benchmarking is to consider 

accuracy in the values as outlined by the constraints in testing and calculation at the time. 

There is also no clear information on whether calibration of the load cells was performed 

before and after the AMOCO tests. 

• The current work by Da Silva (with Riaz Khan) demonstrated that there is still limited testing 

and understanding on the IPB condition on tubular joints and presents an opportunity for the 



120 

 

offshore oil and gas industry to lead more large scale testing on tubular joint behaviour. 

However, the tests did provide a consistent mode of failure to the AMOCO K-Joints test for 

the IPB and so validates the failure mechanism of the AMOCO K-Joints for IPB. When 

compared with STRAND 7 results, the measured values demonstrated some degree of joint 

flexibility compared to the stiffer finite element joint analysis. 
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CHAPTER 6 

Finite Element Modeling of Uni-Planar Tubular K-Type Tubular 

Joints, Results and Comparison with Experimental Data 

6.1 Background 

Accounting for joint flexibility in structural analysis of tubular joints will correctly have the effect of 

reducing the member end moments i.e. the members shift from being fixed-ended to somewhere 

between fix-ended and pin-ended depending on the degree of flexibility. At a simple level, joint 

flexibility causes members to act less as fix-ended and more as pin-ended. 

 

Figure 6.1 Beam Bending Moments for the fixed, pinned and intermediate end conditions 

From structural analysis principles, the simple illustrations shown in Figure 6.1 show that for a simple 

beam loaded with a point load, P, at the center of its span, the bending moments are shed from the 

ends to mid-span as the fixed end conditions change from more rigid to more pinned connection. 

Therefore, the actual stress at the member end is substantially reduced, which in turn leads to a large 

increase in estimated and actual fatigue life of the joint. The structural behaviour of the intermediate 

end connection is very similar to the structural behaviour of local joint flexibility of a tubular joint 

connection. 

At the tubular joint level, the local joint flexibility that is inherent in the brace to brace connection, 

tends to relax the member end forces and moments, increase deflections, redistribute the stresses, 
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reduce the buckling loads and change the natural frequencies, as well as mode shapes of an offshore 

platform, compared to the original design approach using rigid joint frame analysis. To demonstrate 

the action of joint flexibility, the stiffness method is often used to perform the structural analysis and 

dictates that the load deflection relationships for joints to be included in the analyses in the form of a 

local stiffness matrix k, relating applied loads at nodes of the joint, p to deflections, δ where: 

                                      p = k δ                                                                                     (6.1) 

Fessler et al (1982) produced a set of flexibility matrices f‟ for several tubular joints of different 

geometric configurations, relating deflections δ‟ in response to applied loads p‟ where                                  

                                       δ' = f‟ p‟                                                                                 (6.2) 

A tubular joint with two braces serves to illustrate the method, but the equations used may be extended 

to accommodate any number of braces. Flexibility coefficients were determined in model tests 

conducted by Fessler et al (1982), in Equation (6.2), for only three degrees of freedom for each brace 

of a joint. These freedoms do not correspond with the three degrees of freedom required in Equation 

(6.1) and the local stiffness matrix must now be derived by providing flexibility data and basic 

engineering bending theory. A procedure to derive the joint local stiffness matrix is now described 

(Fessler et al 1982). 

 

Figure 6.2 The degrees of freedom provided by Fessler’s experimental work 

(Adapted from Fessler et al 1982) 
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Figure 6.2 shows the directions of the three degrees of freedom ψ, θ, ϕ, used for loads and 

displacements relating to the flexibility matrices (Fessler et al, 1982). The brace axial displacements 

are given by the measured displacements, these being perpendicular to the chord axis. The flexibility 

matrix must be converted from these skewed axes into a rectangular Cartesian system also eliminating 

the out-of-plane degree of freedom from the equations. Figure 6.3 shows the degrees of freedom x, y, 

ϕ of interest to the plane frame problem. 

 

Figure 6.3 The degrees of freedom requited in the Joint Stiffness Matrix 

(Adapted from Fessler et al, 1982) 

 

Figure 6.4 Loads and relative displacements of a two braced joint 

(Adapted from Fessler et al 1982) 

The complete system of loads and displacements for degrees of freedom in the plane of the two braced 

joints is shown in Figure 6.4. The flexibility of a tubular joint is considered to be the difference 

between the displacements at the member ends at unit load. It is conventionally assumed in structural 
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analysis that tubular joints can effectively be represented as a discrete point to which members are 

rigidly attached. Therefore, in the traditional design (using computer-based analyses) of fixed offshore 

structures, the effect of joint flexibility is generally not considered. However, in the limited studies 

undertaken thus far, the inclusion of joint flexibility in the analysis of offshore structures has been 

identified as having an effect on both the global static and dynamic responses to the structure. For such 

a joint (Figure 6.4), a flexibility matrix f‟, is provided below, where, all deflections δ‟ are measured 

relative to the chord axis. 

 

Figure 6.5 Flexibility Matrix for Uni-Planar Two Braced Joint (global representation) 

(Adapted from Fessler et al 1982) 

Fessler (1982) et al provided the following stages in the derivation of the local stiffness matrix: 

1. Firstly the values of Young‟s modulus, E, the chord diameter, D, appropriate to the application 

of the joint are used to dimensionalize the flexibility matrix f‟. 

2. The flexibility matrix is then transformed to rectangular Cartesian system, shown in Figure 6.4. 

A reference point (Node 2), is chosen on the chord axis and considered fixed in translation and 

rotation, so that deflections may be conveniently taken as absolute for the purposes of this 

transformation. The flexibility matrix in Cartesian co-ordinates required is: 
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Figure 6.6 Flexibility Matrix in Cartesian Co-ordinate Form 

(Adapted from Fessler, 1982) 

3. Matrix Inversion is performed on the transformed flexibility matrix, f (Figure 6.6), to produce 

the local stiffness matrix k*, relating deflections, δ of Nodes 1 and 3, relative to the reference 

point Node 2, as shown on Figure 6.4, so 

                                       P = f-1 δ = k* δ                                                                                      (6.3) 

4. Provision is now made in the stiffness matrix for any arbitrary absolute displacement at any of 

the nodal points on the joint to be equated with loads at these points, thus a further 

transformation takes place on k* to produce k, the final joint stiffness matrix of Equation (6.1). 

Within the Benchmarking Study outlined in this Chapter, a flexibility matrix is derived comparing the 

coefficients of finite element analysis and measured test data for a uni-planar K-type tubular joint, in 

the form of Equation (6.1). 
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6.2 Shell Finite Elements 

The ABAQUS suite of software (Version 6.11) is used for the mesh sensitivity study, benchmarking 

study and the generation of the coefficients of the parametric study to model the K-joint in finite 

element analysis Romeyn et al (1992) proposed the use of shell type elements exhibiting thin bending 

shell theory behaviour. Three dimensional shell elements in ABAQUS are named as follows: 

 

Figure 6.7 Naming Convention for three-dimensional shell elements 

(ABAQUS Manual, 2011) 

For example, S4R is a 4-node, quadrilateral, stress/displacement shell element with reduced 

integration and a large-strain formulation, and a SC8R is an 8-node, quadrilateral, first-order 

interpolation, stress/displacement continuum shell element with reduced integration. ABAQUS 

includes general-purpose, conventional shell elements as well as conventional shell elements that can 

be used for both thick and thin shell problems. The 8-node quadrilateral elements in ABAQUS while 

they do not hourglass, they are prone to locking: both shear and volumetric locking. Shear locking can 

occur in first order fully integrated 8-noded elements subjected to bending. The numerical formulation 

of the elements gives rise to shear strains that do not really exist, the so called parasitic shear. These 

elements become too stiff in bending in particular if the element is of the same order of magnitude or 

greater than the wall thickness. 
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As stated in the ABAQUS manual (2011), “The general-purpose conventional shell elements provide 

robust and accurate solutions to most applications; however in certain cases, enhanced performance 

may be obtained with the thin or thick shell elements, for example if only small strains occur and five 

degrees of freedom of modes are required.”   

Conventional shell elements allow transverse shear deformation. They use thick shell theory as the 

thickness increases and become discrete Kirchhoff thin shell elements as the thickness decreases. 

Element Types include S3/S3R, S3RS, S4R, S4RS, S4RSW, SAX1, SAX2, SAX2T, SC6R and SC8R. 

Although Romeyn (1982) proposed the use of the 8-noded shell elements, as he concluded that they 

demonstrate “flexible” behaviour better than 4-noded elements, ABAQUS argues the use of the 4-

noded quadrilateral thin shell elements (S4R) can be used just as well when used to determine very 

small nodal displacements. 

According to the ABAQUS Manual (2011), the S4 is a fully integrated, general purpose, finite-

membrane strain element where, “The element’s membrane response is treated with an assumed 

strain formulation and gives accurate solutions to in-plane bending problems, is not sensitive to 

element distortion and avoids parasitic locking. The S4 element can be used for problems prone to 

membrane or bending mode hour-glassing, in areas where greater solution accuracy is required or 

for problems where in-plane bending is expected.” 

 

Figure 6.8 4-Noded Reduced Integration Element, Numbering of Integration points for output, 

Stress/Displacement Analysis 

( ABAQUS Manual, 2011) 
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Although the 8-noded quadrilateral element can provide accurate results in most loading solutions, 

ABAQUS also noted that because of their constant bending and membrane strain approximations, 

high mesh refinement may be required to capture pure bending deformations or solutions to problems 

involving high strain gradients. The ABAQUS suite of software is one of the world‟s leading finite 

element packages for structural analysis. The finite elements included with ABAQUS have been 

appropriately benchmarked.  

For the above-mentioned reasons, the 4-noded (S4R) quadrilateral shell element has been selected as 

the finite element best suited to model the K-joint behaviour. The general behaviour and 

characteristics of the S4R element is provided in Appendix 1. 

6.3 Finite Element Mesh Analysis 

Prior to the Benchmarking Study, a mesh size and refinement study was performed which shows that 

the 4-noded General Purpose Shell Element (S4R) would yield convergent displacement results with 

that obtained from the experimental data. The use of shell type elements has the added advantage of 

not having to model the weld profile and details, as per the recommendations provided in DNV RP 

203 (2010). The main reason for DNV stating this is because the LJF FE analysis is primarily focused 

on obtaining displacement values rather than stress analyses which require more accurate finite 

element modeling and mesh refinement. As such, FE stress concentration models which are generally 

sensitive to mesh refinement and element type, FE displacement models are not as sensitive to element 

type and mesh refinement, provided the FE mesh generated, is reasonably refined. The Mesh 

Generator in ABAQUS serves as a building model tool and is used in this study compared to the 

tedious manual mesh generation. The application of the mesh generator was verified against test data 

provided in the AMOCO test joint for LJF for axial compression, tension and out-of-plane and in-

plane bending. 
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Figure 6.9 Setting Element Type, 4-Noded Quadrilateral Thin Shell Elements 

The first step in the meshing process is to Assign Mesh Properties and Set Mesh Controls. For this, we 

need to set mesh control in the form of mesh density, element shape and element size. After these are 

included, the mesh can now be generated. To refine the mesh, ABAQUS provides a series of 

techniques and tools including the Seeding Tool, which allows adjustment to the mesh density in 

selected areas. The Partition Toolset allows partition of complex models into simpler regions. The 

Virtual Topography Toolset allows the simplification of the model by combining small faces and 

edges with adjacent faces and edges. Both these tools are very useful as they allowed the tubular joint 

to be modeled as a 2D model in plan representation and then combined to represent the complete 

tubular joint. The Edit Mesh Toolset allows minor adjustments in the mesh. The mesh can now be 

verified by using the Verification Tool on the suitability of elements for use in the mesh. Figure 6.9 

shows the selection of the proposed element and Figure 6.10 illustrated the refined mesh in the un-

rendered format, in ABAQUS and Figure 6.11 shows the refined mesh with the elements. 
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Figure 6.10 Refined Mesh in Mesh Generator 

The values for the total deflections for finite element analyses were compared with those measured 

from the AMOCO tests. The total deflections from the FE analysis were extracted from the nodal 

deflections obtained from the results files after post-processing. The average nodal deflections were 

considered for chord and brace displacements. To calculate δT (Total deflection) from the FE 

Analysis, the average nodal deflection was divided by the applied loading i.e. 300KN (δT/P). The δT 

obtained from the AMOCO K-Joints were abstracted from those measured by the transducers and 

gauges and calculated in the AMOCO K-Joint Test Report. 

 

Figure 6.11 Refined Mesh with Elements 
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Results in Table 6.1 indicate that the refined mesh together with the use of 4-noded general purpose 

shell element (reduced integration with hourglass control, finite membrane strains) provide results 

within 1-2% compared with test data for in-plane and out-of-plane bending and within 10% for axial 

loading. The basis for determining the structural strength of tubular joints is not to consider them 

individually as axial, in-plane bending and out-of-plane bending. In fact, all three load effects are 

generally combined for tubular joint code design checks and structural assessments are performed 

based on system performance within the frame structure and expressed as an interaction ratio. 

Therefore, due to limitations in the test results at the time and the good performance of the in-plane 

and out-of-plane results of FEA vs test results the refinement to the FEA model is deemed as adequate, 

without any compromise to the strength requirements of the joint.  

The structural model (FEA) provided in the finite element sensitivity study can be used for the 

benchmarking study for all the load cases in the AMOCO K-Joint Study and the determination of the 

local joint flexibilities at chords and braces from the total deflections obtained. The ABAQUS (2011) 

provides the following explanation for the use of the SR4 element using reduced integration and 

hourglass control: “The advantage of the reduced integration elements is that the strains and stresses 

are calculated at the locations that provide optimal accuracy. A second advantage is that the reduced 

number of integration points decreases CPU time and storage requirements. The disadvantage is that 

the reduced integration procedure can admit deformation modes that cause no straining at the 

integration points. These zero-energy modes make the element rank-deficient and can cause a 

phenomenon called “hourglassing”, where the zero energy mode starts propagating through the 

mesh, leading to inaccurate solutions.”  The structural model provided in the finite element sensitivity 

study can be used for a benchmarking study for all the load cases in the Amoco K-Joint study and the 

determination of the local joint flexibilities at chords and braces from the total deflections obtained. 
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Load 
Amoco K-

Test Results 

FE Results 

Refined 

Mesh 

% 

Difference 

Total Displacement (Axial) - 

Load Case No 2 - 

Tension Brace only 

0.0031 

(mm/kN) 

0.0028 

(mm/kN) 
9.67% 

Total Displacement 

(Out-of-Plane Bending) - 

Load Case No 11, Brace 1 only 

3.90 E-05 

(rad/kN-m) 

3.917 E-05 

(rad/kN-m) 
0.43% 

Total Displacement 

(In-Plane Bending) -  

Load Case No 06, Brace 1 only 

3.21 E-05 

(rad/kN-m) 

3.164 E-05 

(rad/kN-m) 
1.43% 

Table 6.1 Mesh Sensitivity Results 

6.4 Benchmarking Study of FE Model and the AMOCO K-Joint Tests 

Eleven finite element (FE) models were created in ABAQUS to represent the geometry and loadings 

of the specimens (Figure 5.8). The main objective of the FE model generation was to benchmark the 

AMOCO test data by providing a finite element gapped K-joint model that best represents the results 

of the eleven load cases. FE models for Load Case 10 are shown on Figures 6.12 through 6.14, while 

Figures 6.15 and 6.16 show various stages in the model creation in the pre-processing mode. Figure 

6.17 illustrates the deformed and stress plot, post processing, for Load Case 10. 

 

Figure 6.12 AMOCO K-Joint Finite Element Benchmark Model, Y-Z plane view 

(generated in ABAQUS for Load Case 10) 
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Figure 6.13 AMOCO K-Joint Finite Element Benchmark Model, X-Y plane view 

(generated in ABAQUS for Load Case 10) 

 

Figure 6.14 AMOCO K-Joint Finite Element Benchmark Model, X-Y-Z plane view 

(generated in ABAQUS for Load Case 10) 

 

Figure 6.15 AMOCO K-Joint Finite Element Benchmark Model, Applying Boundary Conditions 

(generated in ABAQUS 6.11) 
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Figure 6.16 AMOCO K-Joint Finite Element Benchmark Model, Creating Load Step 

(generated in ABAQUS 6.11) 

The chord walls at the supports in the FE model were restrained from translation in the x and y 

directions to maintain the roundness of the chord section (Figure 6.15). The joint is modeled as part of 

a structure where the beam theory is no longer valid and must be replaced by shell theory, to derive the 

benefits of the FE model. In the FE model, the end cross sections behave as rigid planes with no 

ovalization (Figure 6.16). The contribution made by chord rotations are calculated on spreadsheets and 

added to the overall LJF of the joint. 

 

Figure 6.17 AMOCO K-Joint Finite Element Benchmark Model, Deformed Mesh & Stress Contours 

(generated in ABAQUS for Load Case 10) 
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6.5 Benchmarking Study Results  

A complete set of calculated and measured values for LJF to include the effects of in-plane bending, 

out-of-plane bending and axial compression and tension loadings (Figure 5.8) based on the AMOCO 

K-Joint tests and finite element modeling of the steel tubular joint are provided in Table 6.2. A 

procedure to determine the LJF effects due to Axial, OPB and IPB is provided on Figure 6.18. Joint 

Flexibility calculations to support this procedure from the FE modeling are provided in Appendix 2. It 

should be noted that the only published large scale testing of tubular joints for LJF has been the 

Amoco K-type joints. 

 

Figure 6.18 Procedure for the calculation of LJF for Axial, OPB and IPB 
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Measured 

(AMOCO K-Joint 

Test Results) 

Finite Element 

Analysis 

(Benchmarking 

Study) 

Units 
Flexibility matrix 

coefficients 

Load 

Case 
Brace 1 Brace 2 Brace 1 Brace 2 

 
Brace 1 Brace 2 

1 1.7 3.8 1.6 3.2 x10
-3

 mm/kN f14 f44 

2 -1.2 1.4 -2.5 2.5 x10
-3

 mm/kN -f11+f14 -f41+f44 

3 2.6 2.5 3.2 1.6 x10-
3
 mm/kN f11 f41 

4 8.4 6.7 4.8 4.8 x10
-3

 mm/kN f11+f14 f41+f44 

5 1.6 3.9 1.6 3.2 x10-
3
 mm/kN f14 f44 

6 2.7 2.3 2.8 2.8 x10-
5 
rad/kNm -f33+f36 -f63+f66 

7 0.8 3.7 0.35 3 x10
-5 

rad/kNm f36 f66 

8 4.1 4.9 3.3 3.3 x10
-5 

rad/kNm f33+f36 f63+f66 

9 17.4 16.3 19 19 x10
-5 

rad/kNm f22+f25 f52+f55 

10 11.2 12.1 7.4 11.2 x10-
5 
rad/kNm f25 f55 

11 2.6 3 3.1 3.1 x10-
5 
rad/kNm f22-f25 -f52+f55 

Table 6.2 Comparison of AMOCO K-Joint Tests and FE Modeling Results 

A comparison is shown between the flexibility coefficients derived from the finite element analysis 

and the measured test results in Table 6.2. The flexibility matrix developed by Fessler (1982) and 

outlined in Figure 6.5 to represent uni-planar two brace joint can be simplified to represent the 

flexibility coefficients in the form outlined in Figure 6.19. 

 

 

 

                                 

Figure 6.19 Flexibility Coefficients in the Matrix Form 

 

 



 
f11 

  
f14 

   
P1 



  
f22 

  
f25 

  
Mo1 

 = 
  

f33 
  

f36 
 

Mi1 



 
f41 

  
f44 

  
x P2 



  
f52 

  
f55 

  
Mo2 



   
f63 

  
f66 

 

Mi2 



137 

 

  

RK-FEA 

Results 

Measured 

(AMOCO  

K-Joint Tests) 

Units 

f11= f44= 3.2 3.8 x10
-3

 mm/kN 

f14= f41= 1.6 1.7 x10
-3

 mm/kN 

     
f22= f55= 11.2 12.1 x10

-5
rad/kNm 

f25= f52= 7.4 11.2 x10
-5

rad/kNm 

     
f33= f66= 3.0 3.7 x10

-5
rad/kNm 

f36= f63= 0.3 0.8 x10
-5

rad/kNm 

Table 6.3 Flexibility Matrix Coefficients from AMOCO K-Joint Tests and FE Modeling 

While the test results may have limitations as outlined in Chapter 5, the results generated from the RK-

FEA model based on classical theory, finite element modeling and the use of established FE software 

provide a good validation of the limited test results and provide a basis to extend the research to other 

K-joint geometric ranges. The AMOCO K-Joint is a high β joint (approaching β = 1.0) which many 

researchers, including Woodsworth (1983) and Billington (1994), agree display unique behaviour as 

the effects of the chord brace interactions are generally not well represented. In the context of LJF, 

high β joints are stiffer than those with lower β values. This is well represented in the RK-FEA model 

and other finite element analysis discussed in Chapter 7. As β values increase, a reduction in LJF 

values is expected but a greater sample of the results from varying β values is therefore needed to be 

considered when addressing LJF comparison. It should also be noted that the RK-FEA has been 

created using a very fine mesh and a simple joint model so the possibility of an inaccurate model is 

remote, whilst the possibility of errors from the AMOCO tests are more likely and are discussed in 

Chapter 5. From this perspective any variations from the test results and the RK-FEA model are not 

entirely unexpected. 

6.6 LJF Comparison Study with AMOCO K-Joint Tests 

The existing formulations applicable to uni-planar gapped K-type joints are the Fessler, Efthymiou, 

Chen, Buitrago, Asgarian and MSL equations. However, Efthymiou‟s equations are only applicable 
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for in-plane and out-of-plane bending. MSL-Joint formulations are not considered in the comparison 

study, as joint flexibility is considered as implicit to the MSL equation for ultimate strength. Due to 

results provided by the AMOCO K-type joint tests confined to the elastic range, the comparison with 

the RK-FEA model will be confined to the elastic LJF behaviour of the K-type joint. 

 

Figure 6.20 LJF Comparison for Axial Loading (Direct Terms) 

For axial loading (Figure 6.20), the results from the direct terms associated with the RK-FE modeling 

and the AMOCO K-Joint tests are within 20% of each other. Improved Fessler‟s equations under-

predicts LJF by approximately 80%. Fessler‟s equations under-predicts LJF by approximately 60% 

and Buitrago and Chen under-predict by 30%, compared to the AMOCO K-Joint test results. The RK-

FEA model provides the closest agreement with the AMOCO K-Joint tests results. 
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Figure 6.21 LJF Comparison for Out-of-Plane Bending 

 

Figure 6.22 LJF Comparison for In-Plane Bending 

For out-of-plane bending, the Improved Fessler, Buitrago, RK-FEA modeling results are within 10% 

of the K-joint test results (Figure 6.21). Efthymiou‟s equations under-predict the LJF by 73% and 

Asgarian by 80%, while DNV, Fessler and Chen over-predicts LJF for out-of-plane bending by 20%, 

42% and 13% respectively. For in-plane bending (Figure 6.22), DNV, Chen, Buitrago and RK-FEA 

results are within 20% of the AMOCO Test results. Chen and Buitrago are closer to the AMOCO K-

Joint tests than RK-FEA. For joints where β values are approaching 1.0 (β = 0.89 for AMOCO joint) 
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IPB conditions for the effects of the loaded brace (cross terms) on the overall LJF must be further 

examined so small variations between RK-FEA and AMOCO tests are expected. In this research, both 

cross and direct terms will be provided for both the IPB and OPB condition. Furthermore, varying β 

values for joints are required to have a better assessment rather than one β data point evaluation. 

Efthymiou‟s equations under-predict by 77%, Asgarian by 61% and Fessler and Improved Fessler‟s 

equations under-predict in the range of 30-45%. 

6.7 Summary and Conclusions 

The 4-node non-linear quadrilateral thin shell finite element (with reduced integration and hourglass 

control) is suitable to model flexible joint behaviour in ABAQUS when used to determine nodal 

displacements used for LJF calculations. Furthermore, the mesh sensitivity tests provide a good FE 

mesh which convergences well with the AMOCO K-Joint test displacement values.  

The comparison exercise should be treated with caution. While the RK-FEA model provides 

reasonable agreement with the AMOCO K-Joints, the K-joints test values should be considered as 

indicative rather than absolute values. As discussed in Chapter 5, there are possible sources of errors in 

the AMOCO K-Joint tests results, so for a finite element model results to be within 10-20% of the 

tests may be considered as reasonable. The main results are summarized in Table 6.4. Consistently the 

RK-FEA model provides the closest results for axial, OPB and IPB compared with the AMOCO large 

scale test results. It should be noted that varying β points need to be assessed when performing the 

comparison exercise as varying values of β display different behaviour to the overall LJF of the joint 

as their variations change. In this Chapter, the comparison of the AMOCO K-type joint and other LJF 

equations is only used to provide a basis for the RK-FEA as a benchmarking model to perform more 

detailed LJF analysis. In Chapter 7, after the derivation of the RK-LJF equations, a more detailed 

comparison study is performed to further evaluate the derived RK-LJF equations compared to other 

LJF equations for varying geometric ranges. The RK-FEA model was used to extend the research to 

other geometric parameters for in-service K-type joints. 
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LJF Equation Comparison Study Summary 

 Axial Out-of-Plane Bending In-Plane Bending 

 
< 

10% 

10% 

- 

20% 

20%  

- 

30% 

> 

30% 

< 

10% 

10% 

- 

20% 

20% 

- 

30% 

> 

30% 

< 

10% 

10% 

-

20% 

20% 

- 

30% 

> 

30% 

RK-FEA  X   X     X   

DNV       X   X   

Fessler    X X       X 

Improved 

Fessler 
   X X       X 

Efthymiou        X    X 

Chen    X      X   

Buitrago    X X   X  X   

Asgarian    X        X 

Table 6.4 LJF Comparison Study Results Summary 
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CHAPTER 7 

Developing an Improved Suite of LJF Parametric Equations  

7.1 Introduction  

Having established the methodology for the calculation of the LJF from numerical methods, this 

Chapter will further develop this methodology by introducing a step-by-step process to develop 

improved LJF parametric equations for all in-service K-type steel joints. Furthermore, a gap sensitivity 

study was performed to demonstrate the applicability of the improved equations as the gap increases 

from the prescribed 50mm between braces for K-type joints. 

 

Figure 7.1 Six Step Work Flow Process to develop the RK-LJF Parametric Equations 

Figure 7.1 illustrates the six step process for LJF parametric equation development and validity of the 

parametric ranges with increases in the gap value. 
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7.2 Database of In-Service Fixed Offshore Structures  

A data collection exercise was embarked upon, using an offshore structures database and associated 

drawings to catalogue the geometrical properties of in-service K-type joints. The Structural Integrity 

Compliance System (SICS) database is used for the structural integrity management of over 200 fixed 

steel offshore structures in South East Asia and has been developed by Nichols and Khan (2015) and 

maintained by a major oil and gas operator. The offshore platforms in the structural database are of 

various vintages, ranging from pre-API RP 2A structures to those designed to modern API RP 2A 

code of practice.   

 

Figure 7.2 Structural Integrity Compliance System (SICS) Document Register 

From the platforms that have been selected through a thorough platform screening process, as a 

representative sample of existing structures (Figure 7.3), over one thousand K-type joints were 

recorded and compiled. A total of 38 groups of variations of β, ϒ, δ, Gap g and Brace – Chord Angle 

θ, were established for constant chord diameters. Fessler (1983, 1986) concluded that it is very rare for 

tubular joints to be outside of the following ranges: 

10 ≤ γ ≤ 20,    0.30 ≤ β ≤ 0.80,   30
◦
 ≤ θ ≤ 90

◦ 
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But this was based on a limited database. A further K-joint data collection and screening using a SICS 

database was undertaken to ensure that the geometric ranges proposed by Fessler were initially 

considered. There are a number of K-type joints, where γ < 10 and β > 0.80 so these K-joint geometric 

parametric ranges are included in this study in addition to Fessler‟s recommendations. 

 

Figure 7.3 Typical Fixed Jacket Structure (from SICS database) 

A total of 72 K-joint geometric ranges were considered from the platform screening and K-joint study 

that can adequately provide a full range of data points for determining improved local joint flexibility 

parametric equations. Table 7.1 provides the full set of geometric ranges. 
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Geometric 

Range No 

γ = 

D/2T 

β = 

d/D 
θ 

Geometric 

Range No 

γ = 

D/2T 

β = 

d/D 
θ 

Geometric 

Range No 

γ = 

D/2T 
β = 

d/D 
θ 

`1 8 0.30 30 31 20 0.50 30 61 15 0.89 30 

2 8 0.30 45 32 20 0.50 45 62 15 0.89 45 

3 8 0.30 60 33 20 0.50 60 63 15 0.89 60 

4 8 0.50 30 34 20 0.70 30 64 20 0.89 30 

5 8 0.50 45 35 20 0.70 45 65 20 0.89 45 

6 8 0.50 60 36 20 0.70 60 66 20 0.89 60 

7 8 0.70 30 37 25 0.30 30 67 25 0.89 30 

8 8 0.70 45 38 25 0.30 45 68 25 0.89 45 

9 8 0.70 60 39 25 0.30 60 69 25 0.89 60 

10 10 0.30 30 40 25 0.50 30 70 30 0.89 30 

11 10 0.30 45 41 25 0.50 45 71 30 0.89 45 

12 10 0.30 60 42 25 0.50 60 72 30 0.89 60 

13 10 0.50 30 43 25 0.70 30     

14 10 0.50 45 44 25 0.70 45     

15 10 0.50 60 45 25 0.70 60     

16 10 0.70 30 46 30 0.30 30     

17 10 0.70 45 47 30 0.30 45     

18 10 0.70 60 48 30 0.30 60     

19 15 0.30 30 49 30 0.50 30     

20 15 0.30 45 50 30 0.50 45     

21 15 0.30 60 51 30 0.50 60     

22 15 0.50 30 52 30 0.70 30     

23 15 0.50 45 53 30 0.70 45     

24 15 0.50 60 54 30 0.70 60     

25 15 0.70 30 55 8 0.89 30     

26 15 0.70 45 56 8 0.89 45     

27 15 0.70 60 57 8 0.89 60     

28 20 0.30 30 58 10 0.89 30     

29 20 0.30 45 59 10 0.89 45     

30 20 0.30 60 60 10 0.89 60     

Table 7.1 K-Joint Geometric Ranges (input for ABAQUS Analysis) 

The data from Table 7.1 is presented on Figure 7.4 to represent all the geometric ranges for γ, β and θ 

used for 72 models to perform detailed analysis. The data set represents a complete range of geometric 

ranges that are typical of in-service K-type uni-planar joints. Whilst these ranges have been extracted 

from a database on fixed offshore platforms, they are also applicable for wind energy structures whose 

substructures include a variety of tubular members and joints of varying geometric ranges. 
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Figure 7.4 Geometric Ranges of Tubular K-Joints (input for ABAQUS) 

7.3 Finite Element Modeling of Database of K-Type Joints  

7.3.1 Developing the Structural Models  

ABAQUS structural analytical models are created for each of the seventy-two geometric ranges in 

Table 7.1 and Figure 7.4. The structural models have been created based on the ABAQUS 

benchmarking model methodology. Typical ABAQUS models varying geometric ranges are shown on 

Figures 7.5 to 7.7. For each of the 72 models, Axial Balanced, In-Plane Bending (IPB) and Out-of-

Plane Bending effects are calculated based on the Excel spread-sheet structural calculations. Five load 

cases were applied to each of the 72 ABAQUS models. These are provided in Tables 7.2 and 7.3. 

 

Young’s Modulus 

of Elasticity (E) 
Diameter (D) β = d/D θ γ = D/2T 

210 KN/mm
2
 457 mm 0.3, 0.5, 0.70, 0.89 30°, 45°, 60° 8, 10, 15, 20, 25,30 

Table 7.2 Basic Input parameters 
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Load Case Condition Loading – Brace 1 Loading – Brace 2 Comments 

LC1 Axial Balanced 
1 KN Compression on 

Brace 1 

1 KN Compression 

on Brace 2 
 

LC2 IPB (22) - 
1KN-m moment 

applied on brace 2 

LJF calculated on 

Brace 2 

LC3 OPB (22) - 
1KN-m moment 

applied on brace 2 

LJF calculated on 

Brace 2 

LC4 IPB (21) - 
1KN-m moment 

applied on brace 2 

LJF calculated on 

Brace 1 

LC5 OPB (21) - 
1KN-m moment 

applied on brace 2 

LJF calculated on 

Brace 1 

Table 7.3 Loading System for all geometric models 

The 72 geometric ranges in Table 7.1 will be used to develop ABAQUS structural models to 

determine LJF for the Balanced Axial, IPB and OPB conditions. The results of the LJF values for the 

loading effects due to axial balanced, IPB and OPB for β values of 0.3, 0.5, 0.7 and 0.89 are calculated 

using the same methodology as the benchmarking study. 

 

Figure 7.5 K-Type Tubular Joint model: β = 0.3, γ = 10, θ = 30
◦
 

 

Figure 7.6 K-Type Tubular Joint model: β = 0.3, γ = 10, θ = 45
◦
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Figure 7.7 K-Type Tubular Joint Model: β = 0.5, γ = 15, θ = 60
◦
 

7.3.2 Finite Element Analysis Results  

The finite element analysis results are reported on Axial, IPB and OPB in Tables 7.4, 7.5, 7.6 and 7.7 

for β = 0.30, 0.50, 0.70 and 0.89 respectively. Graphs were generated on each of the results on Figures 

7.8 through 7.11 to illustrate the relationship between β, θ, γ and joint flexibility for β = 0.30. The 

relationships suggest that equations can be established to cover the calculated stiffness values for IPB, 

OPB and Axial loading conditions. The results indicate some of the LJF values may be negative (-ve) 

and some may be positive (+ve). This represents the deflected form of the chord in relation to its 

original unloaded position. In principle, this phenomenon is primarily for the axially balanced 

condition, which demonstrates that the unloaded brace deforms in the opposite direction to the loaded 

brace with similar magnitude, which is expected. Detail calculations for the LJF results for one sample 

case are provided within Appendix 5.  
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 β = 0.30 
  

0.30 0.30 0.30 

 θ γ 
 

Axial Balanced IPB brace2 OPB brace2 

1 30 8 brace1 -2.1179E-04 2.6972E-06 1.8211E-05 

2 30 8 brace2 2.1180E-04 1.5925E-05 3.4764E-05 

3 30 10 brace1 -2.9714E-04 4.4532E-06 3.4874E-05 

4 30 10 brace2 2.9714E-04 3.5448E-05 8.4046E-05 

5 30 15 brace1 -5.3835E-04 1.0086E-05 1.0893E-04 

6 30 15 brace2 5.3835E-04 9.4602E-05 2.6847E-04 

7 30 20 brace1 -8.1272E-04 1.6846E-05 2.3658E-04 

8 30 20 brace2 8.1273E-04 1.6581E-04 5.4127E-04 

9 30 25 brace1 -1.1183E-03 2.4502E-05 4.2413E-04 

10 30 25 brace2 1.1183E-03 2.4782E-04 9.0300E-04 

11 30 30 brace1 -1.4575E-03 3.3179E-05 6.7722E-04 

12 30 30 brace2 1.4575E-03 3.4066E-04 1.3588E-03 

13 45 8 brace1 -2.3056E-04 -1.0454E-06 4.9593E-05 

14 45 8 brace2 2.3051E-04 4.2556E-05 1.1731E-04 

15 45 10 brace1 -3.4385E-04 -6.7645E-07 9.0532E-05 

16 45 10 brace2 3.4333E-04 7.0561E-05 2.0929E-04 

17 45 15 brace1 -6.8383E-04 1.2302E-06 2.6876E-04 

18 45 15 brace2 6.8183E-04 1.5598E-04 5.6612E-04 

19 45 20 brace1 -1.0929E-03 3.9616E-06 5.7040E-04 

20 45 20 brace2 1.0891E-03 2.5860E-04 1.1092E-03 

21 45 25 brace1 -1.5689E-03 7.4668E-06 1.0081E-03 

22 45 25 brace2 1.5630E-03 3.7673E-04 1.8449E-03 

23 45 30 brace1 -2.1155E-03 1.2006E-05 1.5930E-03 

24 45 30 brace2 2.1073E-03 5.1063E-04 2.7861E-03 

25 60 8 brace1 -2.5403E-04 -5.4369E-06 7.4543E-05 

26 60 8 brace2 2.5404E-04 5.6931E-05 1.6670E-04 

27 60 10 brace1 -3.9787E-04 -6.9815E-06 1.3497E-04 

28 60 10 brace2 3.9787E-04 9.2012E-05 2.9302E-04 

29 60 15 brace1 -8.4172E-04 -9.5555E-06 3.9695E-04 

30 60 15 brace2 8.4164E-04 2.0028E-04 7.9032E-04 

31 60 20 brace1 -1.3896E-03 -1.0776E-05 8.3944E-04 

32 60 20 brace2 1.3894E-03 3.3060E-04 1.5572E-03 

33 60 25 brace1 -2.0396E-03 -1.0843E-05 1.4812E-03 

34 60 25 brace2 2.0391E-03 4.8028E-04 2.6060E-03 

35 60 30 brace1 -2.7959E-03 -9.5417E-06 2.3379E-03 

36 60 30 brace2 2.7952E-03 6.4954E-04 3.9556E-03 

Table 7.4 Uni-planar K-Joint LJFs for IPB, OPB and Axial Balanced for β = 0.3 
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 β = 0.50 
  

0.50 0.50 0.50 

 θ γ 
 

Axial Balanced IPB brace2 OPB brace2 

1 30 8 brace1 -1.6915E-04 2.6325E-06 7.8115E-06 

2 30 8 brace2 1.6915E-04 1.0788E-05 2.3329E-05 

3 30 10 brace1 -2.3302E-04 3.8763E-06 1.6360E-05 

4 30 10 brace2 2.3302E-04 1.7486E-05 4.3291E-05 

5 30 15 brace1 -4.1507E-04 7.7959E-06 5.3122E-05 

6 30 15 brace2 4.1509E-04 3.7124E-05 1.1604E-04 

7 30 20 brace1 -6.2136E-04 1.2257E-05 1.1215E-04 

8 30 20 brace2 6.2138E-04 5.9655E-05 2.1866E-04 

9 30 25 brace1 -8.4858E-04 1.7003E-05 1.9320E-04 

10 30 25 brace2 8.4862E-04 8.4656E-05 3.4918E-04 

11 30 30 brace1 -1.0973E-03 2.2054E-05 2.9686E-04 

12 30 30 brace2 1.0973E-03 1.1219E-04 5.0828E-04 

13 45 8 brace1 -1.8591E-04 1.2411E-06 2.6501E-05 

14 45 8 brace2 1.8592E-04 1.9277E-05 6.0750E-05 

15 45 10 brace1 -2.6704E-04 2.0979E-06 4.8195E-05 

16 45 10 brace2 2.6705E-04 2.8478E-05 1.0044E-04 

17 45 15 brace1 -5.1014E-04 4.8799E-06 1.3823E-04 

18 45 15 brace2 5.1018E-04 5.5188E-05 2.4844E-04 

19 45 20 brace1 -8.0099E-04 8.0963E-06 2.8116E-04 

20 45 20 brace2 8.0104E-04 8.5868E-05 4.6322E-04 

21 45 25 brace1 -1.1349E-03 1.1614E-05 4.7749E-04 

22 45 25 brace2 1.1349E-03 1.2013E-04 7.4339E-04 

23 45 30 brace1 -1.5109E-03 1.5530E-05 7.2824E-04 

24 45 30 brace2 1.5110E-03 1.5801E-04 1.0905E-03 

25 60 8 brace1 -2.0028E-04 -5.8250E-07 4.0121E-05 

26 60 8 brace2 2.0032E-04 2.4038E-05 8.3215E-05 

27 60 10 brace1 -3.0043E-04 -2.9139E-07 7.1548E-05 

28 60 10 brace2 3.0047E-04 3.5186E-05 1.3792E-04 

29 60 15 brace1 -6.0920E-04 1.1512E-06 2.0155E-04 

30 60 15 brace2 6.0926E-04 6.7515E-05 3.4402E-04 

31 60 20 brace1 -9.8912E-04 3.1793E-06 4.0947E-04 

32 60 20 brace2 9.8919E-04 1.0477E-04 6.4809E-04 

33 60 25 brace1 -1.4328E-03 5.6610E-06 6.9741E-04 

34 60 25 brace2 1.4329E-03 1.4647E-04 1.0503E-03 

35 60 30 brace1 -1.9371E-03 8.6928E-06 1.0667E-03 

36 60 30 brace2 1.9373E-03 1.9257E-04 1.5527E-03 

Table 7.5 Uni-planar K-Joint LJFs for IPB, OPB and Axial Balanced for β = 0.5 
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 β = 0.70 
  

0.70 0.70 0.70 

 θ γ 
 

Axial Balanced IPB brace2 OPB brace2 

1 30 8 brace1 -1.2914E-04 2.6383E-06 2.1342E06 

2 30 8 brace2 1.2915E-04 5.7343E-06 1.0600E-05 

3 30 10 brace1 -1.7670E-04 3.5190E-06 6.2599E-06 

4 30 10 brace2 1.7671E-04 8.7776E-06 1.9180E-05 

5 30 15 brace1 -3.1477E-04 6.2049E-06 2.3912E-05 

6 30 15 brace2 3.1478E-04 1.7402E-05 4.9795E-05 

7 30 20 brace1 -4.7145E-04 9.1434E-06 5.0582E-05 

8 30 20 brace2 4.7145E-04 2.6815E-05 9.1228E-05 

9 30 25 brace1 -6.4102E-04 1.2117E-05 8.4918E-05 

10 30 25 brace2 6.4102E-04 3.6857E-05 1.4172E-04 

11 30 30 brace1 -8.2147E-04 1.5121E-05 1.2661E-04 

12 30 30 brace2 8.2145E-04 4.7595E-05 2.0102E-04 

13 45 8 brace1 -1.3808E-04 1.5136E-06 1.3646E-05 

14 45 8 brace2 1.3808E-04 9.5867E-06 3.0907E-05 

15 45 10 brace1 -1.9747E-04 2.1960E-06 2.4618E-05 

16 45 10 brace2 1.9746E-04 1.3650E-05 4.8768E-05 

17 45 15 brace1 -3.7728E-04 4.3064E-06 6.8055E-05 

18 45 15 brace2 3.7726E-04 2.5115E-05 1.1279E-04 

19 45 20 brace1 -5.9025E-04 6.5952E-06 1.3312E-04 

20 45 20 brace2 5.9020E-04 3.7840E-05 2.0184E-04 

21 45 25 brace1 -8.2739E-04 8.9243E-06 2.1838E-04 

22 45 25 brace2 8.2728E-04 5.1577E-05 3.1404E-04 

23 45 30 brace1 -1.0848E-03 1.1330E-05 3.2309E-04 

24 45 30 brace2 1.0846E-03 6.6293E-05 4.4883E-04 

25 60 8 brace1 -1.4596E-04 4.0906E-07 2.1036E-05 

26 60 8 brace2 1.4596E-04 1.1497E-05 4.1758E-05 

27 60 10 brace1 -2.1842E-04 8.0412E-07 3.6415E-05 

28 60 10 brace2 2.1842E-04 1.6225E-05 6.6035E-05 

29 60 15 brace1 -4.4367E-04 2.2026E-06 9.7261E-05 

30 60 15 brace2 4.4365E-04 2.9619E-05 1.5398E-04 

31 60 20 brace1 -7.1629E-04 3.8506E-06 1.9038E-04 

32 60 20 brace2 7.1626E-04 4.4642E-05 2.7945E-04 

33 60 25 brace1 -1.0233E-03 5.6208E-06 3.1481E-04 

34 60 25 brace2 1.0232E-03 6.0931E-05 4.4099E-04 

35 60 30 brace1 -1.3590E-03 7.5344E-06 4.6916E-04 

36 60 30 brace2 1.3589E-03 7.8371E-05 6.3738E-04 

Table 7.6 Uni-planar K-Joint LJFs for IPB, OPB and Axial Balanced for β = 0.7 
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 β = 0.89 
  

0.89 0.89 0.89 

 θ γ 
 

Axial Balanced IPB brace2 OPB brace2 

1 30 8 brace1 -9.7613E-05 2.8127E-06 -9.2929E-07 

2 30 8 brace2 9.7610E-05 2.5865E-06 3.4190E-06 

3 30 10 brace1 -1.3059E-04 3.5147E-06 6.3237E-07 

4 30 10 brace2 1.3059E-04 4.0619E-06 6.8796E-06 

5 30 15 brace1 -2.2760E-04 5.5073E-06 7.8671E-06 

6 30 15 brace2 2.2760E-04 8.1639E-06 1.9158E-05 

7 30 20 brace1 -3.3784E-04 7.6326E-06 1.8615E-05 

8 30 20 brace2 3.3784E-04 1.2492E-05 3.5288E-05 

9 30 25 brace1 -4.5482E-04 9.7799E-06 3.1835E-05 

10 30 25 brace2 4.5481E-04 1.6985E-05 5.4203E-05 

11 30 30 brace1 -5.7555E-04 1.1932E-05 4.7257E-05 

12 30 30 brace2 5.7553E-04 2.1681E-05 7.5631E-05 

13 45 8 brace1 -9.7214E-05 1.6387E-06 6.2560E-06 

14 45 8 brace2 9.7209E-05 5.2135E-06 1.5839E-05 

15 45 10 brace1 -1.3772E-04 2.1580E-06 1.1186E-05 

16 45 10 brace2 1.3771E-04 7.3120E-06 2.3531E-05 

17 45 15 brace1 -2.6093E-04 3.7077E-06 2.9884E-05 

18 45 15 brace2 2.6092E-04 1.3081E-05 4.9762E-05 

19 45 20 brace1 -4.0428E-04 5.3740E-06 5.6442E-05 

20 45 20 brace2 4.0428E-04 1.9240E-05 8.4518E-05 

21 45 25 brace1 -5.5849E-04 7.0441E-06 8.9861E-05 

22 45 25 brace2 5.5849E-04 2.5635E-05 1.2675E-04 

23 45 30 brace1 -7.1963E-04 8.7143E-06 1.2965E-04 

24 45 30 brace2 7.1964E-04 3.2243E-05 1.7594E-04 

25 60 8 brace1 -9.9743E-05 7.1076E-07 1.0453E-05 

26 60 8 brace2 9.9737E-05 6.2908E-06 2.1336E-05 

27 60 10 brace1 -1.4833E-04 1.0212E-06 1.7184E-05 

28 60 10 brace2 1.4832E-04 8.6928E-06 3.1514E-05 

29 60 15 brace1 -2.9860E-04 2.0520E-06 4.2455E-05 

30 60 15 brace2 2.9859E-04 1.5296E-05 6.6464E-05 

31 60 20 brace1 -4.7572E-04 3.2288E-06 7.9447E-05 

32 60 20 brace2 4.7569E-04 2.2387E-05 1.1431E-04 

33 60 25 brace1 -6.6795E-04 4.4447E-06 1.2743E-04 

34 60 25 brace2 6.6791E-04 2.9758E-05 1.7420E-04 

35 60 30 brace1 -8.7052E-04 5.6896E-06 1.8550E-04 

36 60 30 brace2 8.7047E-04 3.7360E-05 2.4523E-04 

Table 7.7 Uni-planar K-Joint LJFs for IPB, OPB and Axial Balanced for β = 0.89 
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From the numerical results, the parameters β and γ have the greatest influence on LJFs. LJFs increase 

with increasing γ and LJF reduces with increasing β. Although β = 1 normally exhibit unique 

behaviour, β = 0.89 have been included as in-service K-joints fall within this range. For very low β 

(i.e. < 0.30) for the in-plane condition, there is little effect on the LJF value for the unloaded brace. 

From this perspective, the β < 0.3 is ignored from being included in curve fitting exercise for 

parametric equation development for the IPB21 condition. 

 

 

Figure 7.8 LJF Results for Axial: β = 0.3, γ = 8-30, θ = 30
◦
, 45

◦
, 60

◦
 

Note 1: LJF values are non-dimensional 

For the axial, IPB and OPB conditions, increasing θ values together with increasing γ indicate and 

increase in the LJF values. Interestingly, as γ (D/2T) values increase, the LJF values become more 

sensitive for axial, IPB and OPB. This is not unexpected as the thickness of the chord decreases, the 

joint is able to provide lesser internal resistance to the load effects that are now imposed on it and 

tends to redistribute these loads and moments to other members. The LJF behaviour for axial, OPB 

and IPB are provided on Figures 7.9 to 7.11 and Figures 7.12 to 7.15 
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Figure 7.9 LJF Results for IPB22: β = 0.3, γ = 8-30, θ = 30
◦
, 45

◦
, 60

◦
 

Note 1: LJF values are non-dimensional 

 

Figure 7.10 LJF Results for OPB22: β = 0.3, γ = 8-30, θ = 30
◦
, 45

◦
, 60

◦
 

Note 1: LJF values are non-dimensional 
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Figure 7.11 LJF Results for OPB21: β = 0.3, γ = 8-30, θ = 30
◦
, 45

◦
, 60

◦
 

Note 1: LJF values are non-dimensional 
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Figure 7.12 LJF Results for IPB22: β = 0.5, γ = 8-30, θ = 30
◦
, 45

◦
, 60

◦
 

Note 1: LJF values are non-dimensional 



156 

 

0.0000E+00

2.0000E-04

4.0000E-04

6.0000E-04

8.0000E-04

1.0000E-03

1.2000E-03

1.4000E-03

1.6000E-03

1.8000E-03

0 5 10 15 20 25 30 35

LJ
F 

γ 

β=0.5 OPB Brace2 

30 45 60

 

Figure 7.13 LJF Results for OPB22: β = 0.5, γ = 8-30, θ = 30
◦
, 45

◦
, 60

◦
 

Note 1: LJF values are non-dimensional 

 

Figure 7.14 LJF Results for OPB22: β = 0.5, γ = 8-30, θ = 30
◦
, 45

◦
, 60

◦
 

Note 1: LJF values are non-dimensional 
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Figure 7.15 LJF Results for IPB21: β = 0.5, γ = 8-30, θ = 30
◦
, 45

◦
, 60

◦
 

Note 1: LJF values are non-dimensional 

For the IPB21 condition, as γ increases for increasing values of θ, the LJF value decreases. This is an 

interesting outcome as it differs from the IPB22, OPB22, OPB21 and axial loaded conditions. This is 

because for the IPB condition for very large chord diameters, the contribution of the brace deformation 

and LJF is insignificant to the overall contribution to the LJF of the entire tubular joint. A very stiff 

chord must not be mistaken with the overall stiffness chord contribution to the overall structure, but 

rather as a local stiffness related to the particular joint. For very low γ values (γ in the range of 8-10) 

for larger angles, the LJF value approaches a negative value which indicates the joint rotation in the 

direction opposite to the sign convention for joint rotation. Therefore, to appropriately determine the 

LJF of a joint, the contributions direct and cross terms (from loaded and unloaded braces) and chord 

displacements need to be considered. 
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Figure 7.16 LJF Results for OPB21: β = 0.5, γ = 8-30, θ = 30
◦
, 45

◦
, 60

◦
 

Note 1: LJF values are non-dimensional 

 

Figure 7.17 LJF Results for Axial: β = 0.3-0.89, γ = 8-30, θ = 30
◦
 

Note 1: LJF values are non-dimensional 

The effects of LJF as the β and γ values changes are examined as the θ remains constant (Figure 7.17 

to 7.21). For the axial condition, as β values increases LJF values decreases. Increasing γ values 

display increasing values of LJF. 
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Figure 7.18 LJF Results for IPB22: β = 0.3-0.89, γ = 8-30, θ = 30
◦
 

Note 1: LJF values are non-dimensional 

0.0000E+00

2.0000E-04

4.0000E-04

6.0000E-04

8.0000E-04

1.0000E-03

1.2000E-03

1.4000E-03

1.6000E-03

0 0.2 0.4 0.6 0.8 1

LJ
F

β

θ=30°OPB Brace2

8 10 15 20 25 30 Expon. (30)

 

Figure 7.19 LJF Results for OPB22: β = 0.3-0.89, γ = 8-30, θ = 30
◦
 

Note 1: LJF values are non-dimensional 
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Figure 7.20 LJF Results for IPB21: β = 0.5, γ = 8-30, θ = 30
◦
 

Note 1: LJF values are non-dimensional 

 

Figure 7.21 LJF Results for OPB21: β = 0.5, γ = 8-30, θ = 30
◦
 

Note 1: LJF values are non-dimensional 

Figures 7.17 to 7.21 indicate that as β (d/D) values decreases and γ (D/2T) increases the LJF values 

increase in sensitivity. This only reinforces the contributions made by chord diameter and chord 

thickness and the diameter of the brace to the overall LJF. If the chord diameter is too large compared 

to the brace diameter, the effects of the brace diameter is largely insignificant, and decreases in chord 

thicknesses (T) only contributes to larger displacements and thus greater LJF values. The values of β 
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(d/D) and γ (D/2T) need to be put in the context of joint capacity and strength for the desired overall 

strength of the structure to withstand the loadings imposed on it and not just greater joint flexibility or 

deformation. MSL-ISO (1994, 1998) joint equations attempted to consider the joint capacities for 

variations of β and γ together with LJF. This is discussed in more detail in Chapter 8 of this thesis. 

To develop a suite of equations to fully represent the relationship of the β, θ, γ and joint flexibility for 

β = 0.30, 0.50, 0.70 and 0.89, a detail curve fitting exercise is required to fit the function that takes the 

list of points (IPB, OPB and Axial results), a list of expressions and a list of non-dimensional 

parameters and produce an expression as the best fit to the data sets. 

7.4 Developing LJF Parametric Equations 

The results generated from the calculations in Section 7.2 represent the performance of a full range of 

K-joint geometric parameters that can be used to accurately produce a suite of LJF equations for IPB, 

OPB and balanced axial loadings. To demonstrate the relationship between the joint stiffness and the 

non-dimensional parameters, the three dimensional plots of the stiffness of the LJF equations 

generated and are shown on Figures 7.22 to 7.26.  

The Mathematica software was used to generate the LJF parametric equations. A major scientific tool 

in Mathematica is the manifold of plotting routines that helps to depict mathematical results 

graphically and is a good tool for making 3-dimensional graphs. Typically, the model will only 

contain a single variable while the parameters to be fit may be two or more items. The chord diameter 

is a constant throughout the FE analysis while the parameters include variations of β, γ and θ. A power 

regression method that is coded within the Mathematica software is used to derive the flexibility 

parametric formulae. Mathematica considers standard errors, test statistic (t-statistic) and parameter 

value (p-value) when determining the accuracy of the best fit parameters. In Figures 7.22 to 7.26, the 

Estimate column of these figures represents the best fit parameters. The t-statistic is the estimate 

divided by the standard errors. The standard error of an estimate is defined as the square root of the 

estimate error variance of the quantity. Each p-value if the two-sided p-value for the t-statistic which is 
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used to determine whether the parameter estimate is statistically significant. The curve fitting exercise 

demonstrated a very good fit with the analytical results with 99.8% for axial and 99.9% accuracy for 

both in-plane bending and out-of-plane bending conditions on the 3D plots. 

7.4.1 Axial Balanced Condition 

For the axially balanced condition, the analysis results of β = 0.3, 0.5 and 0.89, γ ranging from 8 to 30 

and θ = from 30 to 60 degrees were considered. The flexibility of the K-joint under axial loading show 

decreasing trends when β ratio is increasing and they increase when the γ ratio is also increasing. The 

Mathematica model and the test data are within 99.8% agreement with each other. Figure 7.22 shows 

the analysis results and the LJF parametric expression. For mid-range β (0.5), there is a largely good 

agreement with the analytical results and parametric profile. 

7.4.2 In-Plane Bending Condition  

For the IPB condition, the analysis results of β = 0.3, 0.5 and 0.89, γ ranging from 8 to 30 and θ = 

from 30 to 60 degrees were considered. The in-plane condition considers two loading criteria, i.e. the 

effects of IPB on the loaded brace (Figure 7.23) and the effects on the unloaded brace (Figure 7.25). 

The first loading criterion is considered as IPB22 and the second, IPB21. For IPB22, the flexibility of the 

K-joint show decreasing trends when β ratio is increasing up to 0.5, with θ ranging between 30 and 60 

degrees. As β approaches 1.0 and γ increases, the overall flexibility of the K-joint is not affected. For 

IPB21, the flexibility of the K-joint show decreasing trends when β ratio is increasing and they increase 

when the γ ratio is increasing. At very low β values (< 0.3), the in-plane moment on the loaded brace 

has no effect on the unloaded brace, as the brace diameter is too small compared to the chord diameter. 

For mid-range β (0.5), there is a largely good agreement with the analytical results and parametric 

profile with the fitted model is required more in areas of higher and lower β values for both the IPB22 

and the IPB21. 
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7.4.3 Out-of-Plane Bending Condition  

For the OPB condition, the analysis results of β = 0.3, 0.5 and 0.89, γ ranging from 8 to 30 and θ = 

from 30 to 90 degrees were considered. As with the in-plane condition, the out-of-plane considers two 

loading criteria, i.e. the effects of OPB on the loaded brace (Figure 7.24) and the effects on the 

unloaded brace (Figure 7.26). The first loading criterion is OPB22 and the second, OPB21. For both 

OPB22 and OPB21, the flexibility of the K-joint show decreasing trends when β ratio is increasing up to 

0.5, with θ ranging between 30 and 60 degrees. As β approaches 1.0 and γ increases, the overall 

flexibility of the K-joint is not affected. The flexibilities for OPB also show an increasing trend as the 

γ ratio is increasing. For mid-range β (0.5), there is a largely good agreement with the analytical 

results and parametric profile with the fitted model is required more in areas of higher and lower β 

values for both the OPB22 and the OPB21. 
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Figure7.22 LJF Expression for the Axially Balanced Condition 
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Figure 7.23 LJF Expression for the IPB for the loaded Brace (IPB22) 
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Figure 7.24 LJF Expression for the OPB for the loaded Brace (OPB22) 
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Figure 7.25 LJF Expression for the IPB for the unloaded Brace (IPB21) 
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Figure 7.26 LJF Expression for the OPB for the unloaded Brace (OPB21) 
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7.5 RK Suite of LJF Equations for Gapped Uni-planar K-type Tubular Joints 

The local joint flexibility values, which were calculated by using finite element analysis, indicate an 

established relationship between the non-dimensional geometric parameters of β, γ and θ. Formula can 

now be derived for each mode of deformation i.e. axial balanced, in-plane bending (IPB) and out-of-

plane bending (OPB) on the K-type joint. The parametric equations derived for LJF can take form and 

not confined to any specific format. The results of the curve fitting exercise in Mathematica yield 

Equation 7.1 for the axially balanced condition, 7.2 and 7.3 for the in-plane condition and 7.4 and 7.5 

for the out-of-plane condition. These equations are dependent on the ranges of data used for the input 

and the detailed curve fitting used to represent the data in parametric form in Mathematica. 

 

Condition RK- LJF Parametric Equation 
Equation 

No. 

Axially 

Balanced 

 
(7.1) 

IPB Brace 2 

on 2 
 

(7.2) 

OPB Brace 

2 on 2 
 

(7.3) 

OPB Brace 

2 on 1 
 

(7.4) 

IPB Brace 2 

on 1 
 

(7.5) 

Table 7.8 RK-LJF Parametric Equations for Axial, IPB and OPB 

These equations are applicable for the following range of uni-planar K-type joints. 

8 ≤ γ ≤ 20,   0.30 ≤ β ≤ 0.89,   30
◦
 ≤ θ ≤ 60

◦ 

By observation, Eqs 7.1, 7.3 and 7.4 for the axial balanced and the OPB conditions are of the form  

F ij = a .e 
bβ

 . (Sin 
Cθ

 ). γ 
d
 

Where a,b, c and d are constants 
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And the IPB formulae do not necessarily conform to that standard form. It should be noted as in the 

case of previous researchers, the form of the equations may vary considerably and there is no fixed 

form for LJF. The RK-LJF equations are those derived from Mathematica as the best fit to the data 

input from Tables 7.4 through 7.7. 

7.6 Gap Sensitivity Study 

Many researchers have included the gap parameter within their formulations. A gap sensitivity study 

was performed to examine the effects of the gap size for the Axial, IPB and OPB. Figures 7.27 to 7.29 

and Table 7.9 provides the results of the gap study. 

 

Β θ γ g 
 

Axial 

Balanced 

Axial 

Balanced 

Average 

Axial 

Unbalanced 

22 - 21 -

Axial 

Balanced 

Axial 

Unbalanced 

brace2 

IPB 

brace2 

OPB 

brace2 

0.89 60 25 55 
brace

1 
-6.6795E-04 

6.6793E-04 -2.0952E-08 

1.7807E-03 4.4447E-06 1.2743E-04 

    

brace

2 
6.6791E-04 2.4486E-03 2.9758E-05 1.7420E-04 

   
75 

brace

1 
-6.9783E-04 

7.0032E-04 -3.4287E-06 

1.7667E-03 4.4208E-06 1.2426E-04 

    

brace

2 
7.0282E-04 2.4636E-03 2.9797E-05 1.7433E-04 

   

10

0 

brace

1 
-7.3217E-04 

7.3216E-04 -1.7113E-08 

1.7517E-03 4.1936E-06 1.2042E-04 

    

brace

2 
7.3214E-04 2.4838E-03 2.9753E-05 1.7505E-04 

Table 7.9 Gap Sensitivity Study for IPB, OPB and Axial Balanced for β = 0.89 

Note 1: LJF values are non-dimensional 

7.6.1 Gap Size and the Axial Condition 

For the axial balanced condition, the LJF values within 5% to both loaded and unloaded braces as the 

gap increases from 55mm to 100mm. However, the effects of LJF on average (as a combination of 

both braces) show a negligible increase (5%) as the gap size increases from 55mm to 75mm and a 

further 5% as gap increases from 75 to 100mm. For the effects of the axial unbalanced condition, LJFs 

are higher than the balanced condition, with a small decrease in the value of LJF of the unloaded brace 

as the gap size increases from 55mm to 100mm. The unbalanced axially loaded condition for the 
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loaded brace exhibits the largest LJF values compared to the unloaded (unbalanced) and the balanced 

conditions, while the LJF values show a constant value as they increase from 55mm to 100mm. 

 

Figure 7.27 Gap Sensitivity Analysis – Gap vs Axial LJF 

Note 1: LJF values are non-dimensional 

7.6.2 Gap Size and the In-Plane Condition 

For the in-plane condition, the LJF on the loaded brace is considerably higher than that of the 

unloaded brace. 

 

Figure 7.28 Gap Sensitivity Analysis – Gap vs IPB LJF 

Note 1: LJF values are non-dimensional 

The LJF for the loaded brace shows a negligible increase in LJF values as the gap size increases from 

55mm to 100mm. For the unloaded brace condition, the LJF exhibit a decreasing trend as the gap size 
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increases. The unloaded brace appears to have little or no effect on the overall effect on the LJF. In 

terms of calculating the LJF for the entire joint, the cross terms from the unloaded brace for the in-

plane condition can be largely ignored. 

7.6.3 Gap Size and the Out-of-Plane Condition 

For the out-of-plane condition, the LJF on the loaded brace is considerably higher than that of the 

unloaded brace. The LJF for the loaded brace shows a negligible increase as the gap size increases 

from 55mm to 100mm. For the unloaded brace condition, the LJF exhibit a decreasing trend as the gap 

size increases. In the case of OPB, the cross terms from the loaded brace cannot be ignored and will 

contribute to the overall LJF of the joint. 

 

Figure 7.29 Gap Sensitivity Analysis – Gap vs OPB LJF 

Note 1: LJF values are non-dimensional 

7.7 LJF Comparison Study for varying β 

A comparison study was performed on the basis of the AMOCO K-Joint Tests for varying β values (β 

= 0.30, β = 0.50, β = 0.70, β = 0.89) and existing LJF formulations. The AMOCO K-Joint tests are 

represented below for β = 0.89. 
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Figure 7.30 LJF Comparison for Axial loading vs varying β 

Note 2: LJF units for Axial Loading: mm/kN 

For the axially loaded condition, Figure 7.30 shows that previous LJF formulations have 

overestimated these loading effects. With the advancement of computing power and the extensive 

database, RK-LJF formulation represents best LJF formulation for uni-planar gapped K-type joints 

based on current methods. For the OPB condition (Figure 7.31), both cross terms and direct terms 

have been included. All LJF equations show an increasing trend as β values decreases. This is highly 

expected with RK-LJF formulations providing more flexibility than the others. This is not unexpected 

as the other LJF equations have all been a derivative of each other in terms of the limited and similar 

database of joints used in the past twenty years. RK-LJF formulations are based on an up-to-date 

database of in-service K-type joints. Increased flexibility would mean in the case of fatigue life 

predictions, these are expected to be increased with the RK-LJF formulation and reported in Chapter 

8. The RK-LJF equations will be validated against large scale testing and the MSL equations to show 

a good agreement for ultimate strength in Chapter 8. 
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Figure 7.31 LJF Comparison for OPB vs varying β 

Note 3: LJF units for OPB: 1/kN.m 

For the in-plane condition (IPB), Figure 7.32, the unloaded brace has little effect on the overall LJF of 

the K-joint system. This is only applicable for gapped K-type joints and may not be applicable for 

overlapping K-type joints and other T-Y-X joint configurations. This is expected in the case of the IPB 

condition. As with OPB, the increased flexibility provided by the RK formulations are expected to 

show a significant improvement on the fatigue life predictions of uni-planar gapped K-type joints. 

Similarly, as with the OPB, ultimate strength validation is required to determine the performance of 

the RK-LJF equations in a frame system, which is done in Chapter 8 of this thesis. 
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Figure 7.32 LJF Comparison for IPB vs varying β 

Note 4: LJF units for IPB: 1/kN.m 

7.8 Summary and Conclusions 

The results outlined in this Chapter signify a significant improvement to the body of work on LJF. A 

paper entitled “Improved Joint Flexibility Equations for uni-planar gapped K-type tubular joints of 

fixed offshore structures” has been accepted for the Journal Of Marine, Engineering and Technology 

(JMET) publication, based on the  new contribution in the area of joint flexibility and structural 

integrity management, within this Chapter.  

The RK-LJF calculations are based on a robust methodology which uses an in-service database on K-

type tubular joints with varying geometric parameters to determine the LJF. Considerable finite 

element models have been developed from this database to ensure that all geometric parameters have 

been considered. To develop the parametric equations for the Mathematica tool was used for the curve 

fitting exercise. The curve fitting exercise demonstrated a smooth, continuous function modeling the 

numerical results with 99.8% for axial and 99.9% accuracy for both in-plane bending and out-of-plane 

bending conditions on the 3D plots. 

Furthermore, for the gap parameter, the results of the gap sensitivity indicate that as the gap size 

increases from 55mm to 75mm and finally 100mm, there is a 5-10% difference on the LJF results. At 
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the gap size of 100mm, the K-joint has begun to exhibit properties of the Y-joint with little or no 

effects from the unloaded braces to the overall LJF of the joint. From this basis, the RK-LJF equations 

are fully applicable to all gap size ranges for uni-planar K-type joints, with the gap parameter not 

being a critical parameter to include in the formulation. 

While the RK-LJF formulation shows an improvement to LJF for IPB and OPB, further investigation 

is required to validate the applicability of this improvement in terms of ultimate strength and 

mechanism behaviour. The RK-LJF formulations are assessed in terms of a structural frame to 

determine the real behaviour of the effects of the LJF rather than on an isolated joint. This validation 

exercise is discussed in Chapter 8 of this thesis. 
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CHAPTER 8 

Validation of the RK-LJF Formulations in Global Structural 

Assessments 

8.1 Introduction 

Zettlemoyer (2009), in his paper on life extension of fixed offshore structures, had a particular focus 

on fatigue life assessments and the ultimate strength analyses as being required to justify Asset Life 

Extension (ALE). This is also the general practice by most operators presently. While a spectral 

fatigue check is often performed at the design level and documented in most design codes, the ultimate 

strength analysis has, in the past, been restricted to assessment type codes and standards. In principle, 

the fatigue design life misnomer is often to be argued away by supporting inspection data and using 

assessment tools such as LJF. Most operators are now of the view that ultimate strength is a greater 

governing criteria for ALE and they require a baseline ultimate strength analysis performed at design 

stage to develop their SIM of that particular structure over its lifecycle. API RP 2A 22nd Edition 

(2014) has now adopted this approach to their design procedures. 

The NORSOK Standard 004 (2004) makes particular reference to Fatigue Limit State (FLS) and 

Ultimate Limit State (ULS) in their design standard and in particular of the reassessment of offshore 

structures. According to NORSOK, “The aim of fatigue design is to ensure that the structure has an 

adequate fatigue life. Calculated fatigue lives can also form the basis for efficient inspection 

programmes during fabrication and the operational life of the structure. The design fatigue life for the 

structure components should be based on the structure service life specified by the operator.” 

Additionally NORSOK (2004) also stated that, “To ensure that the structure will fulfill the intended 

function, a fatigue assessment, supported where appropriate, by a detailed fatigue analysis should be 

carried out for each individual member which is subjected to fatigue loading.” For Ultimate Limit 

State (ULS) NORSOK reported that, “ULSs are those associated with collapse, or with other forms of 
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structural failure which may endanger the safety of people. States prior to structural collapse which, 

for simplicity, are considered in place of the collapse itself are also classified and treated as ULSs." 

8.2 Ultimate Strength of Fixed Offshore Structures  

In 2000, MSL Engineering presented the JIP Rationalization and Optimization of Underwater 

Inspection Planning, consistent with API RP 2A Section 14 (2000), for key oil and gas operators in the 

Gulf of Mexico. One of the key findings of the MSL JIP involved the key source of joint failure. It 

was noted that those joints subjected to extreme loading were highly susceptible to damage. In recent 

times, De Franco et al (2004) have reported a series of hurricane driven incidents in the Gulf of 

Mexico, resulting in global structural failure of platforms of various vintages. The outcomes of these 

failures have led to revisions and update of current design codes and standards and the processes by 

which existing structures are assessed for extreme storm overloading. 

 

Figure 8.1 Global Structural Failure from Hurricane Lilli 

(De Franco, 2004) 

The ultimate strength analysis is performed on the jacket structures to determine its strength/capacity 

against the 100 year RP (Return Period) of the environmental loading. This 100 year RP is a minimum 

design criteria for fixed offshore structures in all design codes of practices (linear elastic check). In the 
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assessment approach, the engineer is allowed to exploit the inherent redundancy within the frame of 

the jacket structure (non-linear response). The ultimate strength or pushover analysis is measured 

through a RSR (Reserve Strength Ratio) or Load Factor that is above the 100 year design level at 

collapse at Fmax (Figure 8.2). 
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Figure 8.2 Ultimate strength load displacement curve 

Method 1 Method 2  

Figure 8.3 Assessment approaches for ultimate strength 

(Method 1 Ramp up load & Method 2 Increased Wave approach) 

Figure 8.3 shows the two main approaches used in the ultimate strength analysis as it relates to the 

pushover of the environmental wave load. In Method 1, the environmental load (wind, wave and 

current) is ramped up and applied to the structure at collapse and the ratio of the collapse wave load to 

100 design load is the RSR. In Method 2, the 100Yr RP wave is increased and applied to the structure 
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until it collapses. The ratio of the collapse wave to the 100 Yr design wave is considered as the RSR. 

Method 2 is the more accepted approach for aging structures where the effects of wave in deck loading 

(WiD) can be easily determined by the wave height hitting the lowest deck level. For older structures 

where, at the time of design, an air gap was not specified, due to it not being specified in the codes and 

standards, increased wave height due to metocean changes or subsidence of structures may lead to this 

air gap being compromised in the present operating conditions. 
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Figure 8.4 Wave Loading on Fixed Offshore Structures 

Wave in Deck (WiD) loading increases the hydrodynamic loading that acts on the structure and 

contributes significantly to the collapse of structures under environmental loading. Ultiguide (1999) 

has recommended using LJF in the ultimate strength analysis as it can contribute by 10-15% increase 

in RSR values. For aging structures, especially with those experiencing WiD loading, the use of LJF 

can be an added advantage for continuing operations. 

Since the early and mid-2000s, most of the work on local joint flexibility analyses and parametric 

equation development by MSL (2002), Miterhari (2009) and Qian et al (2013) have based their 

research on understanding the effects of LJF on the frame or truss system to represent the jacket 

template of offshore structures. The most noteworthy benchmarking exercise that has been done was 

by MSL (1994, 1998) where revised formulations to the MSL-ISO joint strength formulae (2002) were 
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presented. These formulations were then benchmarked against the BOMEL frames test (1995) and 

provided a set of formulations that considered LJF implicitly. 

 

Figure 8.5 Frame VII - Model Configuration 

(BOMEL Frame Tests, 1995) 

The BOMEL Frame VII (Figure 8.5) was the model used to calibrate gapped K-type joints for the 

MSL equations. The results generated from the benchmarking exercise included results for BOMEL 

test data, rigid joints and the MSL equations are presented in Figure 8.6. 
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Figure 8.6 Frame VII – Behaviour compared to Test Specimens 

(MSL, 2002) 

ISO 19902 (2007) reports that, “full non-linear deformation curves for joints can be required for 

pushover analysis to determine a system ultimate strength, especially when joint failures participate in 

the sequence leading to system collapse. Such pushover analyses are common in studies for 

maintenance and life extension of structures.” 

Furthermore ISO 19902 (2007) provides a load displacement curve (Figure 8.6) similar to Figure 8.7, 

to present the curve-fitting exercise by MSL (1994, 1998). 
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Figure 8.7 Comparison of fitted curve to experimental data for force deformation behaviour of a simple 

tubular joint 

(ISO 19902, 2007) 

ISO argues that with the MSL (1994, 1998) work, “the understanding of linear elastic flexibility has 

been extended, through the analysis of an updated database and a range of closed-form expressions 

was established which permit the creation of non-linear load deformation curves in both loading and 

unloading regimes for simple joints across the practical range of load cases and geometries.” 

MSL has provided a robust methodology and study on benchmarking against large scale test results. 

As with Qian (2013), MSL does not explicitly mention the contribution to OPB, IPB or axial loading, 

but considers the overall system strength which relates to the overall ultimate strength. The RK-LJF 

formulations will be validated against the performance of the Frames VII for rigid, MSL-ISO 

equations and BOMEL test data to evaluate its performance in the 2D frame template. 
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8.3 Ultimate Strength Finite Element Software for Offshore Structures (USFOS) 

The USFOS is a finite element suite of software has been developed since 1985 and is primarily used 

for the collapse analysis of space frame structures, from initial yielding to the actual collapse of the 

structure. The program combines classical theory with accurate numerical procedures and 

conventional finite element formulations. It is generally accepted as the non-linear software of choice 

for most practicing engineers in the offshore structures industry. The key applications of USFOS 

include pushover analysis, ship collision, accidental loads and fire and blast assessments. 

With the development of the MSL-ISO formulations (Table 3.2), USFOS developers have codified 

these formulations within the software, making it user friendly for the user to select the MSL 

formulations for respective joint configurations. The joint flexibility module has also been developed 

based on the procedure developed by Buitrago in Section 3.8. 

8.4 Validation RK-LJF Equations in 2D Frame Tests 

The results obtained by MSL in Figure 8.5 provide the basis for this validation exercise. The RK-LJF 

was included in the Frames VII USFOS structural model and the load vs deflection results for the rigid 

joint, MSL-ISO joint, BOMEL test data and the RK-LJF formulations were compared. 

To perform the analysis, the following procedure was followed: 

• Create an USFOS model using the BOMEL Frame VII configuration, material properties and 

loading mechanisms. 

• Use the USFOS pushover module to replicate the P-delta for the test data. 

Four cases of analysis were performed, with the flexibility options in Table 8.1. 
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Case No. Joint Flexibility Options Comments 

1 No LJF or joint strength check (Figure 8.8) Rigid joint analysis 

2 USFOS Joint check using MSL-ISO equations 
All 5 K-type joints (one circled red and 

4 circled blue) on Figure 8.5 

3 USFOS Joint check using MSL-ISO equations 
For the K-type joint circled in blue on 

Figure 8.5 

4 

RK-LJF using an updated model to Case 1 by 

inserting two short stub brace members (circled 

blue on Figure 8.5) 

The properties for the short stub 

members were calculated based on the 

K-joint configuration 

Table 8.1 Joint Flexibility Options for RK 2D Frame validation study 

To develop the two short stub brace members, a similar approach is used to the one used by MSL 

(2001) in The effects of local joint flexibility on the reliability of fatigue life estimates and inspection 

planning for the HSE Executive. The methodology has been tailored to accommodate the element 

modeling capabilities of the USFOS program. The method involves inserting a short stub flex–element 

at the end of each brace. The short stub flex-element connects the brace to the chord. RK-LJF 

formulations give explicit formulae for the various uni-planar K-type joints based on their geometry. 

The Equations 7.1 – 7.5 (RK-LJF) are employed to calculate the LJF for the joint circled in blue on 

Figure 8.5. The result is then used to calculate the necessary area and inertial properties of the flex-

element to represent axial, in-plane and out-of-plane bending. The flex-elements are represented as 

Elements 28 and 29 on Figure 8.9. The USFOS files and results for the RK-LJF validation are 

provided in Appendix 6. 
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Figure 8.8 BOMEL Frame VII modeled in USFOS (No LJF) 

The Area, A, and the moments of Inertia, I, of the flex-element are calculated as follows: 

I = L / E (LJFm)                                                                                                                                    (8.1) 

A = L / E (LJFP)                                                                                                                                  (8.2) 

Where 

• L is the length of the flex-element 

• LJFm is either the in-plane or out-of-plane bending local joint flexibility 

• LJFP is the axial loading local joint flexibility 
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Figure 8.9 BOMEL Frame VII modeled in USFOS (LJF included) 

Figure 8.10 provides the load displacement curves for all four cases outlined in Table 8.1. If no LJF is 

included in the analysis, the frame is much stiffer than the test data. If no LJF is included, the structure 

computer model behaves much stiffer than the prototype test data (compared results from analysis 

Case 1 with test results). The analysis results for Case 2 provides a good representation of the test data 

as the USFOS LJF or joint strength was calibrated against the large scale test data. 
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Figure 8.10 Load vs Displacement Curve 

(RK-LJF included) 

For the analysis from Case no 3, the results show stiffer than the results from 5 LJF joints being 

modeled (Case 2) but softer than the case without LJF (analysis results in Case 1). The analysis results 

in Case 4 (RK-LJF) derived from this study are similar to the results achieved from the analysis in 

Case 3 (MSL-ISO) above, which is expected. The RK-LJF results from this study using ABAQUS 

result in the frame that is slightly softer than the ISO formulation (which is of benefit and closer to the 

physical prototype model i.e. the BOMEL test results). The RK-LJF results are within 5% of the 

prototype tests results but are confined to the linear elastic region, as the RK-FEA benchmarking 

exercise was performed using linear elastic displacement values and the large scale AMOCO tests 

were performed in the linear elastic range. There is an opportunity in the future for researchers to 

develop the RK-LJF equations for the inelastic range of stress. 

8.5 Recent understanding on the fatigue phenomena on fixed offshore structures 

Prior to the early 2000s, it was generally accepted that fatigue lives for existing structures was the 

governing criteria for asset life extension and continuous operations. With MSL Engineering 
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publishing a JIP Rationalization and Optimization of Underwater Inspection Planning consistent with 

API RP 2A Section 14 (2000), the general understanding of fatigue as it relates to fixed offshore 

structures would now be changed. This JIP considered a wide database of in-service structures in the 

Gulf of Mexico of various vintages to consider various degradation mechanisms. The pre-API 

structures ranged from 1948 to 1971. As fatigue is a time dependent phenomena, it would be expected 

that, all things being equal, fatigue cracks would be found in the older structures of the pre-API 

vintage. Figure 8.11 shows the contradiction where platforms installed towards the later part of the era 

show greater susceptibility to fatigue to general fatigue cracking.   

The first platform in the Gulf of Mexico was installed in approximately 15m of water. By 1961, 

platforms were being installed in 200 feet of water and by the issue of the first API RP 2A (1969), 

platforms were being installed in over 300 feet of water (Figure 8.12). These platforms were designed 

without the benefit of modern joint design and did not include fatigue capacity checks. This is quite 

apparent in their joint make up which does not include the thickened can sections in their design. 

 

Figure 8.11 Pre-API RP 2A Vintage Platforms with multiple fatigue cracks 

(MSL, 2000) 
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Figure 8.12 Inspected Platforms, Water Depth increase with time 

(MSL, 2000) 

It is apparent that the joint design of the pre-API vintage was adequate for shallow waters but become 

more susceptible as the structures were being installed in deeper waters using the same joint capacity 

equations. In the modern API (after 1979), there is no issue of inadequate joint capacity equations. 

Modern API codes provide good guidance on tolerance, joint configurations and welds to ensure the 

effects of the fatigue issues are almost non-existent, but good quality control is required in fabrication 

yards to ensure that fatigue issues are appropriately considered.  

With respect to fatigue, the JIP concluded the following, which enable operators to revisit their 

concept of fatigue damage and concentrate their efforts on other sources of damage to fixed offshore 

structures: 

• Weld joint defects occur on less than 1% of modern-RP 2A vintage platforms and are 

associated with installation damage, fabrication defects and poor design/repair details. 

• In both early RP 2A platforms and pre-RP 2A, approximately 80% of the weld/joint defects 

were a combination of fatigue damage and collateral damage from vessel collision. 
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• Fatigue damage in early RP 2A platforms is dominated by damage to the conductor framing 

guide at the first level of framing. This damage affected approximately 2% of the vintage 

population. 

• General fatigue cracks were found in approximately 1% of the early RP 2A fleet. 

• Early and pre-API RP 2A, where a failure is recorded in the cathodic protection (CP), has been 

recorded for some time in the service life, and are therefore more heavily corroded, and are at 

an increased risk of general fatigue damage.  

• Conductor bay fatigue amongst the population of pre-API RP 2A platforms is consistent with 

early RP 2A vintage platforms. It occurs in a little over 3% of the vintage population. 

• General fatigue damage is more widespread in pre-RP 2A platforms than it is in early vintage 

platforms, affecting 5% of the vintage population. 

• Pre-RP 2A platforms most susceptible to general fatigue damage are those installed in the latter 

part of the era in relatively (for the vintage) deep water, generally of depths 100 feet or greater. 

The damage occurs mostly in the primary joints close to the mud-line. 

For most oil and gas operators, this JIP revealed that the concept of fatigue considerations can be 

addressed within their Structural Integrity Management System (SIMS). Nichols and Khan (2015) 

demonstrated that embarking on a Risk Based Underwater Inspection (RBUI) approach, together with 

a good anomaly management program, and with platform CP functionality, platforms of all vintages 

can be managed effectively with limited resources. These practices have now been included in the API 

RP 2SIM (2014) and the ISO SIM (DIS) and adopted by many leading operators as global standards 

for managing fixed offshore structures. Where existing cracks are determined, the use of fracture 

mechanics has become a useful tool in predicting loss of capacity, crack growth and propagation over 

time. The operator will generally make a decision to employ a SMR scheme (Strengthening, 

Modification and Repair) such as using clamps or simply by introducing a pinhole in the crack path to 

arrest the propagation. 
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8.6 Summary and Conclusions 

The RK-LJF suite of equations presented in Chapter 7 has been validated against large scale test 

results and the MSL-ISO equations that are included within the ISO 19902 (2007). The flexible 

behaviour when using the RK-LJF equations represents a considerable improvement on the rigid joint 

analysis and shows a closer relation (within 5%) to the MSL-ISO formulation. It displays a slightly 

softer behaviour than the MSL-ISO formulation which is closer to the real test data results. As for 

gapped uni-planar K-type joints, this represents an improvement on the current formulation and RK-

LJF formulation should be used in the future for determining the LJF of this joint configuration. 

Furthermore, the RK-LJF formulation explicitly models the effects of axial, IPB and OPB, which 

makes it much more user friendly to calculate joint capacity for the uni-planar K-type joints. The 

concept of LJF is very important to ALE of fixed offshore structures in terms of the benefits derived 

by employing a flexible joint analysis compared to a rigid joint analysis. A paper on “RK-LJF 

Formulations in Global Structural Assessments for Remaining Life Assessments of Fixed Offshore 

Structures” for the 2017 ISOPE Conference in San Francisco. An Abstract on the paper has already 

been submitted for approval.  

Recent researchers and code developers have aligned the ALE and work on LJF to be validated against 

the ultimate strength of the jacket structure. While spectral fatigue analysis is important in design, as it 

provides the basis for good joint configurations, offshore engineers have become less worried of the 

fatigue phenomena, as they can deal with it through a good structural integrity management program, 

which is now well documented in API RP 2SIM (2014) and the soon to be issued ISO 19901-09 SIM 

(DIS). 
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CHAPTER 9 

Concluding Remarks and Recommendations for Further Work  

9.1 Concluding Remarks 

The research has successfully generated four peer reviewed publications, two of which are included 

within high impact journals and two are within highly esteemed structural engineering and integrity 

conferences.  

The success of the work outlined in this research is also measured by the considerable feedback and 

interest that has been generated by many of the major operators including BP and PETRONAS, 

consulting engineering companies such as WS Atkins, IntelliSIMS, offshore code developers ISO and 

API and academic institutions such as LSBU and NUS, in this research. These companies and 

institutions all represent a wide variety of stakeholders in the offshore industry who are involved in 

ALE for themselves, their clients or for continued research and publication of recommended practice.   

This research has a tremendous impact on the offshore industry as it allows the industry to continue to 

manage structures safely while exploiting the technology of LJF to consider ALARP principles to 

their operations. Fundamentally it has demonstrated, at least for uni-planar K-type joints, that it is 

closer to the prototype large test behaviour than the current MSL-ISO joints, so structures can now 

demonstrate greater ultimate strength than previously thought. In terms of economics, platform 

inspections can now be increased and the likelihood of some underwater repairs can be avoided. In 

terms of OGPs, this can lead to reduction in their OPEX (operational expenditure) which can result in 

considerable savings.  

In this research, the effects of LJF on uni-planar K-type joints were studied. This involved reviewing 

the development of LJF parametric equations from past researchers, a review of a series of LJF 

application studies and an understanding of the Structural Integrity Management (SIM) processes as it 
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relates to the fitness for purpose of fixed offshore structures and in particular, aging structures where, 

at the time of design, computational and modern code of practice considerations were not considered. 

The SIM processes enable the OGPs to develop and make use of good data, technical expertise, 

maintenance plans, structural databases and effective implementation programmes, including 

inspections and repair, to effectively manage offshore platforms over their lifecycle. Structural 

assessment of an offshore structure is one such tool used by OGPs to demonstrate fitness for purpose 

and the concept of LJF is one method to be included in structural assessments. Over the past decade or 

so, it has become apparent to OGPs that they must codify best practices in operating offshore 

structures, which led to the development of the ISO 19902:2007, API RP2 SIM (2014) and the ISO 

19901-09 SIM (DIS), currently being developed. These codes and standards are new for SIM and lack 

detail around more elaborate issues such as LJF. While they define LJF as being a good approach to be 

used for fitness for purpose assessments (including ultimate limit state and fatigue limit state), they do 

not recommend the use of one suite of LJF equations over another and do not comment on the 

limitations of each. This research critically examined the development and applicability of each of the 

ten existing LJF equations and improved upon them for the K-type uni-planar tubular joints. The ISO 

19902 is currently being updated and the author is a member of the working committee, which has 

shown interest in including elements of this research in the new ISO 19902, to improve a deeper 

understanding of LJF and its applicability in offshore structures. 

This thesis has made considerable improvements to the existing approaches of LJF behaviour and the 

derivation of existing equations. Firstly, this research provides a standardized approach to the 

development of LJF equations. It documents a six-step process (in Chapter 7) on how to appropriately 

develop the LJF equations. Previous researchers have used varying approaches including varying 

software, analytical methods, limited structural databases and small scale testing to derive their 

equations. In this research, an industry accepted structural analysis software, ABAQUS, was used 

together with a substantial in-service database (SICS) of tubular joints from over two hundred 
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operating structures. A detailed screening study to ensure that all permutations of geometric ranges are 

included in the research and is a fundamental improvement on all other LJF developers. 

Secondly, the research provides a benchmarking model to large scale testing results on the AMOCO 

K-Joint tests. The AMOCO K-Joint tests are the only large scale testing of LJF available in the 

offshore industry and hitherto not available in academic literature. The RK-FEA model developed 

within this research consistently provides results within that of the AMOCO K-Joint tests results 

compared to other LJF formulations for axial, IPB and OPB. This can be deemed as an improved 

range due to limitations of the large scale test results (discussed in Chapter 5). This benchmarking 

exercise to large scale LJF tests has not been attempted previously so the RK-FEA model provides an 

original basis to develop the suite of LJF equations for K-type joints. The researcher was also directed 

and designed the replication of the AMOCO K-Joint tests by Da Silva at LSBU, on a smaller scale 

which proved useful in examining the modes of failure which were similar to those recorded by the 

AMOCO K-Joint tests. 

Thirdly, the development of the RK-LJF equations considered over seventy-two geometric ranges for 

uni-planar tubular K-type joints. This provided a wide range of data for input into the Mathematica 

software to develop the parametric equations. The RK-LJF equations were developed with the data set 

from the finite element results. Previous LJF parametric equations fit accuracy have never been 

reported, so this is an encouraging outcome from the research as it justifies the use of an abundance of 

data points which is a significant improvement over other researchers. The RK-LJF equations were 

compared to other LJF equations and they showed considerable improvement on existing equations in 

terms of joint flexibility. This is not unexpected as the unique data set, analytical methods and RK-

FEA (benchmarked to large scale testing) gave an improved result to other researchers.  

The research also included a gap-sensitivity study to determine the applicability range of the RK-LJF 

equations as the gap size increases. The research indicates that the LJF is not sensitive to the gap size 
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for uni-planar K-type joints. This is another improvement to existing LJF researchers as neither of 

them has appropriately examined the effect of the gap size on their LJF equations. 

MSL (2002) have benchmarked their LJF equations to the BOMEL frame tests. RK-LJF has been 

validated against the BOMEL Frame Test VII in the form of a pushover load displacement test and 

compared to MSL-ISO and original BOMEL test data. Results indicate that RK-LJF is very similar to 

the prototype test data and represents an improvement on the MSL-ISO test results for uni-planar K-

type joints. This is also a fundamental improvement on the currently accepted practice where the 

MSL-ISO equations had previously represented the best fit to the prototype test results. 

For the offshore industry, the use of the RK-LJF equations for the asset life extension will provide an 

improvement in the prediction of fatigue lives and ultimate capacity for fixed offshore jacket type 

structures, based on the close agreement with the prototype test results. It is also important to 

understand that an improvement at the tubular joint level may not be as significant as when the RK-

LJF equations are employed over an entire frame structure to fully realize the redistribution of 

moments from one member, with the frame structure acting as a system rather than a set of isolated 

components. To successfully achieve this, the RK-LJF equations need to be incorporated into the 

SACS and USFOS suite of software to ensure that it is made accessible to practicing engineers for 

their use in structural assessments. 

9.2 Recommendations for Further Work  

The research outlined in this thesis focuses on uni-planar K-type tubular joints. In reality, joints in 

offshore structures rarely are uni-planar in nature and they are often classified as multi-planar with 

many braces intersecting at a common chord. The methodology outlined in this thesis can be expanded 

to include the effects of multi-planar joints which can contribute further to the applicability to offshore 

structures. 
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As the gap size increases, the K-type joint begin to exhibit properties of a Y-joint configuration. Since 

the research has demonstrated that the gap size is not sensitive to LJF values, there is an opportunity to 

investigate if the RK-LJF equations are also applicable to Y and T type joint classifications as well.   

A major finding from the research is the unavailability of large scale testing of tubular joints. Most 

modern research is centered around grouted tubular joints and the effects on ultimate strength but there 

is a considerable gap in the existing knowledge around LJF, especially the effects of the IPB 

condition. Another area of testing includes tubular joints where β approaches 1.0 where insufficient 

data on these joints are available in the industry.  

The research in this thesis is confined to the elastic range as the LJF measured values by AMOCO and 

the benchmarking study has been limited to the elastic limit. Further improvement is required to 

consider the effects of the RK-LJF over the non-linear range of stress. Furthermore, apart from 

Hoshyari and Kohoutek (1993), there has been little research addressing the effects of LJF for 

dynamically sensitive structures or structures in seismic regions. This provides an opportunity to 

extend this research to include the effects of seismicity and dynamically sensitive structures.  

With growing global demands for the provision of energy in recent times, the energy market has 

looked to alternative measures in addressing this demand. One such alternative to hydrocarbon based 

energy has been the use of wind energy generated by offshore wind turbine structures. In principle, 

offshore wind turbine structures behave primarily as fixed offshore structures, with similar 

engineering failure mechanisms of ultimate limit and fatigue limit states as fixed offshore structures. 

The application of local joint flexibility and the methodology outlined in this research is relevant to 

offshore wind turbines as well and should also be used to demonstrate the fitness for continued 

operations for these structures. 

As a result of the current research outlined in this thesis, there is now a validated framework indicating 

that operating lifelines for OGPs can be safely extended, which can result in considerable economic 

benefits for the operator over the lifecycle of the offshore facility.  
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APPENDIX 1 - Glossary of Terms  

Terms Description 

 

Appurtenances 
These include structures that are appended to the main structures and 

required for the safe functioning of the structure. These include conductor 

and riser guards, boat landings etc. 

 

Assessment 

Engineering  

 

Assessment engineering involves detailed analysis using finite element 

software to  

- determine the continued fitness for purpose of the structure in its 

present condition. 

- identify and optimize the extent of any required strengthening, repair 

or other mitigation and the associated urgency. 

- optimize the SIM strategy and update future inspection planning or 

condition monitoring as appropriate. 

It generally involves an ultimate strength analysis for fixed offshore 

structures, but fatigue, in-place analysis and seismic assessments are often 

required. 

 

Bracing 

Configuration 

In the jacket structure of a fixed offshore platform, the frame type structure is 

typical of various bracing configurations. The most common types are the K-

type, Diagonal (D), X (X) and the X with perimeter horizontal (XH) type 

framing configurations. 

 

Conductor 
The conductor is a large diameter pipe that is set into the ground to provide 

the initial stable structural foundation for a borehole or oil well. It can also be 

referred to as a drive pipe because it is often driven into the ground with 

a pile driver. In the offshore drilling industry, the conductor pipe is set in the 

seabed, and is a key structural foundation for the subsea wellhead.  

 

Continuous 

Improvement  

 

 

The process whereby up-to-date methodologies, current data trending, code 

improvements and training are incorporated with the SIMS. Periodic audits 

are required to assess the quality of these updates and make further 

recommendations for improvements. 

 

Database  
Historical data is a cornerstone of informed structural integrity assurance and 

a suitable system for referencing and archiving documents relating to the 

SIMS process shall be established and maintained. 

 

Dynamic 

response 

method 

In offshore structures, the applied loads (environmental loads) generally have 

a dynamic nature. To study the behaviour of these structures, free vibration 

and forced vibration must be considered in order to understand the actual (as 

possible) behaviour and response of the structure.  

http://en.wikipedia.org/wiki/Borehole
http://en.wikipedia.org/wiki/Oil_well
http://en.wikipedia.org/wiki/Pile_driver
http://en.wikipedia.org/wiki/Offshore_drilling
http://en.wikipedia.org/wiki/Wellhead
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Fatigue 

assessment  

The process by which the fatigue lives of tubular joints can be determined. 

Usually using a spectral fatigue approach and requires S-N curve selection, 

fatigue-life safety factors and techniques for improving/enhancing fatigue 

lives. 

Fitness for 

Purpose  
Each offshore facility is maintained safely for its designed purpose or an 

alternative purpose. 

 

Jacket  
The truss framework (substructures) below the highest water-level. It usually 

consists of tubular members with thickened sections at the tubular joints. 

 

Long Term 

Inspection 

Plan 

 

 

For offshore structures, both periodic inspections or the risk based 

underwater inspection program, can be mapped out for the lifecycle of the 

asset. If for example, a platform requires underwater inspections every five 

years and its last inspection was in 2010, the inspection plan should indicate 

that the next inspection is in 2015, then 2020, until decommissioning. 

 

Management 

of Change 

(MOC) 

Management of Change (MOC) is a system to evaluate, authorize and 

document changes before they are made and confirm proper closure after the 

changes have been made. Its purpose is to establish the measures necessary 

to confirm that HSE and operational risks arising from proposed temporary 

and permanent changes are managed to an appropriate level. It is also an 

important communication tool to inform people affected by the change about 

what is being considered or what is going to occur. 

 

Mitigation  
Mitigation is defined as modifications or operational procedures that reduce 

the consequence in the event of structural failure or reduce the likelihood of 

structural failure. 

 

Monitoring 

 

 

Structural Integrity Monitoring is considered to be the process whereby 

response characteristics of a fixed offshore jacket structure are measured 

(either continuously or at regular intervals) with a view to comparing the 

measured characteristics with a previously measured baseline or trend.   

 

Multi-planar 

tubular joints 

In the context of tubular joint framing for offshore structures, multi-planar 

joints are those with various bracing mechanism interacting with a common 

chord at the joint. The bracing are not within the same plane as the chord and 

be very complex in nature.  

 

Operations  
Refers to the maintenance and integrity management team that operates and 

ensures fitness for purpose throughout the operating life of an offshore 

facility. 

 

Projects  
Refers to the design team used for conceptual design, engineering, 

construction and commissioning of an offshore facility. 
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Remaining 

Life 

Assessment 

(RLA) 

For offshore structures that have exceeded or approaching their design life 

span but are required to continue operating, are required to perform a RLA to 

determine its fitness for purpose. The RLA may take the form of more 

detailed fatigue analysis and ultimate strength assessments that may require 

assessment refinements such as LJF, to justify continued operations. 

 

RBUI 
Risk Based Underwater Inspection (RBUI) involves the inspection of 

substructures based on their susceptibility to damage and overloading   

including fatigue, strength, cathodic protection, corrosion etc. Structural 

Safety Critical Elements (SCEs) are usually identified in the assessments and 

more attention is paid to these during inspection campaigns. 

 

Risk 

Assessment  

Risk assessment is the analytical process that determines the types of adverse 

events or conditions that might impact the structural integrity, the likelihood 

that those events or conditions will lead to a loss of integrity, and the nature 

and severity of the consequences that might occur following a failure. 

Semi-

Analytical 

Methods 

A combination of using numerical modeling, engineering judgment and rules 

of thumb that are generally associated with the offshore industry used in 

assessments. 

 

S-N Curve 

 

 

 

In high-cycle fatigue situations, materials performance is commonly 

characterized by an S-N curve, also known as a Wöhler curve. This is a 

graph of the magnitude of a cyclic stress (S) against the logarithmic scale of 

cycles to failure (N). 

Strengthening, 

Modifications 

& Repair 

(SMR) 

The technique of restoring an offshore structure that has severe damage and 

is border-line with regards to fitness for purpose. SMR can involve grouting 

members, replacing full sections and repair to members and/or 

appurtenances. 

 

Stress 

concentration 

factors 

Stress concentration is where the stress is located. Stress Concentration 

Factors are those that have to be taken into consideration to better understand 

the stress distribution for various tubular joint configurations and geometries. 

Structural 

Integrity 

Management 

System (SIMS)  

A continuous integrity process applied throughout the design, operations, 

maintenance and decommissioning of a platform to ensure a platform is 

safely managed and is fit for its individual purposes. 

 

Structural 

Risk  

The cornerstone to successful implementation of SIM is the ability to 

effectively manage the structural risks associated with the platform 

operations is the adoption of a risk-based approach to managing the 

structural integrity for existing offshore structures. Within this context, 

structural risk is defined as the combination of the likelihood of some event 

http://en.wikipedia.org/wiki/August_W%C3%B6hler
http://en.wikipedia.org/wiki/Logarithmic_scale
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occurring during a time period of interest and the consequences, (generally 

negative) associated with the event. In mathematical terms, risk can be 

expressed as: 

Risk = Likelihood x Consequence 

Structural 

Safety Critical 

Elements 

(SCEs) 

These are structural members within the platform that, if are severely 

damaged or damage goes unmitigated, can lead to a reduction in the 

performance of the structure and may lead to eventual collapse.  

 

Substructures 
The portion of the offshore structure that is below the highest expected water 

level. The most common substructure is the fixed steel structure. The 

substructure is connected to the seabed typically using long steel piles. 

 

Ultimate 

strength 

analysis 

Also called a “pushover analysis”, is a non-linear measure of the Reserve 

Strength Ratio (RSR) of the jacket structure. It is based on truss action and 

system strength rather than component strength. Ultimate Strength is 

performed using the USFOS suite of software. 
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APPENDIX 2 - Shear Flexible Small-Strain Shell Elements 

The S4R5 Thin Shell Quadrilateral Finite Element, and the S8R5, S9R5, S8R and the 6-node triangle 

STR165 elements are considered as small strain shear flexible elements in ABAQUS/Standard. For 

these elements, the position of a point in the shell reference surface - x - and the components of the 

vector n - which is approximately normal to the reference surface - are interpolated independently. 

The kinematics of the shell theory then consist of measuring membrane strain on the reference surface 

from the derivatives of x with respect to position on the surface and the bending strain from the 

derivatives of n. The transverse strains are measured as the changes in the projections of n onto 

tangents to the shell‟s reference surface.  

 

 

 

Appendix 1 Figure 1 Shell Reference Surface (ABAQUS Manual, 2011) 
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Displacements  

The nodal variables for shell elements are the displacements of the shell reference surface, u = x-X, 

and the normal direction, n. Since n is defined to be a unit vector, only independent values are needed 

to define n, so that this type of shell element needs only five degrees of freedom per node. In 

ABAQUS, the issue is addressed in two ways. At nodes in a smooth shell surface in those elements 

that naturally have five degrees of freedom per node, ABAQUS stores the values of the projections of 

the change in n projected onto two orthogonal directions in the shell surface at the start of the 

increment to define n. Otherwise, ABAQUS stores the usual rotation triplet, ω, at the node. The latter 
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method leaves a redundant degree of freedom if the node is on a smooth surface. A small stiffness is 

introduced locally at the node to constrain the extra degree of freedom to a measure of the same 

rotation of the shell‟s reference surface.  

Strains  

The reference surface member strains are  

 

The curvature change is  

 

The transverse shears are  

 

 

Where 

 

Is a unit vector, tangent to the line in the current surface. 

In addition to these strains, when six degrees of freedom are used at the nodes of the elements, the 

extra rotation of freedom is constrained with a penalty as follows: 

When such a node is the corner node of an element, define T1, T2, N1, dS
1
 and dS

2
 in the element as 

above. These will be different in each element at the node, since the interpolated surface is not 

generally continuous. Then the strain to be penalized is defined as 
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where  

 

 

is the rotated tangent direction, as defined by the rotation values at the node, and  

 

is the rotated tangent direct defines = d by the motion of the interpolated reference surface at the node. 

At each mid-side node in the original configuration, define as the average surface normal for the 

elements of this surface branch at the nodes and T as the tangent to the edge. Then define 

 

as the rotated values of T and N, as defined by the rotation values at the node. The vector 

 

is the normal to n and to the edge.  

The strain to be penalized at these mid-side nodes is then defined as  

 

where 

 

is the tangent to the edge of the element in the current position of the reference surface. 
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APPENDIX 3 - LJF Calculations from the AMOCO K-Joint Test Results  
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APPENDIX 4 - LJF Calculations for Benchmarking Model 

(RK-FEA) 
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LOAD CASE NO 01               
 

1 Young's Modulus 2.10E+02 kN/mm^2       Geometric Properties  
 

2 Brace OD (d) 16 (in) = 406.4 (mm)   d/D = 0.89 
 

3 Brace WT (t)  3/8 (in) = 9.5 (mm)   g/D = 0.12 
 

4 Chord OD (D) 18 (in) = 457.2 (mm)   t/T = 1.00 
 

5 Chord WT (T)  3/8 (in) = 9.5 (mm)   D/2T = 24.00 
 

6 Brace-Chord Angle  60 deg 1.047 (Rad)   

  

 

7 Gap (g) 2 1/6 (in) = 55.0 (mm)   Theoretical Calculations   
 

8 Brace Length (lb) 

  
777 (mm, clamp to crown, long) 117.32 777.4 

 

  

   
543 (mm, clamp to crown, short) 117.32 542.7 

 

  
   

803 (mm, clamp to saddle) 104.73 803.1 
 

  
   

660 (mm, average clamp to crown) 
  

 

9 Brace Area (Ab) 18.41 (in^2) = 11,876.0 (mm^2)   
  

 

10 Brace M.O.I. (Ib) 562.08 (in^4) = 233,957,073 (mm^4)   
  

 

11 Chord Length (lc) 
  

3,056.0 (mm) 1658 (mm, loading point) 
 

12 Chord Area (Ac) 20.76 (in^2) = 13,396.1 (mm^2)   
 

13 Chord M.O.I. (Ic) 806.63 (in^4) = 335,745,310 (mm^4)   
 

14 Applied Load (P)     300 (kN)     

  
       

  T = overall displacement 
    

Beam theory 

  F = displacement due to local joint flexibility 
  

Chord lateral displacement 2.159 

 
c = elastic displacement of chord (use component in the direction of brace) Chord displacement in brace direction 1.870 

  e = elastic displacement of brace 
   

Elastic displacement of brace 0.079 

  
         

  
         

  
         

Load Case Description 

T / P 
(mm/kN) 

c / P 
(mm/kN) e / P (mm/kN) F / P (mm/kN)   

   
1 Tension in one brace 0.0097 0.0062 0.0003 0.0032 FE Analysis 

   
    0.0145 0.0104 0.0003 0.0038 Test Data 
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LOAD CASE NO 02                       

1 Young's Modulus 2.10E+02 kN/mm^2       Geometric Properties  
   

  

2 Brace OD (d) 16 (in) = 406.4 (mm)   d/D = 0.89 
   

  

3 Brace WT (t)  3/8 (in) = 9.5 (mm)   g/D = 0.12 
   

  

4 Chord OD (D) 18 (in) = 457.2 (mm)    t/T = 1.00     
   

  

5 Chord WT (T)  3/8 (in) = 9.5 (mm)   D/2T = 24.00 
   

  

6 Brace-Chord Angle  60 deg 1.047 (Rad)   

     
  

7 Gap (g) 2 1/6 (in) = 55.0 (mm)   Theoretical calculations 

   
  

8 Brace Length (lb)     777 (mm, clamp to crown, long) 117.32 777.4 

   
  

        543 (mm, clamp to crown, short) 117.32 542.7 

   
  

        803 (mm, clamp to saddle) 104.73 803.1 

   
  

  
 

    660 (mm, average clamp to crown) 
     

  

9 Brace Area (Ab) 18.41 (in^2) = 11,876.0 (mm^2)   
     

  

10 Brace M.O.I. (Ib) 562.08 (in^4) = 233,957,073 (mm^4)   

 

For B1 
Load For B2 Load 

 
  

11 Chord Length (lc)     3,056.0 (mm)   a 1398 1658 

  
  

12 Chord Area (Ac) 20.76 (in^2) = 13,396.1 (mm^2)   b 1658 1398 

  
  

13 Chord M.O.I. (Ic) 806.63 (in^4) = 335,745,310 (mm^4)   

     
  

14 Applied Load (P)     300 (kN)               

 
T = overall displacement 

   
Beam theory       

B1 
Load B2 Load 

B1 & B2 
Load 

 
F = displacement due to local joint flexibility 

  
Chord lateral displacement -B1 (mm), x= 1398 -2.159 2.133 -0.027 

 
c = elastic displacement of chord (use component in the direction of brace) Chord lateral displacement -B2 (mm), x= 1658 -2.133 2.159 0.027 

 
e = elastic displacement of brace 

   
Chord displacement in brace direction  at Brace 1 (B1) (mm) 

 
-0.023 

      
Chord displacement in brace direction  at Brace 2 (B2) (mm) 

 
0.023 

      
Elastic displacement of brace (mm)   0.079     

Load 
Case Description 

T / P 
(mm/kN) c / P (mm/kN) e / P (mm/kN) F / P (mm/kN)   

      
2 Balanced Axial Load -0.0028 -0.0001 -0.0003 -0.0025 FE Analysis 

      

 
(Compression Brace) 0.0011 0.0017 0.0003 -0.0009 Test Data 

      
  Balanced Axial Load 0.0028 0.0001 0.0003 0.0025 FE Analysis 

      
  (Tension Brace) 0.0031 0.0014 0.0003 0.0014 Test Data 
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LOAD CASE NO 03               

1 Young's Modulus 2.10E+02 kN/mm^2       Geometric Properties  
  

2 Brace OD (d) 16 (in) = 406.4 (mm)   d/D = 0.89 
  

3 Brace WT (t)  3/8 (in) = 9.5 (mm)   g/D = 0.12 
  

4 Chord OD (D) 18 (in) = 457.2 (mm)   t/T = 1.00 
  

5 Chord WT (T)  3/8 (in) = 9.5 (mm)   D/2T = 24.00 
  

6 Brace-Chord Angle  60 deg 1.047 (Rad)   

    
7 Gap (g) 2 1/6 (in) = 55.0 (mm)   

Theoretical 
calculations   

  
8 Brace Length (lb)     777 (mm, clamp to crown, long) 117.32 777.4 

  
        543 (mm, clamp to crown, short) 117.32 542.7 

  
        803 (mm, clamp to saddle) 104.73 803.1 

  
        660 (mm, average clamp to crown) 

    
9 Brace Area (Ab) 18.41 (in^2) = 11,876.0 (mm^2)   

    
10 Brace M.O.I. (Ib) 562.08 (in^4) = 233,957,073 (mm^4)   

    
11 Chord Length (lc)     3,056.0 (mm) 1658 (mm, loading point) 

  
12 Chord Area (Ac) 20.76 (in^2) = 13,396.1 (mm^2)   

    
13 Chord M.O.I. (Ic) 806.63 (in^4) = 335,745,310 (mm^4)   

    
14 Applied Load (P)     300 (kN)   

    
  

          
  T = overall displacement 

  
Beam theory  mm 

  F = displacement due to local joint flexibility 
   

Chord lateral displacement 2.159 

  c = elastic displacement of chord (use component in the direction of brace) 
  

Chord displacement in brace 
direction 1.870 

  e = elastic displacement of brace 
    

Elastic displacement of brace 0.079 

  
          

  
          Load 

Case Description T / P (mm/kN) c / P (mm/kN) 
e / P 

(mm/kN) F / P (mm/kN)   
    

3 Compression in one 0.0097 0.0062 0.0003 0.0032 FE Analysis 

    
  brace (symmetric) 0.0130 0.0101 0.0003 0.0026 Test Data 
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LOAD CASE NO 04                     

1 Young's Modulus 2.10E+02 kN/mm^2       Geometric Properties 
   

2 Brace OD (d) 16 (in) = 406.4 (mm)   d/D = 0.89 
   

3 Brace WT (t)  3/8 (in) = 9.5 (mm)   g/D = 0.12 
   

4 Chord OD (D) 18 (in) = 457.2 (mm)    t/T = 1     
   

5 Chord WT (T)  3/8 (in) = 9.5 (mm)   D/2T = 24.00 
   

6 Brace-Chord Angle  60 deg 1.047 (Rad)   

 
  

   
7 Gap (g) 2 1/6 (in) = 55.0 (mm)   

Theoretical 
calculations   

   
8 Brace Length (lb)     777 (mm, clamp to crown, long) 117.32 777.4 

   
        543 (mm, clamp to crown, short) 117.32 542.7 

   
        803 (mm, clamp to saddle) 104.73 803.1 

   
        660 (mm, average clamp to crown) 

 
  

   
9 Brace Area (Ab) 18.41 (in^2) = 11,876.0 (mm^2)   

 
  

   
10 Brace M.O.I. (Ib) 562.08 (in^4) = 233,957,073 (mm^4)   For B1 Load 

For B2 
Load 

   
11 Chord Length (lc)     3,056.0 (mm) A 1398 1658 

   
12 Chord Area (Ac) 20.76 (in^2) = 13,396.1 (mm^2) B 1658 1398 

   
13 Chord M.O.I. (Ic) 806.63 (in^4) = 335,745,310 (mm^4)   

 
  

   
14 Applied Load (P)     300 (kN)       

   
T = overall displacement 

   
Beam theory       B1 Load 

B2 
Load 

B1 & B2 
Load 

F = displacement due to local joint flexibility 
  

Chord lateral displacement -B1 (mm), x= 1398 -2.159 -2.133 -4.292 

c = elastic displacement of chord (use component in the direction of brace) Chord lateral displacement -B2 (mm), x= 1658 -2.133 -2.159 -4.292 

e = elastic displacement of brace 
   

Chord displacement in brace direction  at Brace 1 (B1) (mm) 

  
-3.717 

  
    

Chord displacement in brace direction  at Brace 2 (B2) (mm) 

  
-3.717 

  
    

Elastic displacement of brace (mm)   0.079     

4 Unbalanced Axial Load -0.0174 -0.0124 -0.0003 -0.0048 FE Analysis 

     
  (Compression Brace 1) 0.0255 0.0185 0.0003 0.0067 Test Data 

     
  Balanced Axial Load -0.0174 -0.0124 -0.0003 -0.0048 FE Analysis 

     
  (Compression Brace 2) 0.0275 0.0188 0.0003 0.0084 Test Data 
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LOAD CASE NO 05                 

1 Young's Modulus 2.10E+02 kN/mm^2 
  

Geometric Properties   
 

  

2 Brace OD (d) 16 (in) = 406.4 (mm)  = d/D = 0.89 
 

  

3 Brace WT (t)  3/8 (in) = 9.5 (mm)  = g/D = 0.12 
 

  

4 Chord OD (D) 18 (in) = 457.2 (mm)  = t/T = 1.00     
 

  

5 Chord WT (T)  3/8 (in) = 9.5 (mm) = D/2T = 24.00 
 

  

6 Brace-Chord Angle  60 deg 1.047 (Rad) 

   
  

7 Gap (g) 2 1/6 (in) = 55.0 (mm) 

 
Theoretical calculations   

8 Brace Length (lb) 

  
777 (mm, clamp to crown, long) 117.32 777.4   

  

   
543 (mm, clamp to crown, short) 117.32 542.7   

  

   
803 (mm, clamp to saddle) 104.73 803.1   

  

   
660 (mm, average clamp to crawn) 

  
  

9 Brace Area (Ab) 18.41 (in^2) = 11,876.0 (mm^2) 

   
  

10 Brace M.O.I. (Ib) 562.08 (in^4) = 233,957,073 (mm^4) 

   
  

11 Chord Length (lc) 

  
3,056.0 (mm) 1658 (mm, loading point)   

12 Chord Area (Ac) 20.76 (in^2) = 13,396.1 (mm^2) 

   
  

13 Chord M.O.I. (Ic) 806.63 (in^4) = 335,745,310 (mm^4) 

   
  

14 Applied Load (P) 

  
300 (kN) 

   
  

  
        

  

T = overall displacement 
  

Beam theory 

    
  

F = displacement due to local joint flexibility 
 

Chord lateral displacement 2.159 (mm) 

 
  

c = elastic displacement of chord (use component in the direction of brace) Chord displacement in brace direction 1.870 (mm) 

 
  

e = elastic displacement of brace 
  

Elastic displacement of brace 0.079 (mm) 

 
  

  
        

  

  
        

  

  
        

  

Load Case Description T / P (mm/kN) c / P (mm/kN) e / P (mm/kN) F / P (mm/kN)   
  

  

5 Compression in one -0.0097 -0.0062 -0.0003 -0.0032 FE Analysis 
  

  

  Brace 0.0135 0.0093 0.0003 0.0039 Test Data 
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LOAD CASE NO 06                 

1 Young's Modulus 2.10E+02 kN/mm^2       Geometric Properties    
 

2 Brace OD (d) 16 (in) = 406.4 (mm)    = d/D = 0.89 
 

3 Brace WT (t)  3/8 (in) = 9.5 (mm)    = g/D = 0.12 
 

4 Chord OD (D) 18 (in) = 457.2 (mm)    = t/T = 1     
 

5 Chord WT (T)  3/8 (in) = 9.5 (mm)   = D/2T = 24.00 
 

6 Brace-Chord Angle  60 deg 1.047 (Rad)   

   
7 Gap (g) 2 1/6 (in) = 55.0 (mm)   Theoretical calculations 

 
8 Brace Length (lb)     777 (mm, clamp to crown, long) 117.32 777.4 

 
        543 (mm, clamp to crown, short) 117.32 542.7 

 
        803 (mm, clamp to saddle) 104.73 803.1 

 
        660 (mm, average clamp to crown) 

   
9 Brace Area (Ab) 18.41 (in^2) = 11,876.0 (mm^2)   

   
10 Brace M.O.I. (Ib) 562.08 (in^4) = 233,957,073 (mm^4)   For B1 Load For B2 Load 

 
11 Chord Length (lc)     3,056.0 (mm) a 1398 1658 

 
12 Chord Area (Ac) 20.76 (in^2) = 13,396.1 (mm^2) b 1658 1398 

 
13 Chord M.O.I. (Ic) 806.63 (in^4) = 335,745,310 (mm^4)   

   
14 Applied Load (P)     300 (kN)   

   
15 Applied Moment (M)     277.2 (kN*m)   

   
T = overall rotation = T / l 

 
Beam theory     B1 Load B2 Load B1 & B2 Load 

F = rotation due to local joint flexibility Chord rotation at B1 (rad), where x= 
 

1398 1.02298E-06 -5.11875E-07 5.11102E-07 

c = elastic rotation of chord Chord rotation at B2 (rad), where x= 
 

1658 5.11875E-07 -1.02298E-06 -5.11102E-07 

e = elastic rotation of brace = e / l Elastic end displacement of brace (mm)   0.797     

  
         

Load Case Description T / M (rad/kN-m) c / M (rad/kN-m) e / P (mm/kN) F / P (mm/kN)   
   

6 Balanced IPB 3.164E-05 1.844E-09 3.930E-06 2.771E-05 FE Analysis 

   
  Brace 1 (B1) 3.21E-05 0.00E+00 5.02E-06 2.71E-05 Test Data 

   
  Balanced IPB 3.164E-05 1.844E-09 3.930E-06 2.771E-05 FE Analysis 

   
  Brace 2 (B2) 2.82E-05 0.00E+00 5.02E-06 2.32E-05 Test Data 
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LOAD CASE NO 07 
        

1 Young's Modulus 2.10E+02 kN/mm^2       Geometric Properties  
 

2 Brace OD (d) 16 (in) = 406.4 (mm)    = d/D = 0.89 
 

3 Brace WT (t)  3/8 (in) = 9.5 (mm)    = g/D = 0.12 
 

4 Chord OD (D) 18 (in) = 457.2 (mm)    = t/T = 1.00 
 

5 Chord WT (T)  3/8 (in) = 9.5 (mm)   = D/2T = 24.00 
 

6 Brace-Chord Angle (q) 60 deg 1.047 (Rad)   

   
7 Gap (g) 2 1/6 (in) = 55.0 (mm)   Theoretical calculations 

 
8 Brace Length (lb)     777 (mm, clamp to crown, long) 117.32 777.4 

 
        543 (mm, clamp to crown, short) 117.32 542.7 

 
        803 (mm, clamp to saddle) 104.73 803.1 

 
        660 (mm, average clamp to crown) 

   
9 Brace Area (Ab) 18.41 (in^2) = 11,876.0 (mm^2)   

   
10 Brace M.O.I. (Ib) 562.08 (in^4) = 233,957,073 (mm^4)   

 
For B1 Load For B2 Load 

11 Chord Length (lc)     3,056.0 (mm)   a 1398 1658 

12 Chord Area (Ac) 20.76 (in^2) = 13,396.1 (mm^2)   b 1658 1398 

13 Chord M.O.I. (Ic) 806.63 (in^4) = 335,745,310 (mm^4)   

   
14 Applied Load (P)     300 (kN)   

   
15 Applied Moment (M)     277.2 (kN*m)   

   

 
T = overal rotation = T / l 

 
Beam theory         B2 Load 

 
F = rotation due to local joint flexibility 

 
Chord rotation at B1 (rad), where x= 1398 

 
-5.11875E-07 

 
c = elastic rotation of chord 

 
Chord rotation at B2 (rad), where x= 1658 

 
-1.02298E-06 

 
e = elastic rotation of brace = e / l 

 
Elastic end displacement of brace (mm)   0.797   

Load 
Case Description T / M (rad/kN-m) c / M (rad/kN-m) e / P (mm/kN) 

F / P 
(mm/kN)   

   
7 IPB in one brace 3.467E-06 -1.847E-09 0.000E+00 3.469E-06 FE Analysis 

   
  Brace 1 (B1) 1.81E-05 1.05E-05 0.00E+00 7.57E-06 Test Data 

   
              

   
  IPB in one brace 3.405E-05 3.690E-09 3.930E-06 3.012E-05 FE Analysis 

   
  Brace 2 (B2) 5.31E-05 1.05E-05 5.02E-06 3.76E-05 Test Data 
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LOAD CASE NO 08                  

1 Young's Modulus 2.10E+02 kN/mm^2       Geometric Properties 

 
2 Brace OD (d) 16 (in) = 406.4 (mm)    = d/D = 0.89 

 
3 Brace WT (t)  3/8 (in) = 9.5 (mm)    = g/D = 0.12 

 
4 Chord OD (D) 18 (in) = 457.2 (mm)    = t/T = 1.00    

 
5 Chord WT (T)  3/8 (in) = 9.5 (mm)   = D/2T = 24.00 

 
6 Brace-Chord Angle 60 deg 1.047 (Rad)   

   
7 Gap (g) 2 1/6 (in) = 55.0 (mm)   Theoretical calculations 

 
8 Brace Length (lb)     777 (mm, clamp to crown, long) 117.32 777.4 

 
        543 (mm, clamp to crown, short) 117.32 542.7 

 
        803 (mm, clamp to saddle) 104.73 803.1 

 
        660 (mm, average clamp to crown) 

   
9 Brace Area (Ab) 18.41 (in^2) = 11,876.0 (mm^2)   

   
10 Brace M.O.I. (Ib) 562.08 (in^4) = 233,957,073 (mm^4)     For B1 Load For B2 Load 

11 Chord Length (lc)     3,056.0 (mm)   a 1398 1658 

12 Chord Area (Ac) 20.76 (in^2) = 13,396.1 (mm^2)   b 1658 1398 

13 Chord M.O.I. (Ic) 806.63 (in^4) = 335,745,310 (mm^4)   

   
14 Applied Load (P)     300 (kN)   

   
15 Applied Moment (M)     277.2 (kN*m)   

   
T = overall rotation = T / l 

 
Beam theory 

   
B1 Load B2 Load B1 & B2 Load 

F = rotation due to local joint flexibility Chord rotation at B1 (rad), where x= 

 
1398 1.02298E-06 5.11875E-07 1.53485E-06 

c = elastic rotation of chord 
 

Chord rotation at B2 (rad), where x= 

 
1658 5.11875E-07 1.02298E-06 1.53485E-06 

e = elastic rotation of brace = e / l 
 

Elastic end displacement of brace (mm)   0.797     

Load 
Case Description T / M (rad/kN-m) c / M (rad/kN-m) e / P (mm/kN) F / P (mm/kN)   

   
8 Unbalanced IPB 3.666E-05 5.537E-09 3.930E-06 3.272E-05 FE Analysis 

   
  Brace 1 (B1) 6.01E-05 1.40E-05 5.02E-06 4.11E-05 Test Data 

   
              

   
  Unbalanced IPB 3.666E-05 5.537E-09 3.930E-06 3.272E-05 FE Analysis 

   
  Brace 2 (B2) 6.89E-05 1.50E-05 5.02E-06 4.89E-05 Test Data 
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LOAD CASE NO 09 

        1 Young's Modulus 2.10E+02 kN/mm^2       Geometric Properties  

 2 Brace OD (d) 16 (in) = 406.4 (mm)   b = d/D = 0.89 

 3 Brace WT (t)  3/8 (in) = 9.5 (mm)   x = g/D = 0.12 

 4 Chord OD (D) 18 (in) = 457.2 (mm)   t = t/T = 1.00     

 5 Chord WT (T)  3/8 (in) = 9.5 (mm)   g= D/2T = 24.00 

 6 Brace-Chord Angle  60 Deg 1.047 (Rad)   

   

7 Gap (g) 2 1/6 (in) = 55.0 (mm)   
Theoretical 
calculations   

 8 Brace Length (lb)     777 (mm, clamp to crown, long) 117.32 777.4 

         543 (mm, clamp to crown, short) 117.32 542.7 

         803 (mm, clamp to saddle) 104.73 803.1 

         660 (mm, average clamp to crown) 

   9 Brace Area (Ab) 18.41 (in^2) = 11,876.0 (mm^2)   

   10 Brace M.O.I. (Ib) 562.08 (in^4) = 233,957,073 (mm^4)   

 

For B1 Load For B2 Load 

11 Chord Length (lc)     3,056.0 (mm)   a 1398 1658 

12 Chord Area (Ac) 20.76 (in^2) = 13,396.1 (mm^2)   b 1658 1398 

13 Chord M.O.I. (Ic) 806.63 (in^4) = 335,745,310 (mm^4)   

   14 Applied Load (P)     60 (kN)   

   15 Applied Moment (M)     39.6 (kN*m)   

   T = overall rotation = T / l 

 

  

   

B1 Load B2 Load B1 & B2 Load 

F = rotation due to local joint flexibility Chord rotation at B1 (rad), where x= 

 

1398 4.26358E-03 3.40658E-03 7.67016E-03 

c = elastic rotation of chord 

 

Chord rotation at B2 (rad), where x= 

 

1658 3.40658E-03 4.26358E-03 7.67016E-03 

e = elastic rotation of brace = e / l 

 

Elastic end displacement of brace (mm)   0.159     

Load Case Description T / M (rad/kN-m) c / M (rad/kN-m) e / P (mm/kN) F / P (mm/kN)   

   
9 Unbalanced OPB 2.210E-04 2.557E-05 5.501E-06 1.899E-04 

FE 
Analysis 

   
  Brace 1 (B1) 4.35E-04 2.55E-04 5.02E-06 1.75E-04 

Test 
Data 

   
  Unbalanced OPB 2.210E-04 2.557E-05 5.501E-06 1.899E-04 

FE 
Analysis 

   
  Brace 2 (B2) 4.47E-04 2.78E-04 5.02E-06 1.64E-04 

Test 
Data 
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LOAD CASE NO 10 

        
1 Young's Modulus 2.10E+02 kN/mm^2       Geometric Properties 

 
2 Brace OD (d) 16 (in) = 406.4 (mm)    = d/D = 0.89 

 
3 Brace WT (t)  3/8 (in) = 9.5 (mm)    = g/D = 0.12 

 
4 Chord OD (D) 18 (in) = 457.2 (mm)    = t/T = 1     

 
5 Chord WT (T)  3/8 (in) = 9.5 (mm)   = D/2T = 24.00 

 
6 Brace-Chord Angle  60 Deg 1.047 (Rad)   

   
7 Gap (g) 2 1/6 (in) = 55.0 (mm)   

Theoretical 
calculations   

 
8 Brace Length (lb)     777 (mm, clamp to crown, long) 117.32 777.4 

 
        543 (mm, clamp to crown, short) 117.32 542.7 

 
        803 (mm, clamp to saddle) 104.73 803.1 

 
        660 (mm, average clamp to crown) 

   
9 Brace Area (Ab) 18.41 (in^2) = 11,876.0 (mm^2)   

   
10 Brace M.O.I. (Ib) 562.08 (in^4) = 233,957,073 (mm^4)   

 
For B1 Load For B2 Load 

11 Chord Length (lc)     3,056.0 (mm)   a 1398 1658 

12 Chord Area (Ac) 20.76 (in^2) = 13,396.1 (mm^2)   b 1658 1398 

13 Chord M.O.I. (Ic) 806.63 (in^4) = 335,745,310 (mm^4)   

   
14 Applied Load (P)     60 (kN)   

   
15 Applied Moment (M)     39.6 (kN*m)   

   

 
T = overall rotation = T / l 

 
        B1 Load B2 Load 

 
F = rotation due to local joint flexibility 

 
Chord rotation at B1 (rad), where x= 

 
1398 

 
3.40658E-03 

 
c = elastic rotation of chord 

 
Chord rotation at B2 (rad), where x= 

 
1658 

 
4.26358E-03 

 
e = elastic rotation of brace = e / l 

 
Elastic end displacement of brace (mm)   0.159   

Load Case Description T / M (rad/kN-m) c / M (rad/kN-m) e / P (mm/kN) F / P (mm/kN)   
   10 OPB in one brace 9.092E-05 1.136E-05 5.501E-06 7.406E-05 FE Analysis 

   
  Brace 1 (B1) 2.16E-04 1.04E-04 0.00E+00 1.12E-04 Test Data 

   
  OPB in one brace 1.301E-04 1.421E-05 5.501E-06 1.104E-04 FE Analysis 

   
  Brace 2 (B2) 2.41E-04 1.15E-04 5.02E-06 1.21E-04 Test Data 
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LOAD CASE NO 11 

        1 Young's Modulus 2.10E+02 kN/mm^2       Geometric Properties 

 2 Brace OD (d) 16 (in) = 406.4 (mm)    = d/D = 0.89 

 3 Brace WT (t)  3/8 (in) = 9.5 (mm)    = g/D = 0.12 

 4 Chord OD (D) 18 (in) = 457.2 (mm)    = t/T = 1 .00 

 5 Chord WT (T)  3/8 (in) = 9.5 (mm)   = D/2T = 24.00 

 6 Brace-Chord Angle  60 deg 1.047 (Rad)   

   7 Gap (g) 2 1/6 (in) = 55.0 (mm)   Theoretical calculations 

 8 Brace Length (lb)     777 (mm, clamp to crown, long) 117.32 777.4 

         543 (mm, clamp to crown, short) 117.32 542.7 

         803 (mm, clamp to saddle) 104.73 803.1 

         660 (mm, average clamp to crown) 

   9 Brace Area (Ab) 18.41 (in^2) = 11,876.0 (mm^2)   

   10 Brace M.O.I. (Ib) 562.08 (in^4) = 233,957,073 (mm^4)   

 

For B1 Load For B2 Load 

11 Chord Length (lc)     3,056.0 (mm)   a 1398 1658 

12 Chord Area (Ac) 20.76 (in^2) = 13,396.1 (mm^2)   b 1658 1398 

13 Chord M.O.I. (Ic) 806.63 (in^4) = 335,745,310 (mm^4)   

   14 Applied Load (P)     60 (kN)   

   15 Applied Moment (M)     39.6 (kN*m)   

   

 

T = overall rotation = T / l         B1 Load B2 Load B1 & B2 Load 

 

F = rotation due to local joint flexibility Chord rotation at B1 (rad), where x= 

 

1398 4.26358E-03 -3.40658E-03 8.57003E-04 

 

c = elastic rotation of chord Chord rotation at B2 (rad), where x= 

 

1658 -3.40658E-03 4.26358E-03 8.57003E-04 

 

e = elastic rotation of brace = e / l Elastic end displacement of brace (mm)   0.159 

  Load Case Description T / M (rad/kN-m) c / M (rad/kN-m) e / P (mm/kN) F / P (mm/kN)   

   11 Balanced OPB 3.917E-05 2.857E-06 5.501E-06 3.081E-05 FE Analysis 

     Brace 1 (B1) 3.90E-05 8.00E-06 5.02E-06 2.60E-05 Test Data 

                 

     Balanced OPB 3.918E-05 2.857E-06 5.501E-06 3.082E-05 FE Analysis 

     Brace 2 (B2) 4.02E-05 4.00E-06 5.02E-06 3.11E-05 Test Data 
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APPENDIX 5 - Sample Calculations for LJF for AXIAL, IPB, OPB 

(for β = 0.5 and θ = 30, γ = 8-30 Case) 

 

Appendix 4 Figure 1 LJF Calculation Methodology 
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β θ  γ 

0.5 30 
 

8 10 15 20 25 30 

 All LJF values 

extracted from 

the FEA 

analysis  

Axial  -5.3524E-04 -6.0584E-04 -8.0488E-04 -1.0282E-03 -1.2726E-03 -1.5384E-03 

  
5.3524E-04 6.0585E-04 8.0490E-04 1.0283E-03 1.2726E-03 1.5384E-03 

 
IPB -1.2795E-03 -1.8635E-03 -3.6940E-03 -5.7723E-03 -7.9806E-03 -1.0329E-02 

  
-1.8302E-02 -2.1506E-02 -3.0842E-02 -4.1502E-02 -5.3291E-02 -6.6237E-02 

 
OPB -2.2355E-03 -4.2806E-03 -1.2912E-02 -2.6631E-02 -4.5385E-02 -6.9304E-02 

  
-1.8619E-02 -2.3307E-02 -4.0249E-02 -6.4019E-02 -9.4163E-02 -1.3084E-01 

Brace OD 228.5 
  

g 55 
   

lmin & lmax 259.113195 654.886804 
 

a 1856 
   

l 457 
  

b 1344 
   

    
x1 1344 x2 1856 

 

 

1. Axial 

Total tension Balanced 
     

γ 8 10 15 20 25 30 

Brace 1  -5.3524E-04 -6.0584E-04 -8.0488E-04 -1.0282E-03 -1.2726E-03 -1.5384E-03 

Brace 2   5.3524E-04 6.0585E-04 8.0490E-04 1.0283E-03 1.2726E-03 1.5384E-03 
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Chord elastic rotation Balanced  
     

Beam theory 
      

γ 8 10 15 20 25 30 

Chord OD(mm) 457 457 457 457 457 457 

Thickness (mm) 28.5625 22.85 15.23333333 11.425 9.14 7.616666667 

θ 30 30 30 30 30 30 

E(KN/mm
2
) 210 210 210 210 210 210 

I(mm
4
) 886021893.9 736320471 516356628.6 397158608.2 322562407.4 271519148.4 

Py(KN) at x2 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 

a(mm) 1856 1856 1856 1856 1856 1856 

b(mm) 1344 1344 1344 1344 1344 1344 

L(mm) 3200 3200 3200 3200 3200 3200 

x1(mm) 1344 1344 1344 1344 1344 1344 

x2(mm) 1856 1856 1856 1856 1856 1856 

unbalanced displ1(mm) 0.001675491 0.002016135 0.002874993 0.003737855 0.004602277 0.005467465 

unbalanced displ2(mm) 0.001741765 0.002095883 0.002988713 0.003885706 0.00478432 0.005683731 

 

Chord 1 (mm) 
-3.3137E-05 -3.98741E-05 -5.68602E-05 -7.39254E-05 -9.10215E-05 -0.000108133 

 

Chord 2 (mm) 
3.3137E-05 3.98741E-05 5.68602E-05 7.39254E-05 9.10215E-05 0.000108133 
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Brace elastic tension Balanced 
     

γ 8 10 15 20 25 30 

Brace OD(mm) 228.5 228.5 228.5 228.5 228.5 228.5 

Thickness (mm) 9.5 9.5 9.5 9.5 9.5 9.5 

θ 30 30 30 30 30 30 

E(KN/mm
2
) 210 210 210 210 210 210 

A(mm
2
) 6536.083516 6536.083516 6536.083516 6536.083516 6536.083516 6536.083516 

l(mm) 456.9999995 456.9999995 456.9999995 456.9999995 456.9999995 456.9999995 

F(KN) 1 1 1 1 1 1 

Chord 1 -0.00033295 -0.00033295 -0.00033295 -0.00033295 -0.00033295 -0.00033295 

Chord 2  0.00033295 0.00033295 0.00033295 0.00033295 0.00033295 0.00033295 

 

Axial LJF Balanced 
   

LJF 

γ   

 

 

 

 

 

 

8 brace1 -0.000535235 -3.3137E-05 -0.00033295 -0.000169148 

  brace2 0.000535239 3.3137E-05 0.00033295 0.000169152 

10 brace1 -0.000605842 -3.9874E-05 -0.00033295 -0.000233017 

  brace2 0.000605849 3.9874E-05 0.00033295 0.000233025 

15 brace1 -0.000804881 -5.68602E-05 -0.00033295 -0.00041507 

  brace2 0.000804896 5.68602E-05 0.00033295 0.000415086 

20 brace1 -0.001028231 -7.39254E-05 -0.00033295 -0.000621355 

  brace2 0.001028259 7.39254E-05 0.00033295 0.000621383 

25 brace1 -0.001272556 -9.10215E-05 -0.00033295 -0.000848584 

  brace2 0.001272596 9.10215E-05 0.00033295 0.000848624 

30 brace1 -0.001538358 -0.000108133 -0.00033295 -0.001097275 

  brace2 0.001538416 0.000108133 0.00033295 0.001097333 
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2. IPB Unbalanced 

IPB unbalanced 
      

Total rotation Moment on brace 2 
    

γ 8 10 15 20 25 30 

l (mm) 456.9999995 456.9999995 456.9999995 456.9999995 456.9999995 456.9999995 

M  (KN·m) 1 1 1 1 1 1 

 

Brace2      (rad)  
-1.2795E-03 -1.8635E-03 -3.6940E-03 -5.7723E-03 -7.9806E-03 -1.0329E-02 

Brace2      (rad)  -1.8302E-02 -2.1506E-02 -3.0842E-02 -4.1502E-02 -5.3291E-02 -6.6237E-02 

Brace1  (rad/KN-m) 2.79987E-06 4.07775E-06 8.0831E-06 1.26308E-05 1.7463E-05 2.26007E-05 

Brace2     (rad/KN-m) 4.00477E-05 4.70598E-05 6.74886E-05 9.08138E-05 0.000116611 0.000144939 

 

Chord elastic rotation 
Moment on 

brace 2 
     

Beam theory 
      

γ 8 10 15 20 25 30 

Chord OD(mm) 457 457 457 457 457 457 

Thickness(mm) 28.5625 22.85 15.23333333 11.425 9.14 7.616666667 

θ(°) 30 30 30 30 30 30 

E(KN/mm
2
) 210 210 210 210 210 210 

I(mm
4
) 886021893.9 736320471 516356628.6 397158608.2 322562407.4 271519148.4 

Mz(KN-mm) 1000 1000 1000 1000 1000 1000 

a(mm) 1856 1856 1856 1856 1856 1856 

b(mm) 1344 1344 1344 1344 1344 1344 

L(mm) 3200 3200 3200 3200 3200 3200 

x1(mm) 1344 1344 1344 1344 1344 1344 

x2(mm) 1856 1856 1856 1856 1856 1856 
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Chord 1 (rad) 
1.67397E-07 2.01431E-07 2.87238E-07 3.73446E-07 4.5981E-07 5.4625E-07 

 

Chord 2 (rad) 
1.54326E-06 1.85702E-06 2.6481E-06 3.44287E-06 4.23907E-06 5.03598E-06 

 

Chord1 (rad/KN-m) 
1.67397E-07 2.01431E-07 2.87238E-07 3.73446E-07 4.5981E-07 5.4625E-07 

 

Chord2     (rad/KN-m) 
1.54326E-06 1.85702E-06 2.6481E-06 3.44287E-06 4.23907E-06 5.03598E-06 

 

Brace elastic rotation Moment on brace 2 
    

γ 8 10 15 20 25 30 

Brace OD(mm) 228.5 228.5 228.5 228.5 228.5 228.5 

Thickness (mm) 9.5 9.5 9.5 9.5 9.5 9.5 

θ(°) 30 30 30 30 30 30 

E(KN/mm
2
) 210 210 210 210 210 210 

I(mm
4
) 39258372.88 39258372.88 39258372.88 39258372.88 39258372.88 39258372.88 

Mz(KN-mm) -1000 -1000 -1000 -1000 -1000 -1000 

x(mm) 456.9999995 456.9999995 456.9999995 456.9999995 456.9999995 456.9999995 

 

 

Brace 1 (rad) 

0 0 0 0 0 0 

 

 

Brace 2 (rad) 

0.01266633 0.01266633 0.01266633 0.01266633 0.01266633 0.01266633 

 

 

Brace 1 (rad/KN-m) 

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

 

 

Brace 2 (rad/KN-m) 

2.7716E-05 2.7716E-05 2.7716E-05 2.7716E-05 2.7716E-05 2.7716E-05 
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In-plane LJF Moment on brace 2 
   

γ   

 

 

FEA 

 

 

Beam 

Theory 

 

 

Beam 

Theory 

 

 

LJF 

8 brace1 2.79987E-06 1.67397E-07 0 2.63248E-06 

  brace2 4.00477E-05 1.54326E-06 2.77163E-05 1.07882E-05 

10 brace1 4.07775E-06 2.0143E-07 0 3.87632E-06 

  brace2 4.70598E-05 1.8570E-06 2.77163E-05 1.74865E-05 

15 brace1 8.0831E-06 2.87238E-07 0 7.79586E-06 

  brace2 6.74886E-05 2.6481E-06 2.77163E-05 3.71242E-05 

20 brace1 1.26308E-05 3.73446E-07 0 1.22574E-05 

  brace2 9.08138E-05 3.44287E-06 2.77163E-05 5.96547E-05 

25 brace1 1.7463E-05 4.5981E-07 0 1.70032E-05 

  brace2 0.000116611 4.23907E-06 2.77163E-05 8.46562E-05 

30 brace1 2.26007E-05 5.4625E-07 0 2.20544E-05 

  brace2 0.000144939 5.03598E-06 2.77163E-05 0.000112186 
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3. OPB Unbalanced 

Total torsion Moment on brace 2 
    

γ 8 10 15 20 25 30 

l (mm) 228.5 228.5 228.5 228.5 228.5 228.5 

M  (KN·m) 1 1 1 1 1 1 

 

Brace 1 (rad) 
-2.2355E-03 -4.2806E-03 -1.2912E-02 -2.6631E-02 -4.5385E-02 -6.9304E-02 

 

         Brace 2(rad) 
-1.8619E-02 -2.3307E-02 -4.0249E-02 -6.4019E-02 -9.4163E-02 -1.3084E-01 

 

 

Brace 1     (rad/KN-m) 

9.78345E-06 1.87334E-05 5.65059E-05 0.000116547 0.000198621 0.0003033 

 

Brace2     (rad/KN-m) 
8.14844E-05 0.000102 0.000176144 0.000280169 0.000412094 0.000572595 

 

Chord elastic torsion Moment on brace 2 
    

Torsion theory 
      

γ 8 10 15 20 25 30 

Chord OD(mm) 457 457 457 457 457 457 

Thickness (mm) 28.5625 22.85 15.23333333 11.425 9.14 7.616666667 

θ(°) 30 30 30 30 30 30 

E(KN/mm
2
) 210 210 210 210 210 210 

μ 0.3 0.3 0.3 0.3 0.3 0.3 

G(KN/mm
2
) 80.76923077 80.76923077 80.76923077 80.76923077 80.76923077 80.76923077 

Ip(mm
4
) 1772043788 1472640942 1032713257 794317216.5 645124814.8 543038296.8 

Tx(KN-mm) 500 500 500 500 500 500 

a(mm) 1856 1856 1856 1856 1856 1856 



268 

 

b(mm) 1344 1344 1344 1344 1344 1344 

L(mm) 3200 3200 3200 3200 3200 3200 

Ta -210 -210 -210 -210 -210 -210 

Tb -290 -290 -290 -290 -290 -290 

x1(mm) 1344 1344 1344 1344 1344 1344 

x2(mm) 1856 1856 1856 1856 1856 1856 

 

 

Chord 1 (rad)  

1.97196E-06 2.37288E-06 3.38371E-06 4.39925E-06 5.41663E-06 6.43491E-06 

 

 

Chord 2     (rad) 

2.72318E-06 3.27683E-06 4.67274E-06 6.07515E-06 7.4801E-06 8.8863E-06 

 

 

Chord 1 (rad/KN-m) 

1.97196E-06 2.37288E-06 3.38371E-06 4.39925E-06 5.41663E-06 6.43491E-06 

 

 

Chord 2 (rad/KN-m) 

2.72318E-06 3.27683E-06 4.67274E-06 6.07515E-06 7.4801E-06 8.8863E-06 

 

Brace elastic rotation Moment on brace 2 
    

γ 8 10 15 20 25 30 

Brace OD(mm) 228.5 228.5 228.5 228.5 228.5 228.5 

Thickness (mm) 9.5 9.5 9.5 9.5 9.5 9.5 

θ (°) 30 30 30 30 30 30 

E(KN/mm
2
) 210 210 210 210 210 210 

I (mm
4
) 39258372.88 39258372.88 39258372.88 39258372.88 39258372.88 39258372.88 

Mx (KN-mm) -1000 -1000 -1000 -1000 -1000 -1000 

X (mm) 456.9999995 456.9999995 456.9999995 456.9999995 456.9999995 456.9999995 
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Brace 1 (rad) 
0 0 0 0 0 0 

 

 

Brace 2 (rad) 

0.01266633 0.01266633 0.01266633 0.01266633 0.01266633 0.01266633 

 

 

Brace1 (rad/KN-m) 

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 

 

 

Brace 2 (rad/KN-m) 

5.5433E-05 5.5433E-05 5.5433E-05 5.5433E-05 5.5433E-05 5.5433E-05 

 

Out-of-Plane LJF Moment on brace2 
   

γ 
 

 

 

FEA 

 

 

Beam 

Theory 

 

 

Beam 

Theory 

 

 

LJF 

8 brace1 9.78345E-06 1.97196E-06 0 7.81149E-06 

  brace2 8.14844E-05 2.72318E-06 5.54325E-05 2.33287E-05 

10 brace1 1.87334E-05 2.3729E-06 0 1.63605E-05 

  brace2 0.000102 3.2768E-06 5.54325E-05 4.32906E-05 

15 brace1 5.65059E-05 3.38371E-06 0 5.31222E-05 

  brace2 0.000176144 4.67274E-06 5.54325E-05 0.000116039 

20 brace1 0.000116547 4.39925E-06 0 0.000112148 

  brace2 0.000280169 6.07515E-06 5.54325E-05 0.000218661 

25 brace1 0.000198621 5.41663E-06 0 0.000193205 

  brace2 0.000412094 7.4801E-06 5.54325E-05 0.000349181 

30 brace1 0.0003033 6.43491E-06 0 0.000296865 

  brace2 0.000572595 8.8863E-06 5.54325E-05 0.000508276 
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4. Summary LJF Results for Axial, IPB and OPB for β = 0.5 and θ = 30, γ = 8 - 30 

     

γ 
 

Axial 

Balanced 
IPB brace2 OPB brace2 

8 brace1 -1.6915E-04 2.6325E-06 7.8115E-06 

 
brace2 1.6915E-04 1.0788E-05 2.3329E-05 

10 brace1 -2.3302E-04 3.8763E-06 1.6360E-05 

 
brace2 2.3302E-04 1.7486E-05 4.3291E-05 

15 brace1 -4.1507E-04 7.7959E-06 5.3122E-05 

 
brace2 4.1509E-04 3.7124E-05 1.1604E-04 

20 brace1 -6.2136E-04 1.2257E-05 1.1215E-04 

 
brace2 6.2138E-04 5.9655E-05 2.1866E-04 

25 brace1 -8.4858E-04 1.7003E-05 1.9320E-04 

 
brace2 8.4862E-04 8.4656E-05 3.4918E-04 

30 brace1 -1.0973E-03 2.2054E-05 2.9686E-04 

 
brace2 1.0973E-03 1.1219E-04 5.0828E-04 
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APPENDIX 6 - USFOS Files for the Development of the K-Frame Analysis 

Validation of RK-LJF in BOMEL Frame VII Tests 

*************************** 
**** NODE COORDINATES  **** 
*************************** 
NODE     1010          0.000          0.000          0.000 1 1 1 
NODE     1020          5.944          0.000          0.000 1 1 1 
NODE     1030          2.400          0.000          0.000 
NODE     1040          3.544          0.000          0.000 
NODE     2010          0.000          0.000          1.524 
NODE     2011          1.599          0.000          1.524 
NODE     2012          1.939          0.000          1.524 
NODE     2020          5.944          0.000          1.524 
NODE     2030          2.972          0.000          1.524 
NODE     2031          2.619          0.000          2.047 
NODE     2032          3.324          0.000          2.047 
NODE     2110          2.057          0.000          3.039 
NODE     2120          1.890          0.000          3.334 
NODE     2210          5.147          0.000          5.291 
NODE     2220          4.977          0.000          4.996 
NODE     3010          0.000          0.000          6.672 
NODE     3020          5.944          0.000          6.672 
NODE     4010          0.000          0.000          8.196 0 1 0 
NODE     4020          5.944          0.000          8.196 0 1 0 
NODE     4030          2.400          0.000          8.196 0 1 0 
NODE     4040          3.544          0.000          8.196 0 1 0 
*************************** 
****   BEAM ELEMENTS   **** 
*************************** 
BEAM        1  2010  1030  1001  1001     0 20001 30001 
ECCENT  20001   0.179000E+00   0.000000E+00  -0.231200E+00 
ECCENT  30001   0.000000E+00   0.000000E+00   0.000000E+00 
BEAM        2  2020  1040  1001  1001     0 20002 30002 
ECCENT  20002  -0.179000E+00   0.000000E+00  -0.231200E+00 
ECCENT  30002   0.000000E+00   0.000000E+00   0.000000E+00 
BEAM        3  3010  4030  1001  1001     0 20003 30003 
ECCENT  20003   0.179000E+00   0.000000E+00   0.231190E+00 
ECCENT  30003   0.000000E+00   0.000000E+00   0.000000E+00 
BEAM        4  3020  4040  1001  1001     0 20004 30004 
ECCENT  20004  -0.179000E+00   0.000000E+00   0.231190E+00 
ECCENT  30004   0.000000E+00   0.000000E+00   0.000000E+00 
BEAM        5  4010  4030  1002  1002     0     0     0 
BEAM        6  4030  4040  1002  1002     0     0     0 
BEAM        7  4040  4020  1002  1002     0     0     0 
BEAM        8  1010  1030  1003  1003     0     0     0 
BEAM        9  1030  1040  1003  1003     0     0     0 
BEAM       10  1040  1020  1003  1003     0     0     0 
BEAM       11  2110  2031  1004  1004     0     0     0 
BEAM       12  2220  2032  1004  1004     0 20012 30012 
ECCENT  20012   0.342000E-02   0.000000E+00  -0.195000E-02 
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ECCENT  30012   0.000000E+00   0.000000E+00   0.000000E+00 
BEAM       13  3010  2120  1004  1004     0 20013 30013 
ECCENT  20013   0.179000E+00   0.000000E+00  -0.316200E+00 
ECCENT  30013   0.000000E+00   0.000000E+00   0.000000E+00 
BEAM       14  3020  2210  1004  1004     0 20014 30014 
ECCENT  20014  -0.179000E+00   0.000000E+00  -0.316200E+00 
ECCENT  30014   0.000000E+00   0.000000E+00   0.000000E+00 
BEAM       15  2010  2011  1005  1005     0 20015 30015 
ECCENT  20015   0.179000E+00   0.000000E+00   0.000000E+00 
ECCENT  30015   0.000000E+00   0.000000E+00   0.000000E+00 
BEAM       16  2012  2030  1005  1005     0     0     0 
BEAM       17  2030  2020  1005  1005     0 20017 30017 
ECCENT  20017   0.000000E+00   0.000000E+00   0.000000E+00 
ECCENT  30017  -0.179000E+00   0.000000E+00   0.000000E+00 
BEAM       18  3010  3020  1006  1006     0 20018 30018 
ECCENT  20018   0.179000E+00   0.000000E+00   0.000000E+00 
ECCENT  30018  -0.179000E+00   0.000000E+00   0.000000E+00 
BEAM       19  2011  2012  1007  1007     0     0     0 
BEAM       20  2120  2110  1007  1007     0     0     0 
BEAM       21  2210  2220  1007  1007     0 20021 30021 
ECCENT  20021   0.000000E+00   0.000000E+00   0.000000E+00 
ECCENT  30021   0.342000E-02   0.000000E+00  -0.195000E-02 
BEAM       22  1010  2010  1008  1008     0     0     0 
BEAM       23  1020  2020  1008  1008     0     0     0 
BEAM       24  2010  3010  1008  1008     0     0     0 
BEAM       25  2020  3020  1008  1008     0     0     0 
BEAM       26  3010  4010  1008  1008     0     0     0 
BEAM       27  3020  4020  1008  1008     0     0     0 
BEAM       28  2031  2030  1009  1009     0 20028 30028 
ECCENT  20028   0.000000E+00   0.000000E+00   0.000000E+00 
ECCENT  30028  -0.104900E+00   0.000000E+00   0.840000E-01 
BEAM       29  2032  2030  1009  1009     0 20029 30029 
ECCENT  20029   0.000000E+00   0.000000E+00   0.000000E+00 
ECCENT  30029   0.104930E+00   0.000000E+00   0.840000E-01 
*************************** 
****   BEAM GEOMETRY   **** 
*************************** 
PIPE     1001   0.168000E+00   0.710000E-02                                                             !B01 168X7.1 
IHPROFIL 1002   0.400000E+00   0.135000E-01   0.300000E+00   0.240000E-01   0.300000E+00   0.240000E-01 
!C01 IH 
IHPROFIL 1003   0.400000E+00   0.135000E-01   0.300000E+00   0.240000E-01   0.300000E+00   0.240000E-01 
!C02 IH 
PIPE     1004   0.168000E+00   0.450000E-02                                                             !KB1 168X4.5 
PIPE     1005   0.168000E+00   0.450000E-02                                                             !KC1 168X4.5 
PIPE     1006   0.168000E+00   0.450000E-02                                                             !KC2 168X4.5 
PIPE     1007   0.168000E+00   0.500000E-02                                                             !KT1 168X5 
PIPE     1008   0.358000E+00   0.127000E-01                                                             !L01 358X12. 
'PIPE     1009   0.168000E+00   0.450000E-02                                                             !LJF 168X4.5 
GENBEAM  1009   1.168656   7.73516E-06   4.95951E-06   2.77565E-06   9.21E-05  5.9E-05  3.3E-05  1.68656  
1.168656  !LJF 
*************************** 
****   BEAM MATERIAL   **** 
*************************** 
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MISOIEP  1001   0.200000E+12            0.3   0.390700E+09   0.784900E+04                               !B01 
MISOIEP  1002   0.200000E+12            0.3   0.390700E+09   0.784900E+04                               !C01 
MISOIEP  1003   0.200000E+12            0.3   0.390700E+09   0.784900E+04                               !C02 
MISOIEP  1004   0.200000E+12            0.3   0.292000E+09   0.784900E+04                               !KB1 
MISOIEP  1005   0.200000E+12            0.3   0.292000E+09   0.784900E+04                               !KC1 
MISOIEP  1006   0.200000E+12            0.3   0.292000E+09   0.784900E+04                               !KC2 
MISOIEP  1007   0.200000E+12            0.3   0.355000E+09   0.784900E+04                               !KT1 
MISOIEP  1008   0.200000E+12            0.3   0.390700E+09   0.784900E+04                               !L01 
MISOIEP  1009   0.200000E+12            0.3   0.292000E+09   0.784900E+04                               !LJF 
*************************** 
**** GROUP DEFINITION  **** 
*************************** 
GROUPDEF 1001 MAT 1001 
GROUPDEF 1002 MAT 1002 
GROUPDEF 1003 MAT 1003 
GROUPDEF 1004 MAT 1004 
GROUPDEF 1005 MAT 1005 
GROUPDEF 1006 MAT 1006 
GROUPDEF 1007 MAT 1007 
GROUPDEF 1008 MAT 1008 
GROUPDEF 1009 MAT 1009 

 

Appendix 5 Figure 1 BOMEL Frame VII – No LJF included 
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Appendix 5 Figure 2 BOMEL Frame VII – LJF included 
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Appendix 5 Figure 3 Load vs Displacement Curve (RK-LJF included) 

 

 

 


