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Lithium-ion batteries are considered the substantial electrical storage element for
electric vehicles (EVs). The battery model is the basis of battery monitoring, efficient
charging, and safety management. Non-linear modelling is the key to representing the
battery and its dynamic internal parameters and performance. This paper proposes a
smart scheme to model the lithium-polymer ion battery while monitoring its present
charging current and terminal voltage at various ambient conditions (temperature and
relative humidity). Firstly, the suggested framework investigated the impact of
temperature and relative humidity on the charging process using the constant current-
constant voltage (CC-CV) charging protocol. This will be followed by monitoring the
battery at the surrounding operating temperature and relative humidity. Hence,
efficient non-linear modelling of the EV battery dynamic behaviour using the
Hammerstein-Wiener (H-W) model is implemented. The H-W model is considered a
black box model that can represent the battery without any mathematical equivalent
circuit model which reduces the computation complexity. Finally, the model beholds
the boundaries of the charging process that not affecting on the lifetime of the battery.
Several dynamic models are applied and tested experimentally to ensure the



effectiveness of the proposed scheme under various ambient conditions where the
temperature is fixed at 40°C and the relative humidity (RH) at 35%, 52%, and 70%.
The best fit using the H-W model reached 91.83% to describe the dynamic behaviour
of the battery with a maximum percentage of error 0.1V which is in good agreement
with the literature survey. Besides, the model has been scaled up to represent a real
EV and expressed the significance of the proposed H-W model.
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Introduction
Lithium-ion batteries (LIBs) with all
categories have been extensively utilized for
most electronic equipment and massively in
Electric Vehicles (EVs). LIBs are
commercialized because of their high energy
concerning their size, long lifetime span,
high efficiency and low rate of self-
discharging[1]. Due to the non-linear
behaviour of the LIB while charging, and
the variety of the input parameters which
affect the charging process such as charging
current, and ambient conditions represented
by temperature and relative humidity, an
accurate identification model of its dynamic
behaviour is required [1].

The environmental temperature has a main
impact on lithium-ion batteries’ charging
and discharging operations. The
recommended ambient conditions were
suggested to be from 20°C to 45°C.
Exceeding the upper limit may lead the
battery to an acceleration in the capacity
degradation rate and thermal hazards[2]. The
temperature and capacity rates are
influencing the degradation rate of the
battery. In the range from 10°C to 60°C, the
degradation rate raised while implementing
low C rates. Despite of this, the degradation
at 45°C is lower than that at 25°C while
utilizing the 2C rate. It is concluded that
each temperature and C rate have its own
characteristics and battery representation[3].
In [4, 5], the charging operation of the
lithium-polymer ion battery is investigated
at different ambient conditions to recognise

and classify the EV. In [6] the authors
demonstrated that the operation of the Li-O2

batteries has been affected by the humidity
where the water can collapse cyclic and rate
abilities. Consequently, EV batteries’ robust
monitoring and modelling are required at
any ambient condition to represent the non-
linear dynamic behaviour and avoid the
hazard of fast charging. The variation in
ambient conditions created a direct need for
an efficient and accurate non-linear
representation of the EV battery's
performance.

Models of the LIBs could be assorted into
two major classes: the electrochemical (EC)
and the electrical equivalent circuit (EEC)
models. The EC model represents the
physical-chemical internal reactions inside
the battery[7, 8] and the EEC model
expresses the battery through electronic
parameters such as resistors and capacitors.
The equivalent circuit models can be
categorised into the Rint model, Partnership
for a New Generation of Vehicles (PNGV)
model, and RC transient models which are
branched from the 1st-order to nth-order
transient model [9-12]. In [13] electrical
equivalent circuit models from 1RC to 5RC
transient models have been used to describe
the LIB. The parameters are evaluated at
various temperatures of 0°C, 25°C, and
45°C. The 3RC EEC model ensured
optimum accuracy and minimum error of
1.8% using the non-linear least square
algorithm. In [14], the Electrothermal
modelling of lithium-ion batteries has been
investigated by 1RC ECM. In addition, the



battery’s internal parameters at different
temperatures and current rates have been
investigated. An improved reduced-order
electrochemical model (IROEM) is
proposed in [15]. In [16] a novel mesoscale
electrothermal modelling is presented. In [9,
17-19] the 2RC transient circuit has been
used in modelling the lithium-polymer ion
battery, however, multi-experimental
procedures are accomplished to calculate the
EEC model components such as ohmic
internal resistance, and electrochemical and
concentration polarization resistances and
capacitances.

The variety of the ambient conditions
represented by the temperature and relative
humidity created a direct need for an
accurate model of the LIB with a minimum
percentage of error and high accuracy to
describe the battery in any environmental
circumstances. The EV battery modelling
research area is directed to focus on the
system identification methods [20-22] which
were dealing with the battery cells as a
nonlinear dynamic behaviour like most real
systems. Hence, the white box model and
black box model are utilized to express the
systems [23]. In [24] the Adaptive Neuro-
Fuzzy Inference System (ANFIS) model is
utilized to express the LIB and is considered
a black box model. In [25], Hammerstein-
Winer (H-W) model ensured the best fit of
89.79%, 93.53%, and 94% for representing
the LIB at various driving cycles while the
temperature is fixed at 25°C. In [26], the
authors used Polynomial and H-W models
for both the charging and discharging cycles
to ensure higher accuracy. However, the
maximum error using the H-W and
polynomial models reached 10.6% and
10.8% respectively. In [27], the components
of the 2RC model have been identified using
both the continuous and discrete time
models. In [28] mathematical models are
used to calculate the LIB’s unknown
coefficients for efficient monitoring and

quick charging. However, the forementioned
models didn’t represent the dynamic
behaviour of the LIB under any
environmental conditions. This paper
suggests a clear framework for expressing
the lithium-polymer ion battery’s non-linear
charging operation by monitoring the
surrounding environmental circumstances.
This is followed by a set of
recommendations for the EV’s user to avoid
overcharging current and voltage.

Methodology
An approach for monitoring the electric
vehicles' battery dynamic behaviour is
proposed in this article. This scheme
consists of multiple stages as shown in
Figure 1; Firstly, the influence of various
environmental conditions on the charging
operation of the lithium-polymer ion battery
is investigated. Then sufficient identification
and modelling of the battery are obtained
through full monitoring of the battery's
dynamic behaviour at any ambient condition.
Finally, a user guide of the charging
boundaries is suggested based on the battery
dynamic model to alleviate the degradation
rate of the battery and avoid hazardous
operations.



Figure 1. A flowchart of the proposed
approach.

Hammerstein-Wiener (H-W)
Identification model
Instead of the electrochemical and electrical
equivalent circuit representation models,
Hammerstein-Wiener (H-W) identification
model is implemented to express the output
nonlinear performance of the LIB. It is
extensively utilized in nonlinear industrial
systems [29]. This model is composed of a
nonlinear block which is called the
Hammerstein model followed by the linear
block which is called the Wiener[30]. The
main stages of the H-W identification model
are represented in Figure 2. The procedure
of these stages is started by converting the
non-linearity experimental input data to a
dynamic linear block which is called the
Hammerstein model. This is followed by the
Wiener model which converts the linear
model to the output non-linear required

results. The main equations are expressed in
[23, 30, 31] and presented as follows

� � = �(� � ) (1)

� � =
�
�

�(�) (2)

� � = ℎ(� � ) (3)

Where �(�) and � � are the input and
output of the dynamic linear block
respectively and � � is the output of the H-
W identification model.

Figure 2. Schematic representation of the H-
W identification model[4].

Data collection
In this study, the EV is presented by a small-
scaled lithium-polymer ion battery of 1,000
mAh with a working temperature from 0°C
to 40°C, and the charging and discharging
cut-off voltage of 4.2±0.05 V and 2.75V
respectively.

The influence of varying the temperature
and relative humidity on the charging
operation is scrutinized by testing the battery
in different ambient conditions using a
controlled chamber as in our previous
research articles[4, 5] and presented in
Figure 3-a. The constant current stage
followed by the constant voltage stage (CC-
CV) charging protocol is used to charge the
battery as shown in Figure 3-b. The battery’s
VI characteristics (charging current and the
corresponding terminal voltage) are
scrutinized at 30°C and 40°C while fixing
the RH of 52%. The temperature/RH sensor
used is the DHT11 and located inside the



chamber and far from the lithium-polymer
ion battery under the test by almost 2 cm.

(a)

(b)
Figure 3. (a) The proposed test rig and (b)
the CC-CV charging protocol [4, 32].

It is observed that the battery is fully
charged at 4,742sec and 4,919sec at 30°C
and 40°C respectively as shown in Figures
4-a and 4-b. Hence while raising the

temperature the charging time is increased.
In addition, another test has been performed
on the battery while maintaining the
temperature at 40°C and varying relative
humidity. The interval time required for the
battery to reach full capacity is 4,606sec,
4,938sec, and 5,690sec for the RH of 35%,
52%, and 70% respectively as shown in
Figure 4-c and 4-d. Hence whenever the RH
is increased the charging time is increased.
In addition, as declared in Figure 4-c the
charging process could be split into the CC
stage and CV stage. Whenever the RH
increased the interval time of the CC stage
becomes very short with respect to low RH
conditions. However, the CV stage took
longer interval time than the low RH
conditions. Consequently, high RH directs
the lithium-polymer ion battery to take more
time while charging.

Based on the proposed experiments, it is
observed that whenever there is any change
in the ambient conditions represented by
temperature or/and relative humidity, the
charging pattern differs from one case to
another, so a sufficient lithium-polymer ion
battery identification model must be
obtained. In this paper, the H-W
identification model is used to represent the
dynamic performance of the battery under
any circumstances as will be scrutinized in
the following sections.



(a)

(b)

(c)

(d)
Figure 4. The charging VI characteristics
of the utilized battery (a), (b) at different
temperatures of 30°C and 40°C while
maintaining the RH constant at 52%, (c),

and (d) at various RH of 35%, 52%, and
70% while maintaining the temperature
constant at 40°C [4].

EV battery dynamic behaviour
modelling
The H-W identification model has been used
to estimate the dynamic performance of the
lithium-polymer ion battery with a model
structure of one numerator order and three
denominator order utilizing various search
methods. Three ambient conditions of the
battery have been utilized in this study
where the temperature is kept constant at
40°C and the RH is varied to be 35%, 52%,
and 70%. The CC-CV protocol is used with
a current stage of 0.9A to charge the lithium-
polymer ion battery in all conditions. The
relationship between the experimental and
simulated model output using the H-W
identification model of all conditions is
presented in Figure 5. Each charging process
at a specific ambient condition could be
represented with different VI characteristics
(charging current and the corresponding
battery’s terminal voltage) which will be
reflected in the interval time. Consequently,
the H-W identification model tries to
represent the battery’s dynamic performance
in any environmental condition and tracks
all the curvatures on the graph to reach the
optimum fit of performance. The best-fit
results for all the mentioned conditions are
90.98%, 91.83%, and 82.24% respectively
using the Levenberg-Marquardt(LM),
Gauss-Newton(GN), and Adaptive Gauss-
Newton(GNA) search methods respectively.
The selection of the search method is
automatically performed using the
Matlab/SIMULINK Program to reach the
optimum solution.



(a)

(b)

(c)

Figure 5. Battery identification and
modelling using the H-W identification
model of 1,000 mAh lithium-polymer ion
battery at different RH of 35%, 52%, and
70% respectively while maintaining the
temperature at 40°C.

Hammerstein-Wiener (H-W) model
Validation
The effectiveness of the suggested non-
linear identification model is presented in
Figure 5 which declares the variance
between the experimental and simulated
battery terminal voltage for each ambient
condition. The battery’s terminal voltage
error at a specific temperature of 40°C and
various RH of 35%, 52%, and 70% reached
almost 0.05V, 0.05V, and 0.1V respectively
which is almost equivalent to 1.35%, 1.35%,
2.7% of the battery nominal voltage (3.7V)
as observed in Figure 6 respectively. These
values prove the good performance of the H-
W identification model concerning the
literature survey[26].

(a)



(b)

(c)
Figure 6. The variance between the
experimental and simulated battery’s output
terminal voltage at a fixed temperature of
40°C and different RH of 35%, 52%, and
70% respectively.

The results that represent the battery
dynamic behaviour identification best fit, the
search method using the H-W model and the
terminal voltage error at different ambient
conditions have been represented in Table 1.

Table 1. Battery identification comparative
study at different ambient conditions using the
H-W model.
Ambient
condition
(Temp,
RH)

Best
fit (%)

Terminal
voltage
error (V)

Search
method

40°C,
35% 90.98 0.05 LM

40°C,
52% 91.83 0.05 GN

40°C,
70% 82.24 0.1 GNA

To validate the H-W model the temperature
is fixed at 40°C and the RH at 35%. The
battery has been charged by the CC-CV
charging protocol by 0.5A where the
terminal voltages of the simulated and
measured battery are expressed in Figure 7-a.
In addition, Figure 7-b declares the output
difference between the modelled and
experimental representations, ensuring the
high performance of the suggested model
where the maximum error reached 0.176 V
which is equivalent to 4.757% of the battery
nominal voltage (3.7V).

(a)

(b)
Figure 7. H-W model validation at 40°C



and RH at 35% (a) the charging current
using the CC-CV and Terminal voltage of
the simulated and measured results and (b)
the variance between the experimental and
simulated outcomes.

The final stage of the presented model
depends on the sufficient identification
model estimated in the previous stage. This
stage expresses the permitted charging
current and output terminal voltage of the
battery at any ambient condition to prevent
battery degradation and avoid any hazardous
operation.

Comparative Study
As shown in Figure 8, the output battery
terminal voltage while charging by 0.9A is
expressed throughout the three mentioned
conditions. The batteries reached the
nominal voltage after 635.465sec,
750.423sec, and 220.337sec respectively.
Besides, the 3rd case study which represents
the battery at 40°C and RH of 52%, reached
its cut-off voltage at 2,111sec. Hence
whenever you exceeded the permitted
battery’s terminal voltage, you accelerate the
degradation factor rate and shorten the cycle
life which may cause the battery’s hazard.

Figure 8. The output terminal voltage while
charging by 0.9 A on the proposed H-W

identification models at the proposed
ambient conditions.

EV Lithium-ion Battery Scaling-Up
Representation

In this section, the lithium-polymer ion
battery is scaled up to match the 2015
Chevrolet Spark EV specifications [32].
This category uses the LG Chem lithium-ion
battery with a nominal cell voltage of 3.7V,
a nominal system voltage of 355.2V, and
192 cells of 6 modules. In our case study, we
will implement the same configuration with
our lithium-polymer ion battery of 1,000
mAh to investigate the importance of the H-
W identification model in any environmental
condition. However, the internal heat impact
of the cells on each other was considered
constant in the proposed model. The utilized
modules in real EVs are specified with high
energy capacity rates reached to 200kAh
[32]. In our case study, we used a lithium-
polymer ion battery with a 1,000 mAh
battery capacity to format the module. The
EV battery is composed of 16 cells in series
and parallels with another 16 series cells to
format the module. This category has 6
modules in a series connection.

Three H-W identification models are
implemented as shown in Figure 9-a. The
scaling-up ensured the best fit of 90.3%,
91.23%, and 83.37% for the mentioned case
studies respectively. The EV battery
terminal voltage variance between the
simulated and scaled-up data reached 5V,
5V, and 7V respectively which means an
error of 1.4%, 1.4%, and 1.97% respectively
with respect to the nominal voltage of the
battery (355.2V). This representation is
based on the assumption that the ambient
conditions of the battery’s pack are the same
as the 1,000 mAh battery used in the
previous sections. As observed in Figure 9-b,
the three conditions have been charged with



the same charging current and reached the
nominal voltage in 547.958sec, 690.903sec,
and 207.611sec respectively. In addition, the
3rd case study reached the cut-off voltage
(403.2V) in 2,719sec however the other
cases did not reach the upper limit till the
end of the simulation time 2,750sec. the
degradation rate will be increased when you
exceed the cut-off voltage as mentioned in
the literature survey.

(a)

(b)
Figure 9. The EV battery terminal voltage
after scaling up at various ambient
conditions.

Conclusion
A novel schematic charging framework
based on the monitoring and modelling of
the lithium-polymer ion battery is suggested
and investigated in this article. A non-linear
black-box model for a lithium-polymer ion
battery of 1,000 mAh is proposed based on
the Hammerstein-Wiener (H-W)
identification model. The nonlinear H-W
model represented the EV battery's electrical
dynamic behaviour at different
environmental circumstances of temperature
and RH. The proposed model ensured the
best fit of 90.98%, 91.83%, and 82.24% for
different ambient conditions with a
maximum error of 0.05V, 0.05V, and 0.1V
respectively. A comparative study between
the different models has been established
while charging by the same current to
indicate the importance of accurate
modelling accompanied by the minimum
percentage of error. In addition, a scaling-up
case study is proposed based on the EV
battery specification in the market. This
could be a smart warning flag for the EV’s
user while charging to improve the storage
security, safety operation, and battery
management performance. The proposed
model could be supported by artificial
intelligence (AI) algorithms to estimate all
the required models at the remaining
ambient conditions.
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