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Abstract

In this paper we propose new panel tests to detect changes in persistence. The test

statistics are used to test the null hypothesis of stationarity against the alternative of a

change in persistence from I(0) to I(1), from I(1) to I(0), and in an unknown direction.

The limiting null distributions of the tests are derived and evaluated in small samples by

means of Monte Carlo simulations. An empirical illustration is also provided.
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1 Introduction

Over the last two decades, a vast literature has investigated whether economic and financial

time series may be characterized by a change in persistence between separate I(1) and I(0)
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regimes rather than simply I(1) or I(0) behavior. Changes of this kind in macroeconomic

variables are well documented; see the literature reviews in Kim (2000) and Leybourne et

al. (2003). A non-exhaustive list of the variables for which such phenomena have been

observed includes inflation, real output, budgetary deficits, interest rates and exchange rates.

Interestingly, while many data sets are in fact panels of multiple time series, the way that

existing tests are constructed requires that the series are tested one at a time. This is wasteful

in the sense that each time a test is carried out the information contained in the other series

is effectively ignored. The current paper can be seen as a reaction to this. The purpose is

to develop tests for changes in persistence that explores the multiplicity of series, and that

can be seen as panel extensions of the time series tests of Kim (2000), Kim et al. (2002),

and Busetti and Taylor (2004). The tests can be used to flexibly test the null hypothesis of

stationarity against the alternative of a change in persistence not only from I(0) to I(1), and

from I(1) to I(0), but also when the direction is unknown. The data generating process (DGP)

considered is quite general. Some of the allowances are unit-specific constant and trend

terms, cross-section heteroskedasticity, error serial correlation and cross-section dependence

in the form of common factors. The asymptotic distributions of the tests are derived and

evaluated in small samples using Monte Carlo simulation. An empirical illustration is also

provided showing how how inflation of 20 developed countries has undergone a shift from

I(0) to I(1).

The rest of the paper is organized as follows. Sections 2 and 3 present the model, the

test statistics, and their asymptotic distributions, which are evaluated using simulations in

Section 4. Section 5 reports the results from the empirical application. Section 6 concludes.

Proofs of important results are provided in the Appendix

2 Model and assumptions

Consider the panel data variable Yi,t, where i = 1, ..., N and t = 1, ..., T index the time-series

and cross-sectional units, respectively. The DGP of this variable is given by

Yi,t = θ′i Dt,p + λ′iFt + ei,t, (1)

ei,t = µi,t + ε i,t, (2)

where Dt,p = (1, t, ..., tp)′ is a p-order trend polynomial such that Dt,p = 0 is p = −1, Ft is

an r× 1 vector of common factors with λi being the corresponding vector of factor loadings,
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and ε i,t is a mean zero and I(0) error term. The following three specifications of µi,t are

considered, where 1(A), bxc, ηi,t and τ0
i ∈ [0, 1] denote the indicator function of the event A,

the integer part of x, a mean zero I(0) error term, and the break fraction, respectively:

MU1. I(0)→ I(1): µi,t = µi,t−1 + 1(t > bTτ0
i c)ηi,t.

MU2. I(1)→ I(0): µi,t = µi,t−1 + 1(t ≤ bTτ0
i c)ηi,t.

MU3. Unknown direction: I(0)→ I(1) or I(1)→ I(0).

Under MU1 Yi,t is I(0) up to and including time bτ0
i Tc but is I(1) after the break, provided

that σ2
η,i = var(ηi,t) > 0. Under MU2 Yi,t is I(1) up to and including time bτ0

i Tc but it is I(0)

after the break, provided again that σ2
η,i > 0. Therefore, the hypothesis of stationarity against

a shift in persistence from I(0) to I(1) or viceversa can be stated as H0 : σ2
η,1 = ... = σ2

η,N = 0

versus H1 : σ2
η,i > 0 for at least some i. Whenever the alternative is I(1)→ I(0) we write “H1 :

I(1)→ I(0)”, whereas if the alternative is I(1)→ I(0), we write “H1 : I(1)→ I(0)”.

The conditions placed on the above DGP are given in Assumption 1, where C < ∞, tr(A),

||A|| =
√

tr(A′A),→p and Fi,t denote a generic positive constant, the trace and Euclidean

norm of the (generic) matrix A, convergence in probability, and the sigma-field generated by

{(ε i,n, ηi,n)}t
n=1, respectively.

Assumption 1.

(i) ε i,t = γi(L)vi,t, where vi,t is independent and identically distribution (iid) with E(vi,t) =

0, E(v2
i,t) = 1, E(v8

i,t) ≤ C, γi(L) = ∑∞
j=0 γjiLj, ∑∞

j=0 j||γji|| ≤ C and γi(1)2 > 0;

(ii) ηi,t = φi(L)wi,t, where wi,t is iid with E(wi,t) = 0, E(w2
i,t) = 1, E(w8

i,t) ≤ C, φi(L) =

∑∞
j=0 φjiLj, ∑∞

j=0 j||φji|| ≤ C and φi(1)2 > 0;

(iii) Ft is I(0) such that E(||Ft||4) ≤ C and T−1 ∑T
t=1 FtF′t →p ΣF > 0;

(iv) ε i,t, ηi,t and Ft are mutually independent;

(v) µ1,0 = ... = µN,0 = 0;

(vi) λi is deterministic such that ||λi||4 ≤ C, N−1 ∑N
i=1 λiλ

′
i → Σλ > 0 as N → ∞.

Remark 1. Assumption 1 puts restrictions on the time series and cross-sectional properties

of ε i,t and ηi,t. The restrictions are very similar to the ones of Bai and Ng (2004), and we there-

fore refer to this other paper for a detailed discussion. The main difference when compared
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to Bai and Ng (2004) is that here Ft cannot be I(1). Thus, while Yi,t may be cross-correlated, it

cannot be affected by common stochastic trends. However, we would like to point out that

this assumption is mainly for ease of interpretation of the test outcome, for if Ft is allowed to

be I(1) the persistence of Yi,t cannot be inferred from ei,t alone, and in the present paper we

focus on the testing of ei,t. Hence, analogous to the PANIC approach of Bai and Ng (2004), if

Ft is permitted to be I(1), then we also need to test this variable.

3 The test statistics

The general testing idea is to first purge the effect of Ft, and then to submit the resulting

residuals to a test for a change in persistence. The implementation of the first step depends

on whether Ft is known or not.

3.1 Ft known

Consider the generic variable Xi,t. The detrended version of this variables is henceforth

denoted Xp
i,t = Xi,t − ∑T

n=1 Xi,nan,t,p, where an,k,p = D′n,p(∑
T
t=1 Dt,pD′t,p)

−1Dk,p and p ≥ 0. If

p = −1, then we define Xp
i,t = Xi,t. In this notation, the detrended and defactored version

of Yi,t is given by êi,t = Yp
i,t − λ̂′iF

p
t , where λ̂i is the least squares (LS) slope estimator in a

regression of Yp
i,t onto Fp

t . Thus, while in this section Ft is assumed to be known, λi is still

treated as unknown. Consider the following test statistic, which is suitable for testing if

cross-section unit i is I(0) versus I(1) → I(0) (see, for example, Kim, 2000; Kim et al., 2002;

Busetti and Taylor, 2004):

Ki,T(τ) =
(bTτc)2

(T − bTτc)2

∑T
t=bTτc+1 S1

i,t(τ)
2

∑bTτc
t=1 S0

i,t(τ)
2

,

where τ ∈ [0, 1], S0
i,t(τ) = ∑t

n=1 êi,n and S1
i,t(τ) = ∑t

n=bTτc+1 êi,n. The error sequences

{êi,n}bTτc
n=1 and {êi,n}T

n=bTτc+1 come from two separate regressions; while the former uses only

the first bTτc observations, the latter uses only the last bT(1− τ)c observations.

Remark 2. The Ki,T(τ) test considered here is in the spirit of Kwiatkowski et al. (1992)

in which the constant I(0) null is tested versus the constant I(1) alternative. An alternative

approach is to follow Banerjee et al. (1992) and Leybourne et al. (2003) who use the Dickey–

Fuller statistic, in which the null and the alternative hypotheses are reversed. Panel variants
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of these can be constructed in the same way as the one suggested below for Ki,T(τ) (see

Demetrescu and Hanck, 2013, for such a proposal).

Let C = [τmin, τmax] ⊆ (0, 1). In this paper, we consider three transformations to eliminate

the dependence on τ in Ki,T(τ) (see, for example, Kim, 2000);

T1. The maximum-Chow transformation:

K1
i,T = max

s=bTτminc,...,bTτmaxc
Ki(s/T).

T2. The mean-exponential transformation:

K2
i,T = ln

(
(bT(τmax − τmin)c+ 1)−1

bTτmaxc

∑
s=bTτminc

exp[Ki(s/T)]

)
.

T3. The mean score transformation:

K3
i,T = (bT(τmax − τmin)c+ 1)−1

bTτmaxc

∑
s=bTτminc

Ki(s/T).

In Appendix (Proof of Theorem 1), we show that Ki,T(τ) →w Ki(τ) as T → ∞, where

→w signifies weak convergence and Ki(τ) is a certain ratio of stochastic integrals. Since

K1(τ), ..., KN(τ) are iid, we may define µK,j = E(K j
i) and σ2

K,j = var(K j
i) for j ∈ {1, 2, 3}.

Numerical values of µK,j and σK,j are reported in Table 1. The proposed panel test statistic

for testing H0 versus H1 : I(0)→ I(1) is given by

K j
NT =

1
σK,j
√

N

N

∑
i=1

(K j
i,T − µK,j).

For testing if cross-section unit i is I(0) versus I(1)→ I(0), the following “reverse” test statistic

can be used (see Kim, 2000; Kim et al., 2002; Busetti and Taylor, 2004):

Ri(τ) = (Ki(τ))
−1,

which can be transformed using T1–T3 to eliminate the dependence on τ. The resulting

transformed statistic is written in an obvious notation as Rj
i . Based on this test statistic,

we may define Rj
NT = σ−1

R,j N−1/2 ∑N
i=1(Rj

i,T − µR,j) with obvious definitions of σ2
R,j and µR,j.

When the direction of the persistency is unknown, the following maximum statistic may be

used:

Mj
i,T = max{K j

i,T, Rj
i,T},
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which can again be normalized to obtain Mj
NT = σ−1

M,jN
−1/2 ∑N

i=1(Mj
i,T − µM,j).

Theorem 1. Under H0 and Assumption 1, as N, T → ∞ with N/T → 0,

K j
NT, Rj

NT, Mj
NT →d N(0, 1),

where→d signifies convergence in distribution.

Remark 3. While the test statistics considered here are independent of τ0
1 , ..., τ0

N , in applica-

tions it is sometimes useful to be able to estimate these parameters. This can be accomplished

using the proposal of Kim (2000, Section 3.2), which basically amounts to setting τ̂0
i equal

to the suitably maximizing or minimizing value of Ki,T(τ), depending on whether it is I(0)

→ I(1) or I(1) → I(0) that is being tested. Alternatively, we may follow Busetti and Taylor

(2004, Section 6.2), who suggest setting τ̂0
i equal to the value of τ0

i that minimizes the sum of

squares of êi,t.

Remark 4. The requirement that N/T → 0 is sufficient but not necessary and is needed to

make sure that certain remainder terms are negligible. However, the order of these terms is

not the sharpest possible. A more elaborate asymptotic analysis would be required to obtain

the exact order. In Section 4, we use Monte Carlo simulation to evaluate the effect of N/T in

small samples.

3.2 Ft unknown

The estimation of Ft can be performed in two ways; (i) unrestrictedly, or (ii) restricted un-

der H0. In both cases, we follow the bulk of the previous literature and use the princi-

pal components method (see, for example, Bai and Ng, 2004). The restricted estimator of

F = (F1, ..., FT)
′, denoted F̂0 = (F̂0

1 , ..., F̂0
T)
′, is
√

T times the eigenvectors corresponding to

the first r largest eigenvalues of the T× T matrix Yp(Yp)′, where Yp = (Yp
1 , ..., Yp

N) and Yp
i =

(Yp
i,1, ..., Yp

i,T)
′ are T × N and T × 1, respectively. Under the normalization T−1F̂0(F̂0)′ = Ir,

the estimated loading matrix is (λ̂0)′ = (λ̂0
1, ..., λ̂0

N) = T−1(F̂0)′Yp. The restricted estimator

of ei,t that we will be considering can now be constructed as

ê0
i,t = Yp

i,t − (λ̂0
i )
′ F̂0

t . (3)

Let Xp−1
i,t be Xi,t when detrended using a trend polynomial of order p− 1. Hence, Xp−1

i,t = Xi,t

if p = 0. Let ft = ∆Ft and yi,t = ∆Yi,t (for t = 2, ..., T). The unrestricted estimators f̂ 1
t and λ̂1

i
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of (the space spanned by) f p−1
t and λi are F̂0

t and λ̂0
i , respectively, but with Yp

i,t replaced by

yp−1
i,t . Let

ẽ1
i,t =

t

∑
n=2

[yp−1
i,n − (λ̂1

i )
′ f̂ 1

n ], (4)

where ẽ1
i,1 = 0. The unrestricted estimator ê1

i,t of ei,t is given by ê1
i,t = (ẽ1

i,t)
p. The appropriate

test statistics to consider when Ft is unknown, henceforth denoted K j
hNT, Rj

hNT and Mj
hNT for

h ∈ {0, 1}, are given by K j
NT, Rj

NT and Mj
NT, respectively, with êi,t replaced by êh

i,t.

Theorem 2. Under H0 and Assumptions 1, as N, T → ∞ with N/T → 0,

K j
hNT, Rj

hNT, Mj
hNT →d N(0, 1).

As Theorem 2 makes clear, the factors can be unknown and still the asymptotic distribu-

tions of the test statistics are N(0, 1). This is in agreement with the results reported by Bai

and Ng (2004) for their pooled panel unit root tests.

4 Monte Carlo simulations

A small-scale Monte Carlo study was conducted to investigate the properties of the new tests

in small samples. The DGP is given by a restricted version of (1)–(2) that sets ε i,t ∼ N(0, σ2
ε,i),

ηi,t ∼ N(0, σ2
η), ση ∈ {0, 0.25, 0.5}, τ0

i ∼ U(0.3, 0.7), r = 1, and Ft = ρFt−1 + vt, where

vt ∼ N(0, 1) and ρ ∈ {0.3, 0.6} (see, for example, Gengenbach et al., 2010, for a similar

parametrization). For σε,i, we consider two cases. In the first, σε,i = 1 for all i, while in the

second, σε,i ∼ U(1, 2). Since a more volatile idiosyncratic error will make Ft more difficult

to discern, we expect that the results for the second case will deteriorate when compared

to the first. All results are based on 1,000 replications of samples of size N ∈ {5, 10, 20}

and T ∈ {50, 100}. Also, following Kim (2000), C = [0.20, 0.80]. Results were obtained for

p ∈ {0, 1}, although in this paper we focus on the results for the empirically most common

specification with p = 0 (a constant but no trend). The results for p = 1 (constant and trend)

can be obtained upon request. Both the restricted and unrestricted factor estimation methods

were simulated. Interestingly, the restricted method led to better results in terms of both size

accuracy and power. In this paper, we therefore only report the results for the restricted

7



method, where the number of common factors is determined using the IC2 criterion of Bai

and Ng (2002) with a maximum of three factors.1

The 5% size and power results are reported in Tables 2–5. While Tables 2 (ρ = 0.3) and

3 (ρ = 0.6) contain the results for the tests of I(0)→ I(1), Tables 4 (ρ = 0.3) and 5 (ρ = 0.6)

contain the corresponding results for I(1) → I(0). The information content of these tables

may be summarized as follows.

• All tests have good size accuracy when σε,i = 1 and ρ = 0.3. This is true for all constel-

lations of T and N considered, although the distortions do have a tendency to increase

slightly in N, which is consistent with the previous panel unit root literature (see West-

erlund and Breitung, 2013, for a discussion). While there are no big differences, the

best size accuracy is generally obtained by using K2
NT, R2

NT and M2
NT, whereas K3

NT,

R1
NT and R3

NT generally leads to the worst accuracy.

• As expected, increases in ρ and/or σε,i generally lead to reduced size accuracy, al-

though the distortions are never very large. This is true regardless of the direction

of the change in persistence. In fact, the results are remarkably stable, given that the

test statistics do not require any corrections to account for nuisance parameters.

• All tests perform quite well in terms of power, and there are clear improvements as

N and/or T increases. The fact that power is not only increasing in T, but also in

N illustrates the advantage of accounting for the cross-sectional variation of the data.

Power is also increasing in the distance to the null, as measured by ση , which is again

just as expected.

5 Empirical illustration

The question of whether inflation should be considered as I(0) or I(1) has been subject to a

long debate. According to recent studies (see, for example, Kim, 2000; Busetti and Taylor,

2004), however, inflation may be better characterized by a change in persistence between

separate I(1) and I(0) regimes rather than simply I(1) or I(0) behavior. The purpose of this

illustration is to test this hypothesis using a large panel of quarterly CPI inflation data cover-

ing 20 countries (Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany,

1See Westerlund and Mishra (2016) for a more elaborate selection approach that uses a data-driven penalty.
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Greece, Italy, Japan, Korea, the Netherlands, New Zealand, Norway, Spain, Sweden, Switzer-

land, the UK and the US) between 1970:1 and 2013:4. All data are taken from OECD Main

Economic Indicators.

The number of common factors is determined in the same way as in the simulations. As

is customary when dealing with inflation (see, for example, Leybourne et al., 2003), the tests

are fitted with a constant but no trend. The results are reported in Table 6. The first thing

to note is that while in case of K1
NT, K2

NT and K3
NT there is no evidence against the I(0) null,

R1
NT, R2

NT and R3
NT all lead to a clear rejection. This is true even at the most conservative

1% level. We therefore conclude that inflation has been subject to a change in persistence

from I(1) to I(0), which is in agreement with the recent empirical literature based on US data

(see, for example, Busetti and Taylor, 2004; Harvey et al., 2006). A common explanation

for the observed change in persistence of inflation in the US is that it is due to the stock

market collapse of the late 1980’s and the recession that followed it. One interpretation of

the results reported in the current paper is therefore that they reflect the worldwide recession

of the early 1990’s, which was to a large extent triggered by the recession in the US. Another

possibility is that the results reflect in part monetary policy shifts (see, for example, Davig

and Doh, 2014, and the references provided therein).

6 Conclusion

This paper develops panel tests that are suitable for testing the null hypothesis of stationarity

against the alternative of a change in persistence from I(0) to I(1), from I(1) to I(0), or when

the direction is unknown. The DGP used for this purpose is quite general and allows unit-

specific constant and trend terms, cross-section heteroskedasticity, error serial correlation

and cross-section dependence in the form of common factors.
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Appendix: Proofs

The proofs of Theorems 1 and 2 are established for K j
NT; the proofs for Rj

NT and Mj
NT are

entirely analogous.

Proof of Theorem 1.

Under MU1, µi,t = ∑t
k=1 1(k > bTτc)ηi,k, and by further invoking H0, µi,t = 0, giving

Yi,t = θ′i Dt + λ′iFt + µi,t + ε i,t = θ′i Dt + λ′iFt + ε i,t, (A1)

It follows that

Yp
i,t = λ′iF

p
t + ε

p
i,t, (A2)

with obvious definitions of Fp
t and ε

p
i,t, which in turn implies

êi,t = Yp
i,t − λ̂′iF

p
t = ε

p
i,t − (λ̂i − λi)

′Fp
t , (A3)

Therefore,

T−1/2
t

∑
n=1

êi,n = T−1/2
t

∑
n=1

ε
p
i,n − (λ̂i − λi)

′T−1/2
t

∑
n=1

Fp
n . (A4)

Under H0 and with Ft known Yi,t = θ′i Dt + λ′iFt + ε i,t is just an ordinary time series regres-

sion in I(0) variables with exogenous regressors. It follows that
√

T(λ̂i − λi) = Op(1), and

therefore, since T−1/2 ∑t
n=1 Fp

n = Op(1),

T−1/2
t

∑
n=1

êi,n = T−1/2
t

∑
n=1

ε
p
i,n + Op(T−1/2). (A5)

Hence, using Ki,T(τ) to denote Ki,T(τ) with êi,n replaces by ei,n, we have

Ki,T(τ) = Ki,T(τ) + Op(T−1/2), (A6)

where the first term on the right is the same as in Harvey et al. (2006). It follows from their

results that

Ki,T(τ)→w Ki(τ) =
Ai(τ)

Bi(τ)
, (A7)
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as T → ∞, where→w signifies weak convergence, and

Ai(τ) = (1− τ)−2
∫ 1

τ
ai(r)2dr,

Bi(τ) = τ−2
∫ τ

0
bi(r)2dr,

ai(τ) = Wε,i(τ)−Wε,i(r)−
∫ 1

τ
dWε,i(r)Dp(r)′

(∫ 1

τ
Dp(r)Dp(r)′dr

)−1 ∫ r

τ
Dp(s)ds,

bi(τ) = Wε,i(r)−
∫ τ

0
dWε,i(r)Dp(r)′

(∫ τ

0
Dp(r)Dp(r)′dr

)−1 ∫ r

0
Dp(s)ds,

with Wε,i(r) being a standard Brownian motion, and Dp(r) is such that Q−1
T DbTrc,p → Dp(r),

where QT = diag(1, T, ..., Tp). Note in particular how D0(r) = 1 and D1(r) = (1, r)′.

Therefore, by the continuous mapping theorem, and writing K j
i,T = Hj(Ki,T(τ)) and K j

i,T =

Hj(Ki,T(τ)) as in Busetti and Taylor (2004),

K j
i,T = K j

i,T(τ) + Op(T−1/2)→w Hj(Ki(τ)) = K j
i . (A8)

Let us now consider K j
NT. By using the previous result

K j
NT =

1
σK,j
√

N

N

∑
i=1

(K j
i,T − µK,j) =

1
σK,j
√

N

N

∑
i=1

(K j
i,T − µK,j) + Op(

√
NT−1/2) (A9)

where Op(
√

NT−1/2) = op(1) under our assumption that N/T = o(1). We now use the same

steps as in Moon and Phillips (2000, page 994) to verify that (K j
i,T − µK,j) satisfies conditions

(i)–(iv) of the central limit theorem of Phillips and Moon (1999, Theorem 2). In so doing

we follow their notation and write Qi,T = (K j
i,T − µK,j), which is iid with mean zero and

variance σ2
K,j ≤ C. We have already shown that K j

i,T →w K j
i as T → ∞, which implies

Qi,T →d Qi = (K j
i − µK,j), and it is also not difficult to verify that E(Q2

i,T) → E(Q2
i ) = σ2

K,j.

This verifies conditions (i), (ii) and (iv). Condition (iv) follows from noting that, by the

continuous mapping theorem, Q2
i,T →w Q2

i . It follows that

K j
NT =

1
σK,j
√

N

N

∑
i=1

(K j
i,T − µK,j)

=
1

σK,j
√

N

N

∑
i=1

(K j
i,T − µK,j) + Op(

√
NT−1/2)→d N(0, 1) (A10)

as N, T → ∞ with N/T → 0. �

Proof of Theorem 2.
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We begin by considering the case when the estimator of ei,t is based on the restricted es-

timators of λi and Ft under H0. As in Proof of Theorem 1, under MU1 and H0, Yi,t =

θ′i Di,t + λ′iFt + ε i,t. In order to capture the fact that λi and Ft are not separately identifiable

we introduce the r× r rotation matrix H such that

ê0
i,t = Yp

i,t − (λ̂0
i )
′ F̂0

t = ε
p
i,t − λ′i H

−1(F̂0
t − HFp

t )− (λ̂i − (H−1)′λi)
′ F̂0

t . (A11)

Hence,

T−1/2
t

∑
n=1

ê0
i,n = T−1/2

t

∑
n=1

ε
p
i,n − λ′i H

−1T−1/2
t

∑
n=1

(F̂0
n − HFp

n )

− (λ̂i − (H−1)′λi)
′T−1/2

t

∑
n=1

F̂0
n . (A12)

By Lemmas 1 (c) and 2 of Bai and Ng (2004), ||λ̂i − (H−1)′λi|| = Op(N−1) + Op(T−1/2) and

||T−1/2 ∑t
n=1(F̂0

n −HFp
n )|| = Op(N−1/2)+Op(T−3/4), where the latter result holds uniformly

in t. Hence, since

T−1/2
t

∑
n=1

F̂0
n = HT−1/2

t

∑
n=1

Fp
n + T−1/2

t

∑
n=1

(F̂0
n − HFp

n ) = Op(1), (A13)

we can show that

T−1/2
t

∑
n=1

ê0
i,n = T−1/2

t

∑
n=1

ε
p
i,n + Op(N−1/2) + Op(T−1/2). (A14)

Hence, as in the case when Ft is known (see Proof of Theorem 1), the estimation and re-

moval of the common component do not affect the asymptotic distribution of the test statis-

tic. Specifically, using K j
0i,T to denote K j

i,T with ê0
i,n in place of êi,n, we get

|K j
0i,T − K j

i,T| = Op(N−1/2) + Op(T−1/2), (A15)

which holds uniformly in (j, i). In order to show that the resulting panel statistic, K j
0NT say,

converges to N(0, 1), we may use the same argument as in Westerlund and Larsson (2009).

Consider the unrestricted estimator of ei,t. We have ẽ1
i,t = ∑t

n=2[y
p−1
i,n − (λ̂1

i )
′ f̂ 1

n ], where,

under H0, yi,t = ∆Yi,t = θ′i ∆Dt + λ′i ft + ∆ε i,t with ft = ∆Ft. It follows that yp−1
i,t = λ′i f p−1

t +

(∆ε i,t)
p−1, and therefore

ẽ1
i,t =

t

∑
n=2

[yp−1
i,n − (λ̂1

i )
′ f̂ 1

n ]

=
t

∑
n=2

[(∆ε i,t)
p−1 − λ′i H

−1( f̂ 1
t − H f p−1

t )− (λ̂i − (H−1)′λi)
′ f̂ 1

t ]. (A16)
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Consider ∑t
n=2( f̂ 1

t − H f p−1
t ). From Proof of Theorem 3 in Bai (2003), using V to denote

a diagonal matrix consisting of the first r eigenvalues of (NT)−1yp−1(yp−1)′ in decreasing

order,
t

∑
n=2

( f̂ 1
t − H f p−1

t )

= N−1/2V−1T−1
T

∑
n=2

f̂ 1
t ( f p−1

t )′N−1/2
N

∑
i=1

λi

t

∑
n=2

(∆ε i,t)
p−1 + Op(N−1) + Op(T−1)

= N−1/2V−1HT−1
T

∑
n=2

f p−1
t ( f p−1

t )′N−1/2
N

∑
i=1

λi(ε
p−1
i,t − ε

p−1
i,1 )

+ N−1/2V−1T−1
T

∑
n=2

( f̂ 1
t − H f p−1

t )( f p−1
t )′N−1/2

N

∑
i=1

λi(ε
p−1
i,t − ε

p−1
i,1 )

+ Op(N−1) + Op(T−1). (A17)

where we have made use of the fact that ∑t
n=2(∆ε i,n)

p−1 = ε
p−1
i,t − ε

p−1
i,1 . Now, ||V|| and

||N−1/2 ∑N
i=1 λi(ε

p−1
i,t − ε

p−1
i,1 )|| are both Op(1). Moreover, by Lemma A.1 of Bai (2003),∣∣∣∣∣

∣∣∣∣∣T−1
T

∑
n=2

( f̂ 1
t − H f p−1

t )( f p−1
t )′

∣∣∣∣∣
∣∣∣∣∣ ≤

(
T−1

T

∑
n=2
|| f̂ 1

t − H f p−1
t ||2

)1/2(
T−1

T

∑
n=2
|| f p−1

t ||2
)1/2

= Op(N−1/2) + Op(T−1/2),

from which it follows that∣∣∣∣∣
∣∣∣∣∣ t

∑
n=2

( f̂ 1
t − H f p−1

t )

∣∣∣∣∣
∣∣∣∣∣ = Op(N−1/2) + Op(T−1). (A18)

By using this and F̂1
t = ∑t

n=2 f̂ 1
t = H(Fp−1

t − Fp−1
1 ) + ∑t

n=2( f̂ 1
t − H f p−1

t ), we obtain

ẽ1
i,t =

t

∑
n=2

(∆ε i,t)
p−1 − λ′i H

−1
t

∑
n=2

( f̂ 1
t − H f p−1

t )− (λ̂i − (H−1)′λi)
′

t

∑
n=2

f̂ 1
t

= ε
p−1
i,t − ε

p−1
i,1 − λ′i H

−1
t

∑
n=2

( f̂ 1
t − H f p−1

t )

− (λ̂i − (H−1)′λi)
′H(Fp−1

t − Fp−1
1 )− (λ̂i − (H−1)′λi)

′
t

∑
n=2

( f̂ 1
t − H f p−1

t )

= ε
p−1
i,t − ε

p−1
i,1 + Op(N−1/2) + Op(T−1/2). (A19)

suggesting that for p ≥ 0,

ê1
i,t = (ẽ1

i,t)
p = ε

p
i,t + Op(N−1/2) + Op(T−1/2). (A20)

When appropriately normalized by T−1/2, taking partial sums do not affect the order of the

remainder terms. Hence, again, the estimation and removal of the common component do

not affect the asymptotic distribution of the test statistic. �
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Table 1: Simulated mean and standard deviation normalization factors.

T K1
NT K2

NT K3
NT R1

NT R2
NT R3

NT M1
NT M2

NT M3
NT

Mean, p = 0 (constant)
50 1.839 1.626 6.218 1.825 1.612 6.190 2.792 2.633 9.218

100 1.795 1.563 6.387 1.811 1.566 6.401 2.742 2.536 9.419
150 1.801 1.560 6.525 1.793 1.543 6.487 2.735 2.516 9.568
500 1.795 1.546 6.801 1.802 1.560 6.856 2.738 2.521 9.996

Standard deviation, p = 0 (constant)
50 1.607 2.355 5.960 1.575 2.262 5.799 1.757 2.883 6.821

100 1.528 2.135 5.755 1.528 2.082 5.661 1.663 2.594 6.478
150 1.530 2.129 5.842 1.521 2.088 5.750 1.664 2.599 6.585
500 1.541 2.098 5.966 1.540 2.121 6.027 1.683 2.599 6.797

Mean, p = 1 (constant and trend)
50 2.498 2.586 9.317 1.058 0.757 3.618 2.719 2.816 10.066

100 2.448 2.574 9.897 1.081 0.786 3.935 2.699 2.841 10.791
150 2.475 2.684 10.569 1.062 0.764 3.970 2.711 2.928 11.386
500 2.367 2.527 9.9038 1.069 0.828 3.903 2.916 1.196 10.339

Standard deviation, p = 1 (constant and trend)
50 1.447 2.528 6.288 0.707 0.879 2.973 1.327 2.477 6.022

100 1.416 2.578 6.622 0.761 0.967 3.332 1.294 2.531 6.322
150 1.421 2.625 6.853 0.723 0.906 3.291 1.291 2.563 6.519
500 1.480 2.645 6.447 0.799 0.910 3.247 1.442 2.724 6.571

Notes: Let Qj
NT = σ−1

Q,j N
−1/2 ∑N

i=1(Q
j
i,T − µQ,j) be one of the nine test statistics considered, where

j ∈ {1, 2, 3} and Q ∈ {K, R, M}. The values reported in the table refer to the appropriate mean
and standard deviation correction factors, µQ,j and σQ,j, respectively, needed to construct Qj

NT.
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Table 2: 5% size and power when testing I(0)→ I(1) and ρ = 0.3.

T N ση K1
NT K2

NT K3
NT R1

NT R2
NT R3

NT M1
NT M2

NT M3
NT

σε,i = 1
50 5 0.000 0.055 0.040 0.061 0.073 0.058 0.077 0.046 0.042 0.040
50 5 0.250 0.103 0.099 0.132 0.090 0.046 0.085 0.082 0.073 0.094
50 5 0.500 0.210 0.205 0.270 0.162 0.027 0.148 0.133 0.132 0.165
50 10 0.000 0.070 0.050 0.073 0.075 0.050 0.064 0.057 0.047 0.036
50 10 0.250 0.141 0.126 0.171 0.142 0.035 0.092 0.112 0.099 0.122
50 10 0.500 0.338 0.343 0.467 0.306 0.112 0.285 0.225 0.227 0.284
50 20 0.000 0.055 0.038 0.067 0.103 0.053 0.075 0.044 0.041 0.059
50 20 0.250 0.204 0.177 0.252 0.295 0.098 0.146 0.124 0.117 0.149
50 20 0.500 0.539 0.553 0.724 0.596 0.439 0.645 0.295 0.319 0.419

100 5 0.000 0.077 0.057 0.079 0.088 0.070 0.074 0.070 0.055 0.057
100 5 0.250 0.278 0.288 0.374 0.186 0.066 0.146 0.225 0.237 0.283
100 5 0.500 0.432 0.450 0.540 0.326 0.059 0.292 0.342 0.363 0.431
100 10 0.000 0.099 0.071 0.080 0.112 0.065 0.087 0.086 0.067 0.051
100 10 0.250 0.359 0.361 0.462 0.342 0.162 0.241 0.313 0.329 0.385
100 10 0.500 0.633 0.680 0.815 0.547 0.348 0.583 0.482 0.532 0.646
100 20 0.000 0.100 0.067 0.077 0.115 0.078 0.087 0.090 0.067 0.049
100 20 0.250 0.506 0.551 0.634 0.510 0.297 0.380 0.387 0.430 0.484
100 20 0.500 0.884 0.924 0.968 0.748 0.639 0.854 0.706 0.762 0.847

σε,i ∼ U(1, 2)
50 5 0.000 0.071 0.059 0.097 0.090 0.060 0.100 0.062 0.058 0.070
50 5 0.250 0.073 0.069 0.100 0.080 0.049 0.089 0.071 0.057 0.071
50 5 0.500 0.169 0.154 0.206 0.110 0.040 0.119 0.094 0.085 0.132
50 10 0.000 0.074 0.051 0.065 0.088 0.054 0.088 0.059 0.046 0.044
50 10 0.250 0.093 0.078 0.107 0.095 0.051 0.071 0.085 0.064 0.083
50 10 0.500 0.208 0.204 0.319 0.233 0.093 0.202 0.146 0.150 0.199
50 20 0.000 0.047 0.030 0.068 0.109 0.062 0.084 0.044 0.035 0.046
50 20 0.250 0.118 0.085 0.142 0.169 0.069 0.102 0.093 0.071 0.088
50 20 0.500 0.328 0.317 0.477 0.405 0.251 0.405 0.171 0.176 0.246

100 5 0.000 0.093 0.069 0.092 0.099 0.060 0.089 0.068 0.064 0.056
100 5 0.250 0.176 0.162 0.218 0.142 0.048 0.104 0.146 0.139 0.166
100 5 0.500 0.371 0.388 0.485 0.298 0.056 0.247 0.275 0.293 0.353
100 10 0.000 0.084 0.069 0.069 0.104 0.055 0.070 0.070 0.056 0.043
100 10 0.250 0.232 0.245 0.307 0.223 0.083 0.118 0.199 0.204 0.230
100 10 0.500 0.543 0.577 0.727 0.479 0.274 0.497 0.421 0.462 0.558
100 20 0.000 0.076 0.059 0.075 0.105 0.062 0.073 0.089 0.073 0.053
100 20 0.250 0.329 0.354 0.427 0.384 0.181 0.245 0.246 0.273 0.315
100 20 0.500 0.754 0.805 0.916 0.669 0.552 0.757 0.560 0.614 0.706

Notes: ση and σε,i refer to the standard deviation of ηi,t and ε i,t, respectively, while ρ refers to the
autoregressive coefficient of Ft. The results are based on setting p = 0 (constant) and using the
restricted factor estimation method, which assumes that the null hypothesis is true.

17



Table 3: 5% size and power when testing I(0)→ I(1) and ρ = 0.6.

T N ση K1
NT K2

NT K3
NT R1

NT R2
NT R3

NT M1
NT M2

NT M3
NT

σε,i = 1
50 5 0.000 0.049 0.042 0.062 0.080 0.062 0.071 0.058 0.047 0.041
50 5 0.250 0.106 0.098 0.134 0.084 0.045 0.082 0.084 0.077 0.097
50 5 0.500 0.221 0.203 0.256 0.151 0.031 0.144 0.146 0.146 0.164
50 10 0.000 0.069 0.045 0.073 0.079 0.046 0.065 0.053 0.038 0.039
50 10 0.250 0.153 0.135 0.181 0.135 0.039 0.096 0.106 0.082 0.121
50 10 0.500 0.342 0.348 0.452 0.313 0.138 0.304 0.246 0.247 0.293
50 20 0.000 0.064 0.040 0.071 0.111 0.053 0.090 0.044 0.036 0.054
50 20 0.250 0.203 0.179 0.255 0.314 0.121 0.178 0.132 0.110 0.154
50 20 0.500 0.543 0.543 0.706 0.591 0.446 0.641 0.307 0.314 0.408

100 5 0.000 0.080 0.060 0.077 0.088 0.068 0.068 0.064 0.057 0.057
100 5 0.250 0.265 0.285 0.353 0.202 0.067 0.151 0.231 0.236 0.264
100 5 0.500 0.405 0.432 0.531 0.338 0.061 0.281 0.333 0.350 0.403
100 10 0.000 0.114 0.079 0.084 0.110 0.062 0.082 0.092 0.068 0.056
100 10 0.250 0.343 0.347 0.439 0.339 0.153 0.229 0.285 0.292 0.348
100 10 0.500 0.582 0.640 0.785 0.545 0.354 0.559 0.481 0.522 0.626
100 20 0.000 0.094 0.062 0.066 0.113 0.073 0.083 0.088 0.072 0.055
100 20 0.250 0.502 0.532 0.618 0.535 0.332 0.415 0.374 0.416 0.454
100 20 0.500 0.875 0.909 0.960 0.765 0.638 0.854 0.708 0.752 0.827

σε,i ∼ U(1, 2)
50 5 0.000 0.075 0.058 0.092 0.092 0.058 0.099 0.063 0.058 0.068
50 5 0.250 0.087 0.073 0.107 0.084 0.042 0.089 0.073 0.059 0.073
50 5 0.500 0.168 0.157 0.200 0.118 0.042 0.120 0.112 0.105 0.136
50 10 0.000 0.074 0.047 0.071 0.097 0.058 0.092 0.049 0.047 0.046
50 10 0.250 0.109 0.084 0.115 0.103 0.053 0.086 0.070 0.063 0.091
50 10 0.500 0.209 0.200 0.315 0.216 0.098 0.194 0.145 0.149 0.205
50 20 0.000 0.054 0.029 0.074 0.111 0.064 0.094 0.049 0.036 0.041
50 20 0.250 0.133 0.105 0.171 0.182 0.069 0.117 0.104 0.072 0.097
50 20 0.500 0.320 0.309 0.453 0.382 0.247 0.392 0.205 0.197 0.279

100 5 0.000 0.093 0.076 0.096 0.106 0.061 0.095 0.083 0.069 0.067
100 5 0.250 0.186 0.173 0.214 0.142 0.056 0.114 0.160 0.146 0.153
100 5 0.500 0.322 0.352 0.448 0.283 0.065 0.238 0.272 0.280 0.331
100 10 0.000 0.088 0.064 0.069 0.098 0.050 0.070 0.070 0.059 0.043
100 10 0.250 0.226 0.230 0.275 0.225 0.085 0.124 0.203 0.199 0.218
100 10 0.500 0.504 0.542 0.677 0.458 0.261 0.449 0.398 0.422 0.519
100 20 0.000 0.089 0.069 0.069 0.106 0.065 0.075 0.080 0.063 0.051
100 20 0.250 0.328 0.347 0.401 0.388 0.181 0.233 0.249 0.260 0.294
100 20 0.500 0.678 0.734 0.872 0.623 0.498 0.701 0.529 0.578 0.668

Notes: See Table 2 for an explanation.
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Table 4: 5% size and power when testing I(1)→ I(0) and ρ = 0.3.

T N ση K1
NT K2

NT K3
NT R1

NT R2
NT R3

NT M1
NT M2

NT M3
NT

σε,i = 1
50 5 0.000 0.055 0.040 0.061 0.073 0.058 0.077 0.046 0.042 0.040
50 5 0.250 0.068 0.063 0.094 0.150 0.118 0.105 0.111 0.107 0.076
50 5 0.500 0.079 0.042 0.111 0.209 0.182 0.184 0.142 0.135 0.109
50 10 0.000 0.070 0.050 0.073 0.075 0.050 0.064 0.057 0.047 0.036
50 10 0.250 0.109 0.077 0.110 0.149 0.117 0.105 0.124 0.118 0.084
50 10 0.500 0.176 0.046 0.158 0.426 0.413 0.313 0.303 0.302 0.171
50 20 0.000 0.055 0.038 0.067 0.103 0.053 0.075 0.044 0.041 0.059
50 20 0.250 0.182 0.105 0.129 0.137 0.127 0.097 0.139 0.126 0.081
50 20 0.500 0.514 0.290 0.463 0.670 0.674 0.630 0.487 0.478 0.360

100 5 0.000 0.077 0.057 0.079 0.088 0.070 0.074 0.070 0.055 0.057
100 5 0.250 0.126 0.080 0.103 0.291 0.283 0.224 0.254 0.249 0.160
100 5 0.500 0.227 0.059 0.220 0.492 0.474 0.454 0.403 0.400 0.351
100 10 0.000 0.099 0.071 0.080 0.112 0.065 0.087 0.086 0.067 0.051
100 10 0.250 0.258 0.121 0.188 0.403 0.418 0.316 0.360 0.370 0.221
100 10 0.500 0.452 0.164 0.423 0.798 0.797 0.752 0.694 0.699 0.592
100 20 0.000 0.100 0.067 0.077 0.115 0.078 0.087 0.090 0.067 0.049
100 20 0.250 0.371 0.258 0.228 0.547 0.601 0.388 0.541 0.588 0.346
100 20 0.500 0.646 0.418 0.589 0.922 0.919 0.913 0.843 0.834 0.762

σε,i ∼ U(1, 2)
50 5 0.000 0.071 0.059 0.097 0.090 0.060 0.100 0.062 0.058 0.070
50 5 0.250 0.071 0.061 0.099 0.122 0.081 0.105 0.076 0.070 0.066
50 5 0.500 0.077 0.050 0.092 0.167 0.136 0.157 0.122 0.111 0.086
50 10 0.000 0.074 0.051 0.065 0.088 0.054 0.088 0.059 0.046 0.044
50 10 0.250 0.079 0.052 0.087 0.103 0.071 0.072 0.086 0.066 0.064
50 10 0.500 0.148 0.059 0.125 0.221 0.202 0.163 0.147 0.142 0.093
50 20 0.000 0.047 0.030 0.068 0.109 0.062 0.084 0.044 0.035 0.046
50 20 0.250 0.113 0.073 0.100 0.135 0.107 0.099 0.116 0.090 0.084
50 20 0.500 0.297 0.141 0.259 0.397 0.395 0.325 0.266 0.266 0.144

100 5 0.000 0.093 0.069 0.092 0.099 0.060 0.089 0.068 0.064 0.056
100 5 0.250 0.117 0.090 0.094 0.213 0.201 0.139 0.201 0.183 0.106
100 5 0.500 0.162 0.051 0.149 0.420 0.415 0.359 0.323 0.319 0.252
100 10 0.000 0.084 0.069 0.069 0.104 0.055 0.070 0.070 0.056 0.043
100 10 0.250 0.180 0.092 0.136 0.283 0.262 0.183 0.245 0.258 0.160
100 10 0.500 0.352 0.107 0.284 0.724 0.734 0.659 0.643 0.649 0.506
100 20 0.000 0.076 0.059 0.075 0.105 0.062 0.073 0.089 0.073 0.053
100 20 0.250 0.275 0.154 0.158 0.319 0.324 0.200 0.291 0.300 0.158
100 20 0.500 0.655 0.376 0.556 0.928 0.932 0.903 0.858 0.860 0.721

Notes: See Table 2 for an explanation.
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Table 5: 5% size and power when testing I(1)→ I(0) and ρ = 0.6.

T N ση K1
NT K2

NT K3
NT R1

NT R2
NT R3

NT M1
NT M2

NT M3
NT

σε,i = 1
50 5 0.000 0.049 0.042 0.062 0.080 0.062 0.071 0.058 0.047 0.041
50 5 0.250 0.070 0.059 0.089 0.145 0.119 0.106 0.098 0.102 0.078
50 5 0.500 0.099 0.047 0.115 0.190 0.171 0.177 0.141 0.134 0.109
50 10 0.000 0.069 0.045 0.073 0.079 0.046 0.065 0.053 0.038 0.039
50 10 0.250 0.098 0.074 0.106 0.167 0.115 0.114 0.129 0.099 0.077
50 10 0.500 0.177 0.045 0.172 0.411 0.393 0.315 0.304 0.299 0.173
50 20 0.000 0.064 0.040 0.071 0.111 0.053 0.090 0.044 0.036 0.054
50 20 0.250 0.182 0.097 0.130 0.157 0.124 0.097 0.141 0.129 0.086
50 20 0.500 0.483 0.278 0.450 0.613 0.611 0.584 0.434 0.428 0.336

100 5 0.000 0.080 0.060 0.077 0.088 0.068 0.068 0.064 0.057 0.057
100 5 0.250 0.133 0.084 0.108 0.269 0.262 0.217 0.271 0.261 0.160
100 5 0.500 0.209 0.060 0.212 0.483 0.467 0.447 0.392 0.386 0.325
100 10 0.000 0.114 0.079 0.084 0.110 0.062 0.082 0.092 0.068 0.056
100 10 0.250 0.264 0.138 0.182 0.377 0.383 0.285 0.355 0.370 0.212
100 10 0.500 0.437 0.150 0.387 0.750 0.743 0.710 0.628 0.643 0.539
100 20 0.000 0.094 0.062 0.066 0.113 0.073 0.083 0.088 0.072 0.055
100 20 0.250 0.364 0.283 0.252 0.484 0.528 0.350 0.518 0.575 0.320
100 20 0.500 0.639 0.410 0.590 0.909 0.901 0.887 0.800 0.797 0.719

σε,i ∼ U(1, 2)
50 5 0.000 0.075 0.058 0.092 0.092 0.058 0.099 0.063 0.058 0.068
50 5 0.250 0.084 0.067 0.100 0.118 0.080 0.106 0.078 0.070 0.076
50 5 0.500 0.082 0.046 0.107 0.155 0.132 0.153 0.120 0.109 0.101
50 10 0.000 0.074 0.047 0.071 0.097 0.058 0.092 0.049 0.047 0.046
50 10 0.250 0.074 0.045 0.086 0.116 0.080 0.084 0.083 0.066 0.072
50 10 0.500 0.149 0.063 0.125 0.236 0.213 0.167 0.165 0.154 0.106
50 20 0.000 0.054 0.029 0.074 0.111 0.064 0.094 0.049 0.036 0.041
50 20 0.250 0.124 0.076 0.111 0.162 0.102 0.104 0.109 0.093 0.090
50 20 0.500 0.297 0.152 0.246 0.371 0.356 0.294 0.257 0.254 0.161

100 5 0.000 0.093 0.076 0.096 0.106 0.061 0.095 0.083 0.069 0.067
100 5 0.250 0.110 0.080 0.081 0.204 0.179 0.138 0.182 0.179 0.113
100 5 0.500 0.160 0.056 0.154 0.402 0.390 0.341 0.325 0.330 0.237
100 10 0.000 0.088 0.064 0.069 0.098 0.050 0.070 0.070 0.059 0.043
100 10 0.250 0.177 0.079 0.122 0.287 0.268 0.192 0.247 0.231 0.127
100 10 0.500 0.343 0.108 0.261 0.659 0.664 0.598 0.576 0.581 0.458
100 20 0.000 0.089 0.069 0.069 0.106 0.065 0.075 0.080 0.063 0.051
100 20 0.250 0.279 0.177 0.175 0.299 0.303 0.167 0.279 0.297 0.154
100 20 0.500 0.588 0.339 0.494 0.875 0.896 0.831 0.781 0.793 0.654

Notes: See Table 2 for an explanation.
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Table 6: Empirical test results.

Statistic Unrestricted Restricted
K1

NT −0.921 −0.881
K2

NT −0.658 −0.645
K3

NT −0.985 −0.947
R1

NT 4.002*** 2.439**
R2

NT 4.565*** 2.636***
R3

NT 4.844*** 3.156***
M1

NT 3.027*** 1.662*
M2

NT 3.293*** 1.744*
M3

NT 3.862*** 2.293**

Notes: ***, ** and * denote significance at the 1%, 5% and 10% levels, respectively.
While the restricted factor estimation method assumes that the null hypothesis is
true, the unrestricted method does not.
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