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Abstract
This paper proposes and explores an extension of the usual k-out-of-n systems, where the
components of the system are assumed to play different roles in determining its failure
and with not necessarily i.i.d. components lifetimes. The theoretical reliability framework
is compared with the standard weighted k-out-of-n systems, and it is actually adopted for
the development of a financial derivative model whose outcome depends on the crossing of
some predefined barriers of a set of assets. More precisely, such a derivative is presented as
a coherent system whose components are the assets of the basket.

Keywords Reliability · k-out-of-n system · Finance · Signature of a system · Financial
derivatives

1 Introduction

Reliability theory is basically grounded on the fundamental task of optimizing the lifetime
of a system. In several cases, the investigated system is composed by distinct components.
In such a situation, the lifetime of the system depends on the ones of its components, and
the study of this context brings challenging themes in mathematical statistics and operations
research.

A noticeable contribution in reliabilty theory is the monograph of Spizzichino (2001),
where a detailed toolkit on stochastic dependence and ageing along with some notions on
survival probabilities is provided. In this respect, the dependence structure among system’s
components is an important aspect to be taken into full consideration. Navarro et al. (2005)
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explore this topic by comparing different systems whose components are not independent.
Furtherwork on this has been carried out byDembinska (2018),Navarro et al. (2013),Navarro
et al. (2015), Parsa et al. (2018), Zhang (2021).

In the wide family of reliability systems, a prominent role is played by those whose failure
depends on the pure number of the failed components. In this context, an n-component
system that works when at least k of its components work—or, in the same way, that fails
when at least k of its components fail—is called k-out-of-n system. Such a type of system is
widely employed in reliability theory, and has been formalized more than fifty years ago (see
(Birnbaum et al. 1961; Esary and Proschan 1963), and see also the related extensive treatment
of Barlow and Proschan (1981)). Their relevance for practical applications and for fostering
methodological studies is witnessed by the popularity of such a theme in the recent literature
(see e.g. Eryilmaz 2011, 2012, 2013; Franko and Tutuncu 2016; Freixas and Puente 2009;
Gurler and Bairamov 2009; Petchrompo et al. 2020; Zhang et al. 2019).

Theoriginal definitionof a k-out-of-n systemassigns an identical role to all the components
in determining the failure of the overall system.Moreover, the original setting introduces also
components lifetimes which are i.i.d. Such assumptions are restrictive when dealing with
practical applications of this reliability instrument. This paper overcomes such limitations
by presenting an extension of the k-out-of-n systems, as we will see in details below. We
are here interested in the events of failure. Such an extension will be compared also with
the weighted k-out-of-n reliability systems introduced in Wu and Chen (1994), to highligh
similarities and discrepancies between them. The usefulness of the proposed novel concept
of reliability systems for applied science modeling will be shown in the field of finance, with
a specific reference to the theory of financial derivatives.

We enter the details.
We consider a reliability system with n components. We assume that the system fails

when, jointly, we have that

(i) k components fail;
(i i) ”some” of the failed components belong to a predefined special set with cardinality

r ∈ {0, 1, . . . , n}.
The number of the components in such a special set which is needed for having the failure
of the system depends on k, and will be identified through a function ρ as ρ(k) (see details
in the next section). The resulting system will be denoted as k/ρ(k)-out-of-n/r system.

Some variants have been proposed to let the original k-out-of-n system be more tailored
on specific reliability issues. The scientific ground of the most part of such variants lies in the
need—for practical applications—of assigning different relevance to the components of the
systems when computing their reliability [see e.g. Borgonovo (2010) and (Eryilmaz 2018)
for a discussion on this point]. A noticeable extension of the original setting is obtained
by assuming that the system works when the elements of some special sets of connected
components work (see e.g. Yamamoto et al. 2008).

In this respect and as mentioned above, particularly close to our context are the so-called
weighted k -out-of-n systems, introduced in Wu and Chen (1994). In such models, all the
components of the system are endowed with some weightsw’s, and the system is assumed to
fail when the aggregated weight of the not failed components is below a prefixed threshold
�. Our methodological proposal departs from the original conceptualization of the weighted
k-out-of-n systems, as wewill discuss in details below.However, under some conditions, a set
of weights w’s and a threshold � can be opportunely selected to identify the r components
introduced above and mimic the behavior of rho in the definition of the k/ρ(k)-out-of-
n/r systems. Such selections are not unique, and any k/ρ(k)-out-of-n/r system identifies
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a class of weighted k-out-of-n systems with an infinite number of elements. Moreover, as
we will see below, the properties of the k/ρ(k)-out-of-n/r systems depend on the set of
the r components introduced above and on the definition of ρ, and do not refer in any case
to a possible selection of the components weights w’s and of the threshold �. Therefore,
any k/ρ(k)-out-of-n/r system provides some general features of an infinite collection of
weighted k-out-of-n systems. We have provided a discussion on the relationship between our
proposal and the weighted k-out-of-n systems in Sect. 2.

Special attention has been also paid in our framework to the different roles played by the
components of the reliability system. Specifically, the (Barlow and Proschan 1975) impor-
tance index of the components of the system has been computed, to provide a measure of
the relevance of each of them. In doing so, we are in linee with the recent contributions of
Borgonovo et al. (2016), Eryilmaz (2016), Gao et al. (2018), Sheng and Ke (2020) and Wu
and Coolen (2013), where some further developments of the concept of important index are
also presented.

In the original setting, the reliability function of a k-out-of-n system is explored under
the assumption of i.i.d. components. However, we believe that such an assumption is rather
restrictive in the financial context, even if there is evidence of scientific literature dealing with
sets of assets with i.i.d. returns (see e.g. Alexander and Venkatramanan 2012; Chen et al.
2015; Bayer et al. 2015 ). Thus, we will consider the case of systems with exchangeable com-
ponents, which still allows to treat mathematically our model by also including a dependence
structure among the assets. In particular, we mention the classical studies on exchangeability
and positive dependence structure (see e.g. Shaked and Tong (1985)), pointing to the general
idea of positive correlations among assets and risky portfolios. Moreover, the case of i.i.d.
components is a special case of the exchangeable setting. Therefore, we employ our relia-
bility arguments to construct a financial model for derivatives theory based on the proposed
extension of the k-out-of-n systems. We will introduce some notes on financial derivatives,
along with the formalization of the financial model, in Sect. 3.

More specifically, we adopt the extension of k-out-of-n systems mentioned above for
defining a special subfamily of barrier basket options, where the basket is formed by assets
whose joint distribution is exchangeable. The components of each option-system are given by
the assets forming the basket. Furthermore, options are reasonably viewed here as coherent
systems (see e.g. Barlow and Proschan 1981).

The reliability function of the system will be financially translated in the probability that
the payoff of the option is positive at a given date (not necessarily the expiration one but, obvi-
ously, not after it). The computation of the reliability function is implemented by employing
the notion of signature of the system, which has been introduced by Samaniego (1985) and
extensively studied in the context of coherent systems by Kochar et al. (1999), Boland and
Samaniego (2004), Samaniego (2007), Spizzichino (2008), Navarro et al. (2010), Gertsbakh
and Shpungin (2010), Marichal and Mathonet (2011), Marichal et al. (2015) and references
therein.

To the best of our knowledge, the concept of signature has been used so far only in the
frame of reliability theory. However, such a notion may be efficiently employed also in the
analysis of systems in other fields. In particular, signature can play a useful role in option
theory (see Cerqueti and Spizzichino, 2014 for a very preliminary analysis).

To sum up, this paper offers some new contributions to the existing scientific debate.
Under a methodological perspective, our paper extends the standard concept of k-out-

of-n systems. It does so in two main respects: by one side, we remove the restrictive equal
weights assumption and cluster the components of the system into two different categories,
on the basis of their relevance; by the other side, we abandon the i.i.d. condition for the
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failure times of the components and allow a dependence structure among them. Thus, our
proposal overcomes the limited usefulness of the standard k-out-of-n systems for applications
purposes. Moreover, the presented novel setting is comparable—and it is actually compared
in the paper—with the weighted k-out-of-n systems in a natural way.

By amore financial point of view, we offer a newmodel for a special class of derivatives—
some types of barrier basket options—on the ground of reliability theory. In doing so—for the
first time, to the best of our knowledge—we propose an informative and original application
of some relevant concepts of reliability to the area of finance.

The remaining part of the paper is organized as follows. Section 2 contains the proposed
extension of the standard k-out-of-n models and explores its reliability function by com-
puting its signature. Such a section contais also a discussion on the comparison between
our methodological proposal and the weighted k-out-of-n systems. Section 3 is devoted to a
general discussion of the financial products of interest, along with relevant literature. It con-
tains also the formalization of the barrier basket option model, which is derived by adapting
the reliability framework we deal with. Some examples are also given to assist the reader
in catching the links between finance and reliability theory. Section 4 presents a discussion
of the different roles played by the components of the system. Last Section offers some
conclusive remarks.

2 The k/�(k)-out-of-n/r systems

This section is devoted to the introduction of the reliability system we deal with. As we
will see below, our methodological proposal can be effectively applied in the context of
financial derivatives. Beyond the theoretical definition, we will present below a couple of
examples in the financial environment (see Examples 2 and 3). However, we here propose a
very simple general example coming from real life, to assist the reader in following the flow
of the methodological arguments. In so doing, we propose also some notation that will be
used in the construction of the model.

Example 1 Consider a University with an Operations Research Department, with three full
professors, four associate professors and six assistant professors. Assume that—according
to the regulation of the Italian Academic system—full and associate professors are in charge
for 120 hours teaching every year, while assistant professor have 60 hours. The total amount
of teaching hours is then 1200 hours.

Assume that each professor may change her/his status and become not affiliated to the
Department. The reason for such a change of status is not of interest here. When a professor
is out from the Department, she/he stops teaching.

We assume that each professor is ready to take 20 extra teaching hours, to cover the
colleagues who change their status. We also assume that the Department is in financial
distress, and it cannot assign extra hours to external professors.

Under the reliability context we deal with, we say that professors may be viewed as
components of the system Department. A professor “fails” when she/he goes out from the
Department, and the Department “fails” when it is not able to sustain the courses and the
teaching hours.

In this setting, we have two different sets of professors, according to the different teaching
duties. One of them—say I—is composed by full and associate professors, while the other
one—namely, N—contains the assistant professors. The cardinality of I is r = 7, while set
N contains n −r = 6 professors. The distinction between such types of professors is natural,
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in that they have different teaching hour duties and their failures have different impacts on
the overall system. In this respect, the elements of I are more relevant than the ones of N .

If one professor fails, then the system does not fail—even if the failed professor belongs
to I. Indeed, in this case, the number of professors becomes equals to eleven, and six of them
will teach 20 hours more.

If two professors fail, then professors affiliated to the Department become ten. In this case,
the originating sets of the failed professors is relevant. In the unlucky case that both of the
failed professors belong to in I, then the system fails. When both professors are in N , then
the system does not fail, and six of the remaining professors will teach extra 20 hours. When
one professor is inN and the other is in I, then the system does not fail, and nine professors
will teach 20 hours extra. To sum up, when two professors fail, then they have to be both in
I to have the failure of the system.

If three professors inN fail, then each of the remaining nine professors will have in charge
20 hours extra and the system does not fail. But, if at least one of the failed professors belong
to I, then the system fails. Thus, if three professors fail, then at least one of them has to be
in I to have the failure of the system.

If four or more than four professors fail, then the system fails, even if all them are in N .

With Example 1 in mind, we are confident that the following formal arguments will be more
convincing.

Consider a probability space (�,F,P), on which all the random variables that will be
introduced in this paper are defined. The expected value operator with respect to P will be
denoted by E.

We introduce a reliability binary systemSwhosen components are denoted byC1, . . . , Cn .
The set collecting the components will be denoted by B.

The state of the system S at time t > 0 is:

Y (t) =
{
1 if the system has not failed in (0, t],
0 otherwise,

(1)

while the state of the j-th component C j at time t is denoted by:

Y j (t) =
{
1 if C j has not failed in (0, t],
0 otherwise.

(2)

The structure function of the system is φ : {0, 1}n → {0, 1}
Y (t) = φ(Y1(t), . . . , Yn(t)), (3)

and it identifies the configurations of the components which cause the failure of the system.
Thus, the system lifetime is:

T := inf{t ≥ 0|φ(Y1(t), . . . , Yn(t)) = 0}. (4)

Analogously, by (2), we can define the n-dimensional vector of components lifetimes as
X = (X1, . . . , Xn), where

X j = inf{t > 0 | Y j (t) = 0} (5)

is the lifetime of the individual j-th component of the system.
For t ≥ 0, the reliability function of the system at time t is

RS(t) ≡ P{T > t}. (6)
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As intuition suggests, the stochastic model assumed for the random vector X plays an active
role for the assessment of the quantity in (6). In reliability theory, it is often assumed that
the components are i.i.d.. However, since we want to present here financial applications, we
relax such a condition, and assume that the following assumption stands in force hereafter.

Assumption 1 The random vector X has an absolutely continuous distribution F and
exchangeable components.

For the convenience of the reader, we recall thatX = (X1, . . . , Xn) is said to have exchange-
able components when the joint probability distribution of the components X1, . . . , Xn

is the same of the one of the random variables Xσ(1), . . . , Xσ(n), for each permutation
(σ (1), . . . , σ (n)) of (1, . . . , n).

We will discuss below the exchangeability assumption and focus now on the absolute
continuity, which plays a key role in our context. Indeed, by including the time dimension in
the problem, we notice that the system fails after some consecutive failures of its components,
i.e.: in correspondence of the k-th failure. Thus, the assumption that F is absolute continuous
guarantees that

P{X(1) �= ... �= X(n)} = 1,

so that:

P{T = X(k), for some k} = 1, (7)

where X(1), ..., X(n) the order statistics of (X1, ..., Xn). Substantially, formula (7) means that
the failure of the system is simultaneous to the failure of only one component.

Now, consider the partition {Ek}k=1,...,n of the sample space �, with

Ek ≡ {T = X(k)}, k = 1, . . . , n, (8)

so that:

T =
n∑

k=1

X(k)1Ek . (9)

Hence:

RS(t) =
n∑

k=1

pk · P{X(k) > t |Ek}, (10)

where pk = P (Ek), for each k = 1, . . . , n.
The vector p = (p1, . . . , pn) is the signature of the system S (see (Samaniego 1985)),

and depends on the structure function of S. By construction, the signature provides a detailed
information on the connection between the number of failed components and the failure
of the overall system. Indeed, its generic component pk represents the probability that the
system fails when the consecutive failure of k components of the system is observed.

The vector p plays a relevant role in identifying the reliability function of the system, in
the light of the exchangeability condition in Assumption 1. Indeed, when the components’
lifetimes are exchangeable, then it is easy to show (see e.g. Spizzichino (2008)) that

(i) the events {X(k) > t} and Ek are independent, for each k = 1, . . . , n;
(i i) one has

RS(t) =
n∑

k=1

pk · P{X(k) > t}, (11)
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Thus, in the exchangeable case, the signature, along with the distribution of the lifetimes of
the components, provides full information on the reliability function of the system.

In the context described above, we now extend the usual k-out-of-n models and consider
the case where there exists a distinction among the components of the system.

In particular, we assume that the n components can be clustered in two non-overlapping
categories: r components are the “important” ones while the remaining s = n − r are
“standard” components. The set of the former components will be denoted by I, while N
denotes the complementary set formed with the latter ones, so that

I ∩ N ≡ ∅, I ∪ N ≡ B.

Conventionally, we label the components in such a way that I = {C1, . . . , Cr }. The sets I
and N allow us to identify different types of reliability systems.

Specifically, define a nonincreasing function

ρ : {1, . . . , n} → {0, 1, . . . , r + 1}, (12)

such that the system fails at the first time in which the failures of k components are observed,
with at least ρ(k) failures due to the important components. Thus, ρ is a function of the
number k of failed components and, as explained in details below, it associate to such a
number a threshold ρ(k) of important assets that have to fail in order to have the failure of
the system. In this way, if the number of failed assets is k but the number of failed important
assets is lower than ρ(k), the system does not fail. As we will formally see below, intuition
suggests that the number of failures of important assets needed for the failure of the system
decreases as the number of failed components grows. This explains the condition of ρ being
not increasing.

The resulting reliability model represents an actual extension of the usual k-out-of-n
systems. In fact, the proposed setting collapses in the k-out-of-n system when r = 0 and
ρ(k) = 0, for each k or, alternatively, r = n and ρ(k) = k, for each k.

Such an extended model will be called a k/ρ(k)-out-of-n/r system.
For I and N given, different choices of the function ρ give rise to different types of

reliability systems.
In any case, the function ρ has the following meaning:

• when ρ(k) = 0, then the failure of k components belonging toN is enough to determine
the failure of the system;

• the position ρ(k) = r +1 means that k is so small that the failure of k components cannot
produce the system’s failure, even in the case when all the failed components are in I;

• the minimum number of components’ failures able to potentially cause the failure of the
system is the minimum value of k satisfying the condition ρ(k) ≤ k;

• themaximumpossible number of components’ failures that can be conceptually observed
up to the system’s failure does coincide with the minimum value of k such that ρ(k) = 0.

The structure function of the system depends on the function ρ, and can bewritten as follows:

φ(y1, . . . , yn) =
⎧⎨
⎩
0, if ρ

(
n − ∑n

j=1 y j

)
≤ r − ∑r

j=1 y j ;
1, if ρ

(
n − ∑n

j=1 y j

)
> r − ∑r

j=1 y j .
(13)

In fact, the system fails as soon as the following relations are simultaneously true:{∑n
j=1 y j = n − k;∑r
j=1 y j ≤ r − ρ(k),

(14)
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namely (14) is equivalent to the first condition in (13).
We are now ready to compute the signature of a k/ρ(k)-out-of-n/r system, so that formula

(11) gives its reliability function.
Fix k = 1, . . . , n. It is simple to check that, for any function ρ, we have:

•
pk =

{
0, if k = 1 and ρ(1) = r + 1;
r/n, if k = 1 and ρ(1) = 1.

• pk = 0 if k > 1 and ρ(k) = r + 1;
• pk = 0 if k > 1 and ρ(k) = ρ(k − 1) = 0;
• pk = 1 − ∑

h �=k ph if k > 1 and ρ(k) = 0, ρ(k − 1) > 0.

Let us consider now the case of k = 2, . . . , n such that 0 < ρ(k) ≤ k. We introduce

s̄k = P

(
r −

∑
i∈I

yi ≤ ρ(k),

n∑
i=1

yi = n − k

)
, (15)

where yi = 0, 1 and which represents the probability of having no more than ρ(k) failures
of important components when k components fail.

Assumption 1 guarantees that

s̄k =
ρ(k)−1∑

�=0

(r
�

)(n−r
k−�

)
(n

k

) . (16)

Therefore, the probability of exactly ρ(k) failures of important components when k com-
ponents had failed—i.e.: the k-th component of the signature of the system S—is given
by:

pk = s̄k−1 − s̄k =
ρ(k−1)−1∑

�=0

(r
�

)( n−r
k−1−�

)
( n

k−1

) −
ρ(k)−1∑

�=0

(r
�

)(n−r
k−�

)
(n

k

) . (17)

The different roles played by the important and standard components of the system is also
highlighted by the importance index of Barlow and Proschan (1975), which assume different
values when it is computed for an element of I or N .

In fact, given j ∈ B, theBarlow-Proschan importance index for j represents the probability
of having the failure of the system when the status of j moves from 1 to 0. In our context, it
is given by:

γ j = 1

n

n−1∑
k=0

1(n−1
k

) ∑
A⊂{1,...,n}\{ j}:|A|=k

[φ(A ∪ { j}) − φ(A)] , (18)

where φ(A) = φ(y1, . . . , yn) with yh = 1{h∈A}, for each h = 1, . . . , n.
The generic set A ∈ {1, . . . , n} contributes to γ j in (18) only when φ(A) = 0 and

φ(A ∪ { j}) = 1.
Now, assume that A = IA ∪ NA, where IA ⊂ I, NA ⊂ N and |IA| + |NA| = k.
The term γ j in formula (18) depends on the nature of j , which can be of standard or

important type. Two cases can be distinguished:

Case I if j ∈ I, then φ(A) = 0 if and only if r − |IA| ≥ ρ(n − k), while φ(A ∪ { j}) = 1
if and only if r − |IA| − 1 < ρ(n − k − 1). To sum up:

ρ(n − k) ≤ r − |IA| < ρ(n − k − 1) + 1,
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which leads to |IA| > r − ρ(n − k − 1) − 1.
Case N if j ∈ N , then φ(A) = 0 if and only if r − |IA| ≥ ρ(n − k), while φ(A ∪ { j}) = 1

if and only if r − |IA| < ρ(n − k − 1). To sum up:

ρ(n − k) ≤ r − |IA| < ρ(n − k − 1),

specifically leading to |IA| > r − ρ(n − k − 1).

Therefore, by (18) and by Case I and Case N listed above, one has

γ j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
n

∑n−1
k=0

1
(n−1

k )
| {A ⊂ {1, . . . , n} \ { j} : |A|

= k, ρ(n − k) ≤ r − |IA| < ρ(n − k − 1) + 1} |, j ∈ I;
1
n

∑n−1
k=0

1
(n−1

k )
| {A ⊂ {1, . . . , n} \ { j} : |A|

= k, ρ(n − k) ≤ r − |IA| < ρ(n − k − 1)} | j ∈ N .

(19)

As expected, formula (19) gives that γ jI > γ jN , for jI ∈ I and jN ∈ N .

2.1 Relationship between the k/�(k)-out-of-n/r systems and standard k-out-of-n
weighted ones

We now present some arguments on the comparison between the k/ρ(k)-out-of-n/r systems
and the classical k-out-of-n weighted ones.

First of all, we recall that a k-out-of-n weighted system is a reliability bynary k-out-of-n
system Sw with n components Cw

1 , . . . , Cw
n such that the j-th component Cw

j is endowed
with a weight w j > 0, for each j = 1, . . . , n. Once the j-th component fails, then it
disappears from the set collecting the active components and its weight becomes null. Thus,
the value of a given weight might change over time, since it can pass from a positive value
to zero. We denote the j-th weight at time t by w j (t). Also in this case, we assume that the
system is coherent, so that at time t = 0 all the weights w1(0), . . . , wn(0)—or, briefly and
as introduced above, w1, . . . , wn—are positive. The system is failed at time t when the sum
of the weights of the active components at time t is less than or equal to a prefixed threshold
� > 0, i.e. when

n∑
j=1

w j (t) ≤ �. (20)

We now show that some classes of the k-out-of-n weighted systems described above can be
seen as k/ρ(k)-out-of-n/r systems by properly selecting function ρ and the sets I and N .

Without loss of generality, let us assume that the indices of the components are taken in
order to have w1 < · · · < wn .

Fix a threshold � > 0 as in condition (20). There exists an integer n� ∈ {0, 1, . . . , n}
such that

n�∑
j=1

w j ≤ � and
n�+1∑

j=1

w j > �,

with the conventional agreement that

0∑
j=1

w j = 0.
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The index n� represents a threshold which captures the minimum number of components
that have to fail to see surely the failure of the system. Indeed, if one observes n� + 1
consecutive failures of the components, then the system is surely failed. If one has n� failed
components, then one might have still a working system in the case in which the failed
components are Cw

1 , . . . , Cw
n�

. The corner case n� = 0 captures the trivial situation in which
condition (20) cannot be verified and the system cannot fail, even if all its components fail.
It is included here for completeness, but under the considered hypothesis of coherent system
one has n� > 0. Analogously, the corner case of n� = n is associated to the trivial situation
in which condition (20) is always verified, so that the system is already failed at time t = 0,
when all its components are active. Also this situation is excluded by the hypothesis of
coherence, and it is here reported for the sake of completeness. To remove the corner cases,
which then violate the assumption on the coherence of the system, the weights w’s and the
� have to be not trivial. As an example, corner cases are removed in the natural situation of
w1 < � < wn .

Under some conditions on the weights, we can translate the framework described above
as a peculiar k/ρ(k)-out-of-n/r system.

We consider the collection of standard componentsN and important ones I intuitively as
follows:

N = {Cw
1 , . . . , Cw

n�
}, I = {Cw

n�+1, . . . , Cw
n }. (21)

In this case, the cardinality of the set I is r = n − n�.
Functionρ can be defined in presence of some conditions on theweights of the components

and on the selected value of�, and according to the definition of the setsN and I in (21). The
following proposition formalizes such requirements, and gives also the related expression of
function ρ.

Proposition 1(r1) The following conditions are equivalent:

– one has

n−h∑
j=1

w j > �, with h ∈ {0, . . . , n − n� − 1}; (22)

– ρ(k) = r + 1, for each k = 1, . . . , h.

(r2) The following conditions are equivalent:

– for k ∈ {1, . . . , n} and s ∈ {1, . . . , k}, one has{∑n
j=k−s+1 w j − ∑s

�=1 wn�+� ≤ �,∑n−s+1
j=1 w j − ∑k−s

�=0 wn�−� > �; (23)

– ρ(k) = s.

(r3) The following conditions are equivalent:

– for h ∈ {n�, . . . , n − 1}
n∑

j=h+1

w j ≤ �; (24)

– ρ(k) = 0, for each k = 1, . . . , h.
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The proof of Proposition 1 can be obtained by straightforward computation, and it is omitted.
Proposition 1 provides some necessary and sufficient conditions for correctly identifying

function ρ. It is important to notice that conditions (22), (23) and (24) are not satisfied in all
the k-out-of-n weighted systems, and identify a class of such systems which can be viewed
as k/ρ(k)-out-of-n/r ones. As a consequence, not all the k-out-of-n weighted systems can
be translated into k/ρ(k)-out-of-n/r ones.

However, by a different perspective, our proposal exhibits an interesting aspect of qual-
itative universality. More specifically, each k/ρ(k)-out-of-n/r system identifies an infinite
number of k-out-of-n weighted systems. In fact, once the cardinalities of the setsN and I are
given and function ρ is defined, there is an infinite set of weights w’s and infinite thresholds
� such that conditions (22), (23) and (24) are satisfied.

3 Financial application: a barrier basket optionmodel

This section is devoted to the development of an option model in the light of the k/ρ(k)-out-
of-n/r systems introduced above. When possible, we maintain the same notation adopted in
the previous section.

We preliminarly provide a description of the financial context we deal with, along with
some relevant literature contributions.

3.1 Overview on financial derivatives and relevant literature

Derivatives represents one of the most studied topics in finance. Since the beginning of
option pricing formalization with the celebrated paper of Black and Scholes (1973), a long
history has been developed by academicians as well as by practitioners. Derivatives have
been classified into several families, starting from the simplest contracts to products with a
high level of complexity. For a survey on derivative and option theory, we refer to the classical
monograph by Hull (2006) and, more recently, to McNeil et al. (2015).

Among all the existing typologies of derivatives, we will concentrate attention on the ones
whose evolution depends on a basket of assets and on how their prices cross some prefixed
barriers. Such derivatives are experiencing an increasing popularity among the retail investors
in view of their constitutive features. Indeed, the basket of the assets and the related barriers
can be properly selected by the investors on the basis of their risk-profiles and returns.

We notice that the considered derivative share some peculiar constitutive characteristics of
the barrier basket options (see Hull 2006). Indeed, also barrier basket options value depends
on whether the portfolio in the basket will cross a prefixed barrier at or within the expiration
date. Therefore, we will include the considered derivative in the set of the barrier basket
options and we will refer to such a category of options hereafter.

The payoff of a basket option—and, consequently, the price of it—is then strongly depen-
dent on the composition of the basket, as an endless literature on the field clearly states (see
e.g. Hobson et al. 2005; Abrahams et al. 2006 and, more recently, Sesana et al. 2014).

Barrier basket options represent a subclass of the general basket options. In this case, the
payoff of the option is linked to the crossing of prefixed thresholds by the returns of the
assets in the basket. For an overview of the barrier basket options and of their properties,
see the monograph by Zhang (1997) but also e.g. Brockman and Turtle (2003) and, more
recently, Peña et al. (2012) and Kim et al. (2015). Once the basket is fixed, the selection of
the thresholds leads to the identification of the risk profile and of the expected return of the
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corresponding option. Thus, the mechanism of thresholds-selection contributes to control the
riskiness of the option.

3.2 Formalization of the financial model

Think of a financial market that contains n assets whose returns at time t are denoted by
	1(t), . . . , 	n(t), at each t ∈ [0,+∞).

Our interest focuses on a special barrier basket option written on these assets and defined
as follows:

The holder can exercise the option only at the expiration date T . The return of the
option at time T , denoted by 
(T ), is positive if and only if ”some” of the n assets
have maintained their own returns greater than a predefined positive barrier (knock-
out option) in the whole period (0, T ]. In this case, the return of the option at time T is
given by the average of the returns of such assets at time T . If the return of the option
is not positive at time T , then the option is said to be failed.

The barrier is denoted by α ∈ (0,+∞).
By construction, it is self-evident that the failure of the option can occur before the

expiration date T . In fact, if at a given time t < T the returns of ”some” of the assets
are below the barriers α’s, then the option has failed, since the return of the option cannot be
positive at time T . In this case, we say that the option has failed in the time period (0, t].

The meaning of the term ”some” will be clarified below and, as we will see, it involves
the definition of the function ρ in (12).

The barrier basket option is modeled here as a reliability system S whose n components
C1, . . . , Cn are the assets in the basket B.

The state of the option at time t > 0 is Y (t) as in (1), and it depends on the returns of
the assets of the basket at t . Actually, such returns can be above or below the barrier α. In
particular, for each t ∈ (0,+∞) and j = 1, . . . , n, the comparison between the barrier α j

and the return 	 j (t) determines the state of the j-th component C j at time t , so that we
define the state of the j-th asset at time t > 0 as the binary variable

Y j (t) =
{
1 if 	 j (t) > α,

0 otherwise.
(25)

The structure functionφ : {0, 1}n → {0, 1} in (3) formally describes the dependence between
the state of the option and the ones of its components. It is reasonable to require that φ is
such that the option S is a coherent system, i.e.:

(i) φ(0, . . . , 0) = 0 and φ(1, . . . , 1) = 1. This condition means that when all the assets
have returns not above the threshold α, then the payoff of the option is not positive;
differently, when the j-th return is greater than α, for each j = 1, . . . , n, then the
option has positive payoff.

(ii) φ is non-decreasing with respect to its components. This requirement expresses that
the failure of one of the assets of the basket cannot lead to an improvement of the state
of the option.

(iii) Each component of the system is ”relevant”. This assumption means that each com-
ponent is able to determine the failure of the entire system in at least one situation.
Formally, we can write that it does not exist j = 1, . . . , n such that

φ(y1, . . . , y j−1, 0, y j+1, . . . , yn) = φ(y1, . . . , y j−1, 1, y j+1, . . . , yn),
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for each
(
y1, . . . , y j−1, y j+1, . . . , yn

) ∈ {0, 1}n−1.

It is worth noting that, by construction, the asset C j (1 ≤ j ≤ n) is capable in principle to
survive at any t , even if S has already failed in (0, t]. According to formulas (4) and (5), the
lifetimes of the option and of the j-th asset will be denoted by T and X j , respectively, for
each j = 1, . . . , n.

Clearly, Assumption 1 is true also for this collection of X ’s.
For the convenience of the reader, we now present an illustrative example.

Example 2 Consider n = 5 assets C1, . . . , C5, a positive threshold (barrier) α, and suppose
that the barrier basket option fails in one of the following three cases:

(c1) In the period (0, T ], the returns of the assets C1, C3 and C4 go below α;
(c2) In the period (0, T ], the returns of the assets C2 and C5 go below the threshold α.

The structure function can be constructed on the basis of the expiration conditions (c1) and
(c2) as follows:

Y (T ) = φ(Y1(T ), . . . , Y5(T )) =
⎧⎨
⎩
0, if (Y1(T ), Y3(T ), Y4(T )) = (0, 0, 0) or

(Y2(T ), Y5(T )) = (0, 0);
1, otherwise.

(26)

It is easy to check that the barrier basket option in this example—with the structure function
φ defined as in (26)—is a coherent reliability system.

Example 2 sheds some light also on the meaning of the term ”some” in the definition of the
barrier basket option. It provides a quick financial interpretation of the structure function. Of
course, it is not grounded on empirical instances, even if it can be easily reproduced in the
case of availability of a real financial definition of a barrier basket option.

The failure of the option as a reliability system is, indeed, caused by the joint failure of
some specific set of components over the period (0, T ].

In particular, we assume that the barrier basket option is a k/ρ(k)-out-of-n/r reliability
system. Specifically, the basket B is clustered into a set of important assets I = {C1, . . . , Cr }
and the set of standard onesN = {Cr+1, . . . , Cn}. The failure of the option is then explained
by the identification of a function ρ as in (12).

We now demonstrate the financial meaning of the function ρ through an illustrative exam-
ple.

Example 3 Consider n = 20 assets C1, . . . , C20, and a positive reference threshold (barrier)
α. Suppose that the barrier basket option fails in the following cases:

(d1) the returns of five assets—including at least one among C1, C2, C3 and C4—go below
the reference threshold in the period (0, T ];

(d2) the returns of four assets—including at least two amongC1, C2, C3 andC4—go below
α in the period (0, T ];

(d3) the returns of three assets selected among C1, C2, C3 and C4 go below the reference
threshold in the period (0, T ];

(d4) more than five assets have return going below threshold α in (0, T ].
Thus, it is easy to identify r = 4 important assets, namely I ≡ {C1, C2, C3, C4}. The
remaining n − r = 16 assets are standard ones.
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The conditions (d1) − (d4) lead us to define the function ρ as follows:

ρ(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if k ≥ 6;
1, if k = 5;
2, if k = 4;
3, if k = 3;
5, if k < 3.

(27)

The structure function can be constructed in a natural way on the basis of the function ρ,
according to (13) and (27).

Example 3 traces the route for a clear understanding of the way to compute function ρ. As
already stated above for Example 2, also in this case we can reproduce the toy framework of
Example 3 in a real empirical context, once data are available.

In the specific framework we are considering, the function RS in (6) provides an appropri-
ate measure of the riskiness of the option. In particular, it is important to consider the value
of the function RS at the expiration date T , i.e. RS(T ). In fact, the financial contract we deal
with considers the situation of the assets’ returns at the expiration date in order to establish
the final payoff of the option. Thus, a correct evaluation of RS(T ) is a crucial step for the
determination of the risk profile associated to the option S.

4 A discussion on standard and important assets

The choice of the sets I and N plays a key role in determining the returns of such financial
products. This Section is devoted to the illustration of the different roles played by them in
the final payoff of the option.

We now need the following:

Notation 1 Consider two barrier basket options S1 and S2 whose returns at time T are

1(T ) and 
2(T ), respectively. For j = 1, 2, S j has basket B j , set of important assets I j

and set of standard ones N j . Accordingly, the function ρ of the option j will be denoted by
ρ j .

The k-th asset lifetime of option S j will be denoted by X ( j)
k , for k = 1, . . . , n and j = 1, 2.

The generic •-th element of B j will be denoted by C ( j)• , whose return at time T is 	
( j)• (T ),

for j = 1, 2.

Furthermore, we state the following set of assumptions:

Assumption 2 The baskets B1 and B2 are disjoint sets with the same cardinality n, namely
|B1| = |B2| = n.

The assets’ lifetimes X (1)
1 , . . . , X (1)

n and X (2)
1 , . . . , X (2)

n are exchangeable.
The sets I1 and I2 share the same cardinality r , namely |I1| = |I2| = r .
Finally, ρ1 ≡ ρ2, and we set ρ = ρ1 = ρ2.

We now state two results which mark the difference between standard and important assets,
once they are compared.

Proposition 2 Consider two barrier basket options S1 and S2. Suppose that Assumption 2 is
satisfied. Moreover, suppose that:

(H1.1) For any pair (C (1), C (2)) ∈ I1 × I2, one has P(	(1)(T ) > 	(2)(T )) = 1.
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(H1.2) For all (C (1), C (2)) ∈ N1 × N2, one has P(	(1)(T ) = 	(2)(T )) = 1.
(H1.3) ρ(k) > 0, for each k = 1, . . . , n, and there exists k̄ ∈ {1, . . . , n} such that ρ(k̄) = k̄

and ρ(k̄ − 1) = r + 1.

Suppose also that the options share the same number kr of failed important assets and kn of
standard ones in (0, T ], and the failures are such that the options have not failed in (0, T ].

Then P(
1(T ) > 
2(T )) = 1.

Proof First of all, we notice that Assumption 2 gives that also the sets of the standard assets,
denoted by N1 for S1 and N2 for S2, have the same cardinality: |N1| = |N2| = n − r .

Second of all, hypothesis (H1.3) and the condition of no failure of the options guarantees
that k ≥ k̄, where k = kr + kn .

Now, fix j = 1, 2 and consider the barrier basket option S j . Denote by OI j ⊆ I j

and ON j ⊆ N j the sets of the not failed assets in (0, T ] of important and standard type,
respectively.

By hypothesis, the return of the j-th option at time T is positive, and it is given by


 j (T ) = 1

k

⎡
⎢⎣ ∑

i∈OI j

	(i)(T ) +
∑

h∈ON j

	(h)(T )

⎤
⎥⎦ .

The possible realizations of the return of the j-th option at time T are given by the possible
combinations of the not failed assets. Therefore, we need to define the set collecting the
possible selections of x elements in a set of y elements, with x and y being integers. We
denote this set by Q(y)

x and, of course, |Q(y)
x | = (x

y

)
.

So, define the set

A(k, kr , kn) = Q(r)
kr

× Q(n−r)
kn

,

for k ∈ {k̄, . . . , n}, kr ∈ {ρ(k), . . . , r} and kn = k − kr . Then


 j (T ) ∈
⋃

k,kr ,kn

⋃
a∈A(k,kr ,kn)

{
(a)
j (T )},

where



(a)
j (T ) = 1

k

⎡
⎣ ∑

i∈{i1,...,ikr }
	

( j)
i (T ) +

∑
h∈{h1,...,hkn }

	
( j)
h (T )

⎤
⎦ , (28)

for each a = ({i1, . . . , ikr }, {h1, . . . , hkn }) ∈ A(k, kr , kn).
Assumptions (H1.1), (H1.2) and (H1.3) and formula (28) assure that

P

(



(a1)
1 (T ) > 


(a2)
2 (T )

)
= 1, (29)

for each a1, a2 ∈ A(k, kr , kn), for each k, kr , kn .
Now define the event

�
( j)
a =

{
C ( j)

i , C ( j)
h have not failed in (0, T ] iff (i, h) ∈ A(k, kr , kn)

}
, j = 1, 2.

By the Total Probability Theorem one has
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P (
1(T ) > 
2(T )) = P

⎛
⎝ ⋂

k,kr ,kn

⋂
a1,a2∈A(k,kr ,kn)

{
(a1)
1 (T ) > 


(a2)
2 (T )} ∩ �(1)

a1 ∩ �(2)
a2

⎞
⎠ = 1,

(30)

and this concludes the proof. ��
We now invert the role of standard and important assets as in Proposition 2, to give a

distinction between the two typologies of components of the basket of an option.

Proposition 3 Consider two barrier basket options S1 and S2. Suppose that Assumption 2 is
satisfied. Moreover, suppose that:

(H2.1) For any pair (C (1), C (2)) ∈ I1 × I2, one has P(	(1)(T ) = 	(2)(T )) = 1.
(H2.2) For all (C (1), C (2)) ∈ N1 × N2, one has P(	(1)(T ) > 	(2)(T )) = 1.
(H1.3) ρ(k) > 0, for each k = 1, . . . , n, and there exists k̄ ∈ {1, . . . , n} such that ρ(k̄) = k̄

and ρ(k̄ − 1) = r + 1.

Suppose also that the options share the same number kr of failed important assets and kn of
standard ones in (0, T ], and the failures are such that the options have not failed in (0, T ].

Then P(
1(T ) > 
2(T )) < 1.

Proof We adapt here some of the parts of the proof of Proposition 2 and, when possible, the
notation.

Consider k = k̄ and kr = k̄, kn = 0. Then ON j = ∅, and in this specific case


 j (T ) = 1

k̄

⎡
⎢⎣ ∑

i∈OI j

	(i)(T )

⎤
⎥⎦ . (31)

Hypothesis (H2.1) and (31) guarantee that

P (
1(T ) = 
2(T )) > 0, (32)

hence giving the thesis. ��
Propositions 2 and 3 provide a formal view of the different roles played by the standard and
important assets in determining the failure of the option and its final return. At this aim, a
suitable selection of function ρ—as in hypothesis (H1.3)—is needed.

In fact, as already explained above, ρ(k) = 0 implies that the failure of k assets—taken
indifferently from the important and the standard ones—is enough to determine the failure
of the option. Thus, in this case, one cannot appreciate the difference between standard and
important assets: all of them play an identical role in determining the failure of the option.

Furthermore, the existence of k̄ such that ρ(k̄) = k̄ and ρ(k̄ − 1) = r + 1 assures that—at
least in some cases—the failure of all important assets is required to have the failure of the
option. If such a condition is violated, then ρ(k) �= k for each k = 1, . . . , n. In this case, we
are in the position of defining a new function

ρ̃ : {1, . . . , n} → {1, . . . , n − r + 1}, (33)

such that the option fails at the first time in which the failures of k assets are observed, with
no more than ρ̃(k) failures due to the standard assets. The position ρ̃(k) = n − r + 1 means
that k failures are not enough to determine the failure of the option, so that

ρ(k) = r + 1 iff ρ̃(k) = n − r + 1.
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Otherwise, ρ(k) + ρ̃(k) = k, for each k = 1, . . . , n, and ρ̃(k) > 0. In this case, the thesis
of Proposition 3 might be no longer true. In fact, it is trivially easy to produce examples
such that the positive final return of the option is due also to some standard assets, hence
invalidating the expression in (31). Therefore, (32) is not longer true.

As a consequence, the role of standard and important assets can be well illustrated only
by assuming hypothesis (H1.3). In this respect, a side result of Propositions 2 and 3 is also
the interpretation of function ρ.

5 Conclusions and future research

This paper contains an extension of the classical k-out-of-n systems, obtained by assigning
different roles to the components of a coherent system in term of the reliability. In particular,
the components are clustered in important and standard ones, and the failure of the system
depends on how many components of the two sets are failed.

The reliability framework is adapted to the construction of a barrier basket option model,
so that the assets of the basket are classified in standard and important ones. We extend the
standard conceptualization of the k-out-of-n systems by considering also that assets’ returns
and lifetimes are exchangeable. Such a condition leads to a not restrictive setting, in that it
allows to deal with assets with a stochastic dependence structure. Moreover, it includes the
i.i.d. returns and lifetimes condition as a special case and has also the advantage of letting
the model be tractable under a mathematical point of view. The risk profile of the option is
explored by the direct computation of the reliability function of the system. Moreover, the
different roles of important and standard assets are illustrated and commented.

The present study has some limitations, which might be the argument of a future explo-
ration of such a very relevant theme.

First of all, we discuss the exchangeability condition on components lifetimes. This condi-
tion appears to be rather general, since it allows for stochastic dependence among the assets of
the basket. However, it would be challenging to further extend the k-out-of-n models under
a more general assumption on the stochastic dependence, by removing the exchangeable
condition for the components of the systems. In this respect, the computation of the signature
and the resulting financial model offers a not easy treatment, since the equivalence between
formulas (10) and (11) is not longer true.

Second, as explained above, the k/ρ(k)-out-of-n/r systems and the weighed k-out-of-n
ones are different concepts which overlap under some conditions. In this respect, it would
be interesting to discuss the financial meaning of the theoretical hypotheses leading to such
an overlap. Specifically, we find particularly challenging the theme of the comparison of
the k/ρ(k)-out-of-n/r systems and the weighed k-out-of-n ones in the context of suitably
describing a barrier basket option. In the former case, we conceptualize options whose basket
is compounded by two qualitative subsets of standard and important assets. The elements of
such subsets are assumed to play an identical role within the reference class for the failure
of the system; in the latter case—and when the weighed k-out-of-n system cannot be seen
as a k/ρ(k)-out-of-n/r system—the assets of the basket cannot be in general clustered into
two relevance-based groups, and exhibit specific individual roles for generating the failure
of the system. The resulting barrier basket options are, in general, simply different, and obey
different rules.

Third, this paper presents the case of clustering the system components in two sets—
standard and important ones. The general case of assigning a rank to more than two subsets
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of component in terms of the importance—hence, defining different levels of importance—
would be more general than our approach, and might also turn to be useful for modeling
purposes.

Fourth, it is totally out of the scope of the present paper to provide a way to identify
standard and important assets, once an empirical financial dataset is available. Rather than
this, we discuss the mathematical difference—in terms of reliability—between standard and
important assets; we also discuss the role of standard and important assets in determining the
failure of the option. However, a suitable way to financially identify standard and important
assets can be a challenging exploration.

All these topics are left for future research.
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