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ABSTRACT Rising global energy demand, predominantly satisfied by fossil fuels, triggers fuel price
surges, fuel scarcity, and substantial greenhouse gas emissions. Solar photovoltaics (PV), as an abundant
renewable alternative, can potentially address this demand, yet low cell efficiency (15-25%) and fluctuating
output power due to intermittent irradiance (G) and temperature (7') impedes grid integration. This paper
presents a novel Deep Learning (DL) based stacked LSTM (Long Short-Term Memory) MPPT controller
to maximize power harvesting from a 100 kW grid-tied solar PV system, demonstrating superiority
over conventional Perturb & Observe (P&QO) and Feed Forward-Deep Neural Network (FF-DNN) MPPT
approaches. Subsequently, a Neutral-Point-Clamped (NPC) 3-level inverter with proportional-integral (PI)
controllers regulates the DC link voltage and transfers the extracted PV power to the grid. The proposed
MPPT methodology includes collection of one million-sample (G, V, Vmp) datasets; preprocessing via
z-score normalization; visualizing distributions through histograms and correlation matrix plots; an 80/20
split rule-based training and test sets; a two-hidden layer stacked LSTM (64 and 32 neurons) architecture;
hyperparameters including the Adam optimizer, 0.05 learning rate, 32 batch size, and 50 epochs. Model
efficacy quantification uses MSE, RMSE, MAE, loss, and R2 metrics. For 100 kW generated PV power, the
stacked LSTM extracts 98.2 kW, versus 96.1 kW and 94.3 kW for the DNN and P&O MPPTs respectively.
By integrating the optimized proposed stack LSTM MPPT with a streamlined inverter topology, the proposed
approach advances the state-of-the-art in DL based solar PV energy harvesting optimization and grid
integration.

INDEX TERMS Deep learning, grid integration, long short-term memory network, maximum power point
tracking, solar photovoltaic, deep neural network.

I. INTRODUCTION

Rising global energy demand originated from popula-
tion growth, industrialization, and urbanization [1]. This
massive energy demand is nevertheless largely fulfilled
by conventional fossil fuels like coal, natural gas, and
oil as demonstrated in Fig. 1 [2]. However, the adverse
environmental impact coupled with fuel price volatility
and finite fossil fuel reservoirs necessitates the integration
of renewable alternatives like solar photovoltaics (PV) to
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fulfil the global rising energy demand [3]. Although solar
PV systems are clean, noiseless, economical, and abundant
energy sources [4], PV integration into the grid faces barriers
like low solar cell efficiency, variable PV output power due
to intermittent sun irradiance (G) and solar cell temperature
(T), power conversion losses, harmonics due to DC link
voltage instability and complexity in grid synchronization.
The increasing adoption of advanced MPPT and inverter
control topologies has significantly improved the efficiency
of grid-connected PV systems, as evidenced by the rapid
growth in installation of the PV panels over the past few
decades as shown in Fig. 2 [5]. The two predominant solar
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PV system configurations are grid-connected and off-grid.
Off-grid systems are independent of the utility grid and attain
energy autonomy via battery storage, making them better
suited for remote locales regardless of the higher initial
cost. Grid-connected systems establish integration with the
utility grid, feeding surplus power back to the grid while
drawing energy from it when solar generation is deficient.
By utilizing existing infrastructure, grid-connected systems
are prevalent in residential and commercial applications with
lower upfront expenditures [6]. The dual stage grid-connected
architecture employed in this article encompasses PV arrays,
MPPT controller, DC/DC converters, inverters, LCL filters,
PLL synchronization, and utility microgrid. The first stage
tracks and harvests the maximum available PV power from
the PV panel in the presence of dynamic G and T values,
while the second stage transfers the harvested power to the
grid by ensuring the DC link voltage regulation and grid
synchronization.
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FIGURE 1. Shares of global energy demand.

In the literature, researchers have explored a spectrum
of MPPT approaches, including traditional methods, smart
techniques, and Machine Learning (ML) based MPPT
controllers to support the intermittent PV power generation
caused by fluctuations in G and T values in dual stage grid
tied PV systems.

A literature survey on the traditional MPPT methods
emphasizes that the Perturb and Observe (P&QO) method is
simple and has low computational complexity using only a
single voltage or current sensor [7], [8]. However, due to its
iterative nature of constantly perturbing the operating point,
it tends to fluctuate around the maximum power point (MPP)
under dynamic conditions. In contrast, Incremental Conduc-
tance (IC) method reduces the fluctuations by dynamically
adjusting the operating point according to power and voltage
or current changes [9], but it slightly increases the complexity
by using two sensors compared to the P&O method and also
encounters fluctuations around the MPP during rapid weather
variations. The Open Circuit Voltage (OCV) method further
simplifies the system by utilizing the characteristics of PV
modules without the need for additional sensors or complex
algorithms. However, authors in [10] stated that accuracy
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decreases under changing environmental conditions due to
its reliance on static voltage/temperature curves. The Short
Circuit Current (SCC) MPPT method also reduces the system
complexity by using a single current sensor [11] but it also
exhibits drawbacks like oscillations, slow convergence, and
sensitivity to rapidly changing conditions.

The challenges of traditional MPPT methods have moti-
vated researchers to delve into smart MPPT algorithms
including Fuzzy Logic Controllers (FLC), Particle Swarm
Optimization (PSO), Genetic Algorithm (GA), Artificial
Neural Networks (ANN), and Machine Learning based
MPPT algorithms etc. Unlike traditional MPPT methods,
Fuzzy Logic Controllers (FLC) use rule-basis to dynamically
adjust the control parameters based on the degree of mem-
bership for input variables, thereby allowing more precise
tracking and mitigation of oscillations around MPP [12].
However, FLC encounters difficulties during rapid changes
in G and T due to its limited ability to capture complex
relationships between input variables and optimal control
actions due to static member functions. Particle Swarm
Optimization (PSO) optimizes the duty cycle for enhanced
MPP tracking efficiency through iterative updates of particle
positions, influenced by individual best-known positions and
collective knowledge of the swarm [13]. However, during
rapid environmental changes, particles in PSO fail to adjust
their positions quickly, leading to suboptimal performance
in tracking the MPP. Genetic Algorithms (GA) based MPPT
tackles slow adaptation by exploring a wider search space
through evolutionary operations like selection, crossover,
and mutation, enhancing optimization during rapid environ-
mental changes [14]. However, it has limited adaptability
to complex data relationships due to fixed operations and
slower convergence rates. The ANNs which are building
blocks of ML and DL algorithms outperform existing
traditional and smart MPPT methods in terms of accuracy
and efficiency. ANN learns complex patterns from inputs
and target data set, continuously improves models based
on new data, and dynamically optimizes MPPT accuracy
and efficiency [15]. However, challenges remain regarding
interpretability, overfitting, and dynamic adaptability. This
necessitates hybrid, advanced ML, and Deep Learning (DL)
based MPPT methods to further enhance the performance of
MPPT controllers.

To address the challenges of the traditional and smart
MPPT algorithms like sensitivity, complexity, and slow
response time, researchers investigated hybrid MPPT meth-
ods which combine the features of the smart and con-
ventional MPPT algorithms to utilize their complementary
strengths. The authors in [16] integrated the ANN and
Hill Climbing (HC) methods to address partial shading
issues. This integration enables the ANN to learn complex
data relationships, while HC refines the search process to
converge towards the optimal solution, improving overall
tracking accuracy. The authors in [17] optimized a stand-
alone PV system with a GA-ANN approach. Here, GA offers
a global search capability to explore the solution space
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FIGURE 2. Installed capacity of solar PV generation.

effectively. While ANN offers adaptive learning to fine-tune
the MPPT algorithm based on real-time data, enhancing
system performance under varying conditions. PSO-ANFIS
based hybrid MPPT model for hybrid microgrids is presented
in [18]. In this integration, PSO optimizes the parameters
of an Adaptive Artificial Neuro Fuzzy Inference System
(ANFIS). It combines PSO’s global search ability with
ANFIS’s to handle uncertain and nonlinear data, resulting in
robust MPPT performance. Despite the advantages, hybrid
MPPT approaches rely on predefined rules or parameters, and
encounter slow convergence and lack in dynamic adaptability
to varying environments. Thus, the integration of advanced
DL-based MPPT approaches with superior data processing
and adaptive learning capability is essential to surpass the
performance of the state-of-the-art MPPT methods.

The challenges in traditional, intelligent and hybrid meth-
ods and the need for advanced MPPT algorithms have been
demonstrated previously. In this section, we comprehensively
compare the advantages, disadvantages and progressions in
advanced ML and DL-based data-driven MPPT approaches,
which are closely related to the proposed stacked LSTM
MPPT method. Despite the growing interest in Artificial
Intelligence (AI) for renewable energy systems, few studies
have explored the potential use of DL for solar PV power
optimization - a significant research gap that the proposed
study aims to address with a stack LSTM-based MPPT
tracking approach. The authors in [19] employed two Deep
Neural Network (DNN) controllers in the category of Feed
Forward Neural Network (FF-NN) controllers for a 40 kW
solar/wind hybrid power system, including a custom DNN
MPPT with 66,000 data points, two inputs, one output, and
1000 hidden neurons. The authors encourage the deployment
of DNNs in PV/wind applications, but this simulation-
based approach increased the computational overhead by
using two distinct DNNs, with a larger number of hidden
neurons for a small dataset of 66000 samples. In addition,
the data preprocessing and visualization steps are missing
which are essential for data-driven DNN approaches. The
authors in [20] proposed a Recurrent Neural Network (RNN)
MPPT algorithm for grid-connected PV, emphasizing cell
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temperature adaptation. However, key details like dataset size
and model structure are not considered. In addition, despite
RNN being a data-driven approach, the data pipeline steps
(pre-processing, visualization) are not considered. Moreover,
the RNNs struggle with long-term dependencies due to
gradient vanishing problem which can be resolved using
gating structure of Long short-term memory (LSTM) net-
works using its specialized gating structure. In [22], authors
advocate the integration of deep learning (DL) into MPPT
and present deep reinforcement learning (DRL) methods,
including deep Q networks (DQN) and deep deterministic
policy gradient (DDPG) to optimize the MPP of PV systems
under partial shading conditions (PSC), which is beyond
the scope of our study. However, DRL techniques such as
DQN and DDPG are complex to train and computationally
expensive in contrast to the simple implementation and low
computational requirements of stack LSTM. The authors
in [21] applied a 5-layer bidirectional LSTM (600 neurons)
to a 230W solar-wind-battery hybrid system, demonstrating
MPPT control but at increased computational intensity. The
integration of Bi-LSTM improves accuracy with forward and
backward pass layers through advanced network training.
However, the complexity of the five-layer deep LSTM net-
work, coupled with the bidirectional information propagation
of Bi-LSTM, leads to significant computational overhead
and potential inefficiencies in training compared to the
proposed two-layer stacked LSTM architecture. A summary
of state-of-the-art MPPT controllers for standalone and grid-
connected PV systems is presented in Table 1. The table
encompasses various parameters, including the mode of
operation, complexity, category (such as True MPPT, Simple
Estimation MPPT, or Soft Computing MPPT), number and
type of sensors used (e.g., voltage (V), current (I), sun
irradiance (G), and cell temperature (T)), and cost analysis,
derived from an extensive literature survey.

TABLE 1. Comparative assessment of existing MPPT studies.

Ref. MPPT Mode Complexity =~ Cost ~ NP-Sensors
True MPP Controllers
[7] P&O SA L L V,1
Simple Estimation MPPT Controllers

[10] FOCV SA L L A%
FSCC SA L L I

9] IC SA M L V,1

Soft Computing MPPT Controllers

[12] FLC GT M M V.G, T

[13] PSO SA M M V,I,G, T

[14] GA SA M M V,I,G,T

[15] ANN SA M M V,.LG, T

[16] ANN-HC SA H H V,LG,T

[17] ANN-GA SA H H V,LG,T

[18] PSO-ANFIS GT H H V,I,G, T

[19] DNN GT H H V.G, T

[20] RNN GT H H V.G, T

[21] Bi-LSTM GT H H V,I,G, T

PR Stack LSTM GT M M V,.LG, T

NP: Number of Possible, SA: Standalone, GT: Grid Tied, L: Low, M:
Medium, H: High, V: Voltage, I: Current, G: Irradiance, T: Temperature
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A comprehensive literature review highlights the chal-
lenges faced by traditional, intelligent and hybrid MPPT
methods, focusing on their limitations in dynamic environ-
ments and slower tracking speed compared to advanced DL-
based MPPT techniques. While traditional ML algorithms
struggle with time dependency and non-linear relation-
ships, FF-DL methods offer better functionality but may
struggle with long-term dependency. RNNs mitigate these
challenges but have problems with gradient descent, while
LSTM networks address these limitations with specialized
memory and gating mechanisms to improve efficiency and
performance. In the proposed research, we introduce a
holistic stacked LSTM-based MPPT controller for a dual
stage grid-connected PV system and reduce the compu-
tational complexity in both stages. Compared to existing
DL-based MPPT works, our model handles higher power
levels (100 kW), uses only two hidden layers with a total
of 96 hidden neurons, utilizes tanh activation functions
for uniform training, integrates dropout layers to avoid
overfitting, and adopts a learning rate of 0.05 for stable
convergence. This reduced complexity without sacrificing
efficiency increases the practical applicability for future
researchers. In addition, by prioritizing training using the
80/20 data splitting rule, the proposed research is in line with
basic data-driven principles, including data preprocessing (z-
score normalization), visualization (bar graphs, histograms,
correlation), which have not been considered in past studies.

The main objective of the proposed study is to inves-
tigate the potential of DL-LSTM based MPPT controllers
in harvesting MPP with maximum efficiency and least
complexity by utilizing the aforesaid benefits of LSTM
network. Despite the massive potential of DL in time series
forecasting applications in energy sector, there are few
studies using DL as MPPT in PV solar systems. However,
simplifying the complexity remains a challenge and requires
careful consideration of computational costs, resources, and
convergence issues to assist future researchers in developing
real-time DL based MPPT implementation.

The proposed research offers novelty in following aspects:
(a) uses stacked LSTM networks as MPPT controllers for
two-level grid-connected PV systems, a holistic approach
that is not previously studied in the literature; (b) uses only
2 hidden layers and 96 neurons within stacked LSTM to
cope with relatively higher power (100 kW), minimizing
complexity without sacrificing efficiency; (c) this study con-
ducts a comparative analysis of three Maximum Power Point
Tracking (MPPT) models, traditional Perturb and Observe
(P&O), Feed-Forward Deep Neural Network (FF-DNN), and
the proposed stacked Long Short-Term Memory (LSTM)
techniques, using MATLAB to evaluate their performance.
The analysis demonstrates the superiority of the proposed
stacked LSTM model by comparing it with the widely used,
cost-effective, simple, and fast P&O method, as well as the
advanced deep learning-based FF-DNN method, highlighting
the LSTM model’s enhanced accuracy, adaptability, and
overall efficiency in tracking the maximum power point,
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(d) integrates a comprehensive data science and data
engineering pipeline including pre-training data process-
ing, visualization, and splitting into the DL-based MPPT
methodology, which is an important step in data-driven DL
models but has been ignored in past works; (e) realizes
DC-link voltage control and active power transfer from PV
to grid using a simple Pl-based inverter control to achieve
complexity reduction.

The main contributions of the proposed research are
highlighted below:

o Data Collection: Initially, 1 million data points are
randomly collected for both inputs (G, T) using (14)
and (15). Corresponding target data for voltage at the
MPP is collected using (17). Use of a very large amount
of data in training aimed to improve model accuracy
and testing on unseen data to ensure it learns rather than
memorize patterns to ensure generalizability.

o Data preprocessing: Z-score normalization is used to
bring the data to a uniform scale. In comparison to min-
max normalization, it not only reduces the effect of
outliers, but also improves the convergence speed and
training efficiency by centering zeros with a standard
deviation of 1, thus providing a more stable and efficient
optimization process during model training.

o Exploratory Data Analysis (EDA): EDA is performed
on normalized data using statistical techniques and
visualization methods such as box plots, histograms, and
correlation matrices. These analyses help to understand
data distribution, variability, and interrelationships,
facilitating pattern identification and the selection of the
most appropriate model architecture.

o Hyperparameter tuning: To optimize the LSTM archi-
tecture, a manual iterative selective process is performed
to investigate different configurations including layer
depth and neuron count. The chosen configuration,
atwo-layer LSTM with 64-32 neurons, strikes a balance
between model complexity and performance.

« Model evaluation: The trained model is evaluated using
benchmarks such as training loss, mean squared error
(MSE), root mean squared error (RMSE), mean absolute
error (MAE) and R? to assess its prediction accuracy and
generalization ability.

o Simulation setup: Simulink/MATLAB is used to sim-
ulate three MPPT algorithms: the traditional P&O, the
DL-based FF-DNN and the stack LSTM-based MPPT
controller. While the P&O controller is implemented
directly, the FF-DNN and Stack-LSTM models undergo
rigorous pre-processing, training, and testing before
being integrated into Simulink. The complexity of the
two data-driven models is kept consistent for a fair
comparison during the analysis.

o Integration and evaluation: The trained models (FF-
DNN and stack LSTM) are integrated into a simulation
model of a grid-connected 100 kWp PV system. The
comparative analysis of all three MPPT models is
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performed based on the maximum power extraction
efficiency from a 100 kW PV system.

o The control of dual stage grid-tied PV system: In
dual stage grid-tied PV system, the MPP tracking is
performed by the DC-DC converter using the pro-
posed stacked LSTM-MPPT controller and the DC-link
voltage is regulated by the 3-phase, 3-level Neutral-
Point-Clamped (NPC) inverter. The inverter current is
conditioned to provide decreased THD to meet the
specifications of the grid authorities and active power
is transferred to the three-phase microgrid.

The rest of the paper is organized as follows. Section II
summarizes the proposed research and model formulation,
including the design and formulation of the PV cell, boost
converter, LSTM network, and NPC inverter. Section III
details the procedures employed in the formulation of the DL
model pipeline. This includes collecting input and target data,
partitioning the data for training and testing purposes, data
normalization, visualization of data distribution, and explic-
itly designing the DL model, i.e., stacking the LSTM and
FF-DNN, while considering the specified hyperparameters.
In Section IV, both DL models are trained and tested, the
performance is evaluated using MSE, RMSE, MAE, loss,
and R2 scores. Section V discusses the LSTM-based MPPT
results and presents the PI-based NPC inverter control for
grid-connected PV systems. The paper concludes with a
summary and outlines future research directions.

Il. OVERVIEW AND MODEL FORMULATION OF THE
PROPOSED RESEARCH

The proposed dual stage grid-tied PV system comprises two
stages; the first stage deals with DL based MPPT controller
encompassing a boost converter, whereas the second stage
involves DC link voltage regulation and inverter control to
ensure power transfer to the grid. The novelty of the proposed
work lies in the first stage, and the second stage ensures grid
integration with the least complexity. A complete overview
of the proposed research is illustrated in Fig. 3. This section
proceeds with the mathematical model design, formulation,
and working of all the important components used in both
stages including PV array, boost converter, LSTM-based
MPPT controller, and the 3 level NPC inverter.

A. DESIGN AND FORMULATION OF PV CELL

The working principle of a solar PV cell is like the reverse
biased PN junction diode. It operates during the sunlight to
convert sunlight (photo energy) into electrical energy, and it
produces a small ““dark current” at night. The solar cell is the
smallest component of the PV array which adds up to make
a PV module that is further joined in parallel and series to
get the desired wattage of a PV array. In this study, a total of
96 cells per module, 5 series connected modules per string,
and 65 parallel strings are considered to get the desired output
power. Considering the simplicity and precision, the single-
diode equivalent model of the PV array is considered as
indicated in Fig. 4 [23]. The maximum power of the proposed
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FIGURE 4. The schematic diagram of the boost converter.

TABLE 2. Design parameters of the SunPower TS-SPR-315 PV module.

Symbol  Variable Name Value
N; Number of series-connected modules 5
N, Number of parallel-connected modules 65
Ve Open-circuit voltage 642V
Vinp Maximum power point voltage 547V
Ie Short-circuit current 596 A
A Ideality factor 0.95
a I-V temperature coefficient 0.016
B P-V temperature coefficient -0.27
Prnax Maximum power 315W
K Compensation factor 3
Ny Number of series-connected modules 5

PV array is calculated using the parameters listed in Table 2
as given in (1).

Ppy = PuaxNoNs =315 x 65 x 5~ 102 kW (1)

Here, I, is the photocurrent, /; represents the diode
current, /; denotes shunt current flowing through Ry, shunt
resistance and 7 is the net current flowing through Ry series
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resistance as modelled by the authors in [24]. The net current
is obtained using Kirchhoff’s Current Law as shown in (2)
[23]. After substituting the values of all the currents, the final
output current is modelled in (3).

Ipv = Iph — Iy — Iy ()
Ipv = Iph — Io{explg (v + R;) AK Tj] — 1} —{(v + IRs)Rg)}
3

Here, I, is diode junction diffusion current, g is the electric
charge (1.602 x 1078C), K represents the Boltzmann con-
stant (1.38 x 10723J /K), T; denotes the junction temperature,
and A is the ideality factor.

As the value of Ry is very high so (3) can further
be simplified as (4) by neglecting the shunt current. The
maximum power equation is modelled in (5) as recommended
by the authors in [24].

Ipy = Iph — Io{explg (v + IRs) AK Tj] — 1} “)
Iy = Nplpp — Nyl {explq(v + (RsN; /N,))AKT;] — 1} (5)

In (5), the solar cell counts in series and parallel
configurations are represented by Ny and N,, respectively as
modeled by authors [25].

In the proposed model, 5 series connected modules per
string and 65 parallel strings are connected to get the
desired 102 kWp output power. The design parameters of
the proposed model as applied in the Simulink MATLAB
environment are listed in Table 2 .

B. BOOST CONVERTER DESIGN

In the dual stage grid-connected PV system, a boost converter
is vital in the first stage that increases the fluctuating
solar PV array voltage (250-280 V) to an 800 V DC
bus voltage enabling grid stability and maximum system
performance [26]. In the proposed model, the boost converter
provides end-to-end system optimization by [25] and [27]: 1)
maximizing solar efficiency with dynamic MPPT control, 2)
regulating voltage and current levels according to conditions,
and 3) boosting to a stable 800 VDC bus suitable for
downstream inversion and grid integration. The inclusion
of a boost converter in our model is due to its ability to
effectively boost the voltage from the PV array to the level
required for the inverter. Boost converters are known for their
high efficiency, simplicity, and cost-effectiveness. They play
acrucial role in maintaining the desired output voltage despite
fluctuations in the input from PV panels due to changing
irradiance and temperature conditions. This ensures that the
maximum power from the PV panels is efficiently converted
and transmitted to the grid. Its coordinated optimization,
regulation, and power conditioning bridges the MPPT and
inverter stages.

The main components in the boost converter topology are
the inductor, capacitor, high frequency switches and diode as
depicted in Fig. 5. The designed values of each electronic
component with the corresponding equation are listed in
Table 3 .
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TABLE 3. Design parameters of the boost converter.

Symbol Variable Name Value
Input Voltage Range Vow 250-280 V
Output Voltage Range V,=V;/(1-D) 0-800 V
Switching Frequency fow 5 kHz
Output Current Range I, =V,/R 0-125 A
Input Current Range I; = 1;/(1-D) 0-400 A
Max. Inductor Ripple Current AIL=5% (I,) 6,25 A
Capacitor Ripple Voltage AVC =5% (V) 40V

In the presence of rapidly changing weather parameters
(G, T), the proposed DL-based LSTM MPPT extracts the
voltage at the maximum power point (Vy,;). The extracted
Vmp voltage is then compared to solar PV voltage V), and
the error signal is given to PI controller which serves as a
reference signal for PWM and controls the switch of the boost
converter. When the PV voltage increases, the boost converter
switch is activated for proportionally less time per period
to reduce the duty cycle (D) to counter the higher input by
reducing the switch conduction time to regulate the 800 V
DC link; conversely, if the input drops below optimum, the
switch on time is extended per cycle to increase duty and
maintain the target bus voltage despite lower supply levels.
Thus, the proposed MPPT controller dynamically modulates
the duty cycle of the boost converter to regulate 800 V DC link
voltage in response to solar input voltage fluctuations caused
by varying G and T values. The regulation of DC link voltage,
inverter operation, and inverter control (voltage and current
control) is explained in section II-D.

Iph — vd I[PV —p

A \ PY
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- Idl Ish i

2 |

f < '
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- [ []
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£ ]
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FIGURE 5. Single diode model of a PV cell.

C. DESIGN WORKING AND FORMULATION OF THE LSTM
NETWORK

The output power of the solar PV is affected by changes in the
values of the parameters G and T'. For each combination of G
and T, there is a point known as the maximum power point
(MPP) where the PV system produces the maximum power
output. Since solar cell efficiency is inherently low [28],
extracting the maximum power from the PV system under
certain G and T conditions is crucial to maximize energy
efficiency. This requires the implementation of an MPPT
controller to achieve maximum power and increase efficiency

VOLUME 12, 2024



U. Younas et al.: DL Stack LSTM Based MPPT Control of Dual Stage 100 kWp Grid-Tied Solar PV System

IEEE Access

«10* PV Curve at T = 25, and G = [100 500 1000]
! i | ! VPP
10 -Pmpp 1 KWim®
— 8 7
£
59 0.5 kwim? 1
g .
g4 1
2r 0.1 KWim? 1
o : PR N ¥ §
0 50 100 150 200 250 Vmp 300 350
Voltage (V) <>
x10* PV Curve at G = 1000, and T = [25 50 80]
! 7 h l i
MPP
10 Pmpp 25°C
z 8 ) 50 °C
T 80 °C
56
§
o 4r
2
ot . , . . . ) N
0 50 100 150 200 250 Vmp 300 350

Voltage (V) -

FIGURE 6. PV characteristics of SunPower TS-SPR-315 PV array
concerning change in T and G.

by enabling the PV system to operate at its MPP. The PV
characteristics of the proposed SunPower TS-SPR-315 PV
module are presented in Fig. 6.

The change in G slightly affects the MPP voltage (V)
value but the change in T significantly affect the value of
Viup. Hence, the PV panel’s maximum power is accomplished
using an adequate proposed stack LSTM MPPT control
strategy by controlling the V,,, of the PV panel considering
the combined effect of G and T on V,, through the
coordinated interaction of gating units and memory cells
LSTM architecture.

The term “Deep Learning” was coined in 1986 and gained
importance in the field of ML around 2000, particularly with
the emergence of ANNs. DL algorithms, highlighted by [29],
use multiple hidden layers for advanced computer learning.
While FENN is simple, its limitations of unidirectional
information flow in handling complex time series data led to
the development of RNN. However, RNNs face challenges
such as exploding and vanishing gradients in extensive time
series applications [30]. The gated cell structural model of
LSTM introduced by [31] addresses these issues by providing
improved accuracy and better results for recursive multi-step
time series applications [32]. The structure of an LSTM cell
architecture consists of an input gate, a forget gate, a memory
cell (memory item or cell state) and an output gate, as shown
in Fig. 7 [31], [33], [34].

The forget gate f; makes that determination if information
should be saved or forgotten from the previous time step 7 — 1.
The sigmoid o function keeps its value between 0— Forget
and 1—Keep as modelled in (6). The input gate extracts
the important input data information at the current time t
and categorizes the information as 1—Important and 0— Not
Important as modelled in (7). In the intermediate cell state,
input gate information is given to the tanh activation function
which regulates the cell state value between 1 and -1 as
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FIGURE 7. The structure and design of a LSTM Cell.

shown in (8). The cell state will decide to store or drop
the information (1— store) and (0— drop) by multiplying the
information of the previous cell state with forget gate. The
subsequent hidden state is completed by the output gate as
modelled in (9).

fi=o (WfX, + WrS1 + bf) (6)
ir =0 (WiX; + WiSi—1 + by) (7
C = tanh (WX, + W;Si_1 + by) (®)
Or = 0 (WoX; + WpSi—1 + by) )

The current cell state at time t depending on the previous
cell state (8) is listed in (10). The hidden state at time step t is
given in (11). The cell state and hidden state at time t are the
LSTM cell’s output. The hidden state at time t is responsible
for the time series prediction.

Cr=iC +£,C (10)
]’lt = OZtanh(Ct) (1 1)

In the above equations (6)-(11), x = x1, x2,...x7 is the
vector of inputs, & = hy, hy,...hr is the hidden vector,
and Y = y1, y2,...yr is the output vector modeled at time
T = 1 — t. In addition, f; is the forget gate, i; is the input
gate, C represents the intermediate cell state, O; is the
output state, o is the sigmoid activation function, tanh is
the hyperbolic tan activation function, W, X, S, b represent
weights, inputs, states, and bias of the respective gates [35].
The mathematical forms of the sigmoid and tanh activation
functions are presented in (12) and (13), respectively.

1

ox) = e (12)
tanh(x) = ﬂ (13)
anh(x) = — ape

Finally, the cell state C; and the hidden state /; outputs of
LSTM are then propagated to the next hidden layer. The
iterative process continues until the error approaches the
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predefined target. By learning and optimizing the model’s
weights and bias terms, the LSTM network minimizes the
deviation between its output and the actual training samples.

D. NPC INVERTER DESIGN AND FORMULATION

The three-phase 3-level NPC inverter is the key element
of the second stage that boosts the DC voltage level output by
the MPPT controller supported by the boost converter. The
3-level inverter was selected for its superior efficiency and
improved output waveform quality compared to conventional
2-level inverters. It minimizes voltage stress and switching
losses, providing cleaner and more stable power required
for grid-connected applications and compliance with grid
standards. The three-phase grid-connected inverter converts
DC input power into three-phase AC power, making it
suitable for grid integration [36]. The three-phase inverter
consists of three legs with four switches, four freewheeling
diodes, and 2 clamping diodes each, for a total of 12 switches
and 18 diodes for all phases as shown in Fig. 8. In Fig. 8, the
input side DC voltage is represented by the PV array which is
the boosted PV voltage (DC link voltage). This configuration
allows precise control over the current flowing between each
phase terminal and the DC source.

Phase A Phase B Phase C

sla sib sic
+Vdc/2
=
sz o s2c
la

3 3

S3b
S3a S3c
-Vde/2
=
S4a S4b S4c

FIGURE 8. The configuration of three-phase 3-level NPC inverter.

The PV-generated voltage (250-280 V) is boosted to 800 V
DC using a boost converter controlled by the proposed stack
LSTM MPPT controller, the NPC inverter with a DC bus
voltage of 800 V produces three voltage levels (+Vdc/2, 0, -
Vdc/2) corresponding to (400 V, 0V, -400 V). Triggering the
upper switch Sla connects Phase A to the positive DC bus
and produces a voltage of 4-Vdc/2. Conversely, activating the
lower switch S3a produces a voltage of -Vdc/2 by connecting
Phase A to the negative DC bus. The coordinated operation
of the switches and diodes ensures the precise voltage levels
listed in Table 4 and offers efficient grid injection.

The control strategy applied to the inverter consists of
two cascaded loops, (a) the inner current control loop to
regulate the grid current and ensure its enhanced quality for
grid integration, and (b) the outer control loop is the voltage
control to regulate DC bus voltage and balance the power
flow in the grid-connected PV model as shown in Fig. 9.
The three-phase grid currents and voltages are measured, and
Clark’s transformation converts three-phase system (in abc
frame) to two components in stationary reference frame («f)
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TABLE 4. The switching control of the 3 phase 3 level NPC inverter.

Phase S1 S2 S3 S4 Vo

A ON OFF OFF ON +Vdc/2

A OFF OFF ON ON -Vdc/2

A ON OFF ON OFF oV

B ON OFF OFF ON +Vdc/2

B OFF OFF ON ON -Vdc/2

B ON OFF ON OFF oV

C ON OFF OFF ON +Vdc/2

C OFF OFF ON ON -Vdc/2

C ON OFF ON OFF oV
§ e ~ & r ~ Y
et DC LINK VOLTAGE | !4 VD vl
@ o SINUSOIDAL

Id FWM

TP

Vde

Vi
CURRENT s

DO/ ABC
ABC / D
02 H CONTROL

V_abc ; N/ T
——p| ABC/af PLL
f=ut 92t

linv_abc

ba

o x by

S

FIGURE 9. The control strategy of the grid integrated inverter.

as modelled in (14). This is followed by Park’s transformation
modeled in (15) that helps to rotate components in the
af-frame synchronously to get DC values of the control
variables.

wloz[1-4 -4 ][
[Vﬂ]_:«s[oﬁ—@} " (14)

The transformed voltage signal is then given to the PLL
block that determines grid voltage angle to be used for
generating synchronous reference frame signals. The phase
angle used for the abc —dg transformation module as modeled
in (15) is obtained from the PLL block.

va | | cosO sinf Va
|:vq:| - |:—sin9 cos9:| [vﬁ] (5)

In the current control, the three-phase grid current is
transformed using abc — af block and then iy and i, currents
are obtained through o — dg transformation block and

compared with the reference d-axis i} and g-axis i; currents

and the error are fed to the respective PI controller [37].
The PI controller’s output gives v}; and v;'; reference voltages
which are then converted to a three-phase reference voltage
signal using inverse transformation dg—abc. This three-phase
reference voltage signal is compared with a 10 kHz carrier
signal using Sinusoidal PWM and generates the control
pulses for the NPC inverter.

IIl. DATA PROCESS PIPELINE STEPS FOR DL MODELS
This section describes the mathematical model and graphical
results of the sequential steps involved in the implementation
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of the DL algorithm (proposed stacked LSTM and FF-
DNN). All ML and DL algorithms start with rigorous data
collection, followed by data segmentation, preprocessing
(including z-score normalization), visualization (using bar
graphs, histograms, and correlation analyses) and subsequent
stages including DL model design and hyperparameter
selection, followed by model training and testing. Finally,
performance evaluation is accomplished using MSE, RMSE,
MAE, loss and R2 metrics.

A. INPUTS AND TARGET DATA COLLECTION

In the proposed grid-connected PV system, G and T are
the two inputs and the voltage at MPP Vmp is the target
output. The quality and nature of data have been verified
from reputed sources such as the National Renewable Energy
Laboratory (NREL), European Solar Radiation Atlas, and
World Radiation Data Centre (WRDC) and G data ranges
from 0 to 1000 W /m? depending on geographical location.
After analyzing the data points from the above sources within
the relevant constraints, this study generated the replicated
input data of G and T using (16) and (17) as proposed by the
authors in [15].

G = [(Gyax — Gmin) x rand] + Gmin (16)
T = [(T jygx — Tmin) x rand] + Tin a7

In addition to the input (G, T) data, initial target data for
Vmp are also required to train the supervised DL models. The
authors in [20] modelled T input dependent target dataset as
modelled in equation (18).

Vip = Vapstey + BTy — T) (13)

To model the V,,, as a function of G and T, this study
utilizes a modified form of equation (18) shown in (19),
incorporating influences of both inputs (G, T) on the target
output V,,,,. The target data samples are first collected across
varying G and T conditions in Simulink MATLAB using a
SunPower TS-SPR-315 PV module. Linear regression via
the least squares method is then applied to this dataset to
deduce optimal alpha («) and beta () constants for the
module that provides a mathematical relationship between the
independent variables and the target V.

Vip = Vimpistey + B(K +T =Ty) +a(1+G)  (19)
G
Ly = Ilmp(STC) + I:E I+ ao(T - Ts)):” (20)

Pup = {Viup * Lp} (21)

The PV cell current modelled by (20) and (21) shows the
power at maximum power point as the product of current and
voltage. In this research, raw G, T, and V), ranges span 0-
1000 W /mz, 20-80 °C, and 250-280 V respectively and the
complete input dataset obtained using equations (16), (17),
and (19) is demonstrated in Fig. 10. The equations from (16)
to (21) are used to formulate the inputs and target for the DL
based LSTM MPPT controller (stack LSTM and FF-DNN).
Subsequently, these input data of T and G leveraged to train
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FIGURE 10. The complete input dataset used in DL based LSTM.

and test the DL based MPPT controller for the given grid-
tied PV system. The target value V,,, depends on both inputs
(T and G) to the PV array or MPPT controller. The higher
the G value, the higher the Vmp, while a higher T value
decrease V.
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FIGURE 11. Initial 80 % data used for training of both the DL models.

B. TRAIN AND TEST DATASET SEGMENTATION

The collected input data for (G, T') using (16) and (17), and
target data (V,,,,) using (20) is partitioned into training and test
subsets using 80/20 split rule which is the general approach
adopted in DL algorithms [38]. The sequence consists of
one million (1,000,000) data points (observations). From the
beginning, 80% of the total dataset is used for training and
the remaining 20% is used for testing and validation. Then,
the training and testing datasets are pre-processed separately
before training the proposed stacked LSTM and FF-DNN
models.
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C. DATA NORMALIZATION

In DL frameworks, normalization of the input and target
dataset constitutes a crucial preprocessing step before train-
ing the DL model. This research uses z-score standardization
as modelled in (22), which centres the distributions around
the sample mean () while scaling them by the standard
deviation (o), accounting for the dispersion of values and
able to deal with outliers that often occur in real-world PV
data [39].

Zscore = (X — w)/o(1) (22)

Here, z is the normalized or ‘‘standardized” value, x is the
raw value, u is the mean and o is the standard deviation of
the sample population.

The G, T and Vmp training data, ranging from O-
1000 W /m?, 20-80 °C, and 250-280 V respectively, are
normalized using Z-score normalization to obtain a uniform
distribution between —1.7 and 1.7 on the y-axis, while
the x-axis boundaries (80% quantile) remain unchanged,
providing balanced normalization without skewness [40].
The normalized test data having the rest of the last 20% of
the data samples is demonstrated in Fig. 12.

Narmalized Sun Irradiance, G Test Dataset
T T

Normalized G

I L I L L I I ! I
) 8.2 8.4 88 88 9 92 94 kX 9.8 10

Normalized Cell Temperature, T Test Dataset
T T

-
]
@
]
s
E
]
=z

“a 82 B4 8.6 88 9 9.2 9.4 9.6 a8 10

Normalized Voltage at MPP, Vmp Test Dataset <107
3] T T 2 ‘

£ 0
> i
E 1 a
&
S 4 o
Zz- 85 8.6005 8.601
i
ol 1 L Hil 1 0% I 1 |
B a2 &4 86 88 9 92 94 96 a8 10
No of Data Samples =10°

FIGURE 12. Last 20 % data samples used as test dataset for both the DL
models.

D. DATA VISUALIZATION

After data acquisition, segmentation, and z-score normal-
ization, data insights are aggregated through graphical
representations, including histograms for dispersion, box
plots for statistical distribution, and correlation coefficient
matrices using (23) to comprehend variable relationships.

r=Cov(X,Y)/(cx x oY) (23)

Fig. 13 shows the uniform distribution of the unstandard-
ized data set, where the X-axis represents parameter values
(G: 0-1000 W/m?, T: 20-80 °C and Vimp: 250-280 V) and the
Y-axis represents frequencies.
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FIGURE 13. Bar chart and histogram-based visualization of the
un-normalized complete Inputs and Target dataset.
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FIGURE 14. Bar chart and histogram-based visualization of the
Normalized complete Inputs and Target dataset.

This consistency ensures the diversity of the data rep-
resentation and validates the prediction range. A graphical
representation of the normalized data using histograms and
box plots with a standardized scale (—1.7 to 1.7) on the
z-axis is presented in Fig. 14. Histogram analysis helps to
understand the behaviour of the modified data set, where
values close to —1 or 1 indicate proximity to the mean, while
other values deviate from the mean in the range —1.7 to 1.7.

A precise understanding of the distribution patterns
increases the reliability of subsequent analyses and validates
the validity of the preprocessing step. The correlation matrix
shown in Fig. 15 describes the main relationships between
the input variables (G, T) and the target variable (Vmp). Both
G and T exhibit a weak positive correlation (0.23), indicating
a slight increase in T with higher values of G, while there is
no correlation between T and G (0.00).

The strong positive correlation between G and Vmp (0.73)
indicates that with increasing G values there is a tendency
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FIGURE 15. Inputs and target dependencies and data relationship
analysis using correlation matrix.

for an increase in Vmp. Also, the strong negative correlation
between T and Vmp (-0.83) indicates a decrease in Vmp with
increasing T values. Correlations such as the strong positive
correlation between G and Vmp and the negative correlation
between T and Vmp guide the design of a DL-based stack
LSTM MPPT controller with inputs (G, T) and a single output
Vmp.

Given that data collection, data pre-processing, and
visualization have been successfully completed, this section
proceeds to the implementation of the design architecture and
hyperparameter selection of the proposed stacked LSTM and
benchmark FF-DNN model as MPPT controllers, followed
by training the designed models on the pre-processed dataset.

E. DL MODEL DESIGN AND HYPERPARAMETERS

In this paper, two DL models, (a) the proposed stack
LSTM MPPT model and (b) the FF-DNN MPPT model, are
simulated and the results are benchmarked.

1) DESIGN OF PROPOSED STACK LSTM MPPT

Determining the optimal LSTM configuration requires
balancing model complexity and long-term PV data depen-
dencies. The 1 million sample time series has multiple
time-scale patterns that require specialized LSTM memory
cells over feed-forward or simple RNN networks [41].

The 2-layer, 64-32 neuron stacked LSTM MPPT archi-
tecture was analytically selected by sweeping candidate
topologies from 1-4 layers with 32-128 units per layer, and
monitoring validation error convergence over 50 epochs.
Negligible RMSE improvements were observed for networks
exceeding the chosen architecture, despite their substantial
additional computational overhead. Since the research aims
for an efficient topology optimizing accuracy and simplicity,
the streamlined proposed model achieves equivalent perfor-
mance to the overdesigned alternatives. By systematically
profiling the design space to optimize for efficacy and
efficiency, selection of this compact yet accurate MPPT
architecture is analytically justified through structured error
analysis rather than being arbitrary. The MPPT stacked
LSTM model incorporates a G-T based input layer, two
processing LSTM layers with 64 and 32 units to extract
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Stack LSTM Network Diagram and Sample Pseudo Code
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FIGURE 16. The network design and sample pseudo code of the
proposed stack LSTM Network.

temporal relationships, 20% dropout regularization to prevent
overfitting, an MPP voltage output layer, and a regression loss
function enabling backpropagation. The MATLAB pseudo
code and the sequence layered structure of the 2 layered stack
LSTM are presented in Fig. 16.This streamlined framework
balances predictive accuracy and computational efficiency
for grid-connected systems. Careful calibration targets the
250-280 V MPP voltage range from z-score normalized
inputs. Implementation employs the Adam optimizer (learn-
ing rate 0.05) for weight updating, an 80/20 data split, L2
regularization, 50 training epochs, and a batch size of 32 to
ensure convergence without overfitting as listed in Table 5 .

TABLE 5. Design and Hyperparameters selection of Stack LSTM network.

Parameter Value

First Layer 64 Hidden Neurons
Second Layer 32 Hidden Neurons
Learning Rate 0.05

Decay Mechanism Applied
Initialization He Initialization
L2 Regularization 0.0001
Optimization Algorithm Adam

Mini Batch Size 32

Train-Test Split 80-20

The structured topology and training optimizations extract
complex solar dynamics while optimizing efficacy and
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Feed Forward Deep Neural Nework Diagram and Sample Pseudo Code
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FIGURE 17. The network design and sample pseudo code of the FF-DNN
network.

simplicity. The hyperparameters are fine-tuned according
to the input data (G, T) and the target Vmp to maximize
accuracy. The effectiveness of our chosen parameters is
highlighted by their compliance with established principles
that promote a balanced convergence rate and effective
overfitting prevention.

2) DESIGN OF FEED FORWARD DNN MPPT

The structured fully connected FF-DNN network as MPPT
controller adopts similar design considerations as the pro-
posed stack LSTM, including two hidden layers with 64 and
32 hidden neurons, same hyperparameter fitting, and z-score
normalized G and T inputs. This streamlined topology avoids
over-parameterization while skilfully capturing complex PV
dynamic data to extract maximum power from PV array
under variable G and T values. The processing layers
apply the nonlinear tanh activation function, chosen for
its proven effectiveness in representing complex renewable
energy input-output relationships without gradual fading.
The network design of FF-DNN in Simulink with pseudo-
MATLAB code is presented in Fig 17. Likewise, the network
design and hyperparameter selection of the FF-DNN and the
proposed stack LSTM comprise the same design complexity
to ensure direct performance contrast, emphasizing the
specialized memorization temporal processing capabilities of
LSTM networks.
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FIGURE 18. All steps including data preprocessing, training testing, and
performance evaluation of the DL models.

IV. TRAINING OF THE DEEP LEARNING MODELS

After completing key steps, such as acquiring data (G, T,
Vmp), segmentation, z-score normalization, and visualization
(bar charts, histograms, correlations), both the DL models
are designed and proper hyperparameters are selected. The
proposed stack LSTM and FF-DNN models are ready for
training on the normalized 80% of the data which is one
of the most crucial steps in the ML and DL models. The
training process is executed on hardware featuring an Intel
17-7600U CPU with a clock speed of 2.80 GHz and 16 GB of
RAM, utilizing the MATLAB 2023 Deep Network Designer
Toolbox. The main steps involved in the training process are
presented in Fig. 18.

1) TRAINING AND TESTING OF THE STACK LSTM MPPT

In the training process, the LSTM network continuously
improves in terms of RMSE as shown in Fig. 19. The
training process of LSTM gradually reduces the RMSE
over 50 training epochs and reaches a remarkable RMSE of
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0.048265 in the last epoch. Furthermore, the loss function
values of LSTM are below 0.05. The improved performance
is also ensured using all important performance evaluation
metrics. The performance of the proposed stacked LSTM
MPPT as listed in Table 6 shows that the MSE is 0.0023295,
RMSE is 0.048265 and MAE is 0.033978, which is very
close to the ideal value of zero. The Loss Function Value
is consistently below 0.05 and the R-squared (R?) regression
value is an impressive 0.99768, very close to the ideal value of
1. These metrics collectively demonstrate the effectiveness of
the Stack LSTM and reveal that it makes accurate predictions
of the target with minimal error. The R? value is close
to 1, indicating the high explanatory power of the model
and confirming its reliability for maximum power extraction
and forecasting purposes in grid-connected PV systems. The
training of the proposed stack LSTM model on 80% of one
million data (G, T, Vmp) gives a small training error of
0.048 as shown in Fig. 20.

TABLE 6. Performance evaluation of the proposed trained stack LSTM
MPPT control model.

Performance Metric Value
Mean Squared Error 0.002329
Root Mean Squared Error 0.048265
Mean Absolute Error 0.033978
Loss Function Value <0.05
R-squared (R?) Score 0.99768

This indicates the close matches between the predicted
Vmp and the actual Vmp target output which ensures the
robustness of the trained stack LSTM MPPT for future testing
with unseen G, T data. The trained stack LSTM model is
then tested on the remaining 20% of the one million data (G,
T, Vmp). The error between the actual test target Vmp and
the predicted target Vmp is also close to 0.048 as shown in
Fig. 21. This close match between the actual and predicted
target value ensures higher efficiency and robustness of the
model for the other unseen data of the variable inputs G and
T of the MPPT in the PV array.
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2) TRAINING TESTING OF THE FF-DNN MPPT

The FF-DNN model is also trained on the same 80% of
the 1 million datasets, the Xtrain and Ytrain dataset vectors
are used to “train” the DNN network. The performance
of the model is evaluated using MSE, RMSE, MAE, loss
function, and R? regression. After 50 training epochs, the
MSE decreased to 0.18561 and the loss decreased below
0.1 as shown in Fig. 22.

These reductions indicate increasingly accurate predic-
tions in line with the actual target Vmp values. Low final MSE
and loss values also indicate optimal training of the FFDNN
model and enable effective generalization for the new unseen
data. The DNN model also shows significant performance
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metrics with an MSE of 0.18561, RMSE of 0.43083, MAE
of 0.33843 and a loss function value consistently below 0.1

(see Table 7).

TABLE 7. Performance evaluation of the trained FF-DNN MPPT control.

Performance Metric Value
Mean Squared Error 0.18561
Root Mean Squared Error 0.43083
Mean Absolute Error 0.33843

Loss Function Value <0.1
R-squared (R?) 0.80438

The R-squared (R?) value is 0.80438. Although DNN
converges faster than LSTM, it exhibits higher error values in
the MSE, RMSE and R-squared metrics than LSTM. While
both models exhibit efficient predictions, LSTM, with its
lower error values, proves to be more efficient in predicting
the target variable Vmp to extract maximum power for grid-
connected PV systems.

Normalized Training Inputs (G, T) for FF-DNN Training
T T
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FIGURE 23. The comparison of the actual and the DNN based predicted
training target to compute the training error.
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The normalized training inputs (G, T) are fed into the
designed two-layer DNN architecture as shown in Fig. 23.

The predicted outputs are then compared with the actual
training targets to calculate the training error.

The training error falls within a small range of 0.45,
indicating that the error is of a small magnitude close to zero.
This indicates robustness for future testing on other unknown
data sets. Although an MSE value of 0.18 is noticed during
the training process, the RMSE value is almost 0.45, which is
the same as the error between the predicted and actual target
Vmp values.The trained DNN model is tested on the inputs
fed to the DNN (G, T) and the remaining 20% of the unseen
data to obtain the predicted outputs.
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FIGURE 24. The comparison of the actual and the DNN based predicted
testing target to compute the testing error.

The comparison with real test targets reveals errors in the
range of 0.45 and provides a good prediction as shown in
Fig. 24. However, the test error of the LSTM is 0.048, which
is much smaller than the DNN test error and provides higher
efficiency for maximum power extraction in PV systems.
In this comparative analysis, few most important performance
metrics, including MSE, RMSE, MAE, MAE, Loss and
R? are used to provide a comprehensive assessment of the
accuracy and reliability of the model. These metrics provide a
robust assessment by measuring various aspects of prediction
error and goodness of fit.

3) PERFORMANCE COMPARISON OF LSTM AND DNN

The performance parameters (MSE, RMSE, MAE, and
loss) near zero suggest that the model is making accurate
predictions, and the differences between predicted and actual
values are minimal. In addition, the R2 score near 1 show that
the model is capturing much of the information in the data,
and the predictions are closely aligned with the actual values.
The comparative performance of the proposed stack LSTM
and FF-DNN as demonstrated in Fig. 25 shows significant
MPPT efficiency of the stacked LSTM over FF-DNN with
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proposed stack LSTM and FF-DNN model.

approximately 10 times better MSE (0.002 vs. 0.186), 9 times
better RMSE (0.048 vs. 0.431) and MAE (0.034 vs. 0.338),
and halved loss. The 0.99 higher R? score of stack LSTM than
0.8 of FF-DNN ensures the proposed model’s predictions are
closely related to actual target values.

In contrast to the limitation of feed-forward topology in
modelling complex climate-energy interactions, LSTM lever-
ages specialized memory components designed to capture the
intermittency of the sun, which can be attributed to natural
repeatability to preserve both transient and long-term mete-
orological dynamics. This simple yet high-fidelity 2-layer
model outperforms state-of-the-art methods in terms of loss
performance, forecast reliability and applicability, verified by
99% test efficiency. Trained and then successfully tested, the
models are ready to be imported into Simulink/MATLAB to
be integrated with the Simulink model of a 100 kW grid-
connected PV system.

V. RESULTS AND DISCUSSION

This section provides the simulation setup used for the
proposed research, followed by the simulation results and a
discussion of the first and second stages of the grid-connected
PV system.

A. SIMULATION SETUP

This study employs a simulation-based approach to compare
the performance of three MPPT controllers for a 100 kW
grid-connected PV system using Simulink/MATLAB
2023¢ including P&O, FF-DNN, and the proposed Stack
LSTM MPPT controller. The P&O algorithm, as a non-data-
driven approach, is directly implemented in Simulink and
integrated into the grid-tied PV system model. Conversely,
DL-based MPPT models (stacked LSTM and FF-DNN) are
designed and trained using the deep network designer toolbox
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in MATLAB®) on an Intel i7-7600U CPU (2.80 GHz)
with 16GB RAM. Effective training of both models is
achieved after testing and evaluation based on performance
metrics including MSE, RMSE, MAE, loss, and R? are
utilized for comparative analysis. The analysis reveals
superior performance of the LSTM model, evidenced by
higher R? values (closer to 1) and slower error metrics
nearing to zero. Subsequently, both trained DL models are
exported to Simulink MATLAB and integrated with the
100 kW SunPower TS-SPR-315 grid-connected PV module
to maximize the PV power. The proposed grid-connected PV
system has two phases: (a) in the first stage, the novelty of the
proposed work lies in extracting the maximum power from
the 100 kW PV array using a stacked LSTM MPPT controller,
while (b) in the second stage, the DC link voltage regulation
and the active power transferred to the grid are achieved
through simple Pl empowered current and voltage controllers.
Given the computational complexity of the DL algorithm
in the first stage, simple PI controllers to ensure reduced
complexity are considered in the second stage. In this study,
the schematic diagrams are made using Microsoft Visio 2016,
the bar chart and pie chart are created using Microsoft Excel,
and the rest of all the simulation graphics are accomplished
through MATLAB 2023e.

B. SIMULATION RESULTS OF THE FIRST STAGE OF THE
GRID-TIED PV SYSTEM

The trained DL models are imported into Simulink for
integration with the Simulink model of a 100 kW grid-
connected PV system. G and T signals are applied fora 1.5 s
period at a sampling rate of 1 MHz, generating approximately
1.5 million samples. To comprehensively evaluate and
visualize the performance under varying conditions, the G
and T signals are divided into 9 different states (1 to 9) over
1.5 unit, with each state corresponding to a specific behaviour
after 0.15 second increments on the timeline, as shown in
Fig. 26. This allows the models to be tested with fluctuating
G and T inputs that represent real-world operating dynamics.
Each state represents a specific G and T behaviour, allowing
detailed analysis of the MPPT controller response. Cases 1-4
focus on the effects of individually decreasing/increasing G
and T while other parameters are constant. Cases 5-7 analyse
the combined effects of simultaneous G and T change.
Finally, cases 8-9 provide insight into real-world operational
dynamics by presenting random fluctuations in one variable
while the other is constant at STC. To simplify the analysis,
one variable is held constant while the other is varied. This
approach isolates the impact of each specific input on the
target, allowing for a clearer understanding of their individual
effects.

Variable input signals G and T are fed to the SunPower
TS-SPR-315 PV array and the corresponding voltage, current
and power responses under these fluctuating conditions are
shown in Fig. 27. The analysis confirms the direct (inverse)
proportional relationship between G (T) and the output PV
power. In addition, the calculated power of the PV array is
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FIGURE 27. The voltage current and power of the SunPower TS-SPR-315
PV module against G and T variations.

102 KW (315 x 65x5) under STC values of G and T. The
actual maximum power output of this PV module under the
applied G and T values is 99.87 kW at STC values of G and
T. To get this maximum available power of the PV array,
the performance comparison results of the proposed stack
LSTM, FF-DNN, and P&O MPPT controllers are detailed in
the following section.

Simulation results comparing the maximum power extrac-
tion from the PV array of three different MPPT controllers,
including two DL-based MPPT algorithms (the proposed
Stacked LSTM and FF-DNN) and the conventional P&O
MPPT, are presented in Fig. 28.

The DL approaches follow a data-driven methodology
including acquisition, segmentation, visualization, training,
and testing, whereas P&O uses PV voltage and current as
input to control the boost converter duty cycle with a fixed
step size of 0.001. In DL algorithms, a voltage control
strategy is applied for MPPT by subtracting the voltage at
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FIGURE 28. Comparison of the proposed stack LSTM MPPT controller
with FF-DNN and P&O for effective maximum power extractions.

the maximum power point (Vmp) to operate the PV voltage
(Vpv) at this Vmp level. Thus, the output Vmp predicted by
the MPPT controllers is compared with the actual Vpv and the
difference error signal is fed to a PI controller to regulate the
duty cycle of the 5 kHz IGBT switch in the boost converter.
The maximum output power achieved using the proposed
Stacked LSTM MPPT controller is 98.7 kW, surpassing both
the DNN (96.3 kW) and P&O (94.5 kW) MPPT controllers.

Being trained on a large dataset of 1 million samples
allows the DL algorithms (LSTM and DNN) to converge
early to the target solution by exploiting the knowledge
gained from oscillating around the MPP as exhibited in the
P&O approach. This inherent fluctuation in P&O produces
lower average power output. Furthermore, the feedback and
memory units in the LSTM architecture enable faster learning
and superior maximum performance, whereas feed forward
DNNs process information in only one direction. Thus,
the Stacked LSTM MPPT controller outperforms other DL
and conventional MPPT techniques. The MPPT controller
dynamically adjusts the boost converter duty cycle to align
Vpv with Vmp, ensuring optimal PV system performance.
The voltage range of 250-280 V Vpv, influenced by varying
G and T inputs, serves as the boost converter input and
the 800 V DC link is the output voltage of the boost converter
as shown in Fig. 29. The error signal reflecting the difference
between Vpv and Vmp is processed by a PI controller. This
PI controller regulates the IGBT switch duty cycle in the
range 0.6-0.7 and maintains a consistent 800 V DC bus
voltage. When Vpv increases, the MPPT reduces duty to
maintain 800 V and conversely, increases duty for lower Vpv.
This strategic duty cycle setting prevents excessive idle power
losses and eliminates overheating problems.

In the first stage, the proposed Stacked LSTM MPPT
controller empowered by the PV array and boost converter
outperformed both DNN (96.3 kW) and P&O (94.5 kW)
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proposed stack LSTM, FF-DNN, and P&O MPPT controllers.

MPPT approaches by achieving 98.7 kW of the 99.8 kW
power generated by the PV system as shown in Fig. 30.

Thus, the grid-connected inverter control results in the
second stage are realized using only the proposed stacked
LSTM-based MPPT controller. Furthermore, the boost con-
verter regulated by the LSTM MPPT provides a DC link
voltage of 800 V that varies slightly with varying G and T
values. The inverter control further smooths this DC input
using PI-enabled voltage and current controllers, ensuring its
suitability as a constant ripple-free source for the 3-phase
NPC inverter.

C. SIMULATION RESULTS OF THE SECOND STAGE OF THE
GRID-TIED PV SYSTEM

Among the analysed stacked LSTM, FF DNN and P&O
MPPT controllers, the stacked LSTM MPPT shows the
highest efficiency and accuracy, so the subsequent inverter
simulations continue with the power extracted by the
proposed MPPT controller.
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First, the PV array (250-280 V) is stepped up to 800 V
using the boost converter empowered with a stacked LSTM
MPPT controller.

The 800 V DC link voltage fluctuates slightly due to
fluctuating G (0-1000 W/m?) and T (20-80°C). In the second
stage, individual PI current and voltage controllers further
smooth the 800 V DC link feeding the 3-phase, 3-level
NPC inverter to reduce the harmonics injected into the grid.
The NPC inverter is designed for 400 V/144 A output to
meet 100 kW demand according to 400 V grid standards
as shown in Fig. 31. This robust two-stage grid-connected
system configuration, together with the details of the inverter
control ensures efficient and uninterrupted transfer of PV
power to the microgrid [42]. The output waveforms of
the three-phase 400 V line-to-line voltage (230 V phase
voltage) and 144A current alongside grid synchronization,
globally recommended for microgrid integration, are realized
corresponding to the fluctuating values of G and T, shown in
Fig. 32. In droop control, the reactive current is assumed to be
zero, hence only active power transfer is obtained using (24).
The grid voltage and current waveforms are in phase, which
gives 8 = 0, Cos 6 = 1, so out of 98.7 kW extracted power
by the proposed stack LSTM, the 98.4 kW of active power is
transferred from the PV array to the microgrid.

=3 x V xIcosh = 98.4kW (24)

In the first stage, the stacked MPPT controller extracted
98.7 kW of the maximum total PV power of 99.5 kW at STC.
In the second stage, 98.4 kW of active power is successfully
transferred to the grid, providing a 400-volt line-to-line, 230-
volt line-to-neutral, and 144A microgrid as shown in Fig. 33.

In addition, the DC link voltage is regulated to 800 volts
to reduce current harmonic injection and improve reliability
in accordance with the IEEE 1547 grid standard; grid
synchronization and power factor unity are achieved as the
grid voltage and grid current were in phase; and 98.4 kilowatts
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FIGURE 33. The PV array generated 99.5 kW, the proposed stack LSTM
MPPT controller harvested 98.7 kW, and 98.4 kW is transferred from the
PV system to the 3-phase grid.

of active power is transferred to the three-phase microgrid and
complies with global microgrid voltage standards.

VI. CONCLUSION AND FUTURE DIRECTIONS

This research proposed and simulated an LSTM-based MPPT
controller for a 100 kW grid-connected PV system in MAT-
LAB/Simulink. The stacked LSTM topology demonstrated
precise real-time solar dynamics modelling by achieving
98.7 kW of the 99.5 kW maximum PV power, surpassing
feedforward deep neural network and perturb and observe
methods. With a mean squared error of just 0.002 and R2
score of 0.99 on the comprehensive dataset, the LSTM
significantly outperformed alternatives in capturing complex
G—T relationships. DC-DC conversion and DC-AC inversion
based on 3-phase 3-level PWM inverter enabled reliable grid
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integration, successfully transferring 98.4 kW of the 98.7 kW
MPPT-optimized power at 400 V line-line, 230 V line-
neutral, and 144A. By combining DL and power electronics
techniques, this study confirms and advances the prospects
for Al-enabled large-scale solar PV energy harvesting.
The modelling, accuracy, adaptation capabilities, and grid
integration efficacy evidenced in simulation collectively
validate LSTM networks’ effectiveness for advancing PV
system optimization. Our simulation-based study presents a
simplified stacked LSTM-based MPPT control, which opti-
mizes computational complexity, convergence time, and cost.
After manual approached based hyperparameter selection, a
2-layer stack LSTM architecture is considered, incorporating
64 and 32 neurons in respective layers, along with a batch
size of 32 and the Adam optimizer, outperforms traditional
and DL based MPPT methods like P&O and FF-DNN
respectively.

In our study, we reduced the complexity by optimizing
the PV-side LSTM-MPPT architecture and grid-side inverter
control. Considering the data availability, the training process
of proposed research is performed on hardware with Intel i7-
7600U CPU with a clock speed of 2.80 GHz and 16 GB RAM
using MATLAB 2023 Deep Network Designer Toolbox.
However, inherent limitations of DL models seem as a key
challenge demanding substantial computational resources,
influenced by dataset size for training efficiency. Real-world
deployment may require powerful GPUs, cloud resources,
or specialized hardware. Challenges also arise in integrating
grid-tied inverters: ensuring compatibility, reliable prediction
of optimal power points under dynamic grids, and seamless
integration with existing control systems. Despite these
constraints, proposed Stacked LSTMs offer potential for
enhanced efficiency and adaptability, but at lower complexity,
making them ideal for real-time operations.

Future work involves validating proposed techniques in a
real scenario. The recommendations for real-time implemen-
tation of stacked LSTM MPPT include collecting data from
actual PV power plants operating in real time to increase
the practical applicability. Current study uses 1 million data
points generated for inputs G and T using underlying PV
equations (14) and (15) but these datasets can be collected
from real PV plants. Furthermore, inputs such as temperature
and irradiance data can be collected from sensors such as
pyranometers for irradiance and thermocouples or RTDs for
temperature. Further strategies can be explored for mitigating
the impact of partial shading (PSC) on the proposed MPPT
controller, potentially through incorporating additional sen-
sors for PSC detection or investigating P-V curve scanning
algorithms. Collaboration with industry partners can improve
the verification process by facilitating access to sensors and
real PV installations (which are also direct beneficiaries).
While our study highlights technical advances in MPPT
algorithms and PV system functions, future research should
consider broader socio-economic and environmental impacts.
In real-world applications, factors such as accessibility,
affordability and environmental sustainability need to be
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considered to ensure equitable and sustainable deployment.
Finally, the scalability of DL-based MPPT controllers in
real PV power plants depends on several factors, including
the availability and quality of data, the complexity of the
DL model, computational resources, and the ability to cope
with extreme operating conditions. To which, techniques
such as transfer learning, data augmentation and hardware
acceleration can be explored to overcome these challenges.
Our work emphasizes simplicity and scalability to enable
adaptation to different PV configurations and environmental
conditions, and to ensure efficiency and effectiveness in
different applications and operating scenarios.
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