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Abstract 

In this paper we give a selective review of our work on the role of electron correlation in the 

theory of high temperature superconductivity. The question of how electronic repulsions 

might give rise to off-diagonal long range order (ODLRO) in high temperature 

superconductors is currently one of the key questions in the theory of condensed matter. This 

paper argues that the key to understanding the occurrence of high temperature superconductivity 

(HTSC) in cuprates is to be found in the Bohm-Pines Hamiltonian modified to include a 

polarisable dielectric background. The approach uses reduced electronic density matrices and 

discusses how these can be used to understand whether ODLRO giving rise to superconductivity 

might arise from a Bohm-Pines type potential which is comprised of a weak long-range attractive 

tail and a much stronger short-range repulsive Coulomb interaction. This allows time-reversed 

electron pairs to undergo a superconducting condensation on  alternant Cuprate lattices. Thus, a 

detailed summary is given of the arguments that such interacting electrons can cooperate to 

produce a superconducting state in which time-reversed pairs of electrons effectively avoid 

the repulsive hard-core of the inter-electronic Coulomb interaction but reside on average in 
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the attractive well of the effective potential. In a superconductor  the plasma wave function 

becomes the longitudinal component of a massive photon by the Anderson-Higgs mechanism. 

The alternant cuprate lattice structure is the key to achieving HTSC in cuprates with dx2-y2 

symmetry condensate symmetry. 

 

Keywords 

Off-diagonal Long-Range Order (ODLRO), cuprate superconductivity, strongly correlated 

electronic systems, Bohm-Pines, Plasmon, Anderson-Higgs mechanism, condensate wave 

function. 
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1. Per Olov Löwdin  

 

In celebrating the centenary of Per Olov Löwdin’s birth and  reflecting upon his contributions 

to science we cannot help being in awe at the breadth and depth of his insights. The review 

we present here is in a real sense a small tribute to Per Olov Löwdin’s enormous contribution 

to theoretical chemistry and physics.  Configuration interaction, electron correlation, density 

matrices, eigenvalues of density matrices, natural orbitals and geminals, variational problems, 

effective Hamiltonians all have a prominent part and Per Olov played a key role in their 

development. In a series of seminars on correlation and density matrix theory given by Per 

Olov in Uppsala, during the very cold Swedish winter of 1978/1979 he reviewed the 

conditions for superconductivity stressing the necessity of a macroscopically large eigenvalue 

of the second order reduced electronic density matrix analogous to Bose-Einstein 

condensation. It is not widely known that complementing the famous work of Chen Ning 

Yang such a condition  was also discovered at about the same time by Sasaki working in Per 

Olov’s group in Uppsala as discussed here. It was during these seminars in 1978/1979 and 

inspired by Per Olov that the ideas discussed in this paper were born. 

2. Introduction to superconductivity 

 

Superconductors are materials which transport electric charge without resistance1 and with 

the display of associated macroscopic quantum phenomena such as persistent electrical 

currents and magnetic flux quantization. These quantum phenomena are associated with 

macroscopic wave functions characteristic of off-diagonal long-range order (ODLRO), a 

name first introduced by Chen Ning Yang2. This order is characterised by a long-range 

coherence of the quantum mechanical phase which demonstrates itself as macroscopic 

quantum phenomena. The focus of this paper is to give a very selective review of the role of 

electron correlation in HTSC where we put forward the view that this is very largely an electron 

correlation effect due to electronic repulsions but with a prominent role played by the plasma 

modes in the energetics and electrodynamics of superconductors. This review follows earlier 

work on aspects of these topics3
,4,5,6,7.  
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     Bednorz and Müller8 first made the discovery of HTSC in the cuprates which set off a 

very well-known avalanche of theoretical and experimental activity resulting in the discovery 

of many hole and electron-doped superconducting cuprates and their related properties. 

Sometime after the discovery of the cuprates (see Fig. 1 for chemical structures), iron based 

high temperature superconducting compounds9
,10 were discovered in Japan.  These two types 

of chemical structure highlighted the role of alternant lattices which exist in these materials 

and shown specifically for the cuprates below in Fig. 1 and discussed in refs [1
,2,3,4,5,6,7]. For 

structures of the iron-based compounds see eg ref 11 

 

 

 

Fig.1 Left side: Structure of Lanthanum Strontium Cuprate. Reproduced from ref 
12

 with the permission of 

the National Academy of Sciences of the US.     Right side-Alternant Cuprate layer  • - Copper   O –Oxygen   

(Reproduced from ref
6
  with permission from Elsevier)  

 

 

The microscopic origin driving the superconducting condensation in these solids is the focus of 

very many theories and speculations which are too numerous to review here.  However, there 

is a widely held view that HTSC materials are ‘electronic superconductors’ in which the 

participation of phonons is at best secondary. No theory has yet been widely accepted despite 

numerous studies and many notable and highly interesting proposals13
,14,15 . There are many 

aspects and properties of HTSC materials which we do not consider here such as charge 

density waves and the origin of the pseudogap which have both attracted wide attention. 

Hence here we will focus in a limited way on our view of the role of Coulomb repulsions in 

high temperature cuprate superconductivity.  
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3.  The Pairing instability in Classical and High Temperature Superconductors   

 

The theory of conventional low temperature metallic superconductors is due to Bardeen -

Cooper-Schrieffer theory (BCS)16 where there is an attractive phonon-induced electron-

electron attraction which causes a Cooper pair instability13. In a conventional metallic 

superconductor 13 the effective electron-electron interaction 
effV is made up of the contributing 

interactions eff sc el ph elV V V     . Here  scV is the screened Coulomb repulsion and 
el ph elV  

 is 

the phonon induced electron-electron interaction13
,14,16

.The BCS Hamiltonian or variants of it 

have been widely discussed but some original points will be revisited below.  It does not seem 

likely that the BCS Hamiltonian applies to the cuprates but the study of this points to the 

features which will give rise to superconductivity in the cuprates.                                                                                               

There is a well-known symmetry in the doping phase diagram for HTSC cuprates where 

electron doping or hole doping of the cuprate layer both lead to similar magnetic and 

superconducting features5.   To give our point of view, in alternant lattices (see Figs. 1) unit 

cells may be given a sign with opposite signs for nearest neighbours.  Electron pairs in time-

reversed states on alternant Cuprate lattices interact with a short range Coulomb repulsion and 

longer range attraction. Electrons in the coherent ground state can  avoid each other at short-

range. It is suggested here that the cause of the long-range attractive part of the effective 

interaction is to be found in the short range part of the Bohm-Pines 17
,18,19,20,21 

potential to be 

discussed below and shown in Fig. 2. 

        The symmetry of the condensate wave function has been experimentally established in hole 

doped cuprates and there is a broadly held opinion that the condensate wave function has dx2 -y2   

symmetry in superconducting hole doped cuprates13
,14,22,23 and this seems probable too in 

electron doped cuprates 24 

The model describes in detail a mechanism in which the Coulombic interactions allow a 

superconducting state on a cuprate layer to appear. Pairs of electrons in the superconducting 

condensate correlate over longer distances in the attractive well in the Bohm-Pines potential 

5,18,19 and avoid each other at very short separations. This gives a lower Coulomb repulsion 

than in the uncorrelated normal state with which it competes. It is a mechanism for electrons to 

stay out of the hard Coulombic core but reside in the attractive region of the potential at longer 

range. A conventional BCS singlet type s-wave condensate wave function does not have such 
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embedded correlations. Yet, a d-wave or sign alternating s-wave does have such in built 

electronic correlations.  

BCS used an independent particle model whose success was a surprise. In an important paper 

which is seldom  referred to in recent discussions of superconductivity  Bardeen and Pines17 

give a careful justification for such a theoretical line of attack on the problem of 

superconductivity. As is well-known the long-range Coulomb interaction between electrons in a 

good metal are screened out. The basis for the success of the apparent neglect of the long-range 

Coulomb interaction arises from the role of the zero-point energies of the Plasmon modes in a 

metal. This is intimately tied up with currently hotly discussed questions about the massive 

longitudinal photons and the Anderson-Higgs mode in superconductors.  Historically, the idea of 

the Higgs particle and mass acquisition by elementary particles finds its origin in Anderson’s 

famous paper25 written following an idea put forward by Schwinger26. Anderson’s idea was 

taken up by Peter Higgs27 [see ref [28] for a more complete historical perspective].and others 

and the rest, including the Large Hadron Collider at CERN, as they say - is history.  

In a superconductor the system undergoes a spontaneously broken symmetry and chooses a 

phase. The low lying phase excitations or Goldstone mode becomes the longitudinal degree of 

freedom of a massive vector Boson  via the Anderson-Higgs mechanism29,30 . Much more work 

remains to be done to clarify the interconnection between the Thomas-Fermi screening and the 

role of the Anderson-Higgs mechanism.  

The plasma modes are comprised of the long-wavelength Fourier components of the Coulomb 

interaction leaving behind a residual screened electron-electron interaction. The plasmon 

energies are high enough that they are not thermally populated at room temperature and 

therefore they do in a sense drop out of the problem. So the BCS wave function is actually a 

wave function for the quasiparticles. 

In conventional superconductors exchange of virtual phonons induces an attractive effective 

interaction between electrons of opposite spin and momentum whereby the Fermi Sea becomes 

unstable to electron pair formation. This is the so-called Cooper pair instability 5
,14,16 which is 

widely discussed as an n-fold stabilization effect.  Consider n-degenerate states which are Slater 

determinants in a basis of pair-wise occupied states required to obtain a coherence of the sign of 

the matrix elements. The diagonal elements are at an energy U above some reference energy 

with off-diagonal elements matrix element –V due to the attractive phonon induced electron-
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electron coupling. One of the eigenvalues at energy U-nV splits off from the rest giving the well 

known Cooper pair instability. (see refs [3
-7,13,14] for discussion). 

However as has been discussed in detail elsewhere beginning in 1979 3
-7, 31,4,5,6,7 (see section 1 

for the historical context.)  other scenarios with repulsive matrix elements are possible which 

give a similar type of n-fold stabilization effect.  We consider a real symmetric 2k-dimensional 

configurational interaction Hamiltonian matrix composed of two blocks. The first block is a k-

dimensional diagonal sub-matrix with diagonal elements equal to U. The second is a k-

dimensional full off-diagonal block with a repulsive matrix element, V > 0 in all sub-block 

elements as indicated below 3
-7 

. 

The following eigenvalue/eigenvector relationships given below are easily verified. 

                     (3.1) 

The lowest energy (U-kV) eigenvector is a 2k-dimensional vector with elements ±1. Real-space 

pairwise occupation of the single particle localized states making up the Slater determinant basis 

functions is essential to obtain the coherence of the matrix element signs and give the block 

structure to the Hamiltonian matrix shown above. 

Subject to the magnitudes of U and kV the lowest eigenvalue at U-kV can thus cross over into a 

new low energy ground state just as in Cooper’s problem.  

In the condensed matter literature there has been extensive discussion 13
,32 of the BCS gap 

equation
 
given by  

                                                      
'

,V
2E







   k

k k k
k

k                                                        (3.2) 

for the zero temperature case where  Ek  and k are respectively the BCS excitation energy and 

gap parameter. Superconducting low energy solutions exist for repulsive matrix elements ,V k k   

if the variational coefficients k change sign coherently across the Fermi surface.  Although 

expressed somewhat differently such a result is a special case of the more general situation 

discussed for the first time in ref [31] and discussed in section. 1 and followed up in other 
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publications3
-7,33. We will return to this question where Eqn(3.2) is derived by the assumption 

of an extreme state and the existence of Yang’s  off-diagonal long-range order to be discussed 

below.  

 

4. Off-diagonal long-range order (ODLRO) in Superconductors 

 

A key insight into the ordered nature of the superconducting state was suggested by  London 

34who  proposed the centrally important idea of momentum space ordering of the electrons in 

superconductors and the rigidity or stiffness of the superconducting wave function. It has taken a 

very long time since this and other early early insights35 to understand even conventional 

superconductivity.  It was some while after BCS theory16 appeared that the nature of the 

ordering in superconductivity became clearer. Ginzburg and Landau36 had created a very 

successful model of a superconductor near to the transition temperature by invoking a 

superconducting order parameter with an associated wave function. Following earlier work of 

Onsager and Penrose 37on the condensate in liquid 
4
He, and other important work by Gorkov on 

a non-diagonal order parameter 38, Chen Ning Yang2  introduced the concept of off-diagonal 

long range order (ODLRO). Yang’s analysis gives a method for deciding whether a many 

electron wave function has the ODLRO property which characterizes the superconducting state 

whereby an electron pair population analysis is undertaken using the second order reduced 

electronic density matrix
2( ) ' '

1 2 1 2
x ,x ;x ,x

3-7,39,40  ( See also Sasaki41  referred to in section 1.) 

Evaluation of the eigenvalues of a pair-space sub-block P of 
2( ) ' '

1 2 1 2
x ,x ;x ,x  can demonstrate 

the existence of Off-diagonal Long-range Order (ODLRO) in an electronic wave function. The 

second order reduced electronic density matrix for a many-electron wave function 

(x1,x2,…x2M) is defined in the Yang normalization as 

 

2 1 2 1 2 1 2 3 2 1 2 3 32 2( )  2 (2 1) ( ) ( ) MM MM M d d    
' ' ' '

 x ,x ,x ,x ;x ,x x …x x ,x ,x …x x x    (4.1) 

 

In order to undertake a pair –population analysis 
2( ) ' '

1 2 1 2
x ,x ;x ,x  may be expressed as 
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' ' * ' ' †

2 1 2 1 2 ij 1 2 kl 1 2 ij,kl

ij,kl

( , ; , )  g ( , )g ( )P  x x x x x x x x gPg

       (4.2)       

                                                               

 

 Pij,kl is an element of the pair sub-space population coefficient matrix P.     In Eqn(4.2) 

gij(x1,x2) is a two-electron Slater determinant and x1, x2,.. are spin-space variables. The 

normalization  of gij(x1,x2) is such that the density matrix eigenvalues correspond to 

populations of electron pairs in a particular germinal state.  ODLRO is present and characterizes  

a superconducting condensate for a many-electron wave function (x1,x2,…x2M)  when one of 

the eigenvalues λL of the matrix P is  macroscopically large. This macroscopically large number 

of electron pairs populating the same pair state is analogous to Bose-Einstein condensation 2 
,5,6 . 

Leggett 13 has given an extensive discussion of  the eigenvector of the density matrix associated 

with the large eigenvalue is superconducting condensate wave function x1,x2) and the relation 

to superconductivity.  

Diagonalization of  P  in 
†

gPg gives 

  

1

2
11

† † † † '
11, 22, 22( ...)

NNN

g

g g g

g













  
  
   
  

     
  
  
     

gPg gSS PSS g                     (4.3) 

 

The unitary transformation S which is the matrix of orthonormal eigenvectors of the matrix P 

relates the bases  and g g . 

Hence in diagonal form 

                            

' ' ' ' * ' '
2 1 2 1 2 1 2 1 2( , ; , )  ( , ) ( , )

n

ii ii i

i

g g  x x x x x x x x
                      (4.4) 

The mean of the eigenvectors associated with the small eigenvalues are assumed to be negligible 

in the limit when the couple at ' '( ) is well separated from ( )
1 2 1 2

x x x x . The electron pair 

density matrix then factorizes to give a Ginsburg-Landau type macroscopic wave function36 of 

the form ( ) ), ,(L Lg  1 2 1 2x x x x . To connect with the  n-fold stabilization problems above 



10 

 

consider the simplest Coleman42
,43 extreme state where we have M electron pairs distributed in 

a pairwise fashion over possible permutations of pair states occupying N time-reversed pair 

states. We will consider both attractive and repulsive cases where each Slater determinant basis 

function has the same absolute weight and so this extreme state is close in form to a projected 

BCS wave function . For both attractive and repulsive cases the matrix P has a macroscopically 

large eigenvalue. Firstly  as shown below for Cooper’s problem with attractive matrix elements 

we have 

.      

 

( ) ( )
1 1

( 1) ( 1)
1 1

( )
1 1

( 1) ( (1 )+ )

( )

( 1)
1 1

M M
N N

M
N

N M N MM M M
N N N N N

N M
M

N N M

N M
M

N N

  
    

      
    
    

      
    
    

        
    
 

           (4.5) 

 

  and in Eqn(9.1) for repulsive matrix elements. The details of how these matrix elements are 

obtained are given in full in refs [3
,7]. It can be seen that both scenarios for attractive and repulsive 

matrix elements in these degenerate systems can produce low energy states exhibiting ODLRO 

with superconducting properties. The point of view presented here is that the cuprates and possibly 

the iron –based superconductors9
,10,11 are examples of the latter scenario. The reader is referred to 

recent developments44 relating to the large eigenvalue of the cumulant part of the two-electron 

reduced density matrix as a measure of off-diagonal long-range order relevant to HTSC.  In this 

paper we will consider the reduced electronic density matrix of the quasiparticle wave function 

which comes from the Bohm-Pines method18
-20. 

 

  Before moving on we will make a connection between BCS theory 16and Yang’s Concept of 

ODLRO2and Coleman’s extreme state given in ref [33]. We consider a many-electron Hamiltonian 

for n electrons given by 

 

  1 i j

n n

i ij

i

H h h


                                                        (4.6) 
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where the terms on the right are the sums of one –body and two-body interactions.  

We focus only on that part of the energy (the pairing energy) which changes in a BCS condensation. 

Eqn (4.6 ) can be decomposed into a sum of electron pair Hamilitonians using  centre-of-mass (R) 

and internal coordinates (r). 

                                                         
2 2

2 ( ) ( )
2 2

r R

r R

p P
H V r

M
                                                  (4.7) 

where / 2  and 2r e R em M m   .  In an extreme state the total pairing energy E can be 

expressed as 

 

                              
2 2

2

N

L L L s k k

k

E g H g g H g 


                                         (4.8) 

where L and s are the large and small eigenvalues of the box P defined above. 

Expanding      exp( . )L

L L k

k

g F i  k r     and          exp( . )s

s s k

k

g F i  k r  

Following refs [13
,33] the BCS pairing energy is 

                    
2 2

2 2

,

2 ,

N
L s

k k k k k k

k s k k k

k k
E F F F F V

m m



 



                     (4.9) 

If we now assume that the magnitude of the Fourier coefficients is essentially constant over 

the Fermi surface we obtain 

                    
2

,

,

1
( ( 1) ) ( )L s k k k k

k k k

k
E N F F V

N m
  

 



                       (4.10) 

which for an extreme state can be written 

        
2

,

,

( ) k k k k

k k k

M k
E F F V

N m



 



               (4.11) 

Following ref [33] we also have  

                                                            
2

2/ ( )L

k L

M M
F N

N N
            (4.12) 
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which can be solved to give      

                                                                   
2

2 1 1 4 k

M
F

N
   .                (4.13) 

Insertion into Eqn (4.12 ) gives 

                
2

2

,

,

(1 1 4 )( )
2

k k k k k

k k k

k
E F F F V

m



 



           (4.14) 

Minimisation of E  with respect to 
kF 
 and appropriate identification of

kF 
 with Ek  and 

k which are respectively the BCS excitation energy and gap parameter gives the BCS gap 

equation
 
given by Eqn (3.2)  above and in detail in refs [13

,33], for example. It is appropriate to 

remark that Eqn(4.13) has another roots which may be appropriate to hole-doping of a nearly 

full band. 

 

5. The Bohm-Pines Hamiltonian 

The existence of plasma oscillations in metals was suggested many years ago yet the 

understanding of this continues to develop. A plasmon45
,46 may be described as a quantised 

excitation of a neutral system made up of positive and negative charges. The longitudinal 

oscillations of such a system (like sound waves) give rise to unique behaviour and here it is 

argued that it is intimately related to the occurrence of high temperature  superconductivity in 

cuprates and iron-based materials. 

The importance of plasma oscillations in metals was not appreciated until the work of David 

Bohm and David Pines in a series of ground breaking papers18
-20 published during the early 

1950’s. Although initially controversial, the physical picture which has emerged has been 

very significant in theoretical condensed matter physics. At that time the theory of metals was 

still in an unsatisfactory state [(for an early review see ref [46] and for a more recent review 

by David Pines see [14] p85)  

Bohm and Pines [17] demonstrated that the Coulomb interaction in a metal can be split into 

two regions. These are a long –range (lr) part due to the collective plasmon modes and a 

short-range (sr) part which is the screened Coulomb interaction. It is this ‘screened’ 

interaction which will interest us here. Plasmons have been described as ‘longitudinal 
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photons’18. In a superconductor following the Anderson-Higgs mechanism a Plasmon is a 

longitudinal component of a massive vector Boson which also gives mass to the transverse 

photons 25
,28-30. 

We consider a collection of charges   with masses mµ, charges Zµ and coordinates 
r in a 

cuprate superconductor. The system has an overall electrical neutrality so that 0Z


 . 

The system of charges interact in the presence of polarisable atomic cores which give rise to a 

high frequency background dielectric constant ε  into which the set of charges  Z
 are 

introduced. The charge carriers associated with the cuprate layers give rise to screening of the 

type appropriate to an electron gas yet the polarisable atomic cores give rise to the screening 

associated with a classical dielectric medium which we represent by the high frequency 

dielectric constant ɛ. The standard Hamiltonian for all the particles is given by 

 

2

,

'1 1
( ( ))

2 2

Z Z Z
H

m c r

  

 

   
   p A r            (5.1) 

 

A is an irrotational magnetic vector potential. The electric scalar potential is zero and does 

not appear in the Hamiltonian in the temporal gauge. 

We will split the total Hamiltonian into sr lrH H H   with A.p , p.A type coupling terms 

neglected. Thus , H is split into 2 decoupled Hamiltonians given by 

 

                                    sr lrH H H                               (5.2) 

which corresponds to decomposition into short-range srH and long-range lrH  Hamiltonians . 

Henceforth in the short-range Hamiltonian srH  the  nuclei will be regarded as infinitely 

heavy so that the Born-Oppenheimer approximation is effectively made so that only 

electronic motions will be considered.  

 

5.1 The Short-Range Hamiltonian Hsr 

 

The short range Hamiltonian is given by 

 

                           
2

2
,

'2 1
exp( . )

2
c

sr

k k

H Z Z i
m k



  
  



 

 


  
p

k r           (5. 3) 
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The last term will now be evaluated by replacing the sum by integration over k-space.  

Hence the short–range Hamiltonian is given by 

 

 

                      

   2

, 0

'1 2   sin( )
(1 ( ))

2 2

ck r

sr

Z Z kr
H d kr

m r kr



  

    
    

p
            (5.4) 

 

 

 

The short-range potential itself, 

   

0

2   sin( )
( ) (1 ( ))

ck r

sr

Z Z kr
v r d kr

r kr

 

 
    between two charges Zµ 

,Zν  at separation r is the second term in Eqn(5.4). This is easily evaluated numerically and is 

extremely interesting and will be discussed in detail next. 

kc is the inverse screening length. We will estimate kc using the inverse Thomas-Fermi screening 

length given by kc 
2
 =  16  

2
 me 

2
( 3 c / )

1/3
/ εh 

2  
where c is the carrier density and ε the high 

frequency dielectric constant of the polarizable background taken to be about 5 as used in refs[3
-

7] .We are forced by the difficulty of the problem to use the Thomas-Fermi approximation 47 to 

estimate screening lengths. For a hole doped valence band or an electron doped conduction 

band as in cuprate superconductors the screening length is readily related to the carrier 

concentration c  by     kc 
2
 =  16  

2
 me 

2
( 3 c / )

1/3
/ εh 

2  
. If the bands are anisotropic the 

details change but the qualitative picture remains. 

In Fig.2 the potential ( )srv r calculated from Eqn (5.4) for two electrons is plotted. The 

potential has a long-range oscillatory tail. 
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Fig.2 Bohm-Pines effective electron-electron potential, ( )srv r calculated from Eqn(5.4) 

for 

 (A) 1, kc=0.5 Å
-1

.  2, kc=1.0 Å
-1

. 3, kc=3 Å
-1

. each with ε=5   

 (B) 4, kc=0.5 Å
-1

.  5, kc=1.0 Å
-1

. 6, kc=3 Å
-1

. each with ε=1   

Note that for the same kc value the potential is inversely proportional to ε. 

 

At short range  the Bohm-Pines effective potential is very close numerically with the 

Thomas-Fermi potential 
TF

1
( ) exp( )cv r k r

r
  .  

It is the long-range oscillations in such a potential which will be the focus for the occurrence 

of HTSC. These are also well-known as Friedel oscillations48  

and discussed by March and Murray 49and Langer and Vosko50. 

 

 

 

5.2 Long-Range Hamiltonian and Plasma Oscillations 

 

The long-range Hamiltonian is given by 

 

           

22
* *

2

21 1
( )

2 2
c c c

lr k k k k

k k k k k k

Z
H P P Q Q

k







   

  


              (5.5) 

 

where                                            

2

2 4
Z

m



 

         

 

The last term in lrH  is a constant self-energy term. 

 

The above readily gives the energies of the Plasmons as 
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1

2
( )k k pE n    where 

2

2 4
p

Z

m



 





  .            (5.6) 

 

 

where 0,1,2...kn  . The coefficients  kQ  are the Fourier components of the longitudinal 

magnetic vector potential dicussed in detail in ref [19].The plasmon energies are large 

compared to thermal energies. Hence a large part of the correlation energy is accounted for 

by the plasmon zero point energies namely
1

2
p  for each mode k. 

The eigenfunctions of lrH are the plasmon wave functions. The plasmons are sometimes 

regarded as longitudinal photons. A longitudinal electromagnetic wave can propagate in the 

electron gas at 
p .The plasmon energies are usually regarded as too high to be easily 

excited and thus may be regarded as remaining in their ground states. Thus the ground state 

Plasmon wave function is simply the product of the ground state wave functions of all the 

plasmonic oscillators which we will denote by 
plasmon . 

 

 

6. Total Hamiltonian 
 

 

We study an effective short-range Bohm-Pines Hamiltonian srH  (the random phase 

approximation ) for the electrons on the cells of a square alternant arrangement of unit cells with 

local C4v point group symmetry.  

 

'

,

1
( ) ( ))

2
sr sr ij

i i j

H h i v r           (6.1) 

The many electron wave function may be expanded in a basis of Slater determinants    {ϕ k} 

where (x1,x2,…) = ck ϕ k   where  {ck} are the set of expansion coefficients obtained as an 

eigenvector of the Hamiltonian matrix. The total wave function will be a product of the form 
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 ( ), ,plasmon plasmon k k

k

c      1 2
x x     (6.2) 

The total energy is then 

2

2

1 2 1
( )

2
c c

sr p

k k k k

E H Z
k







 

  


      (6.3) 

 
 

    7. Choice of localized Basis Functions and Summary of Group Theoretical Analysis of 

Cuprate Superconductor real space condensate wave function. 

 

The cuprate lattice is an alternant layer structure with local C4v local point group symmetry as 

shown Figs. 1. The lattice may be partitioned into + or - sub-lattices where each unit cell has 

nearest neighbors with opposite signs. It is established experimentally that the superconducting 

condensate pair function in the hole doped cuprates the has singlet
 1

B1 symmetry under the 

operations of the C4v point group 51. This information about the symmetry of the cuprate two-

point function condensate wave function  permits some very fundamental deductions to be made 

about the localized electronic orbitals which can be used to construct the condensate wave 

function. The distance over which the condensate wave function x1,x2) stays finite as 

1 2 r r  is a measure of the superconducting coherence length ξ0 or the pair size. 

Experiments point to a very short ξ0 of only a few Ångstroms in cuprate superconductors 13and 

this characteristic is commonly believed to indicate real space pairing occurs in cuprate 

superconductors.  Hence we have chosen to work in a localized basis. A widely held view is that 

the active electronic orbitals are derived from oxygen (2p) or copper (3d) bands or some hybrid 

of these. We are seeking to identify a single or group of localized orbitals which allows pairs of 

electrons to evade the short range Coulomb repulsion and yet to exploit any longer range 

attractive region of the effective electron-electron interaction. Early on after the discovery of 

superconducting cuprates Sawatzky et al52 made a group theoretical analysis of the charge 

transfer in CuO but which was before the discovery of the d-wave condensate in 

superconducting cuprates. Following this,  some years ago  51 we identified a pair of localized 
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Wannier-type orbitals which we labeled as (px,py) with e-symmetry in the C4v point group, 

which seem on balance likely to play a  significant role in cuprate superconductivity. In the  

cuprate layers oxygen 2p x , 2p y , 2 p z orbitals hybridize  with the Cu d-orbitals to form  a  set  

of   symmetry   adapted   orthogonalised   localized  basis  functions   i ( r ) which make up 

the  condensate wave function. The shapes of these is given in Figs. 4a and 4b. 

     Decomposing  x1,x2) leads to   

                                      1 2( , ) ( ) k

k

    x x                        (7.1) 

 

The first term on the right- hand side  () indicates  the sum of the pair functions  centered on the 

principal axis at the centre of the unit cell  transforming as the irreducible representation  in the 

C4v point group. The second term on the right represents a linear combination of all the terms which 

transform collectively as the irreducible representation   and most significantly these are derived 

from the surrounding crystal.  If the condensate wave function   x1,x2)  has 
1
B1 symmetry under 

the operations of the C4v group then all the terms in Eqn(7.1) are required to individually  have 
1
B1 

symmetry.  

If the Wannier functions are assumed real the  (px(1)px(2)  - py(1)py(2))   pairing is composed of 

electrons in time-reversed states  where such a choice of pairing is considered the best candidate for 

producing robust HTSC. We disregard other pairing candidates as unlikely for reasons given 

elsewhere3
-51.These are shown on a cuprate lattice below and we will now discus how we can obtain a 

low energy superconducting state from electronic correlations where the (px, py) choice of active 

localized basis functions leads straightforwardly to  low energy ground state exhibiting ODLRO.  

 

8. The superconducting Ground State 

We consider a square cuprate lattice compose of N/2 cells as shown in Fig.1 (right)   .A  pair           

{l,px(x)}, { l,py(x)} of Wannier type functions are localized at the centre of each cell with index 

l.  

Each member of the  pair (l,px, l,px) of Wannier orbitals is assigned a signature (-1)
l
 and each 

pair (l,py, l,py) a signature  (-1) 
l+1

 as shown in the Fig.3. The layer is  decorated with Wannier 

pair functions which show an alternant pattern.  Most importantly, each Wannier function has 

nearest and next-nearest neighbors with opposite signs as shown in the blue/red crosses in Fig 3.  
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Fig.  3.  Signatures of Wannier pair functions a cuprate layer showing nine unit cells. The 

Wannier pair functions are labeled with a positive (dark-greyscale, red-color online) or 

negative sign (light -greyscale, blue-color online). Reproduced with the permission of 

J.Wiley (taken from Dunne and Brändas [3] ) 

 

 

Fig. 4 (a), (b) Shape of px-py pair of Wannier functions (or e-representation in square 

symmetry) for Cuprate superconductors. These orbitals are expected to be largely out-of-

phase combinations of ligand O(2p) orbitals as discussed in the text. The lobes with red 

and blue (dark and light in greyscale) centers have opposite signs.  Reproduced with the 

permission of J.Wiley (taken from Dunne and Brändas [3] ) 

 

 We consider a basis of Slater determinants generated by populating M singlet coupled electron 

pairs randomly over the N  Wannier orbitals so that each pair is either occupied by 2 electrons or 

vacant as depicted in Fig. 5 . with a filling fraction ρ= M/N . The number of ways of arranging M 

electron singlet coupled pairs randomly over N occupied orbitals is  
!

! !

N

M N M
 .Each 
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configuration is given an overall signature given by the product of the signs of the occupied pairs 

of orbitals such that each Slater determinant basis function may be grouped into one of 2 classes 

according to the overall signature. 

 

 

Fig. 5. Two typical configurations of singlet coupled time-reversed electron pairs (black 

balls referred to as a ‘dimer’ in the text) on the lattice with opposite signatures. 

Reproduced with the permission of J.Wiley (Modified from Dunne and Brändas [3]) 

 

.  

Expansion in a basis of Slater determinants   k  gives the many electron wave function  as

 1 2, ,.... ck k

k

 x x  .The set of variationally determined coefficients  ck for a given state is 

obtained by calculation of the associated eigenvector of the Hamiltonian matrix where for the 

ground state  ck  is determined remarkably simply from the product  
k

k

c i

i




  which runs over 

all occupied pairs of orbitals in the configuration k. 

In second quantized form the ground state wave function is  

 

                       † † † † M

x x y y
( ,…) ( 1 (a a a a )) 0

l

lp lp lp lp

l

-
   

  1 2x ,x         (8.1)     

 

             On average each configuration has  5M(1-ρ) nearest or next-nearest neighbor interactions with 

basis functions of opposite sign where there is one Wannier pair difference in the occupation 

numbers. The matrix elements between these states populate off-diagonal blocks of the 

Hamiltonian matrix.  

            The matrix element intracell two-electron integrals for  px-py pair transfers inside cell is given by 

                          v=  i,px( r 1 ) ipx ( r 2 )  12( )srv r   i,py ( r 1 )  i,py( r 2 )                (8.2) 
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            whereas next nearest neighbor pair transfer matrix elements between   px-px (or py-py) orbitals, between 

cells i and are given by  

               V=    i,px ( r 1 ) i,px ( r 2 )  12( )srv r    j,px ( r 1 )  j,px ( r 2 )         (8.3) 

             

The Coulomb repulsion between a pair of electrons in the same pair of px-px (or py-py) Wannier 

orbitals is  

                u =   i,px( r 1 ) ipx ( r 2 )  12( )srv r   i,px ( r 1 )  i,px ( r 2 )             (8.4) 

Significant values for V and v demand significant localized orbital overlap. Only nearest and next 

nearest neighbor interactions are important and can be neglected unless there is significant 

overlap.  This happens most readily for Slater determinants with opposite signature and this 

feature renders the Hamiltonian matrix with block structure shown in Eqn(3.4) and discussed 

earlier.  

If the minimum in vsr (r) falls outside the overlap region of two Wannier orbitals then the 

contribution of the attractive parts of vsr(r) to the matrix elements v and V will be small. At very 

short range screening is not really effective and so we may use the approximation 

                       v   i,px( r 1 ) ipx ( r 2 ) 
2

12

e

r
   i,py ( r 1 )  i,py( r 2 )             ( 8.5) 

and similarly for V.  Yet  u defined in Eqn (8.4) can be effectively screened where the minimum 

in vsr(r) can make a significant a contribution to lowering u so that it becomes less energetically 

demanding to bring a pair of electrons into the same Wannier orbital.   

Let us assume for a very simple model in which the superconducting ground state energetically 

competes with a normal ground state whose wave function is a single Slater determinant Ψnormal.  

In a localized basis with screened but locally strong Coulomb repulsions interactions and 

maximally unpaired electrons in the normal phase the energy is given by the expectation value 

of 

2

2

1 2 1
( )

2
c c

sr p

k k k k

E H Z
k







 

  


         (8.6) 

But the last two terms do not contribute to the energy difference between states as long as the 

use of the same screening constant kc is a reasonable approximation so that only srH is 
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important. An estimate of the energy of the short range Hamiltonian srH for such a normal 

state with the long-range part removed is 

 

               2sr DH M h M u               (8.7) 

MD  is the number of paired electrons in the configuration. 2M h  represents the one body 

terms. These energy differences between the superconducting state and such a normal state 

cancel. Thus assuming that the sum of the Plasmon zero point energies which describe long-

range energy differences are the same in both the normal and superconducting state  then we 

estimate of the energy difference/orbital between the energetically competing normal and 

superconducting phases as 

 

                                    (1 ) (4 ) (1 )u V v                        if   ρ > 1/2  

 

                   (4 ) (1 )u V v                      if   ρ < 1/2          (8.8) 

 

                                                                                                                                           

The energy expression given in (8.8) can become negative as the screening increases with 

doping and this allows the superconducting state to become the ground state, as depicted in Fig. 

6.   
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 Fig 6. Binding energy /condensed pair against dopant concentration for the parameters 

discussed in the text. For electron doping t=ρ and for hole doping t=(1-ρ). The  

parameterization 
2

/2
exp( / 2)e

cL
u k L


  , (4 ) 0.64eVV v   has been used . L is the unit cell 

length (≈4Å).  Reproduced from [5] .Copyright J. Wiley 

  

           The behavior of the appearance/ disappearance of superconductivity observed on doping is 

reproduced along with the well-known electron/hole doping symmetry. 

 

              9.Condensate Wave functions 

 

For the wave function given in Eqn(9.1) the pair population density coefficient pair sub-matrix P 

is given by 

 

 

 

(9.1) 

Such a macroscopically large eigenvalue shown above which indicates a superconducting 

condensation also occurs for the ground state wave function given in Eqn (3.4). Hence, n-fold 

stabilization with ODLRO can occur with both the attractive and repulsive matrix elements in 

the Hamiltonian matrix of the type discussed above. 

              The matrix P has a macroscopically large eigenvalue L  given by 

                     L (1 )+M M
N N

M        (9.2) 

             The associated eigenvector as given in Eqn(4.7) or in normalized form 

                
1/2

2 † † † †
1 2 x x y y

ψ( ) 1 (a a a a ) 0
l

lp lp lp lp

l

- 
   

  x ,x
    (9.3) 
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 
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             The macroscopically large eigenvalue represents a condensate of electron pairs and numerically equals  

           Yang’s upper bound
 
[2]  which was also derived by Sasaki41 in Uppsala at about the same time as Yang did 

his work but Sasaki’s work is rarely discussed. 

            The superconducting condensate density ns is proportional to λL/N = ρ(1-ρ ) and is an example Coleman’s 

extreme case 
42discussed by Weiner and Ortiz 

43. 

For hole doping when ρ 1 and electron doping when ρ 0 and then ns is practically linear in the 

dopant density. This prediction has been discussed by Dunne5 who re-worked the analysis made by 

Dunne and Spiller 53for 2 bands relevant to the case here and to which the reader is referred. 

Valence counting was used to calculate the hole densities used in ref[53]. The result given in ref [5] 

is that the broad features of the experimental observations54 are satisfactorily described by the 

theory. A model of thermal properties of the model is also given in ref[5].The singlet condensate 

wave function has d-wave   symmetry in k-space and in real space and as shown below in Fig. 

7(a),(b). 

 

 

 

           Fig. 7(a), (b) Shape of Cuprate condensate wave function in k-space(Fk) and real-space         

(ψ (r)). The   relative coordinate is r = r1 - r2.  The range over which ψ (r) is significant 

measures the pair size or coherence length. In the above figures the range shown is  4Å but 

the condensate wavefunction remains significant out to about 10Å.The lobes with red and 

blue (dark and light in greyscale) centers have opposite signs. The green areas (grey in 

greyscale) are close to zero. Reproduced with the permission of J.Wiley (taken from Dunne 

and Brändas [3]) 
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10. Role of Electron Correlation  

 

An examination of the energy difference between the normal state and the superconducting state 

shows that there is a coherent lowering of the electronic energy on the cuprate lattice.  

            Let us focus simply on the electron doped case where we have the energy difference as

(4 ) (1 )u V v      from Eqn(8.8) .The first term is the increase in Coulomb repulsion between the 

paired electrons. There is a long-range contribution to the integral u which is due to the minimum in v sr . 

The latter term is a correlation term which arises from keeping pairs of electrons apart at very short range.  

It is the utmost importance to appreciate that the last term is made up from contributions which act 

collectively to lower the energy.  In Fig 3. for any unit cell the region in between red/blue lines for nearest 

and next nearest neighbours are regions of space with a reduced probability of finding a pair of electrons 

with opposite spin close together. This collective reduction in the Coulomb repulsion allows the attractive 

part of the long-range Bohm-Pines potential to play a significant role in the energetics.        

The sign alternation in the condensate wave function indicates that a ‘hole’ develops in regions 

of space around each electron keeping pairs of electrons out of the hard-core Coulombic 

repulsion. This allows them to reside with higher probability at the minimum of vsr(r).  

A weakness in the current approach is the use of a uniform high-frequency dielectric constant ε. 

It has been shown recently55
,56 that a two-electron system can hold a bound state with a mean 

nuclear-electron distance 5Å3.r  for the outer electron at the critical nuclear charge for 

binding. It would be highly interesting to study a 2 electron atomic problem with the nucleus 

replaced by a polarizable body to mimic the Cu atom in the situation shown in Fig.7.  

Finally we remark that electron correlation  was central to Per Olov’s work and in refs [40
,57,58] 

the ground work for key aspects of the discussion in this contribution was laid. Also, in his 

book59 on linear algebra he discusses the ‘mirror theorem’. In principle, it goes beyond the 

Born–Oppenheimer (BO) approximation. A superconductor would be divided into two parts: 

(a) the light fermions and (b) the heavy nuclear framework which are linked through the 

‘mirror theorem’. Investigating the consequences of this linkage for superconductors possibly 

by tracing  over the nuclear coordinates might be of interest. 
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