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1. Introduction

Clustering is one of the most common ways to discover similar patterns in
a given dataset. The time-series databases are often huge and cannot be
adequately managed by human inspectors, so clustering techniques are usu-
ally necessary for pattern recognition. The primary purpose of clustering
procedures is to group similar data according to a similarity measure or a
distance. One of the main problems in time series clustering is computing
pairwise distances between dynamic objects, accounting for how the time
series are represented. Indeed this kind of data have particular features like
serial correlation and usually are both noisy and heteroskedastic with the
presence of shifts (Aghabozorgi et al., 2015).

Once groups of similar time series are formed, they can be used differently.
For example, in the case of financial time series clustering can be used for
asset allocation (Tola et al., 2008, Chen and Huang, 2009, Iorio et al., 2018,
Khedmati and Azin, 2020), where groups of similar stocks could be seen as
portfolios of assets that share similar characteristics. With this respect, once
the C clusters of stocks have been identified, we can construct C portfolios
in very different ways. For example, each stock can be equally weighted if we
build C naive portfolios. Further, we can apply any optimization technique
(e.g. mean-variance, minimum-variance, etc.) to the stocks belonging to
each cluster.

From a methodological perspective, time series clustering methods can be
divided into three main classes: observation-based clustering, feature-based
clustering and model-based clustering (Caiado et al., 2015).

The first, namely the observation-based clustering, uses raw data (D’Urso,
2004, Coppi et al., 2010, D’Urso et al., 2018, D’Urso and Massari, 2019).
In order to deal with time series of different lengths, the observation-based
clustering methods can be built upon the so-called Dynamic Time Warping
(Wang et al., 2019, Li et al., 2020) – which is a well-known technique for
finding an optimal alignment between two given (time-dependent) sequences
under certain restrictions – can be exploited for dealing with time series of
different length. In general, the time series clustering methods belonging to
this approach are particularly useful with a short time series but are not the
most accurate because they miss evaluating important characteristics of the
time series.

The second, the feature-based clustering, overcomes the main limitation
of the observation-based approaches. Indeed, these methods consider suit-
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able features derived for the time series for clustering. In the case of time-
domain features, it is common to account for the autocorrelation function
(ACF) (Alonso and Maharaj, 2006, D’Urso and Maharaj, 2009), the partial
autocorrelation function (PACF) (Caiado et al., 2006) or the quantile auto-
covariance Lafuente-Rego and Vilar (2016). In the frequency domain, the
commonly employed features are the periodogram and its transformations
(Maharaj and D’Urso, 2011, Caiado et al., 2020), coherence (Maharaj and
D’Urso, 2010), the cepstral coefficients (D’Urso et al., 2020) or the quantile
cross-spectral density (López-Oriona and Vilar, 2021).

The last class, i.e. model-based clustering, assumes that a certain statisti-
cal model generates the time series. Most model-based clustering procedures’
spirit is to group objects according to the estimated quantities or parame-
ters. The main advantage of these methods is that the time series does not
need to be of equal length. Examples are the ARIMA (Piccolo, 1990, Ma-
haraj, 1996, 2000, D’Urso et al., 2013b), the GARCH (Otranto, 2008, 2010,
Caiado and Crato, 2010, D’Urso et al., 2016), the Threshold Autoregressive
(TAR) (Aslan et al., 2018), but also the approaches based on copula Disegna
et al. (2017), splines (Iorio et al., 2016, D’Urso et al., 2021) or distribution
parameters (D’Urso et al., 2017, Mattera et al., 2021) fall within this class
of methods.

This paper considers the problem of clustering time series data according
to their estimated moments. More in detail, we aim to develop a novel
approach that faces some open issues in moment-based clustering.

First of all, we include in the clustering model high-order moments. Fol-
lowing model-based approaches, many authors (e.g. Otranto, 2008, 2010,
D’Urso et al., 2016) propose to cluster time series according to conditional
variance estimates. Nevertheless, despite being very important for cluster-
ing financial time series, we claim that the conditional variance is not the
only moment of interest. For example, De Luca and Zuccolotto (2011, 2021)
proposed a clustering algorithm for time series with similar tails. Moreover,
in the context of feature-based clustering, static higher moments such as
skewness and kurtosis are commonly seen as essential features to consider
(Fulcher and Jones, 2014, Mori et al., 2015).

Second, we deal with a general framework of time-varying moments rather
than static quantities. There are several statistical models explicitly thought
to study the dynamic behaviour of the conditional distribution of higher
moments (e.g. see Harvey and Siddique, 1999, León et al., 2005). Recently,
Creal et al. (2013) and Harvey and Sucarrat (2014) developed the Dynamic
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Conditional Score (DCS also called Generalized Autoregressive Score), a very
general statistical model that considers the score function of the predictive
model density as the driving mechanism for time‐varying parameters. The
DCS is an essential tool for describing the financial time series’s volatility
and tails’ heaviness. We claim that it is possible to cluster the time series
according to the estimated conditional moments obtained using DCS. In
other words, similarly to the proposal of clustering time series according
to the estimated conditional variances, we propose to cluster time series
according to the conditional moments estimated with a DCS1.

Third, since it is reasonable to assume that each moment has its own
relevance in explaining the entire data distribution, we avoid implicit equal
weighting by developing a clustering procedure that objectively computes
the optimal weight for each moment. Standard fuzzy clustering algorithms
consider the common Euclidean distance in defining the dissimilarities among
the objects. However, using a simple Euclidean distance would seriously
affect the performance of the clustering algorithm because it would assign
equal weight to each moment, while it could be that the moments exhibit
different degrees of relevance in the definition of the clusters. Therefore,
as in D’Urso et al. (2016) and D’Urso and Massari (2019), we develop a
data-driven procedure where the optimal weights are computed within the
clustering algorithm. This means that, if the assumption of equal importance
holds, the algorithm optimally assigns equal weights to all the moments.

More in detail, the proposed clustering model considers two possible ap-
proaches in clustering financial time series: unconditional and conditional
moments-based clustering. Indeed, we estimate a DCS with a given under-
lying distributional assumption for each time series. On the basis of the
specified distribution, we obtain a different number of moments (e.g. two
moments in the case of Gaussian density or three moments in the case t-
student). From the estimated DCS model, we can retrieve both the (static)
unconditional moments, which are the values of the moments in the long run,
and the (time-varying) conditional moments which represent how each mo-
ment changes over time before reverting to its ”unconditional” value. Note
that the unconditional moment-based clustering has a different goal with re-
spect to the standard static moment-based clustering. In fact, in this case,

1Since the quantities estimated by a statistical model become the input of the clustering
procedure, the proposed clustering model belongs to the model-based class.
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the unconditional moments represent the long-term mean value to which
over-time fluctuations will mean-revert. Therefore, with an unconditional
moment-based clustering, we aim to group time series according to their
long-run distribution. Instead, in the conditional moment-based clustering,
we aim to group time series according to their short-run fluctuations from
their long-run value.

Moreover, as an additional point of innovation, differently from previous
papers we adopt a fuzzy approach. The fuzzy approach allows each time se-
ries to be allocated in two or more clusters. Therefore, we explicitly face the
uncertainty related to the assignment of each series to a single cluster. Identi-
fying a clear boundary between clusters is not an easy task in the real world.
Consequently, a fuzzy approach seems more attractive than a deterministic
one, considering that fuzzy clustering procedures are very efficient at a com-
putational level. Moreover, we use a weighted k-medoids algorithm that is
more robust to noise and more insensitive to the outliers than k-means.

The methodological proposal is tested for a large set of financial time
series, which have been widely used in clustering through fuzzy methods to
classify stocks with a similar rate of return and risk.

The paper is structured as follows. The following section introduces the
DCS model, explaining how conditional and unconditional moments could
be estimated. Subsequently, in the third section, we explain in detail the
proposed score-driven clustering approach. Section 4 presents the considered
dataset and the employed methodology. Section 5 provides a discussion of
the obtained results. The last section highlights the advantages of the new
procedure and offers some conclusive remarks.

2. Dynamic Conditional Score model

2.1. Preliminaries
Let be yt = (yt : t = 1, . . . , T ) a time series generated by the following
observation conditional density p(·):

yt ∼ p(yt|ft,Ft; θ), (1)

where ft is a vector of time‐varying parameters at time t, Ft is the available
information at time t and θ a vector of static parameters. The length of the
vector ft crucially depends by the assumption we make about the density (1).
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As an example, if we specify a Gaussian density, such that p ∼ N (µ, σ2), we
have that ft = (µt, σ

2
t ) but with different densities we could obtain more time

varying parameters.
The available information Ft, is defined as a collection of the realizations

of the time series yt and of its time varying parameters before time t. More-
over, in the DCS model the dependence of yt on the parameter θ in (1) is
due to the dependence of ft on θ.

Given two integers 0 ≤ n,m ≤ T − 1, it is possible to express the DCS
of order n and m, DCS(n,m), for the t-th realization ft of the time-varying
parameter vector as follows:

ft = ω +
n∑

i=1

Aist−i +
m∑
j=1

Bjft−j (2)

where ω is a real vector and the A’s and the B’s are real matrices with an ap-
propriate dimension. All the scalar parameters in ω,A1, . . . ,An,B1, . . . ,Bm

are collected in the vector θ introduced before in (1). Moreover, st is the
scaled score of the conditional distribution (1) at time t, and it is a function
of the data and the parameters, so that st = st(yt, ft,Ft; θ).

Indeed, with the DCS we suppose that the evolution of the time-varying
parameter vector ft is driven by a vector st that is proportional to the score
of the density (1), namely ∇t, together with an autoregressive component.
Indeed, st is defined as:

st = St · ∇t (3)

where St = St(ft,Ft; θ) is a positive definite scaling matrix known at time t
and ∇t(yt, ft,Ft; θ) is the score of yt evaluated with respect to ft, i.e.:

∇t =
∂ log p(yt|ft,Ft; θ)

∂ft
(4)

A common approach of scaling, proposed by Creal et al. (2013), is to consider
the score variance. Specifically, the authors proposed to scale using a matrix
St equal to the inverse of the information matrix of ft to a power γ ≥ 0:

St = Et−1 [∇t∇′
t]
−γ (5)
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where Et−1 denotes the expectation at time t − 1 and the conditional score
∇t is defined as in (4). The parameter γ usually takes value in the set
{0, 1

2
, 1}. When γ = 0, then St is the identity matrix and there is no scaling.

Differently, if γ = 1, then the conditional score ∇t is premultiplied by the
inverse to obtain (3) while, if γ = 1

2
, ∇t is scaled to its square-root.

Since the score depends on the complete density and not only on some
moments of yt, the DCS(n,m) model uses the full density structure for
updating ft. We have to highlight that we could get different DCS(n,m)
specifications depending on the choice about scaling St we make.

A very appealing feature of DCS(n,m) model is that the vector of pa-
rameters θ can be estimated by maximum likelihood (see e.g. Creal et al.,
2013). As noted by Blasques et al. (2014), stationarity of the underlying
time series process guarantees consistency and asymptotic normality for the
maximum likelihood estimator.

2.2. Unconditional and conditional moments
Time-varying parameters reflect the moments of the distribution. This is
the reason why, henceforth, we refer to the ft as the time-varying moments.
According to the model specification (2), it could be highlighted that the
time-varying moments ft are mean-reverting around their long-term mean
values, that we define unconditional moments κ:

κ = (IN −B)−1ω (6)

where IN is the Identity matrix, B is the real matrix defined in (2) and each
element in the vector κ represents an unconditional moment. By replacing
the quantities in (6) with their estimates we obtain the estimated uncon-
ditional moments. The estimated unconditional moments allow a different
representation of the time series yt. Indeed, let us consider the following
collection of time series:

Y =

y1,1 . . . yi,1 . . . yN,1
... . . . yi,t . . .

...
y1,T . . . yi,T . . . yN,T

 (7)

where Y is a matrix of dimension T ×N with N the number of the original
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time series. In each column we have an i-th time series of length T , we are
able to represent each i-th column as k-th unconditional moments:

K =

κ1,1 . . . κ1,k . . . κ1,K
... . . . κi,k . . .

...
κN,1 . . . κN,k . . . κN,K

 (8)

where K is the number of unconditional moments. Now, on the i-th row and
k-th column we have the k-th unconditional moment of the i-th time series,
which has been estimated according to (6).

However, it is also possible to retrieve the time series of the conditional
moments from (2). Indeed, once parameters are estimated according to the
maximum likelihood approach, we obtain the time series ft by in-sample
predictions. In other words, we assume a DCS(1, 1) as follows.

f̂t = ŵ + Â1st−1 + B̂1ft−1, (9)

and define the time series f̂t as estimated conditional moments at time t.
This fact allows a representation for the time series collection (7) which is
different from that of (8):

F =

 f̂1,1 . . . f̂k,1 . . . f̂K,1
... . . . f̂k,t . . .

...
f̂1,T . . . f̂k,T . . . f̂K,T

 (10)

where the element in the t-th row and k-th column is the k-th conditional
moments at time t. In other words, we can express each i-th time series in
terms of its K conditional moments, that are time series themselves.

Since the K conditional moments are time series, they also have an au-
toregressive moving average (ARMA) processes representation. Dynamic ob-
jects could appear dissimilar (e.g. because of different ARMA orders and/or
estimated parameters) even if they share similar properties. A meaningful
way to compare time-varying objects is the infinite order autoregressive rep-
resentation of the process (Piccolo, 1990).

Therefore, once we compute the AR(∞) representation of each condi-
tional moments, we store the results in the following matrix:
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Π =

π1,1 . . . π1,k . . . π1,K
... . . . πi,k . . .

...
πN,1 . . . πN,k . . . πN,K

 (11)

In particular, πi,k is the AR(∞) representation of the k-th conditional mo-
ment for the i-th time series. Note that, given N time series, we have N ×K
conditional moments. Thanks to the representation in (11), we can summa-
rize into one significant number the time-varying behaviour of the estimated
moments.

3. Weighted score-driven fuzzy clustering

In what follows, the Weighted Score-driven Fuzzy C-Medoids Clustering (WS-
FCMd) model is introduced. As briefly mentioned before, a weighted distance
measure between all the estimated unconditional and conditional moments is
proposed in this paper, considering that only one moment can be not enough
informative about the entire data distribution than all the moments together.

More in detail, our proposal is based on the Fuzzy C-Medoids (FCMd)
clustering model (Krishnapuram et al., 1999) specified adequately in terms of
weighted conditional and unconditional moments estimated by a given DCS
model. As previously stated, the WS-FCMd model computes the weights
within the model.

In the case of an unconditional moments-based clustering, the model can
be formalized as follows:

min :
N∑
i=1

C∑
c=1

umi,c

K∑
k=1

[wk(κi,k − κ̃c,k)]2 (12)

K∑
k=1

wk = 1, wk ≥ 0

C∑
c=1

ui,c = 1, ui,c ≥ 0

where ui,c denotes the membership degree of the i-th unit to the c-th cluster,
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wk denotes the weight of the k-th estimated unconditional moments coeffi-
cient, the parameter m > 1 controls for the fuzziness of the partition, κi,k is
the k-th unconditional moments estimated for the i-th time series according
to the DCS as in (8) and κ̃c represents the c-th medoid.

In the case of a conditional moments-based clustering, the model is in-
stead specified as follows:

min :
N∑
i=1

C∑
c=1

umi,c

K∑
k=1

[wk(πi,k − π̃c,k)]2 (13)

K∑
k=1

wk = 1, wk ≥ 0

C∑
c=1

ui,c = 1, ui,c ≥ 0

The model (13) is almost the same of the (12). Indeed, the only element of
difference is the term πi,k and its medoid π̃c that are the AR(∞) representa-
tion of the k-th conditional moments, while also the constraints in (13) are
the same of those in (12). In both the models, the weights wk are associated
with the time series distribution characteristics, captured by each conditional
or unconditional moment. The optimal solutions to the models (12) and (13)
follow the results of D’Urso et al. (2020).

For the problem (12), we have:

ui,c =
1∑C

c′=1

[∑K
k=1(wk(κi,k−κ̃c,k))2∑K
k=1(wk(κi,k−κ̃c′,k))

2

] 1
m−1

(14)

for the membership degrees and:

wk =
1∑K

k′=1

[ ∑N
i=1

∑C
c=1 u

m
i,c(κi,k−κ̃c,k)2∑N

i=1

∑C
c=1 u

m
i,c(κi,k′−κ̃c,k′ )

2

] (15)

for the unconditional moments’ weights.
Similarly, in the case of problem (13), the optimal weights wk are instead

given by:
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wk =
1∑K

k′=1

[ ∑N
i=1

∑C
c=1 u

m
i,c(πi,k−π̃c,k)2∑N

i=1

∑C
c=1 u

m
i,c(πi,k′−π̃c,k′ )

2

] (16)

The proof of the result (14) can be obtained by maximizing the following
Lagrangian function:

L(ui,c, λ) =
N∑
i=1

C∑
c=1

umi,c

K∑
k=1

[wk(κi,k − κ̃c,k)]2 − λ

(
C∑
c=1

ui,c − 1

)
(17)

with respect to ui,c and for fixed values of wk. The result with its proof are
exactly the same if we substitute κi,k with πi,k.

Starting from (17) we could also derive the optimal weights for the un-
conditional moments, given fixed values for ui,c. To get the solution in (15),
let’s consider the following Lagrangian function:

L(wk, λ) =
N∑
i=1

C∑
c=1

umi,c

K∑
k=1

[wk(κi,k − κ̃c,k)]2 − λ

(
K∑
k=1

wk − 1

)

Then it follows that:

∂L(wk, λ)

∂wk

= 0⇐⇒ 2wk

N∑
i=1

C∑
c=1

umi,c(κi,k − κ̃c,k)2 − λ = 0

∂L(wk, λ)

∂λ
= 0⇐⇒

K∑
k=1

wk − 1 = 0

From which we get:

wk =
λ

2
∑N

i=1

∑C
c=1 u

m
i,c(κi,k − κ̃c,k)2

In the end, by substitution, we get the (15). Similarly, we solve problem
(13). In this case, we consider the following Lagrangian function:
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L(wk, λ) =
N∑
i=1

C∑
c=1

umi,c

K∑
k=1

[wk(πi,k − π̃c,k)]2 − λ

(
K∑
k=1

wk − 1

)

Then it follows that:

∂L(wk, λ)

∂wk

= 0⇐⇒ 2wk

N∑
i=1

C∑
c=1

umi,c(πi,k − π̃c,k)2 − λ = 0

∂L(wk, λ)

∂λ
= 0⇐⇒

K∑
k=1

wk − 1 = 0

From which we get:

wk =
λ

2
∑N

i=1

∑C
c=1 u

m
i,c(πi,k − π̃c,k)2

In the end, by substitution, we get the (16).
It is important to mention that in the first step, we should set the starting

values within the vector wk. Without any information, the equal weights
wk = 1/K seems the most reasonable choice even if we could also set other
values as long as they satisfy the constraints in (12).

About the computational aspect, we have to mention that the alternating
optimization algorithm procedure cannot be adopted for solving the prob-
lems (12) and (13) because the necessary conditions cannot be derived by
differentiating the objective function with respect to the medoids. Instead,
following D’Urso et al. (2020), the solutions to the problems have to be
found iteratively by adopting a strategy based on Fu’s heuristic algorithm.
The algorithm for both the conditional and unconditional moments-based
clustering are reported in the Algorithm 1 and Algorithm 2 tables.

Two crucial aspects of the proposed procedure are selecting the fuzzi-
ness parameter m and the number of clusters C. To accomplish these tasks,
we take advantage of the Fuzzy Silhouette (FS) criterion of Campello and
Hruschka (2006). The FS is a well-established cluster validity index that
measures the within-cluster cohesion and inter-cluster dispersion. This val-
idation index is commonly used for the selection of the number of clusters
(Maharaj et al., 2019).
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Algorithm 1 Unconditional moments-based clustering
Estimate unconditional moments with (6);
Fix the number of clusters C, the maximum iterations max.iter and the
fuzzifier m;
Initialize membership degrees ui,c and weights wk;
Set iter = 0;
Pick initial medoids κ̃ = (κ̃1, . . . , κ̃c, . . . , κ̃C)
repeat

Store the current medoids κ̃old = κ̃;
Update the weights wk with (15);
Update the membership degrees ui,c with (14);
Select the new medoids:
for c = 1 to C do:

q = argmin1⩽i′⩽N

N∑
i′′=1

umi′′c

[
K∑
k=1

[wk (κ̃i′′,k − κ̃i′,k)]2
]

return κ̃c = cq
end for
iter← iter + 1;

until κ̃old = κ̃ or iter = max.iter
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Algorithm 2 Conditional moments-based clustering
Estimate conditional moments with (10);
Compute the matrix (11);
Fix the number of clusters C, the maximum iterations max.iter and the
fuzzifier m;
Initialize membership degrees ui,c and weights wk;
Set iter = 0;
Pick initial medoids π̃ = (π̃1, . . . , π̃c, . . . , π̃C)
repeat

Store the current medoids π̃old = π̃;
Update the weights wk with (16);
Update the membership degrees ui,c with (14);
Select the new medoids:
for c = 1 to C do:

q = argmin1⩽i′⩽N

N∑
i′′=1

umi′′c

[
K∑
k=1

[wk (π̃i′′,k − π̃i′,k)]2
]

return π̃c = cq
end for
iter← iter + 1;

until π̃old = π̃ or iter = max.iter
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The FS makes explicit use of the fuzzy partition matrix U with elements
ui,c and considers the information on the membership degrees contained in
U . In the case of high membership, it stresses the importance of units closely
placed with respect to the cluster prototypes. In the case of small member-
ship, it reduces the importance of the units placed in overlapping areas. More
precisely, the FS could be defined as follows:

FS =

∑N
i=1(ui,c − ui,c′)αSi∑N
i=1(ui,c − ui,c′)α

(18)

with:

Si =
(bi − ai)

max{bi, ai}

The value ai is the average distance between the i-th unit and the units
belonging to the cluster p ∈ C having the highest membership degree with
i; bi is the minimum average distance over the clusters of the i-th unit to all
units belonging to the cluster q ∈ C with q ̸= p; ui,c and ui,c′ are the first
and second largest elements of the i-th row of the fuzzy partition matrix,
respectively; α ≥ 0 is a weighting coefficient. The effect of varying the α
parameter on the weighting terms in (18) is investigated in Campello and
Hruschka (2006).

Accordingly, the best partition is the one associated to the highest FS.
Hence, we choose C that maximizes the FS.

Moreover, many heuristic approaches have been proposed in the litera-
ture for choosing an appropriate fuzziness parameter m ∈ (1,+∞). We have
to note that values otf m too close o 1 will result in a partition with all mem-
bership values close to 0 or 1. In contrast, excessively large values of m will
lead to disproportionate overlap with all memberships close to 1/C – where
C is the number of clusters. Consequently, a very large value of m – say,
m → +∞ – and too close to m = 1 are not a suitable selection. Moreover,
when m is high, the mobility of the medoids may be lost. For this reason, a
value of m between 1 and 2 is usually recommended (Bezdek, 1981). Simu-
lations carried out by Pal and Bezdek (1995) showed that the most accepted
value is m = 2. Following D’Urso et al. (2020), in our empirical experiments
we choose between m = 1.5 and m = 2 with the aim of maximizing the FS.

A summary of the proposed method’s steps is presented in Fig. 1.
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Figure 1: The proposed procedures’ flowchart

4. Application to financial time series

4.1. Data
To show the effectiveness of the proposed clustering approach, we evaluate
the model with stock market data by considering the Dow Jones Industrial
Average Index components2. In Fig. 2, we show the daily returns computed
as:

ri,t = ln

(
pi,t
pi,t−1

)
of the 25 stocks that are components of the Dow Jones Industrial Average
Index, being pi,t the daily price of stock i at time t. The considered period

2The datasets and codes used for the analysis can be downloaded at the following link
https://www.sites.google.com/view/raffaele-mattera/research, the name of the
file is Weighted score-driven clustering.zip
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ranges from January 1st, 2010, to January 1st, 2020. Hence, we have N = 25
stocks with T = 2516 time-observations.
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Figure 2: Dow Jones Index components’ returns: time series

As Fig. 2 clearly shows, all the considered stock returns are stationary.
Moreover, Tab. 1 shows the results of the Augmented Dickey Fuller (ADF)
test, finding the absence of a unit root for all the considered stocks in the
sample.
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Table 1: Results of the unit root ADF test
Stock ADF statistics

AA -14.2794∗∗∗

AXP -14.1254∗∗∗

BA -13.7485∗∗∗

C -14.0719∗∗∗

CAT -14.1278∗∗∗

DD -14.0110∗∗∗

DIS -13.6788∗∗∗

GE -11.9292∗∗∗

HD -14.5836∗∗∗

HON -14.1281∗∗∗

IBM -13.4206∗∗∗

INTC -13.7697∗∗∗

IP -14.6593∗∗∗

JNJ -14.1532∗∗∗

JPM -13.7114∗∗∗

KO -14.9122∗∗∗

MCD -14.6066∗∗∗

MMM -14.1161∗∗∗

MO -13.2748∗∗∗

MRK -13.9701∗∗∗

MSFT -14.1174∗∗∗

PG -13.7404∗∗∗

T -14.2892∗∗∗

WMT -13.6355∗∗∗

XOM -14.0907∗∗∗

Note: Table shows the ADF statistic. ∗∗∗ means p-value< 0.01

With the Fig. 3, instead, we notice that the Dow Jones components are
far from being normally distributed, hence confirming also another stylized
fact of financial securities (e.g. Cerqueti et al., 2019, 2020).
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Figure 3: Dow Jones Index components’ returns: empirical densities

Specifically, the distributions of the considered stocks show heavy tails
and different degrees of skewness. In our context of time-varying high mo-
ments of the data distributions, such findings justify the choice of considering
different modelling approaches – see the following subsection.

4.2. Employed classes of WS-FCMd clustering
In the empirical applications, we assume three alternative specifications for
the density (1): a Gaussian distribution that represents the most simple case,
the t-student that is very popular in financial modelling and a Generalized
Skew-t distribution that accommodates for both skewness and heavy tails.

In the case of a Gaussian-DCS(1,1) model for all time series we suppose
yt ∼ N (µt, σ

2
t ) where:

p(yt|ft,Ft; θ) =
1

σt
√
2π
e−(yt−µt)

2/2σ2
t

assuming, therefore, ft = (µt, σ
2
t ). The updating mechanism for time varying

parameters µt and σ2
t could be specified as follows:
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ft = ω +Ast−1 +Bft−1 (19)

where st is scaled by (5) by setting γ = 1. In particular, the conditional score
vectors are in this case given by:

∇(µ)
t =

(yt − µt)

σ2
t

∇(σ)
t =

(yt − µt)
2

2σ4
t

− T

2σ2
t

Summarizing, the model’s variables and parameters are:

ft =

(
µt

σ2
t

)
, ω =

(
ωµ

ωσ

)
, A =

(
aµ 0
0 aσ

)
and B =

(
bµ 0
0 bσ

)
In order to account for non-normality of the data, we consider a second
instance and assume that yt follows a t-student distribution with location µt,
scale ϕt and degrees of freedom vt > 2 with its density given by:

p(yt|ft,Ft; θ) =
Γ
(
vt+1
2

)
Γ
(
vt
2

)
ϕt
√
πvt

(
1 +

(yt − µt)
2

vtϕt

) vt+1
2

Now we have that ft = (µt, ϕt, vt). Assuming a t-DCS(1,1), the time varying
mechanism of the parameters is the same as in (19), with the conditional
score vectors are equal to:

∇(µ)
t =

(vt + 1)(yt − µt)

vtϕt + (yt − µt)2

∇(ϕ)
t =

1

2ϕt

[
(vt + 1)(yt − µt)

2

vtϕt + (yt − µt)2
− 1

]
∇(v)

t =
1

2

{
ψ

(
vt + 1

2

)
−ψ

(vt
2

)
− 1

vt
−log

(
1 +

(yt − µt)
2

vtϕt

)
+

(vt + 1)(yt − µt)
2

vt [vtϕt + (yt − µt)2]

}

where ψ(·) is the Digamma function. By scaling the conditional score with
γ = 1, the model’s variables and parameters are:
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ft =

µt

ϕt

vt

 , ω =

ωµ

ωϕ

ωv

 , A =

aµ 0 0
0 aϕ 0
0 0 av

 and B =

bµ 0 0
0 bϕ 0
0 0 bv


This model has been also denoted by Beta-t-EGARCH model by Harvey and
Sucarrat (2014).

In the end, we specify a third method that aims to include skewness
together with heavy tails in the analysis. To this aim, we consider the Skew-t
distribution developed by Fernández and Steel (1998), which is characterized
by the following density:

p(yt|ft,Ft; θ) =
2

γt +
1
γt

Γ
(
νt+1
2

)
Γ
(
νt
2

)
(πνt)1/2

ϕ−1
t

×

[
1 +

(yt − µt)
2

νtϕ2
t

{
1

γ2t
I[0,∞) (yt − µt) + γ2t I(−∞,0) (yt − µt)

}]−(νt+1)/2 (20)

where µt is the location, ϕt the scale, vt the shape, γt the skewness, I(−∞,0) (yt − µt)
the indicator function for (yt − µt) < 0 and I[0,∞) (yt − µt) for (yt − µt) ≥ 0.
The thickness of the distribution’s tails is determined by the parameter vt,
while γt determines the amount of mass on both sides of the location µt.
Symmetric distributions are obtained for γ = 1. The score of the density
(20) can be obtained following Zhu and Galbraith (2010) and related papers.
In this last case, the model’s variables and parameters are given by:

ft =


µt

ϕt

vt
γt

 , ω =


ωµ

ωϕ

ωv

ωγ

 , A =


aµ 0 0 0
0 aϕ 0 0
0 0 av 0
0 0 0 aγ

 and B =


bµ 0 0 0
0 bϕ 0 0
0 0 bv 0
0 0 0 bγ


The parameters contained in ω, A and B, are estimated by MLE and then

replaced within the conditional moments’ equation (19) to obtain in-sample
predictions.
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4.3. Alternative clustering models and validation
As stated in the introduction, there are many other approaches for clustering
time series. A first approach is to consider the Fuzzy C-medoids (FCMd, see
Bezdek, 1981) with simple Euclidean distance between an i-th stocks with
its centroid:

min :
N∑
i=1

C∑
c=1

umi,cd
2
i,c =

N∑
i=1

C∑
c=1

umi,c

[
T∑
t=1

(ri,t − rc,t)2
]

(21)

Since the model (21) is based on raw time series, we define it as Raw
data-based FCMd.

Within the class of feature-based clustering approaches, an established
clustering model is based on the use of the time series’ auto-correlation
function (e.g. see D’Urso and Maharaj, 2009). By defining ρi,l the auto-
correlation at l-th lag of the i-th time series, the clustering model can be
defined as follows:

min :
N∑
i=1

C∑
c=1

umi,cd
2
i,c =

N∑
i=1

C∑
c=1

umi,c

[
L∑
l=1

(ρi,l − ρc,l)2
]

(22)

The model (22) is called ACF-based FCMd.
In the end, we consider a FCMd algorithm that employs the GARCH-

based distance of Caiado and Crato (2010). Let Ti = (α̂i, β̂i) a matrix
containing the estimated parameters of a GARCH(1,1) process3 for the i-th
time series, the GARCH-based FCMd algorithm (see D’Urso et al., 2013a)
can be written as:

min :
N∑
i=1

C∑
c=1

umi,cd
2
i,c =

N∑
i=1

C∑
c=1

umi,c
[
(Ti −Tc)

′ Ω−1 (Ti −Tc)
]

(23)

where (Ti −Tc)
′ Ω−1 (Ti −Tc) is the squared Mahalanobis-like distance

between the estimated GARCH parameters and Ω−1 is a scaling matrix, equal
to the covariance of the estimated parameters.

3The GARCH(1,1) is a parsimonious representation of an ARCH(∞) (see Bollerslev,
1986).
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In the experiment with real data, we compare the validity of the proposed
clustering models with the aforementioned alternatives (21), (22) and (23).

In a controlled environment, where the ground truth is available, the
quality of the partition can be computed employing the external validation
indices, such as the Adjusted Rand Index (ARI, see Hubert and Arabie,
1985). However, studying the validity of a clustering algorithm is a difficult
task because this ground truth is unknown. The main idea underlying most
clustering validity indices is to measure the within-cluster cohesion and inter-
cluster dispersion. The FS of Campello and Hruschka (2006), which has been
already described in Section 3, is a well-established and widely used cluster
validity index for fuzzy partitions. Accordingly, the best clustering algorithm
is the one with the maximum Silhouette.

Therefore, we first compare the proposed approaches based on the FS
index. Moreover, we also compare the groups by means of non-parametric
tests (see Demšar, 2006). More in detail, we generated 10 datasets with 20
randomly stocks selected from the whole sample. The clustering models are
applied to obtain partitions for each of the 10 new sub-samples. Then, the
Friedman (1937) test is used to understand if the clustering models perform
differently over the 10 random datasets, while the Nemenyi (1963) post-hoc
analysis is performed in order to analyze the differences quantitatively.

5. Results

In this section, the clustering results are reported. First, we analyze the
case of the Score driven Fuzzy C-Medoids model under Gaussian density
for both the securities. Then, we show the results related to the heavy-
tailed specification with t-student density and under a Generalized Skew-
t distribution, that includes skewness. In the end, also a comparison of
different clustering algorithms is presented. More in detail, the performances
of the proposed clustering are compared, in terms of Fuzzy Silhouette, with
the standard FCMd algorithm, based on a simple Euclidean distance, the
ACF-based FCMd approach and the GARCH-based FCMd, both commonly
implemented for clustering financial time series.

5.1. Clustering with Gaussian density
The first step of the procedure is to estimate a Gaussian-DCS(1,1) for all the
Dow Jones components. Parameters estimates are reported in Appendix A
of the paper and will not be shown here to save space.

23



According to Fig. 1, once the DCS parameters have been estimated,
we could either extrapolate the unconditional moments or the conditional
moments depending on the type of clusters we want to get.

First, let us analyze the case of unconditional moments-based WS-FCMd
clustering. The empirical counterpart of the matrix (8), the matrix contain-
ing the estimated unconditional moments, is reported in the Table 2. Since
we have specified a Gaussian density K = 2, so we have a N × 2 matrix.

Stock κi,1 κi,2
AA -0.000216 0.000566

AXP 0.000502 0.000206
BA 0.000795 0.000245

C 0.000371 0.000383
CAT 0.000477 0.000293

DD 0.000290 0.000340
DIS 0.000654 0.000176
GE 0.000004 0.000277
HD 0.000901 0.000155

HON 0.000696 0.000164
IBM 0.000122 0.000153

INTC 0.000541 0.000239
IP 0.000349 0.000315

JNJ 0.000443 0.000090
JPM 0.000564 0.000249
KO 0.000386 0.000087

MCD 0.000574 0.000096
MMM 0.000402 0.000150

MO 0.000568 0.000126
MRK 0.000496 0.000146

MSFT 0.000742 0.000205
PG 0.000409 0.000087

T 0.000342 0.000112
WMT 0.000410 0.000118
XOM 0.000132 0.000136

Table 2: Unconditional moments estimated by a Gaussian-DCS(1,1) for the Dow Jones
Index components’ daily returns
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The first column, κi,1 represents the estimated unconditional first moment
for the i-th asset (i-th row), while the second column, κi,2, contains the
estimated unconditional second moment for the i-th asset.

We define the number of clusters according to the FS approach of Campello
and Hruschka (2006). The results are showed in the Fig. 4 for both values
m = 1.5 and m = 2 of the fuzziness parameter.
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Figure 4: Fuzzy silhouette of unconditional moment-based clustering in the case of a
Gaussian-DCS(1,1) with both m = 1.5 and m = 2

Since, for Gaussian density, the FS takes a higher value for m = 1.5
and C = 2, we select these values in our WS-FCMd algorithm. Another
essential feature of the proposed algorithm is the weights assigned to each
unconditional or conditional moment in forming the groups. Table 3 shows
the weights assigned to the first and the second estimated unconditional
moments.

κi,1 κi,2
Weights 30.74% 69.25%

Table 3: Weights of the two unconditional moments (fuzziness m = 1.5)
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As it appears clearly, the weights associated with the estimated uncondi-
tional variance (second moment κi,2) is much higher than the unconditional
mean (first moment κi,1), meaning that this information is more critical in
clusters formation.

The cluster analysis results are summarized in the Table 4, where in the
last two columns, one can find the estimated membership degrees to the
cluster assignment.

Membership degrees
Stock Cluster 1 Cluster 2

AA 0.9114 0.0886
AXP 0.0314 0.9686

BA 0.3168 0.6832
C 0.9986 0.0014

CAT 0.9728 0.0272
DD 1.0000 0.0000
DIS 0.0033 0.9967
GE 0.9296 0.0704
HD 0.0184 0.9816

HON 0.0027 0.9973
IBM 0.0244 0.9756

INTC 0.3094 0.6906
IP 0.9993 0.0007

JNJ 0.0026 0.9974
JPM 0.4753 0.5247
KO 0.0038 0.9962

MCD 0.0019 0.9981
MMM 0.0001 0.9999

MO 0.0002 0.9998
MRK 0.0000 1.0000

MSFT 0.0460 0.9540
PG 0.0035 0.9965

T 0.0017 0.9983
WMT 0.0005 0.9995
XOM 0.0162 0.9838

Table 4: Partitions by the unconditional moments-based clustering procedures with m =
1.5 for the Dow Jones Index components’ daily returns
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Overall, the second group is the most numerous, with 80% of the asset.
Moreover, for most of the stocks, the cluster assignment is not very uncer-
tain. However, for both JPM and BA stocks, the group’s assignment shows
fuzziness since the membership degree of being in both groups 1, and 2 is
very close.

Let us consider now the case of clustering with conditional moments.
As previously explained, in the case of the conditional moments-based WS-
FCMd clustering algorithm, a further step is necessary after parameter esti-
mation. Indeed, while in the case of the unconditional moments, we could
immediately represent the time series matrix Y in (7) with the matrix K in
(8), this does not happen with conditional moments.

More specifically, each column of the matrix Y can be represented as
a matrix of dimension T × K of conditional moments. Since conditional
moments are time series themselves, the proposed procedure compares each
k-th moment for the i-th time series by an AR(∞) representation. The
empirical AR(∞) representations, hence the matrix Π in (11), is shown in
the Table 7.
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Stock πi,1 πi,2
AA -0.98100 -0.57400

AXP -0.49700 -0.31700
BA -0.50000 -0.48900

C -0.51000 -0.87600
CAT -0.97900 -0.82400

DD -0.47500 -0.55900
DIS -0.48200 -0.24400
GE -0.50000 -0.76300
HD -0.50200 -0.81100

HON -0.46200 -0.62300
IBM -0.47900 -0.99000

INTC -0.53900 -0.99300
IP -0.51400 -0.77600

JNJ -0.47100 -0.09300
JPM -0.50400 -0.77700
KO -0.42900 -0.99000

MCD -0.41700 -0.99100
MMM -0.48300 -0.01500

MO -0.92600 -0.57100
MRK -0.45300 -0.07800

MSFT -0.46700 -0.12500
PG -0.45600 -0.30400

T -0.46900 -0.99300
WMT -0.44600 -0.98700
XOM -0.49700 -0.91900

Table 5: AR(∞) representation of the conditional moments estimated by a Gaussian-
DCS(1,1) for the Dow Jones Index components’ daily returns

Where πi,1 is the AR(∞) representation of the first conditional moment
for the i-th asset and, similarly, πi,2 is the AR(∞) representation of the
second conditional moment.

The number of clusters has to be selected by the FS approach of Campello
and Hruschka (2006). According to the FS we selected C = 2 and fuzziness
m = 2.
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Figure 5: Fuzzy silhouette of conditional moment-based clustering in the case of a
Gaussian-DCS(1,1) with both m = 1.5 and m = 2

Table 6 shows the weights assigned to the first and the second estimated
unconditional moments.

πi,1 πi,2
Weights 22.36% 77.63%

Table 6: Weights of the two conditional moments (fuzziness m = 2)

As previously, we get that the second conditional moment contains much
more information than the first one in clustering formation. Moreover, with
respect to the previous experiment with unconditional moments, the rele-
vance of the second moment increases from 69% of Table 3 to 77% of Table
6.

The final assignments are summarized in Table 7, where in the last two
columns, we report the estimated membership degrees to the cluster assign-
ment.

Overall, the second group is again the most numerous, with almost 70%
of the assets. On the other hand, more assets are placed in the second group
according to the conditional moment-based clustering.
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Clustering results are different with respect to the previous case. First
of all, the medoids are different. While in the first case, DD and MRK
are the medoids, in the second one, we have DIS and C stocks. Second,
the classification of some stocks is more uncertain in the case of conditional
moments based clustering. For example, the stocks AA has a membership
of 0.46 to the cluster c = 1 and 0.53 for c = 2, while in the unconditional
moment-based clustering, it belongs to the cluster c = 1 with a membership
of 0.9. The same applies to other stocks like DD and MO.

These differences are crucial in terms of the applicability of these clus-
ters, for example, in the case of asset allocation. Indeed, as we have already
mentioned in the introduction, once the C clusters of stocks have been iden-
tified, it is possible to construct C portfolios by applying a naive diversifica-
tion strategy or a specific optimization technique (e.g. mean-variance, mini-
mum variance, etc.). Clearly, different cluster assignments result in different
portfolio construction and, therefore, different out-of-sample performances
in terms of risk-return trade-off. Moreover, an investor can exclude stocks
whose classification is too uncertain.
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Membership degrees
Stock Cluster 1 Cluster 2

AA 0.4627 0.5373
AXP 0.9830 0.0170

BA 0.7135 0.2865
C 0.0000 1.0000

CAT 0.1583 0.8417
DD 0.5042 0.4958
DIS 1.0000 0.0000
GE 0.0454 0.9546
HD 0.0130 0.9870

HON 0.3107 0.6893
IBM 0.0234 0.9766

INTC 0.0243 0.9757
IP 0.0341 0.9659

JNJ 0.9641 0.0359
JPM 0.0334 0.9666
KO 0.0267 0.9733

MCD 0.0282 0.9718
MMM 0.9340 0.0660

MO 0.4661 0.5339
MRK 0.9582 0.0418

MSFT 0.9754 0.0246
PG 0.9884 0.0116

T 0.0248 0.9752
WMT 0.0243 0.9757
XOM 0.0042 0.9958

Table 7: Partitions by the conditional moments-based clustering procedures with m = 2
for the Dow Jones Index components’ daily returns

5.2. Clustering with heavy-tailed density
Stock returns are far to be normally distributed as they appear clearly from
the empirical densities shown in Fig. 3. Therefore, to account for the empiri-
cal distribution’s heavy tails now, we suppose a t-DCS(1,1) model to estimate
parameters and, hence, obtain both conditional and unconditional moments.

In this case the matrix K is of dimension 25 × 3, because the specified
density p(·) ∼ t, so we have the location µ, the scale ϕ and the shape v.
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Estimates are showed in the Table 8.

Stock κi,1 κi,2 κi,4
AA -0.00012 0.00042 8.00000

AXP 0.00090 0.00015 7.99999
BA 0.00099 0.00018 8.00000

C 0.00054 0.00029 7.99999
CAT 0.00068 0.00022 8.00000

DD 0.00043 0.00026 8.00000
DIS 0.00085 0.00013 7.99999
GE 0.00004 0.00021 7.99999
HD 0.00107 0.00012 8.00000

HON 0.00080 0.00012 7.99999
IBM 0.00065 0.00011 7.99999

INTC 0.00068 0.00018 8.00000
IP 0.00058 0.00024 8.00000

JNJ 0.00055 0.00007 8.00000
JPM 0.00070 0.00019 7.99999
KO 0.00052 0.00007 8.00000

MCD 0.00062 0.00007 8.00000
MMM 0.00109 0.00011 7.99999

MO 0.00074 0.00009 8.00000
MRK 0.00060 0.00011 8.00000

MSFT 0.00078 0.00015 8.00000
PG 0.00044 0.00007 8.00000

T 0.00048 0.00008 8.00000
WMT 0.00048 0.00009 8.00000
XOM 0.00017 0.00010 8.00000

Table 8: Unconditional moments estimated by a t-DCS(1,1) for the Dow Jones Index
components’ daily returns

Where we define κi,4 as the unconditional fourth moment (the shape v) for
the i-th asset. This last column suggests that despite all the assets sharing a
different unconditional mean and variance, they have very close unconditional
shape (fourth moment) values.

Moreover, the first two estimated unconditional moments κi,1, κi,2 in the
Table 8 are very different from those of the Table 2 since the underlying statis-
tical model is different and, hence, the estimated parameters too. Moreover,
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Figure 6: Fuzzy silhouette of unconditional moment-based clustering in the case of a
t-DCS(1,1) with both m = 1.5 and m = 2

the unconditional shape looks the same for all the considered stocks. This
fact makes the unconditional shape v̄ less useful in clustering different time
series.

However, despite the unconditional levels of the shape being similar, the
time-varying behaviour among time series are very different. Appendix B of
the paper shows the estimated conditional moments, and it is clear that the
conditional shape v̂t is not flat over time and has different patterns for the
different stocks.

The Fig. 6 shows the FS values for different clusters. The highest value
is reached with fuzziness parameter m = 1.5 and C = 2, so we use them for
the algorithm.

The Table 9, instead, shows the weights assigned to the four estimated
unconditional moments.

κi,1 κi,2 κi,4
Weights 23.13% 56.73% 20.13%

Table 9: Weights of the three unconditional moments (fuzziness m = 1.5)

33



In this case, the unconditional second moment has a principal role in
clustering decision making, while the unconditional shape is the lowest since
the values are very close among the assets. In other words, different group
assignments are mainly due to the differences in the unconditional location
and scale parameters.

The group assignment is presented in Table 10. In the case of t-student
density, we have that most of the stocks are placed in the second group.
Moreover, the uncertainty in the group assignment is a bit higher in the case
of heavy-tailed distributional assumption.
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Membership degrees
Stock Cluster 1 Cluster 2

AA 0.9137 0.0863
AXP 0.0674 0.9326

BA 0.3726 0.6274
C 0.9977 0.0023

CAT 0.9681 0.0319
DD 1.0000 0.0000
DIS 0.0074 0.9926
GE 0.8952 0.1048
HD 0.0165 0.9835

HON 0.0043 0.9957
IBM 0.0017 0.9983

INTC 0.3274 0.6726
IP 0.9971 0.0029

JNJ 0.0099 0.9901
JPM 0.5412 0.4588
KO 0.0119 0.9881

MCD 0.0076 0.9924
MMM 0.0216 0.9784

MO 0.0072 0.9928
MRK 0.0000 1.0000

MSFT 0.0378 0.9622
PG 0.0117 0.9883

T 0.0086 0.9914
WMT 0.0074 0.9926
XOM 0.0282 0.9718

Table 10: Partitions by the unconditional moments-based clustering procedures with m =
1.5 for the Dow Jones Index components’ daily returns

Now we analyse the case of conditional moments-based clustering. The
AR(∞) representation, the πi,k elements, are showed in the Table 11.
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Stock πi,1 πi,2 πi,4
AA -0.28600 -0.53000 -0.47200

AXP -0.66400 -0.81700 -0.47400
BA -0.64700 -0.85700 -0.61500

C -0.62300 -0.74500 -0.65900
CAT -0.35100 -0.80700 -0.58800

DD -0.60900 -0.75800 -0.64200
DIS -0.64300 -0.83300 -0.61600
GE -0.60700 -0.75200 -0.45400
HD -0.63600 -0.85800 -0.63300

HON -0.59400 -0.71200 -0.44100
IBM -0.63000 -0.88300 -0.59500

INTC -0.70300 -0.51100 -0.60700
IP -0.66900 -0.77700 -0.60800

JNJ -0.63600 -0.86600 -0.39600
JPM -0.66000 -0.73400 -0.67600
KO -0.60600 -0.66300 -0.62300

MCD -0.58000 -0.65800 -0.48600
MMM -0.65800 -0.80100 -0.59700

MO -0.88200 -0.88600 -0.38500
MRK -0.61200 -0.88700 -0.61900

MSFT -0.64100 -0.88100 -0.61700
PG -0.60200 -0.88300 -0.39600

T -0.65000 -0.78900 -0.33600
WMT -0.62500 -0.87900 -0.43000
XOM -0.66800 -0.80200 -0.63800

Table 11: AR(∞) representation of the conditional moments estimated by a t-DCS(1,1)
for the Dow Jones Index components’ daily returns

The first column πi,1 represents the infinite order AR representation for
the conditional first moment time series, the second column πi,2 reports the
same AR(∞) representation for the second conditional moment while the
last column πi,4 contains the infinite AR for the conditional shape of the i-th
asset.

As a result of the conditional shape’s time variation, we observe different
values in the last column of Table 11. Then the numbers of clusters are
selected with the Campello and Hruschka (2006) procedure.

36



−
0

.1
0

.1
0

.3

Fuzzy silhouette: results (m=1.5)

2 3 4 5

−
0

.1
0

.1
0

.3
0

.5

Fuzzy silhouette: results (m=2)

2 3 4 5

Figure 7: Fuzzy silhouette of conditional moment-based clustering in the case of a t-
DCS(1,1) with both m = 1.5 and m = 2

According to Fig. 7, in both cases m = 1.5 and m = 2 we get the highest
FS values with C = 2. However the FS is higher for m = 2, hence we select
this value of fuzziness for the WS-FCMd algorithm.

The relative importance of the conditional moments in clustering forma-
tion is shown in Table 12.

πi,1 πi,2 πi,4
Weights 10.46% 6.80% 82.72%

Table 12: Weights of the three conditional moments (fuzziness m = 2)

Clusters formation, shown in the Table 13, results in a lower level of un-
certainty than the unconditional moment-based approach. Moreover, groups
have a different composition than the previous case, with the second group
that, differently from the Gaussian density specification, is again the most
numerous.
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Membership degrees
Stock Cluster 1 Cluster 2

AA 0.1558 0.8442
AXP 0.0896 0.9104

BA 0.9999 0.0001
C 0.9650 0.0350

CAT 0.9268 0.0732
DD 0.9840 0.0160
DIS 1.0000 0.0000
GE 0.0255 0.9745
HD 0.9929 0.0071

HON 0.0103 0.9897
IBM 0.9834 0.0166

INTC 0.9751 0.0249
IP 0.9970 0.0030

JNJ 0.0234 0.9766
JPM 0.9430 0.0570
KO 0.9931 0.0069

MCD 0.1690 0.8310
MMM 0.9869 0.0131

MO 0.0526 0.9474
MRK 0.9988 0.0012

MSFT 0.9995 0.0005
PG 0.0235 0.9765

T 0.1019 0.8981
WMT 0.0000 1.0000
XOM 0.9886 0.0114

Table 13: Partitions by the conditional moments-based clustering procedures with m = 2
for the Dow Jones Index components’ daily returns

5.3. Skewed and heavy-tailed distribution
Although the popularity of the t-student distribution for stock returns mod-
elling, Fig. 3 shows that almost all the stocks in the sample are characterized
by a given degree of skewness. Therefore, in what follows, we consider the
clustering under skewed and heavy-tailed distribution by assuming a Skew-t
distribution.

As usual, let us analyse first the case of unconditional-moments based
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clustering. Now we have that the matrix K is of dimension 25 × 4 because
the Fernández and Steel (1998) is characterized by 4 parameters: location µ,
scale ϕ, skewness γ and shape v. We define the unconditional skewness for
the i-th stock as κi,3. Tab. 14 shows the estimated unconditional moments.

κi,1 κi,2 κi,3 κi,4
AA -0.000122 0.023796 1.000000 7.999991

AXP 0.000897 0.014353 0.999999 7.999986
BA 0.000988 0.015638 1.000000 7.999989

C 0.000542 0.019573 1.000000 7.999986
CAT 0.000670 0.017128 1.000000 7.999990

DD 0.000405 0.018448 1.000000 7.999987
DIS 0.000850 0.013254 1.000000 7.999986
GE 0.000136 0.016629 0.999999 7.999910
HD 0.001074 0.012467 1.000000 7.999990

HON 0.000798 0.012816 1.000000 7.999986
IBM 0.000646 0.012367 0.999999 7.999984

INTC 0.000677 0.015449 1.000000 7.999990
IP 0.000582 0.017741 0.999999 7.999990

JNJ 0.000550 0.009490 1.000000 7.999998
JPM 0.000698 0.015788 1.000000 7.999988
KO 0.000492 0.009333 1.000000 7.999998

MCD 0.000619 0.009821 1.000000 7.999997
MMM 0.001089 0.012248 0.999999 7.999984

MO 0.000741 0.011228 1.000000 7.999998
MRK 0.000596 0.012092 1.000000 7.999989

MSFT 0.000784 0.014302 1.000000 7.999987
PG 0.000442 0.009319 1.000000 7.999998

T 0.000478 0.010578 1.000000 7.999998
WMT 0.000480 0.010862 1.000000 7.999997
XOM 0.000168 0.011682 1.000000 7.999998

Table 14: Unconditional moments estimated by a Skew-t-DCS(1,1) for the Dow Jones
Index components’ daily returns

Tab. 14 suggests that almost all the stocks are unconditionally symmet-
ric, i.e. in the long run, they have symmetric distributions. Indeed, all the
stocks have a long-run skewness parameter equal (or very close) to 1, which
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Figure 8: Fuzzy silhouette of unconditional moment-based clustering in the case of a
Skew-t-DCS(1,1) with both m = 2 and m = 2

corresponds to a symmetric version of the distribution shown in (20). More-
over, the stocks also have a similar degree of shape (see column 4 of Tab.
14) in the long run. This means that both the conditional skewness and
shape of the time series differentiate for the short-run fluctuations around
the long-run values, as it will be clear soon. Nevertheless, they show different
unconditional (long-run) values for both mean and variance. Fig. 8 shows the
values of the FS. The maximum Silhouette is reached with fuzziness m = 2
and C = 2 clusters.

Table 15 shows the weights assigned to the four estimated unconditional
moment in the case of WS-FCMd clustering.

κi,1 κi,2 κi,3 κi,4
Weights 22.17% 30.27% 25.01% 22.54%

Table 15: Weights of the four unconditional moments (fuzziness m = 2)

The optimal weighting is close to an equally weighting scheme. Neverthe-
less, the process scale seems to be the most important determinant in cluster
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definition. The membership degrees of the final clustering are reported in
Tab. 16.

Membership degrees
Stock Cluster 1 Cluster 2

AA 0.5882 0.4118
AXP 0.6399 0.3601

BA 0.7723 0.2277
C 0.7578 0.2422

CAT 0.9103 0.0897
DD 0.7497 0.2503
DIS 0.5259 0.4741
GE 0.5252 0.4748
HD 0.5061 0.4939

HON 0.2605 0.7395
IBM 0.5528 0.4472

INTC 1.0000 0.0000
IP 0.7805 0.2195

JNJ 0.1793 0.8207
JPM 0.9252 0.0748
KO 0.1914 0.8086

MCD 0.1649 0.8351
MMM 0.5594 0.4406

MO 0.1916 0.8084
MRK 0.0000 1.0000

MSFT 0.4326 0.5674
PG 0.2134 0.7866

T 0.1466 0.8534
WMT 0.1327 0.8673
XOM 0.3003 0.6997

Table 16: Partitions by the unconditional moments-based clustering procedures with m =
2 for the Dow Jones Index components’ daily returns

The unconditional moment-based clustering under skew-t distribution
highlights more fuzzy units regarding previous cases. Indeed, a stock like
DIS, GE and HD belong with low membership to cluster 1 (i.e. 0.52 and
0.51). Other stocks like MSFT and MMM have a slightly higher member-
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ship degree than 0.5 (0.57 and 0.55, respectively).
Let us now analyze the case of conditional moments-based clustering un-

der the Skew-t assumption. We start by considering the AR(∞) representa-
tion of the conditional moments that are shown in Tab. 17.

Stock πi,1 πi,2 πi,3 πi,4
AA -0.35900 -0.06900 -0.62800 -0.79700

AXP -0.66400 -0.84800 -0.45600 -0.87500
BA -0.64400 -0.77200 -0.88100 -0.85200

C -0.62700 -0.87200 -0.65500 -0.59700
CAT -0.37200 -0.80100 -0.69800 -0.58200

DD -0.62600 -0.88400 -0.51100 -0.86300
DIS -0.63700 -0.84900 -0.79300 -0.86100
GE -0.61300 -0.84300 -0.65800 -0.86400
HD -0.63900 -0.85600 -0.58600 -0.64300

HON -0.58800 -0.87700 -0.65500 -0.78700
IBM -0.62100 -0.68500 -0.85500 -0.80700

INTC -0.73000 -0.08000 -0.68100 -0.88100
IP -0.67200 -0.85300 -0.68600 -0.60400

JNJ -0.63000 -0.67100 -0.56900 -0.88400
JPM -0.65600 -0.87500 -0.82800 -0.83800
KO -0.58700 -0.11900 -0.32900 -0.84600

MCD -0.59600 -0.11200 -0.46500 -0.86800
MMM -0.68000 -0.84900 -0.60000 -0.85300

MO -0.85600 -0.62600 -0.67800 -0.73100
MRK -0.61400 -0.78900 -0.28500 -0.81300

MSFT -0.63800 -0.69500 -0.27400 -0.87700
PG -0.57800 -0.13000 -0.55500 -0.87000

T -0.62600 -0.12800 -0.47300 -0.88200
WMT -0.63200 -0.70000 -0.74500 -0.86200
XOM -0.64400 -0.88200 -0.63600 -0.41700

Table 17: AR(∞) representation of the conditional moments estimated by a Skew-t-
DCS(1,1) for the Dow Jones Index components’ daily returns

The third column shows the conditional skewness’s AR(∞) representa-
tion. It is interesting to note that, despite all stocks having unconditionally
symmetric distribution, the degree of skewness is not constant but changes
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Figure 9: Fuzzy silhouette of conditional moment-based clustering in the case of a Skew-
t-DCS(1,1) with both m = 1.5 and m = 2

over time. Moreover, the stocks differ by the time pattern of the skewness.
As a result, we find different conditional values in the third column of Ta-
ble 17. Then, these values become the input of the WS-FCMd clustering
algorithm.

The optimal number of clusters C is selected with the Campello and
Hruschka (2006) procedure (see Fig. 9). The maximum Silhouette is achieved
with fuzziness m = 1.5 and C = 2 clusters.

Table 18 shows the weights assigned to the four estimated unconditional
moment in the case of WS-FCMd clustering.

πi,1 πi,2 πi,3 πi,4
Weights 0.24% 0.22% 0.30% 0.24%

Table 18: Weights of the four unconditional moments (fuzziness m = 2)

Also, in this case, the optimal weighting is close to an equally weighting
scheme. Nevertheless, by accounting from conditional moments, we now
get that most of the clustering result is driven by the time variation in the
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skewness. At the same time, the primary source was the unconditional scale
of the processes.

The resulting partition is shown in Tab. 19.

Membership degrees
Stock Cluster 1 Cluster 2

AA 0.4770 0.5230
AXP 0.9018 0.0982

BA 0.2886 0.7114
C 0.1452 0.8548

CAT 0.2392 0.7608
DD 0.8883 0.1117
DIS 0.2296 0.7704
GE 0.2803 0.7197
HD 0.1784 0.8216

HON 0.0000 1.0000
IBM 0.2273 0.7727

INTC 0.7490 0.2510
IP 0.1854 0.8146

JNJ 1.0000 0.0000
JPM 0.2305 0.7695
KO 0.7658 0.2342

MCD 0.8264 0.1736
MMM 0.8180 0.1820

MO 0.5523 0.4477
MRK 0.7119 0.2881

MSFT 0.7807 0.2193
PG 0.8076 0.1924

T 0.8562 0.1438
WMT 0.3517 0.6483
XOM 0.2811 0.7189

Table 19: Partitions by the conditional moments-based clustering procedures with m = 1.5
for the Dow Jones Index components’ daily returns

With conditional moments-based clustering, the fuzziness of the partition
reduces. For example, MSFT now belongs to its cluster with a high member-
ship, but it applies to MMM, DIS, GE and HD stocks. The only unit with a
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fuzzy classification is the stock MO with membership equal to 0.55.

5.4. Comparisons
Let us discuss the differences in the final classification of the proposed models
with respect to the established alternatives briefly discussed in section 4.3.
Clearly, for each of the alternative models discussed in section 4.3, we select
the number of clusters C with maximum FS criterion (see Fig. 10).
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Figure 10: Fuzzy silhouette of the alternative clustering models with both m = 1.5 and
m = 2

Tab. 20 shows the ranks of clustering methods in terms of the values of
the selected cluster validity measure, i.e. the FS of Campello and Hruschka
(2006) index.
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Models Fuzzy Silhouette
WS-FCMd:

Unconditional Gaussian 0.6432
Unconditional t 0.5203

Unconditional Skew-t 0.4158
Conditional Gaussian 0.6064

Conditional t 0.4853
Conditional Skew-t 0.3834

Raw data-based FCMd 0.0242
ACF-based FCMd 0.1234

GARCH-based FCMd 0.4980

Table 20: Campello and Hruschka (2006) Fuzzy Silhouette and Xie and Beni (1991) indices
for the proposed clustering models. Best methods are highlighted in bold.

Tab. 20 shows that the score-driven models are the best approaches with
respect to the alternatives according to the Fuzzy Silhouette criterion. How-
ever, it is not clear which alternative WS-FCMd specifications outperform
the others. Indeed, according to the FS, the WS-FCMd based on the uncon-
ditional Gaussian moments is the best model. As expected, among the con-
sidered alternatives, the GARCH-based FCMd performs much better than
the others, while the raw-data based approach is the worst model. More-
over, the GARCH-based FCMd is ranked third in terms of FS. The Skew-t
assumption does not generate improvements in the partitions’ quality.

We also evaluate the clustering accuracy with non-parametric tests to bet-
ter understand the differences. As explained in Subsection 4.3, we generated
ten datasets with twenty randomly stocks selected from the whole sample.
Then, the clustering models are applied to obtain partitions for each of the
ten new sub-samples. The FS values of the clustering models for each dataset
is reported in Tab. 21.
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Panel A: Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5
WS-FCMd:

Unconditional Gaussian 0.81 0.73 0.71 0.74 0.77
Unconditional t 0.93 0.90 0.91 0.91 0.91

Unconditional Skew-t 0.91 0.79 0.74 0.90 0.90
Conditional Gaussian 0.90 0.90 0.93 0.91 0.86

Conditional t 0.83 0.59 0.39 0.67 0.75
Conditional Skew-t 0.88 0.93 0.39 0.94 0.90

Raw data-based FCMd 0.06 0.19 0.01 0.21 0.17
ACF-based FCMd 0.24 0.12 0.22 0.14 0.22

GARCH-based FCMd 0.59 0.38 0.65 0.51 0.61
Panel B: Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10

WS-FCMd:
Unconditional Gaussian 0.69 0.70 0.75 0.71 0.78

Unconditional t 0.87 0.87 0.90 0.91 0.89
Unconditional Skew-t 0.65 0.84 0.77 0.94 0.92
Conditional Gaussian 0.92 0.94 0.90 0.91 0.92

Conditional t 0.49 0.60 0.56 0.92 0.65
Conditional Skew-t 0.44 0.38 0.55 0.97 0.93

Raw data-based FCMd 0.05 0.19 0.02 0.18 0.04
ACF-based FCMd 0.23 0.21 0.17 0.21 0.16

GARCH-based FCMd 0.61 0.56 0.59 0.62 0.42

Table 21: Campello and Hruschka (2006) Fuzzy Silhouette for the proposed clustering
models. Best methods are highlighted in bold.

Tab. 21 highlights that for all the considered experiments, the WS-FCMd
clustering approaches always provide the most accurate results. More in
detail, the WS-FCMd consistently outperform the alternative regardless of
the specified probability distribution for most of the experiments.

Then, we rank for each experiment the clustering algorithms in terms of
FS. The ranks are reported in Tab. 22.
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Panel A: Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5
WS-FCMd:

Unconditional Gaussian 6 5 4 5 5
Unconditional t 1 2 2 2 1

Unconditional Skew-t 2 4 3 4 2
Conditional Gaussian 3 3 1 3 4

Conditional t 5 6 6 6 6
Conditional Skew-t 4 1 7 1 3

Raw data-based FCMd 9 8 9 8 9
ACF-based FCMd 8 9 8 9 8

GARCH-based FCMd 7 7 5 7 7
Panel B: Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10

WS-FCMd:
Unconditional Gaussian 3 4 4 6 5

Unconditional t 2 2 2 4 4
Unconditional Skew-t 4 3 3 2 3
Conditional Gaussian 1 1 1 5 2

Conditional t 6 5 6 3 6
Conditional Skew-t 7 7 7 1 1

Raw data-based FCMd 9 9 9 9 9
ACF-based FCMd 8 8 8 8 8

GARCH-based FCMd 5 6 5 7 7

Table 22: Ranks in terms of Campello and Hruschka (2006) Fuzzy Silhouette for the
proposed clustering models.

Then we perform the Friedman (1937) test where the number of data sets
is ten, and the number of methods is 9. The Friedman test compares the
average ranks of the nine algorithms for the ten datasets. Under the null
hypothesis, the nine algorithms have equal ranks over the ten datasets. The
test statistics4 is equal to τF = 62.027 with a p-value of 1.863e−10. Hence,
we reject the null hypothesis of equal performances across the different ex-
periments. Then the Nemenyi (1963) post-hoc test has been used to analyze
the differences among the nine alternative methods. The Critical Differ-
ences (CDs) obtained from the Nemenyi post-hoc test (see Demšar, 2006)
are reported in Fig. 11. The clustering algorithms that show no significant
differences are grouped using bold horizontal lines.

4Given N datasets and k models, the Friedman statistics follows a Chi-square distri-
bution with k-1 and (k-1)(N-1) degrees of freedom.
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Figure 11: Critical Differences: results

From Fig. 11 we observe that the two best clustering models are the un-
conditional moments-based WS-FCMd with t-student distribution and the
conditional moments-based WS-FCMd algorithm with Gaussian distribution.
The average ranks are equal to 2.2 and 2.4, respectively. It is interesting to
note that both approaches provide not statistically different results with re-
spect to most of the other WS-FCMd algorithms, which can be considered
equally good. With this respect, the most important result is that the alter-
native clustering models have significantly different and lower ranks than the
WS-FCMd models. For example, the Raw-data based and the ACF-based
approaches are consistently the worst ones (average ranks equal to 8.8 and
8.2). The GARCH-based FCMd has an average rank equal to 6.3 and pro-
vides a statistically different and worst classification than the majority of
the WS-FCMd algorithms. The only models with statistically similar per-
formances, i.e. the worst WS-FCMd algorithms, are based on conditional
moments under Gaussian distribution and the unconditional moments under
t distribution.

Overall, the results highlighted in Fig. 11 suggest that the proposed clus-
tering models provide better and statistically different classification than the
proposed alternatives. Nevertheless, there is insufficient evidence to assess
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which of the best two models outperforms the other. Therefore, based on
these results, we would suggest a t distribution for clustering time series based
on the long-run distribution characteristics, while a Gaussian distribution for
clustering according to short-run deviations.

6. Final remarks

This paper proposes a new approach for clustering financial time series based
on the DCS parametric modelling. This general statistical model considers
the predictive model density’s score function as the driving mechanism for
time‐varying parameters. For each time series, we estimate the DCS with a
specific distribution. Based on the specified distribution, we obtain differ-
ent moments (e.g. two in the Gaussian distribution or three in the case of
t-student one). From the estimated DCS model, we get both the uncondi-
tional moments, that is, the value of the moment in the long run, and the
conditional moments which represent how each moment changes over time
before reverting to its ”unconditional” value.

In this framework, we adopt a fuzzy clustering perspective. In doing
so, we admit that each time series can be in more than one cluster with a
certain probability level. Indeed, the fuzzy approach implicitly indicates the
presence of a second-best cluster. This is a missing property in the traditional
clustering methods. Moreover, identifying a clear boundary between clusters
is not an easy task in the real world, so a fuzzy approach appears more
attractive than a deterministic one.

We present an application to a real financial dataset based on the Dow
Jones Industrial Average’s stock returns. We find that the two best cluster-
ing models are the unconditional moments-based WS-FCMd with t-student
distribution and the conditional moments-based WS-FCMd algorithm with
Gaussian distribution. Nevertheless, both approaches provide not statisti-
cally different results with respect to most of the other WS-FCMd algo-
rithms, which can be considered equally good. An impressive result is that
the alternative clustering models have significantly different and lower ranks
than the proposed WS-FCMd algorithms.

The proposed approach presents some noticeable practical implications in
the context of finance. Specifically, the proposed clustering algorithm can be
used to build financial portfolios. Indeed, clustering is recently being used
for asset allocation (e.g. Raffinot, 2017), especially in an high-dimensional
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context. The weighted score-driven approach can be used to construct finan-
cial portfolios based on asset returns’ distribution by exploiting the evidence
documenting time variation in returns’ higher moments (e.g. see Jondeau
and Rockinger, 2003, Ergün and Jun, 2010, Jondeau and Rockinger, 2012).
Indeed, an important stylized fact of financial returns is related to their em-
pirical distribution that is non-Gaussian and heavy-tailed (Cont, 2001). More
details about the relevance of time variability of higher moments for asset
allocation can be found in Jondeau and Rockinger (2012).

In the future, we will investigate possible robust versions of the proposed
DCS-based models to neutralize the harmful effects of possible outliers time
series in the clustering process. Moreover, another interesting research di-
rection is based on the development of a clustering model that, accounting
for the intrinsic differences between conditional and unconditional moments,
allows for a reasonable weighting between two quantities. Finally, future re-
search could also be devoted to the proposed clustering procedure’s possible
applications in other real-world frameworks. Indeed, even if the proposed
clustering approach is effective in clustering the time series of financial na-
ture, it is general. The procedure presented here could also be applied in
other disciplines such as engineering, like in the relevant case of signal pro-
cesses clustering.
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Appendix A. Estimates from the statistical models
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Table A.23: Parameter estimates from a Gaussian-DCS(1,1) model - stock market data
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Table A.24: Parameter estimates from a t-DCS(1,1) model - stock market data
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Table A.25: Parameter estimates from a Skew-t-DCS(1,1) model - stock market data
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Appendix B. Estimated conditional moments

Figure B.12: Conditional mean estimated by the Gaussian-DCS(1,1) for the Dow Jones
Index components’ daily returns
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Figure B.13: Conditional mean estimated by the t-DCS(1,1) for the Dow Jones Index
components’ daily returns
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Figure B.14: Conditional mean estimated by the Skew-t-DCS(1,1) for the Dow Jones
Index components’ daily returns
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Figure B.15: Conditional variance estimated by the Gaussian-DCS(1,1) for the Dow Jones
Index components’ daily returns
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Figure B.16: Conditional variance estimated by the t-DCS(1,1) for the Dow Jones Index
components’ daily returns
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Figure B.17: Conditional variance estimated by the Skew-t-DCS(1,1) for the Dow Jones
Index components’ daily returns
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Figure B.18: Conditional skewness estimated by the Skew-t-DCS(1,1) for the Dow Jones
Index components’ daily returns
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Figure B.19: Conditional shape estimated by the t-DCS(1,1) for the Dow Jones Index
components’ daily returns
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Figure B.20: Conditional shape estimated by the Skew-t-DCS(1,1) for the Dow Jones
Index components’ daily returns
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