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ABSTRACT 

 

Green fluorescent graphene quantum dots (GQD) have been synthesized via hydrothermal 

fragmentation using a Continuous Hydrothermal Flow Synthesis (CHFS) process as a single, rapid 

and environmentally benign method. This is in the presence of p-phosphonic acid calix[4]arene 

which enhances the optical properties of the graphene quantum dots through surface 

functionalization, with photoluminescence quantum yields of up to 4.5%. Potential environmental 

impact of a lab-scale supercritical CHFS process compared with that of conventional batch 

processing of GQDs has been assessed using the method of the International Reference Life Cycle 

Data System. 
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 2 

INTRODUCTION 

Graphene is a 2-dimensional (2D) nanomaterial with single atomic thickness and infinite lateral 

dimensions1,2 which has attracted a prodigious amount of research and commercial interest from 

across academia and industry. However, its potential in the development of a wealth of derivatives, 

including graphene quantum dots, with outstanding properties such as high surface area, quantum 

confinement fluorescence, excellent electrical and thermal conductivity, faces limitations from not 

only the varying complexities involved with the technical aspects of their synthesis, but also from 

the associated economic and environmental costs. 

Graphene, a zero-band-gap material, does not show any luminescence, but when reduced to 

nano-sized particles (<10 nm) it displays luminescence on excitation which can be assigned to its 

quantum confinement and edge effects as graphene quantum dots (GQD).3,4 Optical properties of 

GQDs can be adjusted by controlling the size of the nanoparticles, surface defects, and surface 

functionalities.5 Controlling the optical properties of GQDs along with imparting high stability 

offers scope for utilizing them in the next-generation photovoltaics, in delivering less toxic, 

efficient and an economically viable replacement to the currently expensive and often toxic 

quantum dots semiconductors. Furthermore, due to their low cytotoxicity, GQD have also found 

application in the biomedical field for example in bio-tagging and bio-sensing.6,7  

Current synthetic methods for GQD use top-down (hydrothermal cutting, surface passivation, 

etc.)5–7 and bottom-up approaches (wet chemistry or carbonization)9,10 but they have common 

challenges. These include long reaction times (up to 32 hours), the use of exotic reagents, and 

unusual or complicated reaction conditions and processing parameters, along with issues of 

reproducibility. In consequence, applying these methods to an industrial scale, with high economic 

and environmental costs, could make them prohibitive. In this context, overcoming the 
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 3 

aforementioned challenges in providing new modifications in a well-controlled preparation of 

high-quality GQD is important. This includes bespoke tailoring for on-demand functional 

properties along with the reduction of surface defects that will enhance their properties and 

consequently their applications.  

Overall, improved, rapid, tuneable, readily scalable, cleaner, and economical synthetic 

approaches are needed. In this vein, supercritical fluid technologies, as highlighted in the reviews 

by Darr and Poliakoff11 and by Adchiri et al.12 are universally accepted as offering greener, more 

sustainable process chemistry.13 Their use has also been given further impetus by a more recent 

report on a life-cycle assessment for Continuous Hydrothermal Flow Synthesis (CHFS) production 

of barium strontium titanate nanoparticles14 and titanium dioxide.15 In this context, and in view of 

the “IMPROVEMENTS PRODUCTIVELY” principles of green chemistry and engineering,16 

CHFS methodology offers significant advantages over conventional synthetic routes including 

batch hydrothermal processes.  

In this paper, we report the development of a method that enables hydrothermal fragmentation 

of graphene oxide sheets via CHFS to produce water-soluble GQD with tuneable properties. In 

addition, we report a life-cycle assessment for the process to highlight its green chemistry 

credentials (environmental benefits over traditional methodologies). 

As in the synthesis of barium strontium titanate, titanium dioxide and many other materials,13–15 

it is expected that the synthesis of GQD via the CHFS system will achieve, (i) a reduction from a 

multistep process to a rapid single step, (ii) a significant decrease in reaction times to seconds 

rather than hours required for batch processes, thereby minimizing energy consumption, (iii) 

promote the use of safe, environmentally benign reagents and solvent (water), (iv) minimise waste 

(the mild basic aqueous solution can be reused through the system again or neutralised to give an 
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 4 

environmentally benign salt solution), and (v) provide greater control over reaction parameters 

(e.g. temperature and pressure) and hence particle properties. CHFS processing offers a pathway 

to high throughput processing,13,17-19 allowing rapid production and evaluation of new 

nanocomposites. Importantly such flow processing is readily scalable13 and can address the above 

challenges. 

EXPERIMENTAL 

GO was synthesized using a modified Hummers method from graphite.20   

Calix[4]arene tetraphosphonic acid (PCX4) was synthesized via adaptation of previously 

reported methods21 . The as-synthesised GO and PCX4 were then used as precursors for the 

synthesis of GQD in an alkaline medium via CHFS. 

CHFS experiments were conducted using a flow reactor engineered as reported previously.20 

The system (simplified schematic of which is shown in Figure 2), is constructed with 316SS 

Swagelok stainless steel fittings and tubing. It consist of a custom-made pre-heater (labelled as 

“H”), three Gilson 307 HPLC pumps (labelled as “P”) used for the delivery of aqueous solution of 

reagents, reactor (labelled as “R’), a cooler (“C”) and a back-pressure regulator (BPR). The reagent 

delivery flow rates used were 20/5/5 mL min-1 for Pump 1 (delivering DI water through heater), 

Pump 2 (pumping pre-sonicated aqueous GO dispersion) and Pump 3 (delivering pre-mixed PCX4 

and KOH solution), respectively. In a typical experiment, PCX4 (40 mg) was added to KOH (0.2 

M, 40 mL) which was pumped via Pump 3 to meet a flow of a pre-sonicated (30 min) aqueous 

solution of GO (20 mg) dispersed in DI water (40 mL), at a T-junction (“T” in Fig. 2). This mixture 

then meets superheated water (450 °C, 24.8 MPa) inside a counter-current mixer (R in Fig. 2), 

whereupon the product formation occurred in a continuous mode. The aqueous suspension was 
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 5 

cooled through a vertical cooler (C) and the slurries were collected from the exit of the BPR. For 

the purpose of the routine synthesis of graphene materials for further use,  it is possible to perform 

the CHFS with long operation lifetime under the same operating conditions yielding results that 

are consistent with the short-time scans described in this paper. The performance of the CHFS rig 

did not degrade during synthesis (in up to 10 hours investigated). The obtained products were 

filtered using a polycarbonate membrane (0.22 micron). The supernatant solutions were subjected 

to dialysis for 24 hrs. After dialysis, the cleaned solutions were then freeze-dried obtaining 

powders for further characterization. 

Cellular toxicity test - The macrophage cell line RAW 264.7 (ATCC TIB-71) was grown in fully 

supplemented Dulbecco's modified Eagle medium (DMEM) containing 10% foetal calf serum, 

100 U mL-1 penicillin and 100 μg mL-1 streptomycin.  Cells were seeded in 96 well tissue-culture 

treated microtitre plates at a density of 5 x 104 cells per well and allowed to grow for 24 hrs in an 

incubator (37 °C, 5% CO2) before the sample being tested was added. Samples were added to final 

concentrations ranging from 2 mg mL-1 to 31.25 μg mL-1. After 24 hrs incubation with the sample, 

cell viability was tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) assay. MTT dissolved in phosphate buffered saline was added to each well at a final 

concentration of 1 mg mL-1 and the plate was returned to the incubator for 3 hrs. The media was 

then aspirated and 100 μL DMSO added to each well. The plate was shaken for ca. 10 mins at 

room temperature and the optical density (OD) measured at 544 nm. Cell viability was reported as 

a percentage value compared to untreated cells and was given by the formula: cell viability (%) = 

(ODtreated/ODcontrol) x 100%, where treated cells are those that were incubated with sample being 

tested and control cells were incubated under the same conditions but in the absence of any sample. 
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 6 

Each sample was performed in triplicate and the experiments were repeated twice. Results shown 

are the mean values and error bars represent standard deviation. 

Equipment and techniques: Freeze-drying was performed using a Heto PowderDry PL 3000. 

A JEOL 2010 and 2100F TEM (200 kV accelerating voltage) were used for generating images of 

particles. XPS measurements were performed using a Kratos Axis Ultra DLD photoelectron 

spectrometer utilizing monochromatic Alka source operating at 144 W. Samples were mounted 

using conductive carbon tape. Survey and narrow scans were performed at constant pass energies 

of 160 and 40 eV, respectively. The base pressure of the system was ca. 1x10-9 Torr rising to ca. 

4x10-9 Torr under the analysis of these samples. FT-IR spectra were recorded using a Nicolet 

Avatar 370DTGS spectrometer fitted with a Smart Orbit accessory (diamond 3000-200 cm-1). A 

Perkin Elmer spectrometer was used for fluorescence measurements of the samples analyzed at 

equivalent concentrations unless otherwise stated. TGA analyses were conducted on a TGA Q500 

instrument under a constant flow of nitrogen at a heating rate of 10 °min-1 from room temperature 

to 800°C. UV-Vis data of dispersions of known concentrations were recorded using a UV-1800 

Shimadzu UV-Vis instrument. AFM measurements were acquired using a Bruker Dimension 

FastScan AFM with NanoScope V controller, NanoScope control software (version 8.15) and 

ScanAsyst Air cantilevers (resonant frequency ≈ 70 kHz, spring constant ≈ 0.4 N/m). The peak-

force tapping imaging mode was used with a scan rate of 1 Hz, set point of 500 pN, feedback gains 

of 1.5 and Z-limit of 0.5 µm. Data was analyzed using the NanoScope Analysis software (version 

1.4). Samples were prepared for AFM by spin coating 10 µL of dilute aqueous suspension onto 1 

x 1 cm freshly cleaved mica surfaces at an rpm of 1800 for 60 seconds using a 150 mm Spin Coater 

(Laurell Technologies Corporation). 
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 7 

The quantum yields of photoluminescence were measured using a solution of fluorescein in 

spectroscopic ethanol as a standard (Φ = 79%)22 with an optical density of 0.08 at the excitation 

wavelength (420 nm). Samples A-D were suspended in distilled water up to an optical density (A) 

of 0.05-0.1 at 420 nm. The suspensions were analyzed in PMMA fluorescence cuvettes of 10 mm 

optical path. The absorption spectra were collected with a Perkin Elmer Lambda 650 C 

spectrophotometer and the emission spectra were collected with a Horiba Fluorolog 3 fluorimeter. 

The quantum yields were calculated using the equation below. The refractive indexes of the 

solvents were sourced from the manufacturer’s specifications.  

𝜙𝜙𝑠𝑠 =
𝐴𝐴𝐴𝐴𝑠𝑠𝑅𝑅

𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠
⋅

𝐴𝐴𝐴𝐴𝑒𝑒𝑎𝑎𝑠𝑠

𝐴𝐴𝐴𝐴𝑒𝑒𝑎𝑎𝑅𝑅
⋅

𝑛𝑛𝑠𝑠

𝑛𝑛𝑅𝑅
⋅ 𝜙𝜙𝑅𝑅 

Life-Cycle Assessment (LCA): A life-cycle assessment was undertaken to compare the 

environmental sustainability and the resource effectiveness of two processes: the production of 

GQD by the CHFS process and by the conventional batch processing route.23-25 The relevant life-

cycle data were investigated and compared using SimaPro (8.3.0.0) software from PRé with the 

Ecoinvent 3 Life Cylce Inventory database. For the calculation of the environmental impacts the 

ILCD 2011 Midpoint+ method was chosen (for use in PEF/OEF pilots, V1.04 / EU27 2010). 

 

RESULTS AND DISCUSSION 

We now report the synthesis of GQD in an alkaline medium using CHFS as an in situ process 

with p-phosphonic acid calix[4]arene26 which controls and enhances the optical properties of 

GQDs, as shown in Figure 1. We have previously reported on the CHFS synthesis of GQD, as an 

in situ process with p-sulfonic acid-calix[4]arenes (SCX4) which is effective in controlling particle 
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 8 

size and optical tuning.27 The present study provides insight into the role of the calixarene bearing 

sulfonic acid moieties versus phosphonic acid moieties. 

 

Figure 1: Schematics of the synthesis of graphene quantum dots (GQDs) from graphene oxide 

(GO) in the presence of p-phosphonic acid calix[4]arene (PCX4). 

Calix[n]arenes typically have a cavity-shaped architecture arising from a cyclic arrangement of 

[n] phenol molecules linked through methylene bridges ortho- to the hydroxy group with the cavity 

maintained through intramolecular hydrogen bonding of the lower rim hydroxy groups. 

Calix[n]arene derivatives have been utilized as molecular tools for many applications, including 

as surfactants for both p-sulfonated27 and p-phosphonated calix[n]arenes,21,29,30 as well as 

templating and nanoparticle stabilizing agents, and the intercalation, delamination and 

morphological control of 2D MXenes.31  

Continuous Hydrothermal Flow Synthesis (CHFS) provides a simple and rapid route for 

producing nanomaterials by mixing (in a reactor) a continuous stream of supercritical water (374 
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 9 

°C, 22.1 MPa) with a continuous stream of water-soluble precursor(s). CHFS represents a very 

fast chemical process which can assure fine control of the process parameters such as T and P, 

both of which can influence supersaturation and nucleation.11–13,20 This type of process has many 

advantages, such as short and non-complex processes, reduced potential for requiring explosive, 

harmful or toxic levels of reagents or solvents, while effectively and significantly reducing the 

reaction time to less than one minute, and allowing continuous production of the GQD.  

The process herein (see CHFS schematic in Figure 2), involves pumping a pre-sonicated aqueous 

dispersion of GO into a flow of a pre-mixed aqueous solution of p-phosphonic acid calix[4]arene 

(PCX4) and KOH (0.2 M) at room temperature through a T-junction (‘T’). This mixture was then 

brought into contact with supercritical water (450 °C, 24.8 MPa) in a counter-current ‘Reactor’, 

whereupon the “chemical cutting” and surface functionalization of graphene oxide single-layer 

sheets occurred. 

To investigate the influence of PCX4 on the physical and optical properties of the GQD, the 

concentration of PCX4 was varied from zero (Sample Control), to factors of 1, 3 and 10-fold 

(samples A–C respectively, Figure 1), whilst all other experimental conditions were kept constant.  
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 10 

 

Figure 2: Schematic of the CHFS reactor employed for the synthesis of GQD. Legend: (P) 

HPLC delivery pump, (H) heater, (T) T-junction, (R) reactor, (C) cooler, and (BPR) back-

pressure regulator 
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Atomic force microscopy height analysis was conducted on the GQD control sample, as well as 

those formed in different concentrations of PCX4, by spin coating aliquots of dilute aqueous 

solution onto freshly cleaved mica. AFM of the atomically flat, clean mica can be seen in Figure 

S1 of the Supplementary Information. Figure 3(a) depicts the height image of the GQD control 

sample, where the nanoparticles are individually dispersed with an average diameter of 13.8 nm. 

The cross sections in Figure S2 (b) shows the height profiles of two individual GQDs that are sub-

nanoscale, with a sample average of 0.36 nm which is in excellent agreement with the theoretical 

value of 0.34 nm found in graphite. 

 

 

Figure 3: Images produced through the AFM analysis at a scan size of 1 x 1 µm of the control 

sample (scale bar -0.5-0.5 nm) and samples A–C including their respective scale bars (-0.5-2nm), 

showing the height of the particles. 
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However, such values typically range from 0.6 to 1 nm due to the presence of some residual 

oxygen functionalities on the sheets, such as surface hydroxyl and epoxide groups.32  For instance, 

GQD synthesized through the hydrothermal cutting of oxidized graphene sheets result in heights 

mostly between 1 and 2 nm with only a small portion consisting of a single graphene layer, which 

have been defined for heights less than or equal to 1 nm.33  Similarly, a bottom–up carbonization 

method with citric acid yielded heights ranging between 0.5 and 2 nm with an average of 1.4 nm.34  

The strong correlation between the GQD heights measured in this work and the literature values 

of graphite suggest that the GQDs are highly ordered with little to no oxygen functionality. This 

is consistent with XPS and TGA data as well as with our earlier reports evidencing that the 

treatment with KOH and supercritical water is effective in reducing the GO.20,21,28 

Upon introduction of PCX4 (Sample A), the GQDs appear dramatically different with an 

increase in height up to an average of 2.89 nm, see Figure S2 (d). This increase in height with the 

addition of PCX4 is not unexpected as it forms 1.107 nm thick bilayers around the GQD, normal 

to the crystallographically observed four-fold symmetry axis running through each 

calixarene.21,26,27,35  Thus, a single GQD (0.362 nm thick) is surrounded by 2 PCX4 bilayers with 

an additional height of 2.21 nm. Figures 3 (b) and S2 (c) show the functionalized GQD remain 

highly dispersed and individualized with cross-section (shown in Figure S2 (d), supplementary 

information) heights of 1.88 nm, 2.55 nm, and 2.72 nm. Based on theoretical heights, these may 

correspond to two layers of graphene and a single PCX4 bilayer, a single graphene layer between 

2 PCX4 bilayers and either one or two graphene layers between two bilayers of PCX4, 

respectively. The functionalized GQD have an average diameter of 16.14 nm, larger than that 

measured for the GQD control and the transmission electron microscopy (TEM) measurement (see 

the Figure S3 from Supplementary Information) for Sample A, which is considerably less (2.80 ± 
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 13 

0.58 nm). This apparent increase in diameter may stem from dilation effects as the AFM tip 

traverses from the top of the nanoparticle to the base, where the higher the object, the more 

exaggerated the apparent dilation. This explains the significant diameter difference upon addition 

of PCX4, which is unlikely to assemble upon the edge planes of the GQD, but results in a dramatic 

increase in height. Alternatively, the dilation may also be an artifact of the particle analysis process 

(see Figure S4 of the Supporting information for a brief explanation of particle analysis). This 

discrepancy in diameter between AFM and TEM is apparent and consistent with all samples 

analyzed. 

 When the concentration of PCX4 was increased by a factor of three, as in Sample B, AFM 

height images showed a very different topography. Figures 3(c) and S2(e) show a mixture of larger 

(≈ 4 – 5 nm) and smaller (≈ 1.5 – 2 nm) individualized particles, with an average height of 2.21 

nm (and diameter of 15.72 nm). Previous studies on PCX4 have identified the formation of 

nanorafts as small as 3 nm, which assembly underflow in a spinning disk processor.26 This suggests 

that the very small particles observed in the present work correspond to PCX4 nanorafts devoid of 

GQD, theoretically having a height of 2.21 nm. The larger particles may consist of multiple 

graphene layers interlaced with bilayers of PCX4 or surrounded by only 2 bilayers. For instance, 

two and three GQD layers interlaced with PCX4 would correspond to theoretical heights of 4.04 

nm and 5.63 nm, respectively, and two and three GQD layers surrounded only by two PCX4 

bilayers would correspond to heights of 2.89 nm and 3.23 nm, respectively. 

 Lastly, the 10-fold concentration of PCX4 resulted in GQD particles with an average height 

of 3.60 nm (Figures 3 (d) and S2 (g)) and an average diameter of 17.80 nm.  Cross sections are 

shown in Figure S2 (g) correspond to heights of 2.50 nm, 2.58 nm and 3.22 nm, which can be 

considered two single intercalated graphene layers and possibly a 3-layer assembly with PCX4 
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 14 

forming bilayers only around the outside (theoretical height 3.23 nm). All these results are 

supported using TEM (see SI, Figure S3). Whilst PCX4 limits particle size and narrows particle 

size distribution similar in effect to that imparted by SCX4, it differs however, to SCX4 in that 

increasing concentrations of PCX4 in the reaction did not coincide with further reduction in 

particle sizes. 

Photoluminescence (PL) studies (see S.I. Figure S6) of aqueous solutions of each of the GQD 

samples were performed after it was observed that excitation at 365 nm led to a bright green 

fluorescence (Figure 1 inset A-C). With the excitation wavelength varied from 360-440 nm, the 

maximum excitation wavelength for the control sample was observed at 360 nm with the greatest 

emission intensity at a maximum of 420 nm, however, for samples A, B, and C, a single-emission 

maximum at 510 nm was observed for all excitation wavelengths between 380-440 nm (Figure 4), 

clearly indicating an excitation independent profile for the decorated GQD particles. Whilst the 

intrinsic luminescence can be attributed to the sp2-carbon framework as well as parameters such 

as particle size and particle size distribution for the GQDs (Samples A-C), the control is only 

similar in respect to particle size and size distribution as indicated by TEM measurements (see SI). 

It is in the extent and variation of surface defects5–10 (influenced by PCX4 in combination with 

hydrothermal cutting) along with surface decoration with the coating of layers of PCX4 that the 

GQDs differs to the control. The level of surface modification experienced by the GQDs, re-

establishing more of their sp2-carbon framework, was far more extensive than that for the control. 

This was supported by X-ray photoelectron spectroscopy (XPS) (discussed later) which also lends 

support to the AFM analysis that the graphene surface was decorated with PCX4, and this was in 

the form of bilayers. The calixarenes have enhanced the GQDs dispersion, thus preventing 

formation of layered aggregates in solution and thereby possibly further contributing to better 
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 15 

spectral emissions with excitation independent behavior as observed for Samples A-C. The 

quantum yield measurements for stable aqueous suspensions of GQD gave values of 4.2% (sample 

A), 4.5% (sample B), and 2.9% (sample C), with negligible quantum yield for the control sample. 

This excitation independent behavior was comparable to the in-situ generation of GQD with 

SCX4,27 but unlike other GQD materials reported. 

 

 

 

 

 

 

 

 

 

Figure 4:  2D excitation-emission contour map of GQD compounds. Normalized intensity scale 

bar is included. 

Sample A Control 

Sample C 

0 

1 

Sample B 
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 16 

X-ray photoelectron spectroscopy (XPS) analysis was undertaken to determine changes in 

the chemical states of all synthesized GQDs and PCX4, (see S.I. Figure S7). As we previously 

reported,20,27,28  the precursor graphene oxide which is treated hydrothermally exhibited 

significantly reduced peak intensities of the oxygen-containing functional groups (epoxide, 

carboxyl and hydroxy). This reduction in peak intensities was further enhanced in the presence of 

PCX4 during the hydrothermal process. GQD samples A, B, and C have shown significant 

reduction for O-C peak at the O(1s) spectrum (∼ 531.3 eV) compared to the control. XPS analysis 

for standalone p-phosphonic acid calix[n]arenes, revealed a strong P(2p) (see Figure S7) signal at 

134.0 eV (± 0.2 eV), which is characteristic of the phosphorous-based calixarene.31  The presence 

of PCX4 in GQD samples is reflected in the C(1s) (see Figure S7) spectrum with strong peaks for 

the C-C (∼ 285.0 eV) and C-P (∼ 286.0 eV), and the weak π-π* transitions (∼ 289.0 eV) assigned 

to the aromatic structure present in the calixarene macrocycle. Interestingly, a negative shift from 

∼ 134 eV for P(2p) in PCX4 to ∼ 133 eV in the GQD is observed suggesting a change in electron 

density for P. This can be attributed to the disruption of hydrogen bonding of the phosphonic acid 

units of PCX4 due to new binding interactions with graphene and/or potassium ions (from the 

reaction process). Such changes in energy have previously been reported for phosphoric acid 

activated membranes on perturbation of hydrogen bonding.37  

PCX4 functionalized onto GO involves (a) non-covalent π- π interactions and (b) hydrogen 

bonding interactions between hydroxyl groups of PCX4 and oxygen functional groups of GO.27,38 

This differs to that proposed for SCX4 where the location of calixarenes on the GQD was primarily 

expected to be edge aligned (Lerf-Klinowski model for graphene) with SCX4's phenol moiety as 

part of an ester linkage formed with the GQD edge carboxylic groups, facilitated under CHFS 

conditions. Whilst both SCX4 and PCX4 are known to form bilayers from aqueous solution with 
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 17 

metal ions or other organic molecules, it is difficult to speculate as to why they differ in their 

interactions with graphene oxide in the synthesis of the respective GQDs. 

Elemental analysis results (from XPS analysis) indicate that the GQDs are mainly composed of 

carbon, oxygen, phosphorous and potassium. An increase in phosphorous content was observed 

from 1.34% (sample "A"), 1.27% (sample "B") and highest elemental composition of 3.9% for 

sample “C” which has the highest nominal PCX4 concentration. This strongly suggests that PCX4 

has been successfully attached to the graphene primarily through supramolecular interactions and 

this is further supported by FT-IR and TGA data. 

FTIR spectroscopy of the samples A-C (Figure S8, supplementary information ) revealed a 

broadening of the O-H band and a shift to ∼ 3130 cm-1 from 3390 cm-1 for the control. This reflects 

the increased presence of hydroxyl groups introduced from the phenolic (3140 cm-1) and 

phosphonic acid (PO-H, 2725 cm-1) functionalities of PCX4 in the layers and bilayers of the 

GQD.29 Bands located for the "control" sample at 1400 cm-1 (>COO- symmetric stretch) and 1523 

cm-1 (>COO- asymmetric stretch) undergo a successive and significant reduction in the peak 

intensity with increasing PCX4 concentration in GQD synthesis for samples A-C. The reduction 

of the carboxylic peaks are in agreement with that observed for the XPS analysis.  

Thermogravimetric analysis (TGA) evaluation revealed both the thermal stability of the 

PCX4 functionalized GQDs and the load bearing of GQD for PCX4 when compared to the control 

sample. The significant increasing weight loss, (Figure S9, supplementary information), observed 

in the region 400-800 °C for samples A, B, and C can be attributed to PCX4 decomposition (9.8%, 

12.4%, & 13.9% respectively). Hydrogen bonding, Van der Waals interactions and π-π stacking 

between PCX4 and GQD is largely expected, and given the forcing conditions under CHFS 

processing, some covalent bonding between PCX4 and the rGO is also likely, for example as ester 
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 18 

linkages of the phenol moieties with the GQD edge carboxylic groups. This is consistent with XPS 

data observed for the C3/C4 ratio and previously reported for p-sulfonated calixarenes with rGO.27  

UV-Vis spectroscopy (see Figure S10) of pure PCX4 shows π-π* transitions centered at ca. 276 

and 283 nm. The new composite materials A-C have a band at ca. 282 nm, indicative of the 

presence of PCX4 in GQD. As anticipated, there was no corresponding peak for PCX4 observed 

for the control sample, with an absorption band at ca. 270 nm, which is consistent with literature 

values.27 

Cell cytotoxicity experiments: For the evaluation of the toxicity of the hydrothermally 

prepared compounds against eukaryotic cells, the macrophage cell line RAW 264.7 was incubated 

with various concentrations of GQDs, PCX4 and control for 24 hrs. An MTT assay was performed 

used to determine cell viability with the results reported as % viability (MTT value of cells with 

compound/MTT value of cells without compound x 100) (Figure 5).  

Neither the rGO control nor the PCX4, for the concentrations tested, had any significant impact 

on cell viability. For samples A-C, toxicity to RAW 264.7 cells is greater, in a dose-dependent 

manner, compared to PCX4 alone at all concentrations tested, and the percentage of cells killed by 

each compound is approximately similar at each concentration. It is interesting to note that in 

complexing rGO with PCX4 results in increased cytotoxicity. This may be explained by the rGO 

sheet being decorated with PCX4 molecules, resulting in an increased localized concentration of 

PCX4 compared to standalone PCX4. This is further reflected by samples A-C showing quite 

similar levels of toxicity at each concentration, regardless of the initial ratio of PCX4 to rGO used 

in their synthesis. Given the structural organization of the nanoparticle assemblies in samples A-

C, each consisting of a graphene sheet(s) coated in a bilayer(s) of PCX4, and that each of the 

samples have significant overlap in their size distribution (as suggested by AFM and TEM 
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analysis), then the cells can be considered essentially to being just exposed to high localized 

concentrations of PCX4. 

 

Figure 5: RAW 264.7 cell viability studies after incubation with GQD and PCX4 at 

varying concentrations for 24 hours. 

 The toxicity observed is best explained in this regard, and the observed complexities in the 

assemblies of the individual samples A-C have no further or significant impact. Nevertheless, at 

the concentrations that the composite materials will be typically used, the levels of cytotoxicity 

are at acceptable levels, and as such, this will not impact on the usefulness of the compounds. 

Earlier studies established that PCX4 has low toxicity towards PC12 cells and higher susceptibility 

towards toxic effects for mixed retinal cells, with cell viability reduced by 50% respectively for 

>3.0 and 1.0 mg mL-1 after 24 hours.39 
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A life-cycle assessment (LCA): The environmental impact has been evaluated across 16 

separate impact categories (Figure 6) using the ILCD method. The summarized inventories are 

presented electronic supplementary information (Table S1). The production of starting graphene 

oxide powder (chemical oxidation via Hummer’s method) used in the CHFS was assigned to be 

the same as that of the lab scale process for batch hydrothermal synthesis.  

 

Figure 6: Comparison of the life-cycle assessment for the 1 mg GQD prepared by the conventional 

hydrothermal batch synthesis (red) and by CHFS (blue) showing the values pertinent to each of 

the 16 midpoint environmental impact categories. All values are shown in percentages while each 

impact category is expressed in its reference units. Legend key: red color bar - conventional 

method, blue bar – CHFS. 

In a recent report, a comparative LCA study of different graphene production routes (graphite 

chemical oxidation, chemical vapor deposition and electrochemical exfoliation) indicated the 

chemical oxidation process (which was utilized here) has the least impacting synthetic approach 

to obtain large quantities of graphene.25  It was therefore only necessary to construct the inventories 
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for the mass of the precursors required for the solutions. These quantities were then factored down 

accordingly. 

The impact of the energy demand (use of electricity) of the laboratory equipment for both 

production processes were estimated separately. The amount of energy consumed by each piece 

of electrical equipment was not measured using an in-line power meter, but only calculated 

theoretically. It is noted (Figure S11, supplementary information) that the electricity consumption 

for the conventional batch synthesis is significantly higher due to the sheer duration of the reaction 

(24 hours as compared to 20 min of the CHFS, including the reactor reaching the required reaction 

temperature). Still, the disproportionately the contribution by the direct electricity consumption 

even during the CHFS of a single amount of the GQD material can be explained by the non-

optimised lab-scale setup used in this study for synthesizing small quantities of the material. The 

adequately scaled-up CHFS process would employ multiple syntheses operated in parallel while 

using equal quantities of electricity as well as the use of heat-exchangers. The two synthetic routes 

do not differ from each other in the remaining steps of the preparation process (sonication, 

filtration) except for their precursors.  

One of the key conclusions of the LCA analysis of the CHFS of GQD as previously reported for 

other syntheses13–15 is that the CHFS offers a substantial degree of reduction in the overall life-

cycle environmental impact (Figure S12, supplementary information). The CHFS of GQDs has a 

substantially lower environmental impact than the equivalent conventional batch synthesis. The 

values for ‘Human toxicity’, ‘Ionising radiation’ and ‘Particulate matter’, while still significant, 

are more moderate (at < 50 %) for the CHFS. The large contribution from the water for the CHFS 

is due to the water being cycled through the system for the purpose of cooling it down; however, 
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this water can be subsequently reused in the following runs and its environmental impact can, 

therefore, be effectively omitted. 

 

CONCLUSIONS 

In conclusion, a rapid continuous hydrothermal flow route was employed for the synthesis of 

graphene quantum dots in the presence of p-phosphonic calix[4]arene. The versatility of this 

synthetic route should allow the rapid synthesis of quantum dots based on the ever-expanding 

range of two-dimensional materials. The photoluminescence studies for the GQDs showed an 

excitation independent behavior with the emission peak at 510 nm. The cytotoxicity of the 

composite material is acceptable, and LCA studies establish that the CHSF method offers a 

simplified synthetic process that improves efficiency and reduces the environmental impact of the 

material production. Furthermore, the LCA emphasizes the potential for scale-up for the 

continuous production of large quantities of GQD. 
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A rapid, continuous hydrothermal flow route and life cycle assessment was employed for the 

synthesis of graphene quantum dots in the presence of calixarene. 
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