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A B S T R A C T
Demand Side Management (DSM) plays a significant role in the smart grid to minimize Electricity
Cost (EC). Home Energy Management Systems (HEMSs) have recently been studied and proposed
explicitly for HEM. In this paper, we propose a novel nature-inspired hybrid Genetic Flower
Pollination Algorithm (GFPA) to minimize cost with an affordable delay in appliance scheduling. Our
proposed GFPA algorithm combines elements of the Genetic Algorithm (GA) and Flower Pollination
Algorithm (FPA) to create a hybrid approach. To assess the effectiveness of the proposed algorithm,
we consider a scalable town consisting of 1, 10, 30, and 50 homes, respectively. The proposed solution
finds an optimal scheduling pattern that simultaneously minimizes EC and Peak to Average Ratio
(PAR) while maximizing User Comfort (UC). We assume that all homes are homogeneous in terms
of appliances and power consumption patterns. Simulation results show that our proposed scheme
GFPA performs better when applying Critical Peak Pricing (CPP) signal using different Operational
Time Intervals (OTIs) and compared with unscheduled, GA, and FPA-based solutions in terms of
reducing cost since they achieve on average 98%, 36%, 23%, and 22%, respectively. Similarly, PAR
averages 98%, 36%, 59%, and 55%, respectively. While, UC comparing to GA and FPA, are around
88%, 48%, and 63%, respectively. Our proposed scheme achieves better results by applying Real Time
Pricing (RTP) signals and different OTIs. As these schemes, i.e., unscheduled, GA, FPA, and GFPA,
achieve cost on average 92%, 50%, 29%, and 28%, respectively. While PAR on average 94%, 39%, 62%,
and 56%, and UC for GA, FPA, and GFPA on average 98%, 52%, and 49%, respectively. Overall, our
proposed GFPA algorithm offers a more effective solution for minimizing EC with an affordable delay
in appliance scheduling while considering PAR and UC.

1. Introduction
Smart grids present the vision of bidirectional commu-

nication systems by integrating advanced communication
methodologies, control technologies, and sensing technolo-
gies at distribution and transmission levels. Some main char-
acteristics and advantages of smart grids are that they are
hack-less, self-healing, consumer-friendly, have the ability
to cover all types of storage and generation options, show re-
sistance to attacks, and have optimal assets with high power
quality Yadav, Hrisheekesha and Bhadoria (2023). Mod-
ern grids are considered more environmentally, politically,
economically, and technically advanced than old-age ones
Rehman, Haseeb, Jeon and Bahaj (2022). With the immense
increase in the world’s population, the demand for electricity
has greatly increased. Since the world’s population has a
direct relation to the demand for electricity, thus, this in-
crease in demand for electricity creates problems like load
shedding, frequency beads, and blackouts. In order to fulfill
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electricity demands, there are two possible options. First,
increase electricity generation capacity. Second, schedule
the load according to electricity generation capacity through
Home Energy Management Systems (HEMSs). The first
approach indicates new power sub-stations, while in the
second approach, the consumer has to manage the load by
exploiting load scheduling techniques. These techniques can
manage the load between off-peak and on-peak hours.

Here are some of the difficulties related to Demand-
Side Management (DSM) and HEMS and possible solutions
to address them:Lack of data: A significant challenge in
implementing DSM and HEMS is the lack of data on energy
consumption patterns of individual households. This makes
it difficult to develop accurate models and algorithms to opti-
mize energy use. Possible solutions include the use of smart
meters, data analytics, and machine learning techniques to
collect and analyze data on energy consumption patterns.
Complexity: Another challenge is the complexity of the
energy system and the numerous variables that influence
energy consumption patterns. DSM and HEMS require so-
phisticated algorithms and models to optimize energy use,
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which can be challenging to develop and implement. Possi-
ble solutions include the use of advanced optimization tech-
niques, such as genetic algorithms, and machine learning al-
gorithms, which can learn from data and improve over time.
Interoperability: DSM and HEMS require communication
between various devices, systems, and stakeholders. The
lack of interoperability standards can make it challenging to
integrate different components of the energy system, which
can limit the effectiveness of DSM and HEMS. Possible
solutions include the development of common standards for
communication and data exchange, such as the OpenADR
standard, which can facilitate interoperability between dif-
ferent energy system components. Privacy and security:
DSM and HEMS require collecting and sharing sensitive
data, such as energy consumption patterns and user behavior.
This can raise privacy and security concerns, particularly
if the data is not adequately protected. Possible solutions
include the use of encryption and secure communication
protocols to protect sensitive data and the development of
privacy policies and guidelines to ensure that user data is
collected and used transparently and ethically. User engage-
ment: The success of DSM and HEMS depends on user
engagement and participation. However, many users are not
aware of the benefits of DSM and may not be willing to
participate. Possible solutions include the use of incentives,
such as rebates and discounts, to encourage participation,
as well as the development of user-friendly interfaces and
educational materials to inform and engage users about the
benefits of DSM and HEMS.

DSM plays an important role in energy management
for smart power generating systems which provides sup-
port for different functionalities in several areas, such as
management and electricity market control, construction of
infrastructure, decentralized energy management resources,
and sustainability increase by decreasing the cost and level of
carbon emission, control and influence of the load demand,
and change in demand profiles. Energy management has also
gained a key place in DSM. At every time step of the day,
DSM informs the main controller about the available capa-
bilities of load reduction and new load scheduling patterns.
The main controller then makes decisions about shifting
load from high peaks to low peaks. The applications of
scheduling the appliances in smart grids have a noteworthy
role and can be applied for one of the following reasons:

• Peak load management: Scheduling schemes can be
used to manage peak loads in the power grid by
scheduling the usage of electricity-intensive appli-
ances during off-peak hours.

• Load balancing: Scheduling schemes can be employed
to balance the load on the grid by scheduling the
usage of various devices and appliances to ensure a
consistent and stable load.

• Demand response: Scheduling schemes can be used
to manage the demand for electricity during periods
of high demand by scheduling the usage of appliances
and devices to reduce overall demand.

• Energy conservation: Scheduling schemes can be em-
ployed to reduce energy consumption by scheduling
the usage of appliances and devices during times when
energy is least expensive or most abundant.

• Renewable energy integration: Scheduling schemes
can be used to integrate renewable energy sources,
such as solar and wind, into the grid by scheduling the
usage of appliances and devices to align with periods
of peak renewable energy production.

Overall, scheduling schemes play a crucial role in smart
grid-demand side management by providing a means to op-
timize energy usage, balance loads, and integrate renewable
energy sources, leading to improved efficiency, reliability,
and sustainability of the power grid. We have used our
scheme for load-balancing problem in demand side manage-
ment.

In Zhou, Li, Chan, Cao, Kuang, Liu and Wang (2016),
an overview of smart HEMS is presented, where the au-
thors discuss the architecture of HEMS and its functional
modules. DSM advocates consumers alter their demand
for electricity. Demand Response (DR) progress is in the
form of time-based charges or other economic inducements.
DR reflects the most reliable solutions for decreasing peak-
time demand and flattening the demand curve. It also of-
fers several types of pricing signals including Peak Load
Pricing (PLP), RTP, CPP, Time-Of-Use (TOU), Inclined
Block Rate (IBR), and Day-Ahead RTP (DA-RTP). Min-
imizing the EC with scheduling is a challenging task in
HEMS. Optimization for appliance scheduling problems is
solved in various ways in the literature. Another important
problem in Energy Management Systems (EMS) is UC,
which is mainly neglected. In Althaher, Mancarella and
Mutale (2015), Automated Demand Response (ADR)-based
optimization scheduling is proposed for different appliances
at the domestic level with the major aim to minimize EC
while maximizing UC. Studies expose that most consumers
wish to reduce their EC and do not want to compromise
on their comfort. A massive amount of electricity is used
in residential areas, and its consumption is growing rapidly.
According to Evangelisti, Lettieri, Clift and Borello (2015),
more than 65% of the produced electricity is wasted. Hence,
with the advancement of smart grids, there is a better op-
portunity to save the maximum produced energy using any
of the two mentioned techniques. This paper schedules the
load demand for scalable towns consisting of one, ten, thirty,
and fifty homes under the CPP and RTP pricing signals. The
main contributions of this work are as follows:

• We propose a novel nature-inspired hybrid genetic
flower pollination-based optimization and scheduling
scheme (GFPA) for smart grid appliances while con-
sidering the different OTIs and PRs for appliances.

• The effectiveness of the proposed scheme is evaluated
and compared with other state-of-the-art GA and FPA
algorithms in terms of total EC, Peak to Average Ratio
(PAR), delay time, and load.
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• Simulation results show that the proposed scheme find
optimal scheduling pattern that simultaneously mini-
mizes EC and PAR while maximizing User Comfort
(UC) by assuming that all homes are homogeneous re-
garding appliances and power consumption patterns.

The remainder of this paper proceeds as follows: Section
II highlights the state-of-the-art. In Section III the sys-
tem model, mathematical formulation, and pricing model
are described. Then, the proposed scheme is discussed in
Section IV. Section V presents the simulation results and
discussions. Finally, Section VI concludes the paper and
enlists future work.

2. Related Work
This section discusses the state-of-the-art related to algo-

rithms and smart grid scheduling. Since the 1960s, the opti-
mal power flow problem is a well-defined and the major con-
cern of the optimal power flow is cost minimization. How-
ever, it is also concerned with additional constraints of the
grid, like phase sensor, angle bound, and voltage. Although
these approaches have a similar objective to minimize fuel
cost. The optimal power flow distribution is well scrutinized
for supporting and operating different topologies Huneault
and Galiana (1991). With extension towards decentraliza-
tion, negotiating agents are not yet comprehensively scruti-
nized on a per unit basis. The centralization approach is still
used and has a long time and dominant impact on renewable
energy resources. A power-generating resource greatly im-
pacts benefits if optimization is done from an omniscient and
global perspective. This is also true for optimal power flow.
With the passage of time, distributed schemes attained more
and more importance. Different works proposed decentral-
ized and hierarchical structures. For example, combinatorial
optimization, heuristic, and greedy algorithm approach. A
solution that cannot be implemented is non-feasible and also
worthless. So, constraint handling is an important aspect
of the appliance scheduling problem. Modeling these con-
straints was never simple in past. Small, versatile, operating
energy generators, controllable consumers, large power gen-
erating plants, complex, and non-linear constraints restrict
operations and flexibility, which is offered to the scheduling
algorithm for predictive planning. Taking these constraints
can convert any solution into a feasible one. Many tech-
niques and algorithms are proposed and implemented in the
field of SG.

In Rahim, Javaid, Ahmad, Khan, Khan, Alrajeh and
Qasim (2016), authors proposed an energy management
system based on the GA. The main contribution is to make
the EC lower by reducing the PAR. Therefore, the EC and
PAR are effectively low in the proposed scheme. However,
they did not consider the UC. In Zhu, Tang, Lambotharan,
Chin and Fan (2012), authors proposed an effective LP-
based DSM model. The proposed model is used to minimize
the utilization of power in day timings and this model
efficiently deals with the distribution of demand between the
min-peak hours and max-peak hours. The paper Balouch,

Abrar, Abdul Muqeet, Shahzad, Jamil, Hamdi, Malik and
Hamam (2022) proposes a novel approach for scheduling
flexible loads in smart grids using reinforcement learning
(RL) techniques. The RL algorithm is designed to learn
the optimal scheduling policies for each flexible load in
the grid based on the current state of the grid, including
the availability of renewable energy sources and the current
demand for energy. In Samadi, Wong and Schober (2015),
the authors worked on categorizing load into three types:
non-interruptible, fixed, and interruptible. In Abushnaf, Ras-
sau and Górnisiewicz (2016), authors proposed a Predictive
Demand Side Management (PDMS) model. Similarly, in
paper Erdinc (2014), authors worked on a Non-dominated
Sorting Genetic Algorithm (NSGA) to solve the problem of
multi-objective optimization in the DSM.

Authors in Althaher et al. (2015) worked on the HEMS
and optimize the operational time of appliances. The major
concern is to reduce the computation cost and reduce the
operational time of appliances. Similarly, in Bharathi, Rekha
and Vijayakumar (2017), the authors also deal with cost
reduction, pollution emission, and uncertainty problems in
different types of energy sources. In DSM, the consumers
reduce the EC and PAR by scheduling the home appliances
from higher peak slots to lower peak slots or by fitting in
the Renewable Energy Sources (RES). The DR and load
management are the main functionalities that are empha-
sized in Zhou et al. (2016). In Rastegar, Fotuhi-Firuzabad
and Zareipour (2016), authors proposed a load-balancing
technique for residential, commercial, and industrial areas.
They also compared the load consumption patterns with
the GA-DSM and without GA. The result of their paper
shows that the proposed model successfully obtains the
desired objectives. However, they did not consider the PAR
and UC. In Adika and Wang (2014), authors worked on
appliance scheduling in a targeted residential area. Their
major objectives are to reduce the PAR and cost. However,
they did not consider the initial and maintenance cost.

In Manzoor, Javaid, Ullah, Abdul, Almogren and Alamri
(2017), an efficient GA-based scheme is introduced to mini-
mize the maintenance cost and PAR. However, the limitation
of the work includes the large appliance delay and not
considering the UC. A Queuing-based Energy Consumption
(QEC) is used to monitor the different smart homes in SG
Liu, Yuen, Yu, Zhang and Xie (2015). In Chen, Wang,
Hodge, Zhang, Li, Shafie-Khah and Catalão (2017), authors
overcome the power grid challenges. Their major contri-
bution is to reduce peak formation. Moreover, in Rastegar
and Fotuhi-Firuzabad (2014), authors worked on state of
the art EMC for HEMS to reduce the peak formation. They
also focused on electricity cost reduction and reduced the
UC level with an acceptable limit. For this purpose, the
authors used GA algorithms and Linear Programming. How-
ever, they did not consider the PAR. In Yousefi-khangah,
Ghassemzadeh, Hosseini and Mohammadi-Ivatloo (2017),
authors worked on a couple of different systems to optimize
the increased price of short term arranging of a distributed
system with the combination of Demand Grids (DGs). In
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Ogwumike, Short and Denai (2015), authors proposed a
manageable load model that is equally useful for direct and
local control from a regular system of distributed energy
resources optimization. Moreover, a load control algorithm
is proposed to deal with the DSM Ye, Qian and Hu (2015).
They worked on load scheduling and reduced the energy
expense for the users.

In Nguyen et al. (2014), authors proposed a centralized
optimization technique that helps minimize PAR and energy
consumption. In Nigdeli, Bekdas and Yang (2016), authors
worked on the tuning of Mass Damper (MD) using FPA.
An MD is mostly used in a systematic building structure to
reduce vibrations. It is a meta heuristic technique that can
work even in a critical situation when the other mathemat-
ical equations are failed to perform. Moreover, In Aslam,
Iqbal, Javaid, Khan, Aurangzeb and Haider (2017), authors
used GA to schedule several homes. They used a hybrid
GA version with the Cuckoo Search Algorithm (CSA). In
Jayabarathi, Raghunathan, Adarsh and Suganthan (2016),
authors used different techniques for a residential area. For
multiple homes, smart meters are playing the role of a bridge
for two-way communication between consumers and utility.
Du et al. in Du, Jiang, Li, Counsell and Smith (2016), imple-
ment the Pareto technique for Multi-Objective Demand Side
Scheduling (MODSS). The relationship between operational
safety and the other two objectives, EC and delay, can be
achieved by using the Pareto-optimal front. Some papers are
compared in Table 1. This comparison is made on the basis
of techniques, pricing schemes, objectives of each paper,
achievements, and limitations.

Some other recent studies in this area include Ali, Tariq,
Iqbal, Feng, Raza, Siddiqi and Bashir (2020); Sun, Cai, Guo,
Ma, Zhang, Wang, Liu, Kang and Yang (2022); Ponnusamy,
Kasinathan, Madurai Elavarasan, Ramanathan, Anandan,
Subramaniam, Ghosh and Hossain (2021); Yahaya, Javaid,
Alzahrani, Rehman, Ullah, Shahid and Shafiq (2020), which
reviews recent advances in energy management techniques
for smart grids, including demand response, energy storage,
and renewable energy integration. Authors in Massaoudi,
Abu-Rub, Refaat, Chihi and Oueslati (2023) provides a
comprehensive overview of demand response programs in
smart grids and their impact on grid stability and energy
efficiency. Moreover, SG relies heavily on power electronics
and electrical devices, which generate heat during operation.
Efficient cooling and thermal management are essential for
the reliable and safe operation of these devices Shahzad,
Imran, Tahir, Khan, Akgül, Abdullaev, Park, Zahran and
Yahia (2023). Communication between various components
such as sensors, meters, and control devices is critical for
efficient and effective operation in smart grid systems. An-
tennas play an essential role in enabling wireless commu-
nication between these components. Therefore, developing
a high-performance planar antenna is important to smart
grid applications Alibakhshikenari, Virdee, See, Shukla,
Moghaddam, Zaman, Shafqaat, Akinsolu, Liu, Yang et al.
(2022). The metamaterial-inspired T-matching network em-
ployed in the proposed antenna design can improve the

impedance bandwidth of the antenna, leading to better trans-
mission and reception capabilities Alibakhshikenari, Virdee,
Shukla, Wang, Azpilicueta, Naser-Moghadasi, See, Elfer-
gani, Zebiri, Abd-Alhameed et al. (2021b). This enhanced
performance can improve wireless communication’s relia-
bility, stability, and efficiency in smart grid systems. As
such, this paper’s research findings could provide valuable
insights into developing improved wireless communication
technologies for smart grids Alibakhshikenari, Virdee, Al-
thuwayb, Xu, See, Khan, Park, Falcone and Limiti (2021a).

An immense amount of energy is consumed by residen-
tial areas and this consumption is rising quickly. This mas-
sive amount of energy consumption is caused by different
issues discussed above. During the distribution of energy,
combined primary and secondary distribution, the loss in
the frequency ratio is up to 70%. While the remaining 30%
of energy is lost in transmission lines, Reddy, Reddy and
Manohar (2016) is also called transmission loss. Neverthe-
less, the most common objectives of electricity management
in HEMS are UC maximization, EC minimization, and PAR
reduction. In this paper, to address the above mentioned
issues, an efficient hybrid solution is proposed for HEMS.
During hybridization, the whole FPA is used for the best
results. After getting the solution of FPA, crossover and
mutation from GA are applied for further improvement in the
proposed solution. The proposed GFPA outperforms both
of these scheduling techniques in terms of minimizing the
PAR, maximizing UC, and, price minimization. This work
compares the FPA, and GA with unscheduled EC and is
considered a scalable town. Homes contain different appli-
ances with TOU, OTI, and PR. Moreover, for each home
of a scalable town, appliances are categorized into three
categories: fixed appliances, non-interruptible appliances,
and interruptible appliances presented in Table II and Table
III Erdinc (2014).

3. System Model
This section discusses the system model, mathematical

formulation, and pricing schemes. Moreover, the details
about the categorization of appliances are also a part of this
section. Electricity generation to consumption has basically
four stages: i) generation, ii) distribution, iii) transmission,
and iv) consumption. Further, electricity consumption can
be divided into three different sectors: i) corporate, ii) resi-
dential, and ii) industrial. Many researchers have suggested
different optimization techniques for the DSM. The pro-
posed GFPA is introduced for reducing the EC with the
scheduling of appliances. The GFPA is a hybrid technique
that comprises the combination of the GA and the FPA.
These techniques act as a catalyst in the process of finding a
suitable and optimal solution amongst all possible solutions
with limited resources. Their recommended solution might
not be the best, but it will always assure you a solution that
might be close to the best one.
Categorization of Appliances: Appliances are categorized
into three different classes given below:
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Table 1
Summary of state-of-the-art.

Techniques Pricing
Schemes

Objectives Achievements Limitations

GA Rahim et al. (2016) RTP Minimize the PAR and cost Minimize the PAR ignore the UC and unable to
reduce the cost

LP Zhu et al. (2012) TOU Reduction in power utiliza-
tion

Minimization in PAR and
cost

Did not consider the UC

FDM and NSGA Samadi et al.
(2015)

RTP High energy for residential
applications

Increase UC and efficient in-
tegration of RES

EC increases and ignore the
maintenance cost

Small HEM Abushnaf et al.
(2016)

TOU Reduce the EC Minimization in EC Ignore the UC

DR and MOPSO program
Bharathi et al. (2017)

DA-RTP
and TOU

Pollution emissions and oper-
ational costs

Minimization in cost and
emissions with RES

RES installation,
maintenance cost and
UC ignored

Deliberate two different sys-
tems to explore the incremen-
tal price Yousefi-khangah et al.
(2017)

- Multi-objective optimization
agenda

Multi-objective optimization
framework

Work for short term schedul-
ing

Game theoretical approach
Nguyen, Song and Han (2014)

DA-RTP Less PAR and EC Lessen PAR and EC High communication over-
head and fail to protect cus-
tomer privacy

Manageable load modelling
Ogwumike et al. (2015)

RTP GSO for multiple object and
constrains

New problem of Shift able
load proposed

PAR and UC ignored

Algorithm for load control Ye
et al. (2015)

- Less load and power schedul-
ing

Schedule different type of ap-
pliances

UC and PAR not considered

Queuing-based energy
consumption monitoring
for smart homes Manzoor
et al. (2017)

- Residential SG networks Delay reduction and cost
minimization

didn’t consider PAR and RES

Efficient GA Based DSM Adika
and Wang (2014)

DA-RTP
and TOU

Covered commercial, resi-
dential and industrial areas

PAR reduce and cost mini-
mize

Larger appliance delay and
UC ignored

Delay and energy consumption
analysis Liu et al. (2015)

RTP Low duty cycle data rate, and
energy consumption

Minimum energy consump-
tion

Cannot consider PAR and de-
lay

Power grid challenges Chen
et al. (2017)

RTP Residential energy manage-
ment system for avoiding
peak formations

PAR reduced and less cost UC ignored

Smart charging and appli-
ance scheduling Rastegar et al.
(2016)

CPP Residential Area Cost Minimization, PAR re-
duction

Lack of initial installation
and maintenance cost of bat-
teries and UC

LP, GA, and Teaching Learning
Based Optimization (TLBO)
Rastegar and Fotuhi-Firuzabad
(2014)

- Cost minimization and UC
maximization

Minimize electricity
consumption cost

Do not bother PAR

Heuristic algorithms and Mixed
Integer Linear Programming
(MILP) Agnetis, De Pascale,
Detti and Vicino (2013)

- Optimization of load
scheduling for energy
consumption

Load balanced Cost minimization is not con-
sidered

Multi-Input Multi-Output
Model Derakhshan, Shayanfar
and Kazemi (2016)

DA-
forecasting

DA-EC and load forecasting
price and load signal forecast

Price and load signal forecast Real time forecasting is not
considered

ILP and gray wolf optimization
Pradhan, Roy and Pal (2016)

- Applied to economic load dis-
patch problems

Dispatch load in off peak
hours

Solved economic load dis-
patch problem
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Figure 1: Proposed system model

• Fixed Appliances
• Non interruptible Appliances
• Interruptible Appliances

Fixed Appliances: Fixed appliances are those appliances
that cannot be shifted from allocated time slots. 𝐷𝑓𝑎 rep-
resents the set of fixed appliances.
Non interruptible Appliances: These appliances can be
shifted or moved from one epoch of time to the others.
Nevertheless, once this category of appliances has gained
the status of ON, these cannot be shifted or interrupted until
their work is completed. Whereas 𝐷𝑛𝑠𝑎 represents the set of
this appliance category.
Interruptible Appliances: These appliances are also called
shiftable appliances, as this type of appliance can be in-
terrupted or moved at any time. 𝐷𝑠𝑎 is a set containing
this type of appliance. 𝐷 is a set of appliances containing
all sub-categories of appliances (fixed, interruptible, non-
interruptible). Further, Eq. (1) elaborates on this given state-
ment.

𝐷𝑎𝑝𝑠 = 𝐷𝑓𝑖𝑎 +𝐷𝑛𝑠𝑎 +𝐷𝑠𝑎 (1)
Where 𝑃 is a set that contains PR of all appliances, such

as 𝑃𝑠𝑎 is the PR of shiftable appliances, 𝑃𝑛𝑠𝑎 is the set that
contains PR of non-interruptible appliances and PR against
the set of fixed appliances is denoted by 𝑃𝑓𝑎 Eq. (2).

𝑃𝑎𝑝𝑠 = 𝑃𝑓𝑖𝑎 + 𝑃𝑛𝑠𝑎 + 𝑃𝑠𝑎 (2)
Mainly the focus is on achieving the objectives of mini-

mum Cost Eq. (3), minimum PAR Eq. (4), and maximizing
the UC Eq. (5). In order to achieve all these objectives, Load
before and after scheduling is not compromised.

𝑂𝑏𝑗1 = 𝑚𝑖𝑛(𝐶𝑜𝑠𝑡) (3)

𝑂𝑏𝑗2 = 𝑚𝑖𝑛(𝑃𝐴𝑅) (4)
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𝑂𝑏𝑗3 = 𝑚𝑎𝑥(𝑈𝐶) (5)
PAR for unscheduled and scheduled schemes can be

calculated by the ratio of the maximum load to the average
load of each hour. Eq. (6) shows the calculation of the PAR
as follows:

𝑃𝐴𝑅 =
𝑚𝑎𝑥(𝐿𝑜𝑎𝑑)
𝑎𝑣𝑔(𝐿𝑜𝑎𝑑)

(6)

Eq. (8), (9), (10), and 11) are used to calculate the total
load consumption during 24, 48, 96, and 1440 time slots
of a day receptively. Where 𝐷𝑎𝑝𝑠

𝑡 represents the number of
appliances and 𝑃 𝑎𝑝𝑠

𝑡 is the PR of each appliance. A load
of each appliance can be calculated using the Eq. (7) given
below:

𝐿𝑜𝑎𝑑 = 𝑃 × 𝑎𝑝𝑝 (7)

𝑇𝑙𝑜𝑎𝑑 =
24
∑

𝑡=1
𝐷𝑎𝑝𝑠

𝑡 × 𝑃 𝑎𝑝𝑠
𝑡 (8)

𝑇𝑙𝑜𝑎𝑑 =
48
∑

𝑡=1
𝐷𝑎𝑝𝑠

𝑡 × 𝑃 𝑎𝑝𝑠
𝑡 (9)

𝑇𝑙𝑜𝑎𝑑 =
96
∑

𝑡=1
𝐷𝑎𝑝𝑠

𝑡 × 𝑃 𝑎𝑝𝑠
𝑡 (10)

𝑇𝑙𝑜𝑎𝑑 =
1440
∑

𝑡=1
𝐷𝑎𝑝𝑠

𝑡 × 𝑃 𝑎𝑝𝑠
𝑡 (11)

Total cost is calculated by the Eq. (12), (13), (14), and
(15), where 𝐸𝑃 𝑎𝑝𝑠

𝑡 is the electricity price signal and 𝑡 is
current time slot.

𝑇𝑐𝑜𝑠𝑡 =
24
∑

𝑡=1
𝐸𝑃 𝑎𝑝𝑠

𝑡 × 𝑃 𝑎𝑝𝑠
𝑡 (12)

𝑇𝑐𝑜𝑠𝑡 =
48
∑

𝑡=1
𝐸𝑃 𝑎𝑝𝑠

𝑡 × 𝑃 𝑎𝑝𝑠
𝑡 (13)

𝑇𝑐𝑜𝑠𝑡 =
96
∑

𝑡=1
𝐸𝑃 𝑎𝑝𝑠

𝑡 × 𝑃 𝑎𝑝𝑠
𝑡 (14)

𝑇𝑐𝑜𝑠𝑡 =
1440
∑

𝑡=1
𝐸𝑃 𝑎𝑝𝑠

𝑡 × 𝑃 𝑎𝑝𝑠
𝑡 (15)

𝐷𝑠𝑡𝑎𝑡𝑢𝑠
𝑎𝑝𝑠 =

{

1, 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑢𝑠 𝑜𝑓 𝑎𝑛 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑖𝑠 𝑂𝑁
0, 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑢𝑠 𝑜𝑓 𝑎𝑛 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑖𝑠 𝑂𝐹𝐹

(16)
Single Home: In this scenario, the category of fixed ap-

pliances contains (Refrigerator, Telephone, and Television
(TV)); the non-interruptible appliances category consists of
(Lighting and Air Conditioner (AC)). At last, the category
for interruptible or shiftable appliances contains (Desktop
computer, Iron, Hair straightener, Printer, Dishwasher, Mi-
crowave, Oven, Toaster, Hair dryer, other fixed, Cooker
hood, Washing machine and Kettle). In this particular, cost
minimization for one home and multiple homes and a scal-
able town is considered. Different OTI for each type of
appliance is also considered. Whereas the OTI and Length
of Operation Time (LOT) vary from one problem to other.
Nevertheless, the PR of each appliance is represented in
TABLE 2.

Multiple Homes: By taking the scenarios of multiple
homes, different PRs for each appliance are applied. Each
home has the same appliance and may have different PRs
for the same type of appliance. So, for this purpose, different
PR for each appliance is taken into consideration. Each time
scheduler takes one PR from predefined PRs. Predefined PRs
against different appliances (Fixed, Non-interruptible and
Interruptible) are given in Table 3.
3.1. Pricing Scheme

There are two types of pricing schemes that are imple-
mented in this work. First, scheduling is done by using CPP
and then by using an RTP signal. Details about CPP and RTP
are given as below:

CPP: The CPP scheme applies at different time inter-
vals, where very high peak prices are offered. It applies only
when the demand for electricity is maximum. So, during
these peak hours utility increases the price according to the
user‘s demand for the load. Fig. 2 shows the CPP signal for
each hour of the day. CPP is assessed for certain hours on
event days (limited to 10-15 per year). Prices during these
event days can be 3-10 times higher than the regular prices.

RTP: The RTP scheme provides information about the
EC at any time. It changes from one hour to another and
allows consumers to adjust their electricity usage. Fig. 3
shows the RTP signal during each hour of the day.

4. Proposed Methodology
In this section, we discuss the proposed scheme, in which

to assess the DSM benefits, a modeling structure is used.
The cost and the load are optimized by proper scheduling
of each appliance by using the proposed GFPA scheduling
technique. The FPA and GA are the parents of GFPA. These
scheduling techniques are explained as follows:
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Table 2
Categorization of appliances for a single home by taking one PR.

Type Appliances PR (kWh) LOT

Fixed Appliances
Refrigerator 1.666 24 h

TV 0.3 6 h 45 min

Telephone 0.005 24 h

Non-Interruptible Appliances Air Conditioner 1.14 7 h 15 min

Lighting 0.1 6 h 15 min

Interruptible appliances

Desktop Computer 0.15 2 h 15 min

Iron 2.40 30 min

Hair Straightener 0.055 0 h

Printer 0.011 0 h

Dishwasher 1.32 30 min

Microwave 1.20 0 min

Oven 1.14 30 min

Toaster 0.80 15 min

Hair Dryer 1.80 30 min

Other Fixed 0.05 24 h

Cooker Hood 0.225 30 min

Washing Machine 1.40 1 h

Kettle 2.0 30 min
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Figure 2: CPP signal
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Figure 3: RTP signal
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Table 3
Categorization of appliances for multiple homes by taking different PR.

Type Appliances PR (kWh) PR (kWh) PR (kWh) LOT

Fixed Appliances
Refrigerator 1.666 1.75 2.0 24 h

TV 0.10 0.3 0.15 6 h 45 min

Telephone 0.083 0.005 0.09 24 h

Non-Interruptible Appliances Air Conditioner 1.80 1.90 1.60 7 h 15 min

Lighting 1.14 1.18 1.10 6 h 15 min

Interruptible appliances

Printer 0.011 0.016 0.020 0 h

Hair Straightener 0.055 0.065 0.045 0 h

Desktop Computer 0.15 0.13 0.17 2 h 15 min

Oven 1.14 1.16 1.18 30 min

Cooker Hood 0.225 0.200 0.220 30 min

Iron 2.40 2.60 2.0 30 min

Microwave 1.20 1.25 1.28 0 min

Toaster 0.80 0.6 1.0 15 min

Kettle 2.0 2.3 2.1 30 min

Other Fixed 0.05 0.08 0.10 24 h

Washing Machine 1.40 1.60 1.0 1 h

Dishwasher 0.05 2.0 2.2 30 min

Hair Dryer 1.32 1.36 1.4 30 min

GA: The GA is a nature-inspired algorithm based on Dar-
win’s theory. In the middle 70s, John Holland invented this
algorithm. This algorithm can be used for problems having
a stochastic nature; which means that when changes are
adopted. GA can also be defined as a search-based opti-
mization technique that leads towards the optimal solution
and works based on a genetic population like chromosomes
Whitley (1994). Here, the meaning of this word optimization
is “moving towards the best solution”. However, this defi-
nition of optimization can vary from one type of problem
to another. In the scenario of this paper, this optimization
technique is used for PAR and cost reduction in the demand-
side management of smart grids. Here, GA applies to a set
of appliances to find the best solution for this population of
appliances. And, also the process of elitism can be observed
in this scenario where all other populations move towards the
fittest or best solution (Algorithm 1). For further details, the
paper Agnetis et al. (2013) can be read, where Agnetis et al.
uses a heuristic approach for household energy consumption,
timeliness, and climate comfort level.

GA Steps: We have multiple ways to choose the parents
chromosomes, for them, any one of the following given
procedures can be chosen.

• Fittest
• Roulette wheel
• Truncation selection

• Tournament
• Pick the best, by itself.

And, we chose the last one.
Crossover: There are mainly three types of crossover as
following:

• Uniform crossover
• Two-point crossover
• One-point crossover

And here, we chose the two-point crossover.
Mutation: We have a choice of choosing one type of

mutation process from its multiple. The following are the
types of mutation:

• Inversion
• Deletion
• Insertion
• Substitution
FPA: Xin-She Yang developed FPA in 2012 Yang

(2012), which is known as a nature-inspired heuristic algo-
rithm. And, the idea of this algorithm has been taken from
the process of pollination which takes place in flowers. We
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Algorithm 1 GA
1: Data initialization
2: Set limits: upper and lower
3: for All appliances which belong to set A do
4: for Generating population from i=1 to Maximum

Pop Size do
5: for Generating appliances from j=1 to Maxi-

mum App Size do
6: Set of initial population generation
7: Evaluation of each population’s individual

fitness
8: while Generation < maximum_generation

do
9: Choose any two parents or chromosomes

according to the given criterion
10: for to generate randomness in the popu-

lation of appliances do
11: Initially: crossover
12: Finally: mutation
13: end for
14: Got the best solution or ending criteria?
15: Apply elitism
16: end while
17: end for
18: end for
19: end for
20: Return: optimal values/solution
21: end

know that the ultimate purpose of flowers is reproduction.
So in our appliance scheduling problem, we choose this
pollination algorithm to give an optimal solution (details of
this process in Algorithms 2). Nonetheless, the author claims
in his paper that this proposed FPA performs better than
the other heuristic algorithms, i.e., GA and Partial Swarm
Optimization (PSO). Further, FPA is one of the most recently
developed algorithms. Its ultimate objectives are given as
below:

• Optimal reproduction of the plants
• Survival of the fittest

There are two types of pollination that take place in FPA,
i.e., biotic and a-biotic. About 10% of the plants belong
to the category of a-biotic, while the other 90% of plants
belong to the category of biotic. In global pollination (also
called biotic), pollinators like bats, birds, and animals are
used as a carrier of the pollens. In a-biotic (also known as
local pollination), the process of water diffusion and wind-
blown caused pollination. Algorithm 1 elaborates on the
steps which are being used.

FPA Steps:

• Levy distribution formula for Global pollination
• Self or local pollination

Algorithm 2 FPA
1: Data initialization
2: for all appliances belonging to set A
3: for Generating population from k=1 to Maximum Pop

Size do
4: Generating random population (flowers/appliances)
5: for Generating appliances from m=1 to Maximum

App Size do
6: if Rand() > switch probability then
7: For updation: use levy flight formula
8: else
9: Get population randomly

10: Limits check
11: end if
12: Again generate random population
13: For each individual: calculate fitness
14: end for
15: Get the local best
16: Compare the current solution with the previous one
17: if Current solution has less cost than previous one

then
18: Update solution
19: end if
20: Global best solution updated
21: end for
22: Return final best solution
23: end

• Use the reproduction process for the consistency of
flowers in view of the likeness of two flowers used in
pollination.

• For the selection of global and local pollination, con-
trol switching probability is used.

4.1. Proposed GFPA Algorithm
The GFPA is our proposed algorithm and is a hybrid

or merger of FPA and GA. For hybridization, we take two
steps: 1) crossover and 2) mutation from GA and insert into
FPA (Algorithm 3). Basically, crossover and mutation are
powerful features of GA. In GFPA, FPA is completely used
to provide its best results. After finding the best results of
FPA, crossover, and mutation are applied for more suitable
results. A Hybrid of GA with FPA takes more time for
convergence; however, it provides better results than parents.
More details and comparisons of these scheduling schemes
are discussed in section 5.
4.1.1. Findings by Hybridization

The proposed nature-inspired hybrid GFPA has several
advantages:

Robustness: GFPA is robust and can handle different
types of optimization problems, including both continuous
and discrete optimization problems.

Global optimization: GFPA can effectively search the
entire search space to find the global optimum solution. This
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Algorithm 3 Proposed GFPA Algorithm
Data initialization

2: For all appliances belonging to set A
for Generating population from k=1 to MaximumPop-
Size do

4: Generating random population (flowers/appliances)
for Generating appliances from m=1 to Maxi-

mumAppSize do
6: if Rand() > switch probability then

For updation: use levy-flight formula
8: else

Get population randomly
10: Limits check

end if
12: Again generate population randomly

For each individual: calculate fitness
14: end for

Get the local best
16: Compare the current solution with the previous one

if Current solution has less cost than previous one
then

18: Update solution
end if

20: Update global best solution
for Get population randomness do

22: Apply crossover process
Then mutation process

24: end for
end for

26: Return best solution
end

is achieved by incorporating the exploration and exploitation
capabilities of both GA and FPA.

Fast convergence: GFPA has a fast convergence rate due
to the use of the flower pollination algorithm, which uses a
random search strategy to quickly explore the search space.

Flexibility: GFPA is a flexible algorithm that can be eas-
ily adapted to different optimization problems by changing
the optimization function and the parameters.

Scalability: GFPA can be applied to large-scale opti-
mization problems due to its ability to parallelize the fitness
evaluation process.

Overall, the GFPA algorithm is a promising optimization
technique that combines the strengths of both GA and FPA,
making it an effective and efficient optimization tool for
solving complex optimization problems, e.g., scheduling in
the current scenario.

5. Simulation Results and Discussions
In this section, details of the simulation results and

discussions are presented. We perform simulations to show
this work’s productiveness and optimal scheduling for smart
homes. The GA, FPA, and proposed GFPA are implemented
for applying scheduling on smart homes. In the scenario

of this paper, time slots are composed of 24, 48, 96, and
1440, starting from 12 pm to 12 pm. The simulation results
presented in our paper cover different time slots ranging from
24 to 1440, which correspond to hourly and daily time scales.
The reason for considering such a wide range of time slots is
to evaluate the proposed algorithm’s performance under var-
ious operating conditions and to demonstrate its scalability
for different system sizes. Since the simulation results show
that the proposed GFPA algorithm performs consistently
well across different time scales, achieving significant cost
reduction, PAR improvement, and UC enhancement. By
considering different time slots, we have also shown that
the algorithm can handle different load profiles and demand
patterns, making it applicable to a wide range of scenarios.
Simulation results are shown in Fig. 4 and Fig. 5.

RTP and CPP Signal for Single Home: Fig. 6 and Fig.
7 present the cost comparison. For performance evaluation,
simulations are performed against different OTIs (e.g., 15,
30, and 60 minutes). Cost is calculated in terms of cents. For
reduction in EC, appliances are scheduled. The basic goal of
scheduling is to shift the load from high peak slots to low
peak slots to reduce the electricity bill. Energy consumption
schedules for implemented schemes are depicted in Fig. 4
and Fig. 5. The comparison of all applied schemes is shown
in Table 4 and Table 5. Different PRs for each appliance are
applied and instead of showing load in stairs for multiple
homes. Only the total load for both schemes (CPP and RTP)
is shown. However, the stair graph of load at each time slot
can be shown by applying different OTIs. Fig. 4 and Fig.
5 show the load at each time slot by using CPP and RTP
schemes.

The FPA, The GA, and the proposed GFPA are applied
on different OTIs, (i.e., 15, 30, and 60 minutes). From the
results, we can analyze that the PAR has a direct relation with
the price As a greater PAR has a higher cost and vice versa.
This can also be seen from Fig. 6 that the proposed GFPA,
FPA, and GA in every OTI have lesser PAR compared to
unscheduled. So we can conclude from these results that the
proposed GFPA performs better than the FPA and the GA
in terms of PAR. This is because our proposed technique
shuffled interruptable or shiftable appliances from one slot
to other and turned them on during a beneficial time in order
to avoid generating higher peaks. The further details for PAR
can easily be understood from Fig. 6 and Fig. 7

RTP and CPP Signal for Multiple Homes: Scheduling
is done for multiple homes by taking real-time scenarios.
Each home has the same appliance with different PRs. So,
random PR for each appliance is chosen, in order to make
this scenario real. The difference between cost, PAR, and
average waiting time for 10, 30 and 50 homes is shown in
Fig. 8, by applying the CPP signal. The comparison of all
applied schemes for multiple homes against 60 minutes OTI
is shown in Table 6 and Table 7. The values of PAR, cost
and delay are changed in every iteration, as different PRs
are used for the same appliance of every home. Appliances
are scheduled according to the RTP scheme, the results are
shown in Fig. 9.

Page 11 of 21



Nature-Inspired Hybrid Algorithm for Energy Management in Smart Homes

Table 4
Comparison of different OTIs against CPP signal for a single home

Technique
OTI 60 minutes OTI 30 minutes OTI 15 minutes OTI 1 minutes

PAR Cost Delay PAR Cost Delay PAR Cost Delay PAR Cost Delay

Unsch. 5.41 3093.8 - 4.77 2530.30 - 4.65 2263.10 - 3.72 3961.10 -

GA 2.01 1135.60 11.43 2.02 1044.70 11.49 1.81 1066.68 11.48 1.54 2138.60 10.11

FPA 3.25 720.90 6.22 2.91 659.90 7.87 3.21 651.70 6.03 2.45 1217.90 5.32

GFPA 3.04 711.10 8.20 2.82 653.90 8.06 2.73 644.70 8.81 2.22 1204.90 5.09

Table 5
Comparison of different OTIs against RTP signal for a single home

Technique
OTI 60 minutes OTI 30 minutes OTI 15 minutes OTI 1 minutes

PAR Cost Delay PAR Cost Delay PAR Cost Delay PAR Cost Delay

Unsch. 4.75 429.18 - 4.69 796.57 - 5.20 869.02 - 3.70 1442.90 -

GA 2.02 341.52 11.22 2.01 695.71 6.66 1.80 745.84 7.67 1.63 1343.20 10.31

FPA 3.01 241.37 6.22 3.25 476.79 5.22 3.21 529.62 4.90 2.52 1337.60 5.33

GFPA 2.81 230.37 8.2 3.04 466.79 5.31 2.73 515.62 7.41 2.21 1329.60 5.09

1-minute OTI for Single Home: One-minute OTI is
applied over a single home. There are 1440 time slots for
each appliance to be turned on. Any appliance can be turned
on during a suitable time slot, assigned by the scheduling
schemes. However, before scheduling these slots are user-
dependent instead of the proposed scheme. Results for a
single home are shown in Fig. 10 and Fig. 11. Total load is
shown in (Fig. 10 (d) and Fig. 11 (d)), while load at a specific
time slot is shown in (Fig. 14 (a) and Fig. 14 (b)).

1-minute OTI for Multiple Home: One-minute OTI is
also applied over multiple homes. According to this OTI,
there are 1440 time slots for each appliance. Every appliance
can be turned on at any suitable time slot by the scheduling
schemes. For multiple homes, scheduling is done for scalable
towns comprised of 10, 30, and 50 homes successfully. Our
algorithms scheduled all 18 appliances from on-peak to off-
peak hours. When the CPP signal is applied, it produced
the results as shown in Fig. 12 and against the RTP signal,

results are shown in Fig. 13. The total load is shown instead
of showing the load for each time slot. This is due to the
reason that the load before and after scheduling must be the
same. If energy consumption before scheduling is high, then
EC will be high and the load is not properly scheduled by
the scheduling schemes. By applying the RTP signal and
by taking one-minute OTI over a single home, produce the
following energy consumption sequence as shown in Fig. 14
(a). Similarly, by applying the CPP signal over a single home
and by taking a one-minute OTI, produce the following
energy consumption pattern as shown in Fig. 14 (b).
5.1. 60-minute OTI for Single Home

60-minute OTI is applied over a single home and accord-
ing to this OTI, there are 24 time slots for each appliance to
be turned on. Fig. 6 Fig. 7, TABLE 4, and TABLE 5 present
the cost, PAR and waiting time comparisons and picto-
rial presentation, respectively. 60-minute OTI for Multiple
Home: 60-minute OTI is also applied over multiple homes
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Figure 4: Load against different OTIs by applying CPP signal for a single home.
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Figure 5: Load against different OTIs by applying RTP signal for a single home.

and according to this, there are 24-time slots for each appli-
ance. The scheduling schemes can turn every appliance on
at any suitable time slot. Moreover, appliances are scheduled
according to the RTP and CPP signals in these schemes. The
results are shown in Fig. 9 and Fig. 8, and compared in Table
6 and Table 7.

The choice of the OTI in simulation results is an im-
portant consideration in evaluating the effectiveness of the
proposed algorithm. The OTI refers to the time interval
at which the electricity price changes and it affects the
granularity of the scheduling decision. Moreover, the 1-
minute OTI represents a more granular level of pricing
information, while the 60-minute OTI represents a less fre-
quent update of the pricing information. We evaluated both

OTIs to assess the performance of the proposed algorithm
under different conditions. Additionally, the focus on using
these specific OTIs are due to a couple of reasons. Firstly,
the 1-minute OTI provides a more detailed view of the
pricing information, which may be useful in determining
the optimal scheduling pattern for appliances. Secondly, the
60-minute OTI represents a more practical scenario, as it is
more likely to be used in real-world applications. Therefore,
evaluating the performance of the proposed algorithm under
both conditions provides a comprehensive assessment of its
effectiveness.
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Figure 6: PAR, cost and waiting time against different OTIs by applying CPP signal for a single home.
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Figure 7: PAR, cost and waiting time against different OTIs by applying RTP signal for a single home.
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Figure 8: PAR, cost, waiting time and load against 60-minute OTI by applying RTP signal for multiple homes.

5.2. Results Comparison
Different scenarios are discussed in this paper for tack-

ling the issue of the appliance scheduling problem. For
example, by taking bigger OTI, waiting time for consumers
is increased. Similarly, the remaining time is wasted if some
appliance stops before completing its total running time. To
avoid this wastage of remaining time- so this paper has used
different OTIs. So in this scenario, consumers can choose
any OTI as per their comfort for scheduling. Nevertheless,
the delay against each given OTIs is shown in Fig. 6 (c)
and Fig. 7 (c). If we discuss total cost, GFPA, FPA and GA
also performed better. Our proposed optimization schemes
reduced the cost slot by slot (1, 15, 30 and 60 minutes)
and as a result, the hourly cost is minimized, which means
minimization of daily, monthly, and yearly costs and so on.
Fig. 6 (b) and Fig. 7 (b). depicts the comparison between the
costs of GFPA, FPA, GA and unscheduled costs. Another

notable thing is that the cost pattern of our proposed schedul-
ing schemes is quite optimal compared with the unscheduled
load. The consumer’s comfort has decreased by shifting the
load. However, this shift benefits the consumers in terms
of cost reduction. As a consumer tolerates changes in the
energy consumption pattern and shifts the load, the utility
will provide more cost-reduction benefits.

Performance Trade-off: The term trade-off refers to-
wards a compromise between waiting time and cost. As if
a consumer sacrifices his comfort, he actually wants less
electricity cost. And, If the consumer cannot wait for the
suggested time slot of Algorithms and turn on appliances
at any time seeing his comfort, then he must have to pay
for more electricity consumption. From the above, we can
derive that there is an indirect relationship between delaying
time and cost. So, consumers can choose any option from
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Figure 9: PAR, cost, waiting time and load against 60-minute OTI by applying RTP signal for multiple homes.

Table 6
Comparison of different techniques against RTP signal for multiple homes

Technique
50 homes 30 homes 10 homes

PAR Cost Delay PAR Cost Delay PAR Cost Delay

Unscheduled 171.1974 69502 - 103.5179 41329 - 30.7278 15364 -

GA 84.9811 35745 11.8736 51.1788 21283 11.770 15.9904 7968 11.8202

FPA 113.2659 43798 6.667 68.2608 26031 6.676 20.5924 9734 6.672

GFPA 110.2384 43553 6.33 66.2024 25033 6.333 20.0571 9694 6.343

them, either less comfort or less cost. UC and EC of con-
sumers are compared by applying GFPA, FPA and GA with
an unscheduled load. It can be observed that our proposed
GFPA performs better as costs are minimal in all cases.
Conversely, it takes an average amount of PAR and waiting
time compared to GA and FPA.

Feasible Regions: A region where all possible solutions
lies in accordance with fitness function is known as feasible
region. In this paper, we focus on minimizing PAR and EC.

However, EC is mainly based price and consumption. We
can only shift the load from off-peak to on-peak and can
minimize the electricity price. During the calculation of EC,
four parameters are considered.

• Maximum price, minimum energy consumption
• Minimum price, maximum energy consumption
• Minimum price, minimum energy consumption
• Maximum price, maximum energy consumption
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Table 7
Comparison of different techniques against CPP signal for multiple homes

Technique
50 homes 30 homes 10 homes

PAR Cost Delay PAR Cost Delay PAR Cost Delay

Unscheduled 167.0688 243110 - 64.6343 146230 - 36.3286 44552 -

GA 82.5113 106970 11.255 49.1711 64250 11.290 17.2495 19026 11.266

FPA 111.0917 61800 6.667 66.2927 37180 6.676 23.7356 11186 6.667

GFPA 108.1676 61621 6.333 64.6343 37143 6.333 22.9717 11016 6.343
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Figure 10: PAR, cost, waiting time and load against 1-minute OTI by applying CPP signal for a single home.

Feasible regions for this work are shown in Fig. 15 and
Fig. 16. Thus, based on the above-given constraints, the cost
of the scheduled load should be less or equal to the total
unscheduled load. This key boundary point can be derived by
multiplying the maximum and minimum loads with the max-
imum and minimum electricity price signals obtained from
the utility. The feasible regions in Fig. 15 and Fig. 16 show
the relationship between energy load and EC. The possible
feasible regions (shaded with cyan color) against different
OTIs are being shown by the Pointers (P1,..., P5). For more

details, see Fig. 15 and Fig. 16. Feasible regions are taken
upon the base of load and price amounts, while both of them
can be maximum or minimum. Table 8 shows the different
values against maximum EP, minimum EP, maximum load,
and minimum load for the CPP scheme. Similarly, Table 9
shows the different values against maximum EP, minimum
EP, maximum load, and minimum load for the RTP scheme.
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Figure 11: PAR, cost, waiting time and load against 1-minute OTI by applying RTP signal for a single home.
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Figure 12: PAR, cost, waiting time and load against 1-minute OTI by applying CPP signal for multiple homes.

6. Conclusion and Future Work
In this paper, we proposed a novel nature-inspired hybrid

genetic flower pollination-based optimization and schedul-
ing scheme for DSM in HEMSs. Our scheme achieves
the goal of minimizing EC with an affordable delay in

appliance scheduling, while simultaneously maximizing
UC and minimizing PAR. Simulations were conducted on
single and multiple homes, considering different OTIs and
variable power consumption patterns. Our proposed scheme
outperformed existing approaches, such as the FPA and GA,
in terms of PAR, UC, and EC reduction. from simulation, our

Page 17 of 21



Nature-Inspired Hybrid Algorithm for Energy Management in Smart Homes

50 homes 30 homes 10 homes
0

50

100

150

200

250
P

A
R

Unscheduled
GA
FPA
GFPA

(a) PAR
50 homes 30 homes 10 homes

0

0.5

1

1.5

2

C
os

t (
ce

nt
s)

×105

Unscheduled
GA
FPA
GFPA

(b) Cost
50 homes 30 homes 10 homes

0

100

200

300

400

500

600

A
ve

ra
ge

 w
ai

tin
g 

tim
e 

(m
in

ut
s)

GA
FPA
GFPA

(c) Waiting time

50 homes 30 homes 10 homes
0

0.5

1

1.5

2

2.5

3

3.5

Lo
ad

 (
kW

h)

×105

Unscheduled
GA
FPA
GFPA

(d) Load

Figure 13: PAR, cost, waiting time and load against 1-minute OTI by applying RTP signal for multiple homes.
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Figure 14: Load against 1-minute OTI by applying RTP and CPP signal for a single home.

proposed scheme GFPA performs better when applying CPP
signal using different OTIs and compared with unscheduled,
GA, and FPA-based solutions in terms of reducing cost
since they achieve on average 98%, 36%, 23%, and 22%,
respectively. Similarly, PAR averages 98%, 36%, 59%, and
55%, respectively. While, UC comparing to GA and FPA,
are around 88%, 48%, and 63%, respectively. Our proposed
scheme achieves better results by applying RTP signals and
different OTIs. As these schemes, i.e., unscheduled, GA,
FPA, and GFPA, achieve cost on average 92%, 50%, 29%,
and 28%, respectively. While PAR on average 94%, 39%,
62%, and 56%, and UC for GA, FPA, and GFPA on average
98%, 52%, and 49%, respectively. These findings suggest
that our scheme has practical applications for improving the
efficiency and sustainability of power grids. However, our
scheme has some limitations, such as assuming homoge-
neous appliances and power consumption patterns. Future

research directions include addressing these limitations and
exploring more efficient techniques (that may be based
on artificial intelligence) for reducing PAR, maximizing
UC, reducing EC, and load shifting. Overall, our proposed
scheme contributes to the development of DSM and HEMSs
and promotes their adoption in real-world scenarios.
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