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Abstract

MammoWave is a microwave imaging device for breast lesion detection, employing two

antennas which rotate azimuthally (horizontally) around the breast. The antennas operate in

the 1-9 GHz band and are set in free space, i.e., pivotally, no matching liquid is required.

Microwave images, subsequently obtained through the application of Huygens Principle,

are intensity maps, representing the homogeneity of the dielectric properties of the breast

tissues under test. In this paper, MammoWave is used to realise tissues dielectric differ-

ences and localise lesions by segmenting microwave images adaptively employing pulse

coupled neural network (PCNN). Subsequently, a non-parametric thresholding technique is

modelled to differentiate between breasts having no radiological finding (NF) or benign (BF)

and breasts with malignant finding (MF). Resultant findings verify that automated breast

lesion localization with microwave imaging matches the gold standard achieving 81.82%

sensitivity in MF detection. The proposed method is tested on microwave images acquired

from a feasibility study performed in Foligno Hospital, Italy. This study is based on 61

breasts from 35 patients; performance may vary with larger number of datasets and will be

subsequently investigated.

Introduction

Mammography is the current gold standard breast-screening tool, although it has been dem-

onstrated to be less effective for dense breasts [1]. Studies have shown that screening can detect

breast cancer at an earlier stage reducing treatment times, offering greater treatment choices,

and therefore improving survival rates. However, ongoing debates remain i) due to possible

risks related to ionising radiation exposure and ii) on the related optimization of the screening

strategy [2]. Hence, the medical community and related stakeholders must seek alternative,

accurate and safe mass-screening tools, which could be used without age and condition restric-

tions [3]. Due to the recent and continuous advancement of radio-frequency hardware
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technology/sensors, microwave breast imaging has become a potential alternative or additional

imaging method to mammography [4]. Microwave imaging is generally divided into two

major groups: radar-based imaging and microwave tomography. Radar-based imaging meth-

ods perform a linear reconstruction of the image, which is a qualitative scattering map in arbi-

trary units. Microwave tomography is based on inverse scattering algorithms, which lead to

quantitative maps of permittivity and conductivity; however, inverse scattering algorithms

may be affected by mathematical instability. Both radar-based imaging and microwave tomog-

raphy still have lower spatial resolution than mammography. Microwave imaging techniques

exploit the dielectric properties contrast between the healthy tissues and tissues with lesions

[5–9]; specifically, a contrast up to 5 has been reported between healthy fatty tissue and malig-

nant tissue, while it decreases between healthy fibroglandular and malignant tissues [10].

Artificial intelligence (AI) and machine learning (ML) based breast lesion detection have

been a focus by researchers for assisting medical practitioners in their diagnostics process.

With the help of appropriate data sets, AI and ML technology can also be highly useful in the

future lesion prediction purpose [11]. Techniques implementing AI and ML acquire the nor-

mal and abnormal patterns from the provided data (specific to the system under test) to form

decisions based on the specific models’ learning capabilities [12–15]. A hybrid approach using

fuzzy sets, wavelet transformation, pulse coupled neural network (PCNN), and support vector

machine (SVM) for breast cancer classification has been presented in [16]. This hybrid

approach was tested with MRI dataset. However, the accuracy of their method was limited

while processing high dimension data, increases the computational complexity which makes it

difficult for real-time operation and widespread use. Another PCNN based detection of

breast’s micro-calcification for mammogram has been proposed in [17]. Here, the combina-

tion of Otsu thresholding, morphology, bi-orthogonal wavelet and PCNN was employed for

automatic breast cancer detection. A combination of kinetic features and diffusion-weighted

imaging (DWI) of morphology from MRI to discriminate malignant from benign lesions is

presented in [18]. This method investigated the data collected from 234 patients and tested the

method’s effectiveness via cross-validation.

A very limited number of microwave imaging and AI-based studies have been found to

detect breast cancer, with most studies and investigations executed using either synthetic data

[19] or measurements from phantoms [20]. MammoWave (UBT Srl, Italy) is one of the very

few microwave breast-imaging prototypes constructed, tested, and validated at clinical level.

MammoWave, which advantageously works in air with 2 antennas rotating in the azimuth

plane and operating within the 1-9 GHz band, has an innovative frequency domain imaging

algorithm based on Huygens Principle (HP) [21, 22]. An intelligent classification system

to support clinicians has been proposed from MammoWave raw-data signals by the authors

[23].

The proposed work employs MammoWave microwave images and demonstrates PCNN

based adaptive breast image segmentation and lesion detection on the meta-analyses clinical

data. In this work, we introduce a notable combination comprising a simplified PCNN model

with statistical box plot based thresholding, investigating their ability to detect the location of

the lesion within the breast. First, the relationship between each iterative step of PCNN and

the segmented images is studied thoroughly to improve the detection rate where, without

training, the lesion’s location and shape are captured (see Section: Adaptive Image Segmenta-

tion). Second, the breast images with and without findings have been studied separately to

assess our method’s effectiveness, understanding benefits and limitations(see Section: Non-

parametric Thresholding). The proposed method has been tested empirically on microwave

images of 61 breasts. Each breast has its own correspondent output of the radiologist study

review, which has been used as gold standard for classification of the breasts in two categories:

PLOS ONE Breast lesion localisation in microwave imaging

PLOS ONE | https://doi.org/10.1371/journal.pone.0271377 July 21, 2022 2 / 17

and innovation programme under the Marie

Sklodowska-Curie grant agreement No 793449.

This project has received funding from the

European Union’s Horizon 2020 research and

innovation programme under the Marie

Sklodowska-Curie grant agreement No 872752.

Lorenzo Sani, Alessandro Vispa and Giovanni

Raspa are employed by UBT - Umbria

Bioengineering Technologies. Such commercial

funder provided support in the form of salaries for

such authors but did not have any additional role in

the study design, data collection and analysis,

decision to publish, or preparation of the

manuscript. The specific roles of these authors are

articulated in the ‘author contributions’ section.

Competing interests: Lorenzo Sani, Alessandro

Vispa and Giovanni Raspa are employed by UBT -

Umbria Bioengineering Technologies. Gianluigi

Tiberi and Lorenzo Sani are shareholders of UBT -

Umbria Bioengineering Technologies. This does

not alter our adherence to PLOS ONE policies on

sharing data and materials.

https://doi.org/10.1371/journal.pone.0271377


breasts having no radiological finding (NF) or benign finding (BF), breasts with malignant

finding (MF).

Methods & materials

The proposed method for breast lesion localisation has been conducted by following four pri-

mary steps: data acquisition from the MammoWave system, adaptive image segmentation,

dynamic thresholding for breast classification, and validation with the gold-standard, and is

shown in the Fig 1. Each step is described in the below subsections.

Fig 1. Flow chart of the proposed work; the clinical data collection procedure using MammoWave system and the proposed lesion localisation

using the MammoWave created images.

https://doi.org/10.1371/journal.pone.0271377.g001
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Apparatus description and data details

The MammoWave apparatus (UBT Srl, Italy) is shown in Fig 1 and comprises an aluminum

cylindrical hub with two antennas: one transmitting (tx) and one receiving (rx), transceive over

the 1-9 GHz radio-frequency band. The hub contains a hole with a cup (polylactic acid (PLA)

to ensure biocompatibility) where a patient can comfortably place their breast by lying in a

horizontal position (as shown in Fig 1).

Specifically, three different sizes of cups are available for patient tests (i.e., with diameter 95

mm, 110 mm, 134 mm), and the clinical study coordinator chooses the most appropriate size

to best fit the subject’s breast. The cup has a rim width of 1 mm; and it has been found that this

thickness does not impact microwave imaging [24].

Fig 2 provides details of the microwave acquisition. It is pivotal to note that no matching

liquid is required in the apparatus, and unlike some current methods, no breast compression

is needed at any point throughout the data acquisition. The antennas inside the container

(covered to absorb microwaves) are fitted at the constant height, in free space and can rotate

across the azimuth for collecting the microwave signals from diverse angular locations. The

Fig 2. The apparatus measurement procedure; the antennas inside the container (covered to absorb microwaves) are fitted at the constant height,

in free space and can rotate across the azimuth for collecting the microwave signals from diverse angular locations. For every transmitting and

receiving spot, the complex S21 is gathered from 1 to 9 GHz, along with 5 MHz sampling.

https://doi.org/10.1371/journal.pone.0271377.g002
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transmitting and receiving antennas are attached to a 2-port VNA (Cobalt C1209, Copper

Mountain, Indianapolis, IN) that operates up to 9 GHz. Measurements have been accom-

plished by recording the complex scattering parameter S21 in a multi-bistatic fashion, i.e. for

each transmitting position txm the receiving antenna is shifted to measure the received signal

in each 4.5˚, towards all together 80 receiving points rxn. All the measurements have been per-

formed by using 10 transmitting position, displaced in 5 sections centered at 0˚, 72˚, 144˚,

216˚, and 288˚. For every transmitting and receiving spot, the complex scattering parameter

S21 is gathered from 1 to 9 GHz, along with 5 MHz sampling. In the current MammoWave

configuration: the transmitting antenna is placed at a distance of 30 cm from the centre of the

cup; the receiving antenna is placed at a distance of 7 cm from the centre of the cup, more

details can be found in [24]. MammoWave acquisition time is approximately 10 minutes (per

breast).

In-vivo validation of MammoWave on volunteers in Perugia Hospital and Foligno Hospital

was approved in 2015 by the Ethical Committee of Umbria, Italy (N. 6845/15/AV/DM of 14/

10/2015, N. 10352/17/NCAV of 16/03/2017, N 13203/18/NCAV of 17/04/2018). The protocol

is responsible for a feasibility study of the proposed apparatus to detect breast lesions, with the

intention of quantifying its accuracy. The inclusion criteria allowed female volunteers with

intact breast and with a radiologist study output obtained through conventional exams (mam-

mography and/or ultrasound and/or magnetic resonance imaging). All protocols and proce-

dures were in accordance with both institutional and national ethical standards in research,

and World Medical Association Declaration of Helsinki (1964) and its future amendments or

analogous ethical standards. Prior to the trial, all participants have been requested to read and

sign both the informative sheet and informed consent form.

This study comprises images and data of 61 breasts from 35 patients; a summary of patient

information is tabulated in Table 1. Each breast has its own corresponding radiologist study

review output, used as gold standard for breast classification. In greater details, the radiologist

study review initially classified breasts into the categories: NF breasts; WF breasts. Next, a one-

year regular clinical or histological follow up provided the final assessment of the breast’s

radiological findings, i.e. lesions: malignant or benign. Additional details of the radiologist

study review have been also collected and are tabulated in Table 2.

Image formation procedure

Measurements are performed by recording the complex scattering parameter S21 in a multi-

bistatic fashion. Specifically, rx can rotate to measure the received signal at the points

displaced on a circular surface having radius a0. The received signals can be expressed as

S21

m;p
n ða0; �n; txm;p; f Þ, with n = 1, 2, . . ., NPT, where NPT denotes the total number of receiving

points, 80 in this case; m = 1, 2 . . ., 5 indicates the transmitting sections, p = 1, 2 indicates the

position inside each transmitting section; and f is the frequency. The Huygens principle (HP)

has been employed on the received signals to calculate the field inside the cylinder. An image

is then generated from this field, which is a homogeneity map of the dielectric properties. To

Table 1. Summary of patient’s information used in this study.

Total patients 35

Total subjects (breasts) 61

Average patient’s age (in year) 52

Number of patients age between 20-49 year 23

Number of patients age between 50-80 year 38

https://doi.org/10.1371/journal.pone.0271377.t001
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Table 2. Breast index, patient index, age, examined breast (L /R), breast category (NF, BF, and MF) from the radiologist (gold standard information), lesion posi-

tion, and dimensions are all listed here.

Breast

Index

Patient

Index

Patient

Age

Breast Side (L/

R)

Breast

Type

Inclusion

Position

Inclusion Dimension (Maximum

Axis)

Final assessment (Benign-BF/

Malignant-MF)

1 1 48 L WF Upper Zone Not Available Benign

2 1 48 R NF – – –

3 2 65 L WF Upper Zone Not Available Benign

4 2 65 R NF – – –

5 3 65 R NF – – –

6 4 57 R NF – – Benign

7 4 57 L NF – – –

8 5 40 L WF More Areas Not Available Benign

9 5 40 R WF Upper Zone 9 Mm Benign

10 6 52 L WF Upper Zone Not Available Malignant

11 6 52 R NF – – –

12 7 36 L NF – – –

13 8 47 L WF More Areas Multi Inclusions of 1mm Benign

14 9 54 R NF – – –

15 9 54 L NF – – –

16 10 55 R WF Upper Zone 1, 6 Mm Benign

17 10 55 L WF Upper Zone 3, 8 Mm Benign

18 11 51 L WF Upper Zone Not Available Benign

19 12 54 R WF Upper Zone Not Available Benign

20 12 54 L NF – – –

21 13 77 R WF Upper Zone 17 Mm Malignant

22 14 61 R WF Upper Zone 15 Mm Malignant

23 14 61 L WF Upper Zone Not Available Benign

24 15 50 R NF – – –

25 15 50 L WF Lower Zone 10 Mm Benign

26 16 67 L WF Lower Zone 5, 5 Mm Malignant

27 16 67 R NF – – –

28 17 49 L WF Upper Zone Not Available Benign

29 17 49 R NF – – –

30 18 70 L WF Upper Zone Not Available Malignant

31 19 42 L WF Upper Zone 7 Mm Benign

32 20 67 L WF Upper Zone 10 Mm Benign

33 20 67 R NF – – –

34 21 56 R WF Upper Zone 31 Mm Malignant

35 22 43 R WF Upper Zone 12 Mm Benign

36 22 43 L NF – – –

37 23 51 L WF Lower Zone Not Available Benign

38 23 51 R NF – – –

39 24 59 L WF Upper Zone 11 Mm Malignant

40 24 59 R NF – – –

41 25 40 L WF Lower Zone 32 Mm Benign

42 25 40 R NF – – –

43 26 35 R WF Upper Zone 7 Mm Benign

44 26 35 L NF – – –

45 27 37 L WF Lower Zone 25 Mm Benign

46 27 37 R NF – – –

(Continued)
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remove the artefacts, the subtraction between S21 from two measurements belonging to the

doublet of the same section has been employed. The below equation shows the HP based pro-

cedure in Eq (1).

Ercstr
HP;2Dðr; �; txm;p � txm;p0 ; f Þ /

XNPT

n¼1

ðS21

m;p
n ða0; �n; txm;p; f Þ � S21

m;p0
n ða0; �n; txm;p; f ÞÞGðk1j~rn � ~rjÞ ð1Þ

where ðr; �Þ � ~r is the observation point, Δs is the spatial sampling. k1 is the wave number,

and G is the Green’s function. The “reconstructed” internal field has been specified by the

string rcstr. Note, if the conductivity of the media is not equal to zero, Eq (1) compensates the

attenuation experienced while going into the media. Let, NF frequencies has been used fi in the

band B, it shows that the intensity of the image I achieved via following equation, i.e. by sum-

ming incoherently all the solutions of all the sections:

Iðr; �Þ ¼
X5

m¼1

X2

p¼1

XNF

i¼1

jErcstr
HP;2Dðr; �; txm;p � txm;p0 ; fiÞj

2
ð2Þ

The two-dimensional (2D) image is created by Eq (2) in the azimuthal, i.e. coronal plane.

Because the receiving antenna is in free space, the images have been obtained using the free

space dielectric constant in Eq (1). Regarding the conductivity (denoted with σ) for each

breast, multiple different microwave images may be produced, i.e., a conductivity weighing

has been applied by varying the conductivity in Eq (1). In this paper, four different conductiv-

ity images have been investigated denoted as σ1 = 0.01 S/m, σ2 = 0.20 S/m, σ3 = 0.40 S/m, σ4 =

0.60 S/m; the outcomes were analysed to determine the optimal image. It should be highlighted

that the conductivity values used here are in agreement with the breast conductivity average

values reported in [25].

Images generated by the MammoWave are intensity maps, given in linear arbitrary units,

representing the homogeneity of tissues’ dielectric properties. Microwave images have been

first obtained in a cylindrical grid with 7cm radius (which matches to the radius of the receiv-

ing antenna), a radial sampling of 1mm and an azimuthal sampling of 3˚. Furthermore, all

Table 2. (Continued)

Breast

Index

Patient

Index

Patient

Age

Breast Side (L/

R)

Breast

Type

Inclusion

Position

Inclusion Dimension (Maximum

Axis)

Final assessment (Benign-BF/

Malignant-MF)

47 28 43 R WF Upper Zone Not Available Malignant

48 28 43 L NF – – –

49 29 54 R WF Upper Zone 18 Mm Benign

50 30 49 L WF Upper Zone 16 Mm Benign

51 30 49 R NF – – –

52 31 56 L WF Upper Zone 27 Mm Malignant

53 31 56 R NF – – –

54 32 63 L WF Upper Zone 6 Mm Malignant

55 32 63 R NF – – –

56 33 55 R WF Upper Zone 23 Mm Malignant

57 33 55 L WF – Not Available Benign

58 34 64 R WF Upper Zone Not Available Benign

59 34 64 L NF – – –

60 35 37 R WF Lower Zone 15.4mm Benign

61 35 37 L WF Not Available Not Available Benign

https://doi.org/10.1371/journal.pone.0271377.t002
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images have been interpolated on a 2D Cartesian grid having X and Y sampling of 1mm. The

images have been created using free space dielectric constant because of the presence of receiv-

ing antenna in free space. It has been verified via extensive phantoms experiments that this

choice allows detection [26, 27], even if it introduces a slight error in localisation [24, 28]. An

example of the produced images for the different conductivity shown in Fig 3, where Fig 3(a)–

3(d) represents for the σ1, σ2, σ3, and σ4 conductivity images respectively created from the iden-

tical breast signal.

Adaptive image segmentation

Once the microwave image is obtained, image processing on the resulting image is subse-

quently performed. A neural-network model Pulse Coupled Neural Network (PCNN) is

employed to perform the adaptive image segmentation to detect the prominent region of the

breast images. This neural network is a third generation, single-layer, two-dimensional neural

network based on cat visual cortex properties and further modified for adaptive segmentation

of the MammoWave images to create segmented binary images by effective simulation of a

synchronous behaviour [29, 30]. This comprises three parts: an input part, a modulation

part, and a pulse generator part. In the input part, each neuron receives signals through feeding

(Fi,j) and linking (Li,j) channels, where i, j stands for position of the neurons of the image in

nth iteration. Feeding consists of external sources (Si,j) which is the normalised pixel value of

the input image. Linking represents, by the constant synaptic weights from neuron (Wi,j,k,l)

and is linked with its specified neighbouring neurons, referred to as Ni,j, where k, l indicate the

location of the neighbour neuron of i, j. The modulation part is the non-linear combination of

both the feeding and linking signals through the linking coefficient β, as the internal activity

(Ui,j). Finally, the pulse generator part produces a pulse to fire neurons using an adaptive

threshold variable (Ti,j) as a step function to control the output neuron firing event. It works in

such a way that when the threshold decreases exponentially this causes more firing neurons in

the subsequent step. After thresholding, a pulse output Oi,j is produced based on the mathe-

matical models shown below in Eqs (3)–(7), where αT is the threshold decay time constant and

VT is the threshold normalisation constant.

Fi;j½n� ¼ Si;j ð3Þ

Li;j½n� ¼
X

k;j2Ni;j

Wi;j;k;lOk;l½n � 1�
ð4Þ

Fig 3. Microwave images of a single breast for different conductivity level generated via the MammoWave signal. (a) represent the

image created for σ1 conductivity level, (b) represent the image created for σ2 conductivity, (c) represent the image created for σ3

conductivity, and (d) represent the image created for σ4 conductivity. Images given here are two-dimensional (2D) image in the

azimuthal, i.e. coronal, plane. The x-axis and y-axis are given in meter and the colour bar represents the intensity in arbitrary units.

https://doi.org/10.1371/journal.pone.0271377.g003
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Ui;j½n� ¼ Fi;j½n�ð1þ bLi;j½n�Þ ð5Þ

Oi;j½n� ¼ f
1 ifUi;j ½n�>Ti;j ½n� 1�

0 Otherwise ð6Þ

Ti;j½n� ¼ e� aT Ti;j½nþ 1� þ VTOi;j½n � 1� ð7Þ

The working principle of PCNN image segmentation graphically displayed in Fig 4, where

input images are fed into the PCNN to obtain binary output image and detect lesion region.

Non-parametric thresholding

Further, the box and whisker diagram [32] has been incorporated with the thresholding

approach to resolve the risk level of the breast pattern detection. This is a non-parametric sta-

tistical approach, which graphically depicts the quantitative NF+BF and MF image data

through their quartiles. The upper (Q3) and lower (Q1) limit of the boxes indicate the 75th and

25th percentiles of the relative dielectric property’s variability respectively, whereas the middle-

line (Q2) indicates the data median. Hence, the quartiles have been experimented and found

Q1 and Q3 both quartiles contain approximately similar responses for both the healthy and

unhealthy breasts. Thus, a 2D Gaussian smoothing kernel has been applied to the image and

then average the Q3 value for both of the breast type and found that average Q3 as the signifi-

cant threshold value to detect the breast type from these dataset.

Experimental result analysis & discussion

This work has four major steps: parameter selection, identification of a lesion through adaptive

segmentation, decision making and findings of NF+BF and MF breast, and a performance

measure of the proposed study.

As the PCNN results rely on the found parameters, it has been chosen by successive estima-

tion [31, 33]. The parameters are the threshold decay constant (αT), normalization constant

(VT), and linking strength (β) denoted in Section: Adaptive Image Segmentation. In practice,

users need to adjust the parameter value according to their requirements. Practically VT should

be set to a high value, if it is set to low value causes more frequent firing neurons, which loses

the information of granular changes over the iterations. This produces over-segmented images

Fig 4. The flow graph of the adaptive image segmentation using PCNN [31].

https://doi.org/10.1371/journal.pone.0271377.g004
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because the region could not grow fully. On the contrary, β and αT values should be set to low

value, it they are set to high leading to under-segmentation, which will ignore the small

changes between each iteration and output cannot be measured or realised in detail.

Thu, the value of VT is set as ‘20’ as a high value avoids the neurons firing instantly. Experi-

mentally the value of β and αT are set to ‘3’ and ‘0.2’ respectively. Appropriate parameter selec-

tion is paramount to a successful low computational complexity detection algorithm for

accurate lesion location. Therefore, the quantitative analysis of each parameter has been con-

sidered to achieve optimum performance by the network towards true highlighted cell location

detection.

Lesion localisation from PCNN

Breast images are processed through PCNN, producing a binary output after every iteration.

Each iteration creates different segmented images, where in the first iteration all the neurons

compare their input pixel value with the defined threshold parameter (VT) initialising the fir-

ing of all the neurons. In the second iteration, the threshold decay constant (αT) reduces the

threshold and fewer neurons are subsequently fired. Likewise, in every iteration the decay

parameter continue to decrease the threshold, thus fewer and more intensity neurons are fired

producing finer output images after each iteration. This repeats until all the neurons intensity

become higher than the threshold since the threshold decreases after every iteration. This

method does not have an auto-stop criterion thus the stopping condition is selected experi-

mentally and is the 32nd iteration in this proposed work as after that its overfitted and keep on

generates similar output images.

Fig 5 displays the results obtained from six PCNN iterations for one MF microwave breast

image for different conductivity results, each row represents four different conductivity level

(σ1, σ2, σ3, and σ4) images (explained in Section: Image Formation Procedure) and each col-

umn represents the different iterations. In Iteration-2 more neurons have fired for all the lev-

els, whereas the number of firing neurons reduces significantly at Iteration 4. This process

continues until Iteration-32 and shows similar patterns keep on segmented adaptively because

of the auto-wave nature of the neural network. It is observed that the patterns generated by

Iteration-4 are similar to Iteration-29 and 31, whereas the Iteration-5 result is always similar to

Iteration-31. The radiologist study review “MF” for this heterogeneously dense breast has been

obtained with the support of mammography images given in the bottom row, generating as its

output the presence of a cluster of microcalcifications, plus the follow-up. It has been observed

that the adaptiveness of the threshold selection is highly accurate with the pixel’s intensity vari-

ation and in particular, optimal iteration found as the Iteration-5.

Fig 6 shows the segmented binary images of a healthy breast (that comes under the category

of NF+BF breast) patterns for the four different conductivity levels. It has been observed that

the patterns generated by Iteration-4 is alike with Iteration-29 and 31, whereas Iteration-5

result is similar to Iteration-31. Thus, the Iteration-5 is also found to produce the best seg-

mented images amongst all other iterations. Thus, five iterations are considered for localising

the suspected tissues within the images using PCNN. The correspondent mammographic

images are also given below in Fig 6.

Concerning microwave images, the optimal conductivity level has been experimentally ana-

lysed along with the optimal iteration number. In Figs 5 and 6, the outputs of column 3 (Itera-

tion-5) for every row shows a significant difference in locating the abnormal tissues. Figs 5(c)

and 6(c) indicates only clearly detected regions (using σ3) whereas all other segmented images

(where the input images are generated using σ1, σ2, and σ4) show multiple, less significant/

redundant regions, prohibiting a definitive decision for healthy or unhealthy breast
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identification. The lesion localisation experiment has been robustly performed for all the

patients’ breast images available in this study and Iteration-5 with the conductivity level σ3 was

found to be the optimal combination to locate possible lesions. Such findings are in agreement

with that reported in [34] where images’ parameters, i.e., features, of microwave images

Fig 5. Six PCNN iterations for one MF breast images for different conductivity (a) input image formed using σ1, (b) input image formed using

σ2, (c) input image formed using σ3, and (d) input image formed using σ4. The radiologist study review “MF” for this heterogeneously dense

breast has been obtained with the support of mammography images given in the bottom row, giving as output the presence of a cluster of

microcalcifications, plus follow-up.

https://doi.org/10.1371/journal.pone.0271377.g005
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obtained using different conductivity levels have been introduced and used for breast lesions

detection. The radiological reviews have also been compared here for WF breasts (from

Table 2) to perceive if the identified lesion positions are or are not the same which gives a posi-

tive impression on the results obtained from PCNN. All the locations of the lesions found

matches with the radiologist’s location findings.

Fig 6. The results obtained over PCNN iterations for one of the NF+BF breast images with different conductivity: (a) Input image formed using

σ1, (b) input image formed using σ2, (c) input image formed using σ3, and (d) input image formed using σ4. The radiologist study review “NF” for

this scattered area of fibroglandular density breast has been obtained with the support of mammography images given in the bottom row.

https://doi.org/10.1371/journal.pone.0271377.g006
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Malignant lesion detection from non-parametric thresholding

Once the PCNN applied to the images and their segmented outcomes were verified with the

gold standard images, the non-parametric thresholding was applied to classify the breast pat-

terns. In more detail, the boxplot has been examined to classify the NF+BF and MF breast pat-

terns. Here the images for NF+BF and MF exhibit almost similar properties (mean of NF+BF

breast’s Q1� 328 and MF breast’s Q1� 280, mean of NF+BF breast’s Q3� 2209 and MF

breast’s Q3� 1948). Hence, the Q1 and Q3 of both types cover a broad and quantitative range

of the image data and cannot differentiate breasts with these distributions. To overcome this, a

2D Gaussian smoothing kernel with standard deviation (σ) of 30 has been heuristically selected

to enhance certain areas of the images using a replication padding process. Then, the boxplot

has been re-examined for the breast images, illustrating difference in mean of Q1� 770 for

NF+BF and Q1� 670 for MF breast types, whereas Q3� 1600 for NF+BF and Q3� 1500 for

MF shows similar variability for both types of images. Based on the boxplot, quartile threshold

has been selected by averaging Q3 for both breast types. The 1690 value has been found as the

optimal threshold for beast identification purpose and is shown in Fig 7. Fig 7 shows all of the

61 breasts boxplots including NF, BF and MF types, where the x-axis determines the number

of examined breasts and y-axis determines the peak intensity (arbitrary units) of the corre-

sponding breast images. The threshold has been defined by a red dotted line, if the median

(Q2) of each breast pattern lies beyond the threshold, then the breast is identified as MF class

and the median of those breasts that lies under the threshold is considered as NF+BF breast

class. The outcome of this lesion detection has been analysed via confusion matrix shown in

Fig 8.

The detection performance of MF and NF+BF patterns has been validated by the true posi-

tive (TP), false negative (FN), false positive (FP), and true negative (TN) measures. The stan-

dard for the meta-analyses have been categorised as the actual output where MF patterns

defined as class 1 (positive) and NF+ BF defined as class 2 (negative). The predicted output has

been defined by the proposed method which determined the number of instances that are cor-

rectly detected and the instances that are wrongly detected as lesions among the total number

of examined patterns and then class performance has been measured. Fig 8 shows the predic-

tion outcomes, the true-positive of 81.82% and true-negative of 98% has been achieved by the

proposed method for identifying the breast patterns from the MammoWave dataset.

Fig 7. Box whisker plot for the examined breast images with the thresholding. 61 breasts’ data have been filtered

through Gaussian kernel to decide the threshold value, where the x-axis represent the number of breasts’ index and y-

axis represent the peak intensity (arbitrary units) of each breast.

https://doi.org/10.1371/journal.pone.0271377.g007
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Discussion and conclusion

The proposed breast lesion detection from the non-ionizing MammoWave system aims to

address three main tasks: optimal conductivity level identification for microwave image recon-

struction, localisation of potential lesions, and subsequently, the detection of breast category

(NF+BF vs MF). Here, the microwave images are formed by applying Huygens Principle,

resulting in intensity maps representing the homogeneity of the dielectric properties of the

breast tissues under test.

MammoWave images are maximum intensity projection coronal maps (2D) of the whole

3D volume of the breast. Radiologists use a quadrant representation to describe an inclusion’s

(i.e lesion) location. A single breast can be divided into four quadrants: upper outer, upper

inner, lower outer, and lower inner by two perpendicular planes intersected at the nipple. This

representation partially overcomes lesion position mismatches introduced when using differ-

ent devices. In this study, to further reduce such eventual mismatches, we performed the local-

ization comparison (between the localization given by the radiologist using the gold standard

information and the localization obtained using MammoWave) considering the breast divided

only in two zones (upper and lower).

Understanding the difference between breast microwave images with and without lesions is

a challenging task. For this purpose, adaptive segmentation has been performed employing

pulse coupled neural network. The proposed framework has been tested empirically on 61

microwave breast images. Additionally, a non-parametric thresholding technique was mod-

elled to differentiate between breasts with malignant finding and breasts without radiological

findings or with benign finding. The presented result shows the adaptability of the proposed

method to successfully capture the respective lesion’s location, identified in terms of upper/

Fig 8. Confusion matrix obtained from the non-parametric thresholding method.

https://doi.org/10.1371/journal.pone.0271377.g008
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lower zone. All the locations of the lesions found matches with the radiologist’s location find-

ings. The Box whisker plot has been used along with thresholding, achieving 81.82% sensitivity

in MF detection and a specificity of 98%. The sensitivity value is in agreement both with other

MammoWave analysis and with [35, 36], where the Maria system has been used (Maria system

(Micrima Ltd, UK) uses an array of 60 antennas and a matching liquid to perform the radar

approach).

A limitation of this study is that the pre-menstrual information of the subjects was not con-

sidered. Moreover, while performing the microwave image acquisition, some artifacts may

occur due to unusual and abrupt movements of patients during their examination. Thus, elim-

ination of these artifacts will be subsequently considered to improve performance. Also, it

should be pointed out that the values of the sensitivity in MF detection and of the specificity

have been experimented and validated with a limited dataset (61 breasts); performance may

vary when a larger amount of data will be considered.

Further a greater number of patients’ will be engaged in the clinical study and different

parameters (i.e., breast density and/or size, lesion size) will be adapted to the system for multi-

level learning purpose, with the aim of improving clinical evidence on the use of MammoWave

in the breast screening pathway.
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