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A B S T R A C T

This paper explores the role of network spillovers in commodity market forecasting and proposes a novel factor-
augmented dynamic network model. We focus on a novel network definition based on investors’ attention to
commodities, positing that commodities exhibit spillovers if they share a similar level of interest. To this
aim, we employ Google Trends search data as an instrumental measure for attention. The results reveal that
including attention-driven spillovers significantly enhances the forecasting accuracy of commodity returns.
1. Introduction

Commodities play a relevant role in various industries, offering
crucial insights into economic trends and often being part of the
production process, as either input, output, or both. Therefore, the
need for accurate commodity forecasts goes beyond the risk manage-
ment task, as forecasts have a significant impact on strategic planning,
production optimisation, supply chain management, and regulatory
compliance [1–3]. Businesses heavily reliant on commodities stand to
benefit significantly from accurate forecasts, and the ability of financial
services to deliver dependable commodity return forecasts becomes
integral in ensuring a functioning operation of supply chains. Indeed,
accurate forecasts are instrumental in aligning production strategies
with anticipated market trends, contributing to more efficient pro-
duction cycles. Therefore, the process evaluation, which is important
in terms of organizational efficiency, is intricately connected to the
accuracy of commodity’s performance forecasting [4].

Therefore, viewing commodity forecasting through the lenses of
business decision-making, production optimisation, and process eval-
uation highlights its indispensable role in the strategic toolkit of both
production firms and financial services [5–7]. The capacity to provide
accurate forecasts enhances decision-making efficiency and contributes
significantly to the overall operational excellence of businesses across
diverse sectors [8].

This paper contributes to the debate on forecasting methods and
models of commodities’ returns. Specifically, we propose a novel factor-
augmented dynamic network model (Fa-DNm) by including the spillover
effect of the investors’ attention to commodities. In this respect, a
crucial step of the forecasting procedure is the identification of the
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way investors’ attention intervenes in connecting the considered com-
modities. This relevant aspect is faced through complex network theory
which is a versatile instrument to describe disaggregated entities along
with their interconnections [9,10].

Indeed, integrating complex networks in commodity return fore-
casting adds a layer of sophistication and reliability to the evaluation
process. In our specific case, understanding the intricate interdepen-
dencies within commodity markets and related financial instruments is
essential for providing comprehensive and accurate forecasts. Complex
network analysis aids in identifying hidden patterns, correlations, and
systemic risks, contributing to a more nuanced evaluation of financial
services. The relevance of complex network structures and the impact of
network spillovers on forecasting commodities have gained increasing
attention in the literature [11].

The papers above acknowledge complex networks’ relevance for im-
proving forecasting procedures. However, to the best of our knowledge,
no contributions fully leverage the potential of internet-derived data for
networking commodities.

On this, we notice that data collected from the internet allows
researchers to build on and sometimes replace traditional methods
in forecasting practice. While the use of internet data has become a
common practice for leveraging the accuracy of modern forecasting
approaches, this information has predominantly been employed as
an additional predictor in statistical models [e.g., see 12,13]. Dif-
ferently from previous studies, this paper introduces internet data
sources, specifically Google Trends search data, in the context of net-
work modeling. Following previous literature [14–16], we employ
Google Trends search data as an instrumental measure for investors’
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attention [see, for example, 17,18, where Google searchers volume
have been used similalrly]. Our main contribution lies in the inte-
gration of internet data, not as supplementary variable [19–22], but
as a fundamental component for detecting and modeling spillovers
within the commodity market. By using Google Trends search data, we
depart from conventional practices and introduce a dynamic network
framework that captures the evolving relationships among commodities
based on attention-driven spillovers. This approach allows for a real-
time assessment of the investor’s interest in various commodities and
provides a more nuanced understanding of the interconnectedness
within the market.

A promising approach for improving forecast accuracy is the use of
factor models. Factor models are commonly used by forecasters in both
finance and macroeconomics [23,24], but their use in the commodity
market is more recent [e.g., see 14,25,26]. Factor-augmented models
have been proposed to account for possible (unobservable) factors
that may affect commodity returns. For instance, latent factors may
be related to the fluctuations in global economic activity [27] or
to the inventory levels and storage conditions [28]. Weaker global
economic activity acts as a negative demand shock for commodities,
but also storage demand or other commodity-specific demand shocks
can affect commodity prices. In this regard, the traditional theory of
storage assumes that holders of inventories receive implicit benefits
that decline as inventory increases. Therefore, information about the
disruptions to storage conditions and inventory levels can be included
in the estimated latent factors. For this reason, in this paper, we propose
the use of a factor-augmented model with network interactions for
forecasting commodity returns.

Our findings reveal the existence of substitution effects between
commodities since the returns of commodities with similar levels of at-
tention are negatively correlated. Moreover, the inclusion of attention-
driven spillovers significantly enhances the forecasting capabilities of
the model. By adopting a dynamic network perspective, the developed
model not only accommodates the presence of spillovers but also
demonstrates their successful use in the forecasting task.

The paper is structured as follows. Section 2 presents a brief
overview of the previous papers related to the use of factor models
and internet data to instrument investors’ attention in the context
of commodity market forecasting. Section 3 discusses the forecasting
method adopted in the paper, that is a Fa-DNm, and the network
definition implied by Google Trends data. Section 4 discusses the data
adopted for the empirical study, that is commodity returns and Google
Trends volume searches, as well as the in-sample estimation of the
model. Section 5 presents the forecasting experiment and the main
results, comparing the accuracy of the forecasts obtained with the
proposed approach and those based on different benchmark models,
while Section 6 concludes with final remarks and some future research
direction.

2. Related studies on investors’ attention and forecasting

Before the Internet era and open data policies, observing investors’
decision-making processes posed challenges due to a lack of public
information. However, with the widespread adoption of information
technology and the Internet, an increasing number of investors now
rely on online sources for being updated about the most recent news,
exchanging ideas with other investors, and so on. As a result, also aca-
demic research has delved into questioning the usefulness of internet-
derived data and both sentiment and investor attention for forecasting,
where sentiment can be seen as an alternative measure of the investors’
attention on the financial market.1

1 For instance, Mbanga et al. [29] found that investor attention causes
hanges in sentiment but not vice versa.
2

Early literature used consumer confidence survey data as a proxy
of investor sentiment as it was ready-to-use and easily available from
national statistical institutes. To improve sentiment measurement, al-
ternative indicators have been however proposed [e.g., see 30]. Wang
et al. [31] shown that more accurate out-of-sample forecasts can be
achieved using sentiment index as predictors for stock returns, al-
beit Chung et al. [32] shown that these measures perform better
in out-of-sample compared to other predictors only in the expansion
states. Many fewer studies focused on the commodity market. In this
regard, Gao and Süss [33] demonstrated empirically that sentiment,
computed using an approach similar to Baker and Wurgler [30], allows
for improvements in out-of-sample forecasting of commodity returns if
used as an additional predictor.

With these approaches, it is crucial to have high-frequency data
(e.g., intra-daily) and asset-specific measures, elements not always
easily accessible. A prevalent method adopted nowadays for solving
both issues involves the analysis of textual content from various sources
such as news articles and social media platforms. Since 2010, the surge
in user-generated content on platforms like Twitter has piqued interest
in real-time data mining within the news analytics community. Bollen
et al. [34] have been the first to show that sentiment computed on
tweets allows forecasting the stock market, while Elshendy et al. [35],
Li et al. [36] are noticeable examples of papers using text mining
measures computed on data derived on the internet for forecasting
oil prices. Abreu et al. [8] provides similar evidence for gold using
Twitter-derived data.

More recently, researchers have used the volume of online searches,
such as Google Trends, as a leading indicator for financial forecasting.
The idea is that changes in search volume for asset-related terms can
reflect evolving investor interest and information gathering, which may
precede price movements. Google Trend allows downloading indicators
of the volume of online searches for specific words. When these are
related to commodities, they can be used as a proxy of investors’
interests in those. Notably, the online search behavior of investors has
shown good explanatory power and forecasting accuracy in the stock
market [15,37]. Using web search data, Audrino et al. [38], Lin et al.
[39], achieved improved accuracy also in forecasting volatility. Con-
sidering the commodities, Yu et al. [40] used Google Trends data for
forecasting crude oil consumption, while Zhao et al. [41] for forecasting
crude oil inventories. Salisu et al. [42] shown that Google Trend can
be used for improving the out-of-sample forecasts of precious metals
returns.

As emerges from a brief discussion of previous studies, it is clear
that the information about sentiment and investors’ attention has been
mainly used as additional variables in forecasting models. In this pa-
per, we consider a different perspective and construct a network of
commodities in terms of attention levels. This allows us to investigate
whether the information on commodities with similar attention levels
is useful in forecasting them. Said differently, we evaluate the existence
of substitution effects in attention dynamics and explore if such effects
are useful in forecasting.

3. Methodology

In this section, we outline the methodology employed in our study,
focusing on the use of spatial panel data models and their estimation
through maximum likelihood. Additionally, we discuss the crucial as-
pect of selecting an appropriate spatial weight matrix, which in this
paper is based on the commodities’ similarity in terms of investor’s
attention. In doing so, we introduce a network structure among the
considered commodities.

Hereafter, we refer to 𝑁 commodities whose returns are observed
or 𝑇 consecutive times.
Notational agreement. Given a matrix 𝐀 with dimension 𝐼 × 𝐽 ,

its generic element is denoted by 𝑎𝑖𝑗 . The 𝑖th row of matrix 𝐀 is 𝐚𝑖.
ith a reasonable abuse of notation that does not generate confusion,
e denote the 𝑗th column of 𝐀 by 𝐚𝑗 for simplicity. Moreover, 𝑅-
imensional vectors 𝐱 and 𝐱𝑡 have generic 𝑟th component denoted by

and 𝑥 , respectively.
𝑟 𝑟𝑡
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3.1. Factor-augmented dynamic network model

Spatial panel data models are a valuable tool for analysing data
exhibiting both temporal and spatial effects. These models account
for spatial dependency and heterogeneity, making them particularly
suitable for studying phenomena with geographical relevance. How-
ever, as argued by many authors [43–45], the concept of space can be
generalised to any source of similarity and, therefore, to models with
network interactions. In this paper, we consider a model of the form

𝐲𝑡 = 𝜌𝐖𝐲𝑡 + 𝜙𝐲𝑡−1 + 𝛿𝐖𝐲𝑡−1 + 𝜺𝑡, (1)

where 𝐲𝑡 is the vector of the commodities’ returns at time 𝑡, 𝐖 is a
suitably selected weighted adjacency matrix of a network whose nodes
are the considered commodities, and 𝜺𝑡 is the vector of error terms.
The (1) can be called the Dynamic Network model (DNm), where the
instantaneous network effect is represented by the coefficient 𝜌, while
the lagged network effect is introduced through 𝛿 coefficient. In the
end, a dynamic effect is introduced by coefficient 𝜙, which is restricted
to be the same for all the 𝑁 commodities in the network. The model
parameters can be estimated by Maximum Likelihood as in the case
of Dynamic Spatial Panel Data models [DSPDm, see 46,47]. Given the
model (1), its ℎ = 1 step ahead forecast can be computed as follows

𝐲𝑡+1 = (𝐈 − 𝜌̂𝐖)−1
[

𝜙̂𝐲𝑡 + 𝛿𝐖𝐲𝑡
]

. (2)

To enhance forecasting accuracy, we propose to augment model
(1) by 𝐾 latent factors. According to Elhorst [48], there are several
possibilities for including latent factors in the model (1). The first
one is to consider 𝐾 = 2 common factors, where the first equals
the cross-sectional fixed effects, which are constant over time but
with heterogeneous coefficients, and the second is the time-period
fixed effects, which change over time but with homogeneous coeffi-
cients. The second approach, discussed for instance in [49], considers
cross-sectional averages of the dependent variables. A third alternative
consists of estimating the unobservable common factors by one or more
principal components. The first two approaches, although useful in
many applicative domains, appear to not be appropriate in the case
of commodities (and more generally financial) markets, where factors
must be dynamic to model appropriately the intrinsic turbulence in
both the markets and macroeconomic aggregates.

A simple approximate factor model assumes that observed time
series stored in the 𝑇 × 𝑁-dimensional matrix 𝐘 can be decomposed
into common factors 𝐅 and idiosyncratic components 𝐙. We therefore
consider the following factorial structure

𝐘 = 𝐅𝜦′ + 𝐙, (3)

where 𝐅 has dimension 𝑇 ×𝐾, being 𝐾 the number of latent factors, 𝐙
has dimension 𝑇 ×𝑁 and 𝜦 has dimension 𝑁×𝐾. To estimate the factor
model, we employ the principal component estimator [PCE, 23,50],
which estimates factors and loading from the covariance matrix of
the observed time series. In particular, the PCE involves the following
steps. First, the data is demeaned and the sample covariance matrix
𝐒̂ = 𝐘′𝐘∕𝑁 is computed. Then, the eigenvalues and eigenvectors of 𝐒̂
are obtained and ordered in decreasing order. The top 𝐾 eigenvectors
to form the loading matrix 𝜦 are chosen and the common factors 𝐅 are
estimated using the selected eigenvectors.

Assuming 𝑇 > 𝑁 , the 𝐾 global factors can be consistently estimated
with

𝐅̂ = 𝐘𝜦̂∕𝑁, (4)

given that 𝜦̂ is estimated by
√

𝑁 times the eigenvectors of 𝐘′𝐘 associ-
ated with the 𝐾 largest eigenvalues. To choose the number of factors
𝐾, following a consistent strand of literature, we follow the approach
highlighted in [50,51]. According to Bai and Ng [50], the number of
latent factors 𝐾 is chosen by minimising the following information
criterion

𝐼𝐶 = ln
(

𝑉
)

+𝐾
(𝑁 + 𝑇 )

ln
( 𝑁𝑇 )

(5)
3

𝐾 𝐾 𝑁𝑇 𝑁 + 𝑇
with

𝑉𝐾 = min
𝜦,𝐅

(𝑁𝑇 )−1
( 𝑁
∑

𝑖=1

𝑇
∑

𝑡=1
𝑦𝑖𝑡 − 𝝀′𝑖𝐟𝑡

)2

, (6)

here 𝑉𝐾 is the sum of squared residuals, divided by 𝑁𝑇 , when 𝐾
actors are estimated. Given the estimation of 𝐾 latent factor, we can
rite the Fa-DNm as follows

𝑡 = 𝜌𝐖𝐲𝑡 + 𝜙𝐲𝑡−1 + 𝛿𝐖𝐲𝑡−1 + 𝜷𝐟𝑡 + 𝜺𝑡 (7)

here 𝐟𝑡 is the 𝐾-dimensional vector of estimated latent factors at time
. To estimate the parameters, we employ the maximum likelihood
stimation approach also in this case, as the model (7) can be seen as a
SPDm with exogenous covariates. In this paper, we therefore consider
factor-augmented model based on a two-step approach, where the

etwork model equation – i.e. the second step – is augmented by the
nclusion of the estimated latent factors obtained in the first step. Like
2), ℎ = 1 step ahead forecast for the model (7) can be obtained as

𝑡+1 = (𝐈 − 𝜌̂𝐖)−1
[

𝜙̂𝐲𝑡 + 𝛿𝐖𝐲𝑡 + 𝜷̂𝐟𝑡+1
]

, (8)

here 𝐟𝑡+1 is the vector of latent factors at time 𝑡+1 and 𝐲𝑡 is the vector
f commodities’ returns at time 𝑡. In practice, we replace 𝐟𝑡+1 with 𝐟𝑡,
hus forecasting the latent factors with a random walk without drift.

.2. Selection of the weighted adjacency matrix 𝐖

A critical aspect in the type of models discussed in Section 3.1 is
he selection of the weighted adjacency matrix 𝐖. The choice of 𝐖
nfluences the model’s performance and the interpretation of network
elationships. Common weight matrix specifications include distance-
ased weights, contiguity weights, and k-nearest neighbor weights,
mong the others [52,53].

In this paper, we construct the weight matrix by considering the
imilarities in investors’ attention to commodities. Indeed, similar pat-
erns in Google Trends suggest that the two commodities experiment
ith an increase in web searches, which is our proxy of attention [14,
6]. We investigate if this source of spillover is statistically significant,
hus assessing if spillovers due to attention correlation exist and if the
se of this information may generate a gain in forecasting terms.

Google Trends provides valuable insights into different search terms’
opularity and relative interest over time. Data on search queries are
nonymous and normalised to ensure comparability across diverse
erms. As users input search queries, Google Trends compiles informa-
ion on the number of searches for each term and in units of time. Then,
earch volumes are scaled between 0 (no searches) and 100 (associated
ith the time unit with the maximum number of searches over the

onsidered period) to provide a relative measure of search interest
ver time. Therefore, the Google Trends values are not absolute search
olumes but represent the popularity of a specific commodity’s name
earch relative to the total search volume at a given time.

We collect Google Trends data for each commodity of interest and
alculate the Euclidean distance between their respective search trends.
he Euclidean distance serves as a measure of similarity, reflecting
ow closely the investors’ attention to different commodities aligns
ver the study period. A similar approach is presented in [54], where
he frequency of usage of economics-related words by US Presidents
n their speeches is taken as a measure of the attention paid by them
o economics and financial topics; then the series of these words are
sed to capture distance with the S&P 500 (trading volume, prices
nd returns) via a set of measures, including the Euclidean distance.
ormally, let 𝐬𝑖 and 𝐬𝑗 be the Google Trends time series for commodities
and 𝑗, respectively. We define the distance between commodities 𝑖 and
by

=
√

(

𝐬 − 𝐬
)′ (𝐬 − 𝐬

)

. (9)
𝑖𝑗 𝑖 𝑗 𝑖 𝑗
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Fig. 1. Commodity returns time series.
The Euclidean distance in (9) is a simple but effective approach for
easuring the similarity of the temporal patterns of two time series 𝑖

nd 𝑗. It is commonly employed in time series clustering literature for
rouping time series of similar shapes, albeit also other dissimilarity
efinitions are possible. A low value of Euclidean distance 𝑑𝑖𝑗 suggests

that the shape of the Google Trend time series for commodities 𝑖
and 𝑗 is very similar and, therefore, the considered commodities are
characterised by similar patterns of investors’ attention.

By reasonably assuming that the link between commodities 𝑖 and 𝑗
s stronger as 𝑖 and 𝑗 have smaller distance, one can define the weight
etween 𝑖 and 𝑗 by

𝑖𝑗 =
1

𝑑𝑖𝑗 + 1
. (10)

The elements 𝑤’s in (10) form the weighted adjacency matrix 𝐖.
Thus, the distances 𝑑s in (9) consider the similarity in the Google
Trends time series shapes. According to (10), such distances ensure that
commodities with higher investor attention similarity receive stronger
weights in the weight matrix 𝐖, reflecting their network interdepen-
dence.

4. Data

We consider monthly returns for various commodities, spanning
from October 2005 to November 2022. The dataset includes the most
frequently traded commodities, that is, aluminum, coffee, crude oil,
copper, cotton, diesel, gasoline, gold, natural gas, nickel, silver, sugar,
wheat, and zinc. Therefore, we have commodities obeying the standard
taxonomy [55] that is, energy, metals, and agricultural commodities.
Fig. 1 shows the temporal evolution of the commodity returns.

Fig. 1 highlights similarities in the patterns of commodities be-
longing to similar sectors. For example, energy-related commodities
(e.g., Brent, diesel, gasoline) show a large negative peak in April
2020, when crude oil futures become negative for the first time in
history [56]. In a forecasting setting, it is interesting to measure the
ability of network models to forecast such events through spillovers
from similar commodities. We notice that, while some commodities
(e.g., copper, cotton, wheat, zinc) have not been exposed to such
an event, it seems that some others (e.g., aluminum, sugar, nickel)
4

belonging to a different sector experienced a shock on the same date.
It seems, in other words, that spillovers do not always come from
commodities of the same type. An intriguing source spillover channel
that we explore in this paper, is the one associated with investor’s
attention.

To capture the impact of investor attention-driven spillovers, we
incorporate Google Trends data into the problem at stake. In particular,
we consider the volume of searches, for each commodity, during the
period from October 2005 to November 2022. Fig. 2 shows the tempo-
ral patterns of the search volumes for each commodity. The years 2020
and 2022, which include COVID-19, negative oil futures prices, and the
Russo-Ukranian war, are highlighted in gray color. The time series are
normalised so that all the values fall in the range [0,100], where – as
already stated in the previous section – 0 represents the date with the
lowest search volume and 100 is the date with the largest one.

Considering the April 2020 shock to crude oil futures as a reference
date, Fig. 2 clearly shows that on this date the investor’s attention
to crude oil reached its maximum value for the whole period under
study. However, also the attention to other commodities, not energy-
related, was maximum around the same period. Among the others, we
can mention aluminum, sugar, and nickel which are not energy-related
commodities, but experienced drops in returns similar to crude oil (see
Fig. 1), and also an increase in the volume of Google searches. This
simple evidence suggests that an attention-driven network could be a
helpful tool for explaining spillovers across commodities of different
categories, which cannot be explained by accounting for the standard
taxonomy [55] alone.

To evaluate the usefulness of the model, we estimate the full model
until the break of interest occurred in April 2020. First, we estimate
the number and the value of the latent factors affecting the commodity
returns. Following the Bai and Ng [50] approach, we estimate 𝐾 = 1,
which is then used as an additional predictor in the model. Given the
network structure implied by the Google Trends time series is used to
estimate the Fa-DNm in Table 1.

Given the results of Table 1, we get evidence of a statistically
significant spillover coefficient 𝜌, which means that a spillover between
commodities in terms of investors’ attention exists. The spillover is
negative, meaning that an increase in the returns of a commodity closer
to the network space generates a decrease in the others. This result

suggests the existence of a substitution effect between commodities
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Fig. 2. Google Trends time series: temporal evolution of searching volumes for each commodity.
Table 1
Estimation results of the Fa-DNm.

Coefficient Estimate Std. Error 𝑝-value

𝜌 −0.11977 0.053780 0.02595
𝜙 0.026133 0.019473 0.17960
𝛿 −0.064658 0.035676 0.06993
𝛽 −1.018410 0.056279 0.00000

that results close in the network, which is also associated with the
idea of investors’ diversification. In particular, a negative 𝜌 coefficient
indicates that investors hedge against negative returns of a commodity
by investing in others with similar attention levels, being close in the
network space. This result is also in line with the common finding that
the investor’s attention has a significant but negative relationship with
returns; hence, periods of higher investor attention tend to be followed
by lower returns for the aggregate market [e.g., see 37]. Moreover,
we also find that the lagged temporal network lag coefficient, 𝛿, is
egative and of lower magnitude compared with 𝜌, suggesting that

the instantaneous network effect is stronger than the lagged one. The
estimated latent factor has also an overall negative relationship with
returns, which suggests that it could be associated with some source
of risk in the commodity market. This finding is also consistent with
previous studies. For example, Guidolin and Pedio [26] show that
macro factors estimated with principal components negatively affect
the sample of commodities in both high and low-volatility periods.
Furthermore, Daskalaki et al. [25] show that momentum and other
macro-factors are also negatively correlated with commodity returns.
From the theoretical perspective, the theory of storage predicts a
negative correlation between inventories and commodity returns, that
is lower inventories are associated with higher returns and higher
volatility. Therefore, the negative sign could be explained if the esti-
mated factors consider this information. Interestingly, the significance
of all these quantities suggests that the simple autoregressive term is
not statistically significant. This may also suggest that the estimated
factors capture information included in the autocorrelation structure
of commodities. We, however, prefer to still use past information to
forecast commodity returns.
5

Table 2
Estimation results of restricted models.

Coefficient Estimate Std. Error 𝑝-value

Panel A: Purely spatial model

𝜌 −0.1137 0.0533 0.033
𝜙 – – –
𝛿 – – –
𝛽 −1.007 0.0555 0.000

Panel B: Purely temporal model

𝜌 – – –
𝜙 0.0040 0.0360 0.5437
𝛿 – – –
𝛽 −0.9717 0.1061 0.0000

We then evaluate the robustness of these findings considering the
estimation of restricted models, that is, purely temporal and purely
‘‘network’’ panel data models. In the case of a pure network model,
we estimate a static version of (7) by restricting 𝜙 = 𝛿 = 0, while for
the case of a purely temporal model, we restrict 𝜌 = 𝛿 = 0. We keep
the latent factors in the models’ specification, as we always find them
to be statistically significant. The results are shown in Table 2.

Interestingly, the results are robust to alternative specifications of
the model (7). Indeed, in the case of a purely spatial model, we find
both 𝜌 and 𝛽 to be negative and statistically significant. Also, the mag-
nitude of the coefficients is very similar between the two specifications.
Moreover, in the case of a purely temporal model, we find that temporal
lags are not significant while including the latent factors in the model
and that the 𝐾 = 1 latent factor has a negative relationship with the
commodity returns. In this second case, the magnitude of the parameter
is larger than that of the other two settings, namely −0.97 compared
with -1, but the magnitude is still comparable. This suggests that the
joint usage of the two provides a more comprehensive view of the
commodities’ returns dynamics, leaving to the factor a lower impact,
and its almost doubled parameter’s standard deviation increases its
uncertainty when the spillover is not considered.



Socio-Economic Planning Sciences 95 (2024) 102023R. Cerqueti et al.

t
t
a

i
s
D
t
o
V
b
t

c
n

R

a
a
a
𝑔
A

s
l

𝑑

f
i
c

D

w
s

o
d
c
a
w

𝑑

w
t
𝑤
𝑦
a
w
e
p
o

5

m
n
V
R
p
i
e

R
b
a
R
a

c
i
s
a
l
i
p
i

i
b
t
w
t
F
t
c
w

In sum, we find evidence that network structure in terms of Google
Trends data provides important information for modeling both tem-
poral and cross-sectional dependence of commodities. In other words,
investors’ attention, measured considering the Google Trends time
series, is a suitable channel for return spillovers across commodities.
In the next section, we evaluate the forecasting ability of such a piece
of information.

5. Forecasting experiment

5.1. Experimental design

For the out-of-sample forecasting experiment, an expanding-window
procedure is adopted. In doing so, we mimic the exercise of a commod-
ity forecaster which starts making predictions at a given time 𝑡 until
he point in time 𝑇 . To evaluate forecasting accuracy out-of-sample,
he full sample is divided into a train and a test sample. We consider
n initial window of 𝑀 = 100 observations and leave the last 𝑇 − 𝑀

observations for testing. In each step, a new point in time is added to
the sample and the network structure 𝐖 is updated following the same
procedure discussed in practice in Section 3, and the 𝐾 latent factors
are estimated in each iteration. The model parameters are re-estimated
in each iteration using the 𝑀 observations. Therefore, the outcome of
the forecasting exercise is a matrix time series containing out-of-sample
forecasts 𝐘̂ of dimension (𝑇 −𝑀) ×𝑁 [57].

The out-of-sample performance of the Fa-DNm is compared with
the predictions obtained from different benchmarks usually considered
in commodity forecasting. First of all, we consider the following VAR
model

𝒚𝑡 = 𝒄 +
𝑃
∑

𝑝=1
𝜱𝑝𝒚𝑡−𝑝 + 𝜺𝑡 (11)

with 𝐲𝑡 the 𝑁-dimensional vector of the commodities’ returns at time
𝑡, 𝐜 the vector of constant terms, 𝜱𝑝 the matrix of autoregressive
coefficients of order 𝑝, and 𝜺𝑡 the vector of error terms. We also consider
a factor-augmented version of (11), where the global factors 𝐟𝑡 are
ncluded as an additional variable in the VAR model. We call this
econd model factor-augmented VAR, i.e. Fa-VAR. Comparing the Fa-
Nm with these two alternatives allows us insight into the relevance of

he network spillovers. Indeed, we get evidence favoring the relevance
f the network information if the Fa-DNm performs better than the
AR. Moreover, we also compare the Fa-DNm with simpler well-known
enchmarks such as the Random Walk (RW), that is 𝐲̂𝑡+1 = 𝐲𝑡 and from
hose based on the latent factors (3) only (FM), that is 𝐲̂𝑡+1 = 𝜷 𝐟̂𝑡.

To evaluate the forecasting accuracy of a given model for each 𝑖th
ommodity, we rely on two commonly employed accuracy metrics,
amely the Root Mean Squared Error (RMSE)

MSE𝑖 =

√

√

√

√
1

𝑇 −𝑀

𝑇
∑

𝑡=𝑀+1

(

𝑦𝑖𝑡 − 𝑦𝑖𝑡
)2, (12)

and the Mean Absolute Error (MAE)

MAE𝑖 =
1

𝑇 −𝑀

𝑇
∑

𝑡=𝑀+1

|

|

𝑦𝑖𝑡 − 𝑦𝑖𝑡|| . (13)

To obtain an overall accuracy measure, we average both RMSE𝑖 and
MAE𝑖, so that RMSE = 1∕𝑁

∑

𝑖 RMSE𝑖 and MAE = 1∕𝑁
∑

𝑖 MAE𝑖.
Then, predictive accuracy tests of Diebold and Mariano [58], Diebold

[59] are considered to evaluate the statistical significance of the fore-
casting error differences. Let us define 𝑒1,𝑡 = 𝑦𝑡−𝑦𝑡 the forecasting error
t time 𝑡 for a generic unit and for the generic forecasting model 1,
nd 𝑑𝑡 = 𝑔

(

𝑒1,𝑡
)

− 𝑔
(

𝑒2,𝑡
)

the error differential between two forecasting
pproaches (say, forecasting models 1 and 2) up to some transformation
. In this paper, we consider the transformations 𝑔(𝑒) = 𝑒2 and 𝑔(𝑒) = |𝑒|.
ssuming covariance stationarity of the loss 𝑇 -dimensional differential
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eries 𝐝, Diebold and Mariano [58] show that the sample mean of the
oss differential,

̄ ≡ 1
𝑇 −𝑀

𝑇
∑

𝑡=𝑇−𝑀+1
𝑑𝑡, (14)

ollows an asymptotically standard Normal distribution. Therefore, test-
ng the null hypothesis of equal forecast accuracy can be obtained by
alculating the statistic

M = 𝑑[𝑉 (𝑑)]−1∕2, (15)

here 𝑉 (𝑑) is consistently estimated assuming a certain autocorrelation
tructure of the forecasting errors.

We notice that the [58] test is valid considering the entire out-
f-sample testing period, while it could be interesting to evaluate the
ifferences in the accuracy of the methods during different market
onditions. For this aim, a weighted version of the [58] test can be
dopted. Following Van Dijk and Franses [60], we can consider the
eighted version of (14), that is

𝑤̄ ≡ 1
𝑇 −𝑀

𝑇
∑

𝑡=𝑇−𝑀+1
𝑤(𝜔𝑡)𝑑𝑡, (16)

here 𝜔𝑡 is the information set used for choosing the weighting func-
ion. Van Dijk and Franses [60] proposed the use of the function
(𝜔𝑡) = 1−𝜅(𝑦𝑡)∕max(𝜅(𝑦𝑡)), where 𝜅(𝑦𝑡) denotes the density function of
𝑡 estimated using a standard Nadaraya–Watson kernel estimator with
Gaussian kernel. This approach is used for weighting more the errors
hen the realised values are in tails of the distribution, while Mattera
t al. [61] adopted the weighting function 𝑤(𝜔𝑡) = 𝜅(𝑦𝑡)∕max(𝜅(𝑦𝑡)) to
rovide less weight to the tails. We, therefore, also provide the results
f both the weighted DM tests, as proposed in [60,61].

.2. Results

In what follows, we assess the forecasting performance of the five
odels for commodity returns: the Fa-DNm, introducing a novel dy-
amic network perspective which is based on investor’s attention, the
AR and its factor-augmented version (Fa-VAR), the naive approach
W and the factor model FM. While the FM and VAR represent two
opular approaches for commodity forecasting [e.g., see 62], the RW
s a common benchmark as it is difficult to beat in out-of-sample
xperiments [63].

Our evaluation relies on relative efficiency, measured in terms of
oot Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Ta-
le 3 shows the forecasting accuracy of the models for each commodity
s well as the averaged results. Panel A shows the results in terms of
MSE, while Panel B is in terms of MAE. The best model in terms of
verage loss is highlighted in bold font.

Table 3 reveals that the Fa-DNm consistently outperforms all the
onsidered benchmarks in out-of-sample forecasting, as evidenced by
ts superior relative efficiency. In particular, consistent with previous
tudies, we find that both the VAR and the factor model provide more
ccurate than random walk for most commodities, but still, it provides
ess accurate forecasts compared to the proposed approach. Therefore,
n terms of both RMSE and MAE, we find that the proposed Fa-DNm
rovides more accurate forecasts, which investors can use to make more
nformed decisions.

Fig. 3 shows the relative efficiency in terms of RMSE, while Fig. 4
n terms of MAE. Relative efficiency is computed, for each commodity,
y the ratio of the benchmark and the proposed Fa-DNm. Values larger
han 1 indicate better performance of the proposed approach compared
ith the benchmark. The dashed red lines in the figures highlight

he thresholds of 1 where the Fa-DNm outperforms the benchmarks.
ig. 3(a) shows the relative efficiency of the Fa-DNm versus RW in
erms of RMSE, while Fig. 3(b) compares Fa-DNm versus FM forecasts
onsidering RMSE loss. Fig. 3(c) and Fig. 3(d) show the comparison
ith the VAR and Fa-VAR, respectively.
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Fig. 3. Relative accuracy between the Fa-DNm (8) and the considered benchmarks in terms of RMSE. Values larger than 1 indicate better performance of the proposed approach.
The dashed lines represent the thresholds of 1, associated with Fa-DNm outperforming the benchmark.

Fig. 4. Relative accuracy between the Fa-DNm (8) and the considered benchmarks in terms of RMSE. Values larger than 1 indicate better performance of the proposed approach.
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Table 3
Predictive accuracy of the considered models for each commodity. Both RMSE and MAE
loss functions are considered. The best model in terms of average loss is highlighted
in bold font.

Commodity Fa-DNM RW FM Fa-VAR VAR

Panel A: RMSE loss

Aluminium 0.0552 0.0748 0.0651 0.0698 0.0589
Brent 0.1264 0.1638 0.1409 0.1504 0.1394
Coffee 0.0910 0.1272 0.0945 0.0987 0.0981
Copper 0.0596 0.0884 0.0828 0.0889 0.0769
Corn 0.0797 0.1160 0.0861 0.0874 0.0835
Cotton 0.0845 0.1216 0.0895 0.0940 0.0932
Diesel 0.1190 0.1624 0.1194 0.1204 0.1128
Gasoline 0.1485 0.2008 0.1670 0.1718 0.1651
Gold 0.0396 0.0557 0.0482 0.0473 0.0434
Natural Gas 0.1431 0.2156 0.1476 0.1479 0.1490
Nickel 0.0888 0.1227 0.1051 0.1035 0.0960
Silver 0.0758 0.1071 0.0929 0.0953 0.0884
Sugar 0.0802 0.1143 0.0846 0.0909 0.0913
Wheat 0.0860 0.1289 0.0908 0.0963 0.0920
Zinc 0.0666 0.0910 0.0816 0.0785 0.0736
Avg. 0.0896 0.1260 0.0998 0.1027 0.0974

Panel B: MAE loss

Aluminium 0.0441 0.0584 0.0516 0.0552 0.0481
Brent 0.0866 0.1086 0.0966 0.1017 0.0945
Coffee 0.0683 0.1032 0.0731 0.0777 0.0746
Copper 0.0470 0.0718 0.0642 0.0695 0.0593
Corn 0.0593 0.0830 0.0647 0.0650 0.0629
Cotton 0.0636 0.0945 0.0691 0.0726 0.0696
Diesel 0.0887 0.1138 0.0894 0.0918 0.0844
Gasoline 0.1021 0.1334 0.1157 0.1141 0.1089
Gold 0.0312 0.0457 0.0373 0.0377 0.0358
Natural Gas 0.1004 0.1500 0.1042 0.1053 0.1078
Nickel 0.0717 0.0970 0.0795 0.0819 0.0776
Silver 0.0583 0.0841 0.0746 0.0789 0.0697
Sugar 0.0606 0.0866 0.0640 0.0693 0.0705
Wheat 0.0672 0.1013 0.0707 0.0749 0.0731
Zinc 0.0541 0.0722 0.0664 0.0645 0.0599
Avg. 0.0669 0.0936 0.0747 0.0773 0.0731

Given the relative efficiency, we observe that the ratio is larger
han 1 for most commodities, considering all the benchmarks and
oth RMSE and MAE accuracy measures. The enhanced forecasting
ccuracy of the Fa-DNm can be attributed to several key factors. Firstly,
he dynamic network structure of the Fa-DNm captures the evolving
nterdependencies among commodities over time. This adaptability
s crucial in forecasting commodity returns, as market dynamics can
apidly change. The incorporation of spatial econometrics principles
ithin the network framework allows the model to capture spillovers
ased on media-driven factors. Indeed, the Fa-DNm leverages Google
rends search data, a rich source of information on investor’s attention.
he use of this internet-derived data allows the model to respond in real
ime to shifts in investors’ sentiment and interest, providing a timely
epresentation of market conditions. In contrast, while the FM is a well-
stablished method, it may not fully capture the evolving relationships
nd spillovers present in dynamic commodity markets. The RW, even
f widely used as a benchmark hard to beat in out-of-sample, tends to
nderestimate the complexities of commodity returns by assuming a
onstant expected return.

Finally, we adopt the [58] predictive accuracy test to evaluate
hether these differences are statistically significant. Considering av-
rage results, the comparison between Fa-DNm and RW leads to DM
est statistics equal to −2.58, which suggests that the Fa-DNm provides
ore accurate forecasts on average than RW, with a 𝑝-value of 0.0112.
herefore, we reject the null hypothesis of equal predictive accu-
acy. Comparing Fa-DNm and FM leads to DM test statistics equal to
2.1627, which still suggests that the Fa-DNm provides more accurate

orecasts on average than FM, with a 𝑝-value of 0.0328. Therefore,
lso in this case we reject the null hypothesis of equal predictive
ccuracy. The same findings are obtained by comparing the Fa-DNm
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Table 4
𝑝-values associated with the [58] predictive accuracy test. The proposed approach (Fa-
DNm) is compared with RW, FM, Fa-VAR, and VAR. Under the null hypothesis, the
two models under comparison provide equally accurate forecasts.

Commodity Fa-DNm vs

RW FM Fa-VAR VAR

Aluminium 0.00 0.01 0.00 0.18
Brent 0.18 0.25 0.19 0.37
Coffee 0.00 0.21 0.02 0.06
Copper 0.00 0.01 0.01 0.05
Corn 0.00 0.07 0.05 0.09
Cotton 0.00 0.39 0.12 0.06
Diesel 0.01 0.96 0.86 0.30
Gasoline 0.10 0.27 0.34 0.39
Gold 0.00 0.01 0.00 0.03
Natural Gas 0.00 0.41 0.33 0.17
Nickel 0.00 0.03 0.00 0.02
Silver 0.00 0.03 0.00 0.00
Sugar 0.00 0.13 0.00 0.00
Wheat 0.00 0.10 0.02 0.03
Zinc 0.00 0.01 0.00 0.02

with both VAR and Fa-VAR. Table 4 provides a detailed comparison of
the pairwise tests for each commodity.

In sum, only for Brent and Gasoline the difference in accuracy
between Fa-DNm and the benchmarks are not statistically significant,
while for all the other commodities the proposed approach provides
significantly better forecasts. This result could be partly explained by
the higher trading activity and efficiency of the Brent market compared
to other commodities. Indeed, being a type of crude oil, Brent is one
of the most widely traded commodities globally. The high liquidity
and trading volume in the Brent market contribute to a more effi-
cient price discovery process. In highly liquid markets, information is
quickly reflected in prices [64], reducing the potential for predictive
models to gain a significant edge over simpler models like RW. The
case of Cotton is interesting as in this case all the models including
the latent factors (i.e. Fa-DNm, FM and Fa-VAR) provide statistically
the same forecasts, while models not using this additional informa-
tion perform worse. Finally, given the comparison for all the other
commodities, we reject the null hypothesis of the pairwise predictive
accuracy tests. This result confirms that factor-augmented models are
good tools for forecasting commodities, as highlighted by previous
studies, and that investors’ attention provides significantly relevant
additional information for forecasting the returns.

In the end, Tables 5 and 6 show the results of the weighted pre-
dictive accuracy tests considering either the tails or the center of the
distribution of the actual values, according to Van Dijk and Franses
[60], Mattera et al. [61], respectively. In the first case, we evaluate
the ability of the models to forecast the events in the tails, that is in
turbulent times, while in the second case, we evaluate the comparison
of the models during not turbulent periods. The results of the two tables
are consistent with those of Table 4, in that the models provide statis-
tically different forecasts. The main difference, however, is that with
weighted approaches also commodities like Brent and Cotton showing
some similar performance between the models, are now statistically
different. Said differently, in this case, the Fa-DNm provides statistically
more accurate predictions compared with the benchmarks. Therefore,
the results are robust to the portion of the distribution considered for
testing the equality of the predictive accuracy.

6. Conclusions

This paper introduces an innovative framework for enhancing the
precision of commodity return forecasts, which has particular relevance
in business decision-making and production optimisation. The proposed
methodology involves a Fa-DNm, uniquely designed to incorporate the

spillover effects originating from investors’ attention to commodities.
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Table 5
𝑝-values associated with the [60] predictive accuracy test (tail-based). The proposed
approach (Fa-DNm) is compared with RW, FM, Fa-VAR, and VAR. Under the null
hypothesis, the two models under comparison provide equally accurate forecasts in
the tails of the distribution.

Commodity Fa-DNm vs

RW FM Fa-VAR VAR

Aluminium 0.00 0.00 0.00 0.01
Brent 0.03 0.02 0.02 0.12
Coffee 0.00 0.00 0.00 0.00
Copper 0.00 0.00 0.00 0.02
Corn 0.00 0.00 0.00 0.01
Cotton 0.00 0.00 0.00 0.01
Diesel 0.00 0.00 0.00 0.02
Gasoline 0.00 0.00 0.00 0.05
Gold 0.00 0.00 0.00 0.00
Natural Gas 0.00 0.01 0.01 0.00
Nickel 0.00 0.05 0.00 0.00
Silver 0.00 0.00 0.00 0.00
Sugar 0.00 0.08 0.00 0.00
Wheat 0.00 0.01 0.00 0.00
Zinc 0.00 0.01 0.00 0.00

Table 6
𝑝-values associated with the [60] predictive accuracy test (centrality-based). The
proposed approach (Fa-DNm) is compared with RW, FM, Fa-VAR, and VAR. Under the
null hypothesis, the two models under comparison provide equally accurate forecasts
in the center of the distribution.

Commodity Fa-DNm vs

RW FM Fa-VAR VAR

Aluminium 0.00 0.00 0.00 0.01
Brent 0.02 0.01 0.01 0.11
Coffee 0.01 0.00 0.00 0.00
Copper 0.00 0.00 0.00 0.02
Corn 0.00 0.00 0.00 0.01
Cotton 0.00 0.00 0.00 0.01
Diesel 0.00 0.01 0.00 0.04
Gasoline 0.00 0.00 0.01 0.15
Gold 0.00 0.00 0.00 0.00
Natural Gas 0.00 0.01 0.01 0.01
Nickel 0.00 0.06 0.00 0.00
Silver 0.00 0.00 0.00 0.00
Sugar 0.00 0.07 0.00 0.00
Wheat 0.00 0.01 0.00 0.00
Zinc 0.00 0.01 0.00 0.00

Drawing upon the tenets of complex network theory, we explore the
intricate interdependencies within commodity markets and associated
financial instruments.

Our findings highlight that the use of complex network analysis
helps us see hidden patterns, connections, and potential risks in finan-
cial services. This aligns with the growing interest in understanding
how complex networks, especially those involving spillovers, can be
crucial in predicting commodity patterns. An important aspect is that
the proposed dynamic network model fully utilises internet data, specif-
ically based on Google Trends search data. Instead of following the
usual approaches, we introduce a Fa-DNm, where the network struc-
ture is developed in terms of investors’ attention. In contrast to prior
studies that treat internet-derived data merely as predictors, our novel
approach views it as a fundamental component for shaping the network
structure. This paradigm shift allows us to discern investor interest
and dynamic connections between various commodities, offering novel
insights into market dynamics.

The empirical findings highlight the substantive value of integrating
attention-driven spillovers, elucidating their substantial enhancement
of forecasting capabilities. The dynamic network perspective not only
accommodates their presence but effectively leverages these spillovers
in the forecasting task. The practical implications of this research
extend to both academic researchers and industry practitioners within
the financial domain. The ability to capture and quantify attention-
9

driven spillovers through internet-derived data represents a pioneering
approach, yielding insights that hold potential significance for un-
derstanding and predicting market dynamics. In an era of increasing
global interconnectedness and rapid information dissemination, the
integration of internet-derived data into forecasting models emerges
as an invaluable tool for decision-makers grappling with the intricate
dynamics of financial markets.

This paper primarily centers on empirically exploring the pre-
dictability of commodity market movements through the lens of in-
vestors’ attention. From the theoretical perspective, the evidence of out-
of-sample predictability naturally prompts inquiries into the efficiency
of the commodity market. In particular, the presence of predictability
enhanced by considering investors’ attention spillovers, suggests that
the commodity market may not be much efficient. However, from the
theoretical viewpoint, the role of investors’ attention and the significant
spillover effect are the main aspects deserving of future investigations
and deeper understanding. For example, the development of theoretical
models like [15] for commodities could provide useful insights about
investor behavior and how it relates to commodity markets. Our
findings can corroborate the predictions of such a theoretical model.

In the end, some additional future research directions can be high-
lighted. From a modeling perspective, we recall that the proposed
approach in this paper is based on a two-step procedure, where the
factors are estimated considering a simple factor model in the first
step. Then, the estimated factors are used in the second step for
forecasting purposes. While, on one side, this approach is simple and
effective in forecasting commodity returns in out-of-sample compared
to different benchmarks, on the other side it does not account for
the network interactions while estimating the latent factors. Other
papers [e.g., see 65,66] consider more sophisticated approaches for
dealing with latent factors in similar models. The use of these ap-
proaches for studying and forecasting commodity markets deserves
future investigations. Moreover, a dynamic factor model may be con-
sidered instead of an approximate factor structure in future research to
improve out-of-sample forecast accuracy.

From a different perspective, it could be interesting to apply the
considered procedures to data with different periodicities. On this front,
we are investigating some modifications of the proposed algorithms to
deal with the computational challenges it offers. A promising strategy
might be to reduce the cardinality of the dataset by preprocessing
the series to cluster times and cross-sections to move to a dataset
with reduced dimensionality. In this respect, some operational research
techniques are leading to efficient dataset dimensionality reduction
without losing too much information (see, e.g., the wide literature on
data compression models, like the pioneering contribution by Rissanen
[67] and, more recently, the handbook [68] and the monograph [69]).

Finally, we point out that we deal with a static network, that is the
structure of the network does not evolve with time. The introduction
of a dynamic network, where the spillover in terms of attention may
be dynamic, albeit interesting, poses significant challenges from a
modeling perspective, especially if latent factors are included.
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