
BlueArch – An implementation of 5G Testbed

Saptarshi Ghosh, Emeka Ugwuanyi, Tasos Dagiuklas, and Muddesar Iqbal
Division of Computer Science & Informatics, School of Engineering London South Bank University,

London, SE1 0AA, UK
Email: ghoshs4@lsbu.ac.uk; ugwuanyie@lsbu.ac.uk; tdagiuklas@lsbu.ac.uk; m.iqbal@lsbu.ac.uk

Abstract —In this paper, we’ve proposed BlueArch, a testbed
for 5G research and experimentations. It is a customized setup,
that comprises of several opensource components. It provides a
platform to create and customize virtual network infrastructures
and benchmarks prototypes. BlueArch provides high flexibility
in terms of customization, configuration, and programmability.
It supports 5G features such as softwarisation, virtualization,
and orchestration etc. Furthermore, it offers use cases like IoT,
MEC, and SDN through various modes such as simulation,
emulation, access to physical network and interfacing with other
testbeds.
The goal of this paper is to present the structural and functional
building blocks of BlueArch, along with their organization and
implementation. Finally, three uses cases are also given with
results, to demonstrate the functionalities.

Index Terms—5G Testbed, Interoperability, SDN

I. INTRODUCTION

The fifth-generation mobile network (5G) era is about
to begin. With massive anticipation, it is getting ready to
hit the commercial market in 2020[1]. The underlying
philosophy is to make a mobile network around people
and things [2], that will satisfy the following use cases.
• Extreme Mobile Broadband (eMBB) for an on-

demand gigabit connection
• Massive Machine Type Communication (mMTC) to

connect a scalable sensor network
• Ultra Reliable Low Latency Communication

(URLLC) for having real-time tactile internet.
In order to achieve these verticals, the European Union

funded 5G public-private Partnership (5GPPP) working
group has proposed certain architectural enablers such as
Millimeter wave, Massive MIMO, Visible Light
Communication (VLC), Heterogeneous Networks (Het-
Net), Internet od Things (IoT) etc. Also, Softwarization
[3]–[5]i.e. programming a virtualized network
infrastructure using software has brought the
communication engineering and software engineering
into the same page. The network has eventually become
smarter, robust and manageable. Programming a network
in abstraction has given flexibility, unprecedented to the
previous generation. Technologies such as software-
defined networking (SDN), Network function
virtualization (NFV), Management Orchestration
(MANO), Machine Learning (ML), Virtualization and

Manuscript received February 7, 2019; revised April 17, 2019.
Corresponding author email: ghoshs4@lsbu.ac.uk.
doi:10.12720/jcm.v.n.p-p

Cloud-Native plays play a key role to enable those
verticals. Finally, Self-organized networks (SON) and
Network Slicing has given the ability to manage and
work with complex heterogeneous networks.

For the research community, 5G has been in the
limelight for a while. Due to its diverse field application,
it has brought researchers together from several domains
and disciplines. One fundamental practice in such
interdisciplinary research is to craft an artificial 5G test
environment to implement, verify and validate concept
before leading into prototyping. Therefore, a testbed is an
essential tool for any 5G oriented research that comprises
of all the enabling technologies such as SDN, ML, and
Virtualization etc. and let the researcher test the concept
in form of algorithms without bothering too much about
the system implementation and operational details.
Undoubtedly, building such a Testbed is a key step,
however, there are three possible alternative forms in
which they generally come.

Fully Simulated: This type of environment are the
lightest alternatives. Mathematical models (such as delay,
mobility and queuing models etc.) to calculate network
parameters while simulating. A detailed comparison of
such simulators like NS2, QualNet, OPNET, TOSSIM is
presented by authors in [6]– [8]. These environments are
limited to interfacing with external. Emulated: Network
Emulators are typically UNIX based, using native drivers
such as HWSim, these platforms can interface with
physical systems and can produce more realistic results.
Common Open Research Emulator (CORE) [9] is one of
the classic examples of such an environment. Mininet is
presently one of the most popular network emulators for
SDN [10], [11]. Also, Mininet-Wi-Fi [12] an extension of
standard Mininet is capable of emulating wireless
networks with several mobilities and propagation models.
Graphical Network Simulator (GNS3) is an option for
advanced implementation, it provides virtualization,
Docker containerization, and appliance support. One can
use GNS3 to mimic an almost real scenario [13], [14].
These environments are typically heavy and some needs
network configuration skills to prepare the test
environment.

Hybrid: The Hybrid environment is the most advanced,
they practically simulate and emulate the network and
provides outstanding interfacing capabilities to the
external world and other simulation environments.
Netsim [15] is one of the top hybrid platforms used by
many universities and corporate houses for both research

and production. These platforms are typically commercial
hence includes likening.

Contribution
In this paper, we’ve presented our 5G Testbed

BlueArch, as a part of the SONNET project [16]. It is an
organization of several open source tools and supports all
the necessary technologies including hybrid architecture,
interfacing to external environment etc. This paper is
useful as a guide to building such a testbed from scratch.

The rest is organized as, Section II describes the
architecture and details of components and their
implementation, Section III Demonstrates various use
cases and experiments conducted and finally, we
conclude and acknowledge at section IV & IV
respectively.

II. SYSTEM ARCHITECTURE &
IMPLEMENTATION

Fig. 1 depicts the schematic diagram of BlueArch. It’s
a hybrid platform that supports simulation, emulation,

interfacing to external platforms and physical
environment. It is a collection of six virtual machines
(VMs) each runs a specific service, in case of scalability,
it is provisioned to add more VMs to accommodate the
need. The virtualized service-oriented architecture (v-
SOA) provides easy recovery by snapshots and
portability by migration. The implementation can be
made physical by cloning the VMs into physical servers,
this improves overall performance. A NAS server is used
as shared storage and this make a private network running
at 10.1.2.0/24 address space. A gateway router connects a
wireless access point running on same private address
space, an external OpenStack private cloud setup, and
internet. A Mobile edge computing (MEC)
implementation [17] using raspberry pi, is interfacing
with the platform. This is a use case of IoT infrastructure
with virtual network function (VNF) migration over the
test bed. In the following section, BlueArch’s features are
described in detail.

Fig. 1. Schematic Diagram of BlueArch

A. Firewall: For this implementation PfSense[18]
opensource firewall is used. It is a Free BSD based
implementation that along with a basic firewall
provides services like network monitor, traffic
shaper, load balancer, deep packet inspection, and
routing. In the virtualized setup the WAN port of
PfSense is connected to the bridged external network
and the LAN port is connected to the all other VMs.
For a physical setup, it must be placed between the
gateway router and the private network.

B. SDN Controller: In an SDN environment the control
plane decides and governs the communication. It
controls the underlying forwarding devices using the
OpenFlow protocol, in this setup the forwarding
devices are Open-V-Switch (OVS) [19]. For the
Control plane, there are the controllers are hosted,
OpenDaylight (ODL), Ryu and HP- VAN. This
supports the implementation of cross-platform,
multi-controller infrastructure. The controller is
hosted as VMs under a paravirtualized environment
hosted by Citrix XEN server (which is an open
source type 1 hypervisor like, VMWare ESXi). The
paravirtualization is perhaps optional, but it gives
better flexibility with cloning and Snapshots.

C. Orchestration: BlueArch also supports ETSI MANO
orchestration, Open Mano and RIFT.io orchestrators
are hosted as VMs within a XEN environment. This
supports orchestrating Virtual Network Functions
(VNF) and leverage network slicing ability [20], [21]
for optimal service and resource management. RIFT
allows prebuilt VNFs to plug and play over the
system, called onboarding.

D. Application Server: This acts as the SDN application

layer. Although the given implementation runs
Windows 10 and VMWare workstation pro, one can

use any opensource client operating systems such as
Ubuntu 64 bit and XEN server or Virtual box as
opensource alternatives. The client OS runs the
GNS3 UI, a type 2 hypervisor and XEN center.

• GNS3 UI is the graphical user interface of the GNS3

software. This provides a platform to draw and design
a network, accessing individual device with CLI
though terminal or GUI using VNC is also possible
from GNS3 UI. Fig. 2 shows the GNS3 layout of a
sample network topology. GNS3 also allows emulated
devices to access external network using NAT or
Bridged connection. For large scale simulation, GNS3
offers a separate compute platform, typically
virtualized, called GNS3 VM. While simulating a
network GNS3 UI offload the devices to GNS3 VM
via either QEMU virtualization or Docker containers.
GNS3 UI also provides a RESTful web API to
monitor activities and support Wireshark integration
for traffic analysis and Deep packet inspection. GNS3
website provides a wide range of Docker/QEMU
based open source appliances, some of the most
popular ones are, OVS, Ostinato traffic generator,
Ubuntu, Cumulus VX etc.

• Type 2 Hypervisor is used to host custom
applications and some optional applications. The main
reason for its placement is to isolate the homegrown
apps from the rest of the system. The hypervisor is
hosting two Ubuntu 64-bit VMs let them be VM1 and
VM2. VM1 runs Cisco OpenDaylight Open Flow
Manager (OFM) app [22], this is an extension of the
ODL controller, using RESTConf protocol it
communicates with ODL. The Flow Maker tool of
OFM allows the user to easily create OpenFlow rules
and manipulate switch wise OF tables. OFM runs its
own web Node JS based server and hence the UI can

Fig. 2. Network design, A Sample topology in GNS3 UI

be accessed from anywhere within the private
network. VM2 hosts the bespoke applications, most of
the prototyping is done here.

• Custom Tools, BlueArch presently contains four such

prototyped applications, following four applications,
written in python3.6 are developed for various
projects running on top of BlueArch.

i) ShellMon: This is a client-server-based resource
monitor. The client is installed into a Linux system
as a push agent, the server fetches system resource
utilization. Fig. 3 shows a sample plot of ShellMon
Server.

ii) TopoBuild: These app uses are used for interacting
with external simulators such as MATLAB or
NS3.
Data from the remote simulator is first written into
the MySQL database server discussed in a later
section. Using a MySQL client API TopoBuild
reads the dataset and RESTful API it conveys to
GNS3 or Mininet environment. The primary task is
to replicate the topology and network state such as
node and channel properties to an SDN platform.
TopoBuild is event-driven, therefore any change in
the remote environment triggers changes in the
testbed.

iii) TopoSense: This app uses the OpenDaylight
northbound interface (NBI) to read and right
controller information. Using RESTConf protocol
it fetches the network topology and flow table
information respectively from network/topology
and node/inventory resources. The topology and
flow table information are fused into a Graph
Structure to compute various graph-theoretic
algorithms such as shortest paths, Spanning Tree
etc. Results are written back to the ODL, which the
ODL translates into OpenFlow rules and inject into
OVSs.

iv) TopoRoute: It is one of the subroutines of
TopoSense, used for calculating routes. It
calculates all pair shortest paths from topology

generated by TopoSense and the set of paths are
returned. Fig. 4 shows a sample plot of TopoRoute
generated all pair shortest path from a 6 nodes
topology.

E. Network Emulation Server: This is the most compute-

intensive VM among the others in the testbed. This
hosts three emulators Mininet for wired SDN

simulation, Mininet Wi-Fi for wireless SDN simulation
and GNS3 Compute hosting offloaded computation
from GNS3 UI. Emulators are hosted as VMs. GNS3
VM mainly hosts OVS instances and Quagga software
routers as Docker containers and Cisco IOU instances
as QEMO VMs. For some legacy Cisco images, GNS3
offers an inbuild hypervisor called dynamips which can
optimally schedule their resource allocation using Idle-
PC tool.

F. Database Server: The database server is running
MySQL Server, primarily used as a middleware
between the testbed and any external platform. Since
SQL is a standard data modeling language, it provides
superior compatibility. Fig. 5 shows an example
schema to handshake live data from a remote
MATLAB based simulator, further discussed in Use
cases. Hence, of SQL enhances interoperability. One
can use alternatives like Elastic Search for better
throughput.
The modeling of the schema has two primary entities
Node and Channel. The node caries information such
as node ID, operating frequency etc. whereas, the
channel properties are Channel ID, Bandwidth etc.
shown in table 1 and 2 respectively.

Fig. 3. ShellMon Server plotting live utilization of 4 Raspberry Pi nodes
with over a IP network

Fig. 4. ERD of a sample database schema to model data exchange
between the testbed and a remote simulator

Node Attributes Description
Node ID Unique ID for each node
Type Access point or User equipment
Position (𝑥, 𝑦) axis of the node
Range Range in meter
Channel Operating channel
Frequency Operating Frequency in Hz
Mode The mode of transfer (b/g/n etc.)
Tx_Power Transmit power in (db)
IP Address Generated by the emulator
MAC Generated by the emulator

Table 1 Node table attributes

Channel Attributes Description
Channel ID Unique ID for each channel
Bandwidth E2E throughput in Mbps
Distance Physical distance in meter
Pathloss Measured from SLS
Latency Packet processing time in ms
Delay Round trip time in ms

Table 2 Channel Properties

A node can be a Host/UE or a Switch/AP. If a node is a
switch/AP then it also contains its flow table, fetched
from the controller. Each AP knows about the list of
hosts it is associated to, each host knows the node-ID
of its associated AP. Two nodes (one must be a switch)
makes a channel that refer to the channel ID, two host
nodes can’t make a channel. Channel between two
switches is a backhaul link and channel between a
switch and a host is a fronthaul link.

III. EXPERIMENTS & USE CASES

In this section, three experiments are described as each
having different use cases.

Case 1: RESCUE a cloud-based IoT system for
Disaster Recovery [23]. The referred paper demonstrates
the Monitoring and Load balancing feature. The
ShellMon client is installed on the IoT gateways and the
server remotely monitors the Realtime resource
utilization (Figure 3).

Case 2: Self Migration of Docker Containers,

interfacing with the physical network. In this use case,
Raspberry Pi is used as a MEC node hosting a VNF as a
Docker container. Whenever the MEC gets overloaded,
the migration function gets self-triggered and initiates a
post-copy migration to another MEC which is infeasible
distance and having an adequate free resource to
accommodate the immigrant container. Fig. 6 describes
the migration.

Unlike Case 1, here ShellMon server also runs a
learning agent that interprets the varying resource
utilization as a time series. The learning agent learns a
pattern from the time series and with given cutoff, if it
forecasts a failure, it triggers a migration. The triggered
migration works as following, we term the overloaded
node as Victim and Target be the most feasible node
where the victim can offload. The selection of Target is
by a proprietary algorithm which is beyond the cope of
this article. The algorithm chooses the container (or
container chain) from the victim, to be offloaded and the

Fig. 6. Self Migration of VNF over MEC. Till mark A the average utilization is under the cut-off 40%, within mark A,B the
average exceeds the cutoff, at B migration starts and continues till mark C hence and the utilization comes down.

Fig. 5. All pair Shortest paths of a graph with 6 vertices, generated by
Dijkstra’s single source SPF algorithm

generates a snapshot. Thereafter a secure channel is
established between the source and the target and the
transfer is initiated. After transfer if the container is still
running then a new snapshot is taken sent otherwise the
previous snapshot is used. Likewise, the system can
dynamically choose between Pre-Copy and Post-Copy
migration depending upon the situation.

A major difference between migration offered by
docker swarm, the proposed migration also supports Fall-
back feature, i.e. not only when a system goes off the
migration is initiated, but also, when the system spins off
again the migrated containers perhaps come back. In
addition, the system is immune to preventive failover, i.e.
the offloading takes place based on the probability of
failure, which is learned from the trend of usage.

Figure 6 depicts the experimental outcome, here the
client is deliberately stressed to cause a migration. The X
axis is the time window of 100 seconds. The Y axis is
utilization, measured in a scale of [0,1000] where 1000
denotes 100% utilization. For experimental purpose, the
cutoff value is set to 40% i.e. at 400 mark. The client
monitors the CPU, memory and Network interface
utilization and boiled them down into a single scaler
called Z_Value. The detailed calculation of Z_Value is
discussed in our previous paper [24]. The server only
learns from the time series of Z_Value for each client.
During timestamp [0,40] there are some spikes that
exceeds the cutoff, which the learning algorithm
successfully detects as outlier. At the timestamp “A” the
system is stressed which causes a hike in CPU utilization,
that also hiked the Z_Value. At timestamp “B” the server
detects the pattern as a overload and triggers migration,
between “B” & “C” network activity can be evident, that

is due to the transfer of the container to the Target over
the network. At “C” the migration finishes, and the
container is shuts off at the victim that causes a sudden
fall of the CPU and Z_Value.

Case 3: Interfacing with remote Simulator. In this

use case, a remote MATLAB based simulator computes
Channel Models of a RAN, and BlueArch provides SDN
support on top that by interfacing, Fig. 7 shows the
sequence diagram of the handshaking process and Fig. 8
Shows the cumulative Result.

The MATLAB based system level simulator (SLS)
prepares the channel model and scheduling of radio
resources. The network layout is also given. BlueArch’s
topology module comprising (TopoSense, TopoBuild &
TopoRoute), introduced in section II.D. makes the SDN
integration happen. First, based on the network layout, a
schema is created on a shared Data Base, containing
number of nodes, number of channel and their relevant
information. Figure 4 perhaps used as a reference. The
tables are periodically filled by varying channel and node
information from the simulator. TopoBuild fetches the
adjacency information from the database and builds an
Open-Flow equivalent using OVS in Mininet and GNS3.
The RAN is emulated in Mininet and the Core in GNS3.
Since the emulators are bridged to make them
communicate. Once TopoBuild creates the emulations, it
periodically reads the channel updates from the Database
and applies on the emulated network. For the time being
GNS3 API doesn’t support link properties therefore the
Core network links don’t get altered. TopoBuild also adds
the SDN controller, which is ODL in this case. ODL
establishes OpenFlow communication with the OVSs.

Fig. 7. Sequence diagram of Interfacing and control message exchanges between BlueArch and MATLAB using
TopoBuild, OVS, ODL, TopoSense & TopoRoute

TopoSense uses RESTConf API to connect to the ODL
northbound interface. It fetches the topology and flow
table information from the Topology and inventory
resources of ODL. Along with that the node & link costs
from the database is fed into the Z_Value calculating
model. All this information is fused into TopoSense to
build a much more informed graph we call it Meta-graph,
the node cost is then relaxed into edges using our
Stochastic Temporal Edge Normalization (STEN)
algorithm [24].TopoRoute then uses this Meta-Graph to
find shortest path between all pair (Figure 5), and the
response is first fed back to ODL using RESTConf which
eventually conveys it to the OVSs using OpenFlow, and
also the updates are sent to the shared database from
which the MATLAB simulator reads it and learns about
best routes across the RAN.

Figure 8 depicts the summery outcome of the subjected
use-case. 8.A. shows a schematic diagram of the network
layout, running in MATLAB. There are three Base
stations (BS1,2 & 3), each connects two user equipment
(UE1,2…6) over a radio link which acts as a fronthaul.
TopoBuild places a OVS for each BS, the OVS performs
all layer 2 functions where the Layer 1 functions are
performed in the SLS. Therefore, the backhaul is
established between the OVSs which acts as a data plane
(DP) for the SDN. The Control plane (CP) is provided by
ODL and OpenFlow channel is established between the
OVSs and ODL. The application server runs all the
custom application an connects to ODL via RESTConf
protocol. The emulation is shown at 8.B. where the blue
triangle represents the backhaul (Core) and green shades
represents the fronthaul (RAN). Each OVS in this
emulation is treated as an access points and UE as hosts.

8.C. depicts the topology view from ODL controller.
Here all the OVS are discovered and UE’s as hosts. ODL
doesn’t offer a separate view for wireless, thus each
connection is shown as a link. 8.D. shows the Meta-graph
generated by TopoSense, the view is generated using
NetworkX and Matplotlib library. Each node in the graph
is an object caries node information and flow
information, where the edge object caries the link
information, discussed in section II.F. the nodes are
labeled with their MAC addresses for UE and Datapath
ID (DPID) for OVS. The Meta-Graph is fed to the
TopoRoute to generate pair-wise shortest paths. The link
cost changes dynamically as the channel costs changes in
MATLAB simulation, which results the change in edge
length in the Meta-Graph. The SPF uses the length as an
edge weight in order to calculate the shortest path.

IV. CONCLUSION & FUTURE SCOPES

BlueArch a 5G testbed implementation that provides a
hybrid platform for conducting various experiments
including MEC, IoT, SDN, NFV etc. Various mode of
tests includes simulation, emulation, and interacting with
the physical network and remote testbed platforms. The
building blocks of the testbed are Open Source and
virtualized which makes the architecture interoperable
and flexible. Several use cases are implemented on top of
the platform validates its robustness, that includes
Realtime resource monitoring, Intelligent service
migration and Cross-Platform interfacing.

As a future extension, appending a Recurrent Neural
Network (RNN) node for intelligent network automation

Fig. 8. Complete workflow of BlueArch. On the left the conceptual architecture is presented. (A) TopoBuild build the network in Mininet
Wifi, (B) Using OpenFlow ODL reads the network and generate topology, (C) TopoSense, Using RESTConf protocol creates reads the

flow table and topology and generate a graph

that includes traffic analysis and route optimization and is
planned under progress.

ACKNOWLEDGMENT

This work was supported in part by ‘‘Self-
Organization toward reduced cost and energy per bit for
future Emerging radio Technologies’’ with contract
number 734545. The project has received research
funding from the H2020- MSCA-RISE-2016 European
Framework Program.

REFERENCES

[1] 5G Infrastructure Association, “5G Pan-European Trials
Roadmap Version 3.0,” p. 6, 2018.

[2] 5G PPP Architecture Working Group, “View on 5G
Architecture (Version 1.0),” no. July 2016.

[3] 5GPPP, “View on 5G Architecture (Version 2 . 0),” no.
July 2017.

[4] 5G PPP SN Working Group, “Vision on Software
Networks and 5G,” 5G-PPP Initiat., vol. 2017, no.
January, pp. 1–38, 2017.

[5] G. S. Network and W. Group, “5G-PPP Software
Network Working Group From Webscale to Telco, the
Cloud Native Journey,” no. July, pp. 1–25, 2018.

[6] A. Rachedi, S. Lohier, S. Cherrier, and I. Salhi,
“Wireless network simulators relevance compared to a
real testbed in outdoor and indoor environments,” Int. J.
Auton. Adapt. Commun. Syst., vol. 5, no. 1, p. 88, 2012.

[7] H. Sundani, H. Li, V. Devabhaktuni, M. Alam, and P.
Bhattacharya, “Wireless Sensor Network Simulators A
Survey and Comparisons,” Int. J. Comput. Networks,
vol. 2, no. 2, pp. 249–265, 2010.

[8] A. Stetsko, M. Stehlík, and V. Matyas, “Calibrating and
comparing simulators for wireless sensor networks,”
Proc. - 8th IEEE Int. Conf. Mob. Ad-hoc Sens. Syst.
MASS 2011, pp. 733–738, 2011.

[9] J. Ahrenholz, “Comparison of CORE network emulation
platforms,” Proc. - IEEE Mil. Commun. Conf.
MILCOM, pp. 166–171, 2010.

[10] S. Salsano, P. L. Ventre, L. Prete, G. Siracusano, M.
Gerola, and E. Salvadori, “OSHI - Open source hybrid
IP/SDN networking (and its emulation on mininet and
on distributed SDN testbeds),” Proc. - 2014 3rd Eur.
Work. Software-Defined Networks, EWSDN 2014, no.
1, pp. 13–18, 2014.

[11] B. Lantz and B. O’Connor, “A Mininet-based Virtual
Testbed for Distributed SDN Development,” ACM
SIGCOMM Comput. Commun. Rev., vol. 45, no. 5, pp.
365–366, 2015.

[12] Ramon dos Reis Fontes and C. E. Rothenberg, “Mininet
Wifi The User Manual,” 2015.

[13] J. Sendorek, T. Szydlo, and R. Brzoza-Woch,
“Software-Defined Virtual Testbed for IoT Systems,”
Wirel. Commun. Mob. Comput., vol. 2018, 2018.

[14] K. Yao, W. Sun, M. Alam, and M. Xu, “A Real-Time
Testbed for Routing Network,” pp. 256–270, 1999.

[15] Netsim, “Netsim,” 2011. [Online]. Available:
https://www.tetcos.com/index.html.

[16] S. Mumtaz et al., “Self-Organization Towards Reduced
Cost and Energy per Bit for Future Emerging Radio
Technologies - SONNET,” 2017 IEEE Globecom Work.
GC Wkshps 2017 - Proc., vol. 2018–January, pp. 1–6,
2018.

[17] E. E. UGWUANYI, S. GHOSH, M. IQBAL, and T.
DAGIUKLAS, “Reliable Resource Provisioning Using
Bankers’ Deadlock Avoidance Algorithm in MEC for
Industrial IoT,” Ceskoslov. Gynekol., vol. 21, no. 6, pp.
422–423, 1956.

[18] The pfSense Team, “The pfSense Book,” 2017.
[19] Piolink, “Open vSwitch,” no. November, pp. 54–55,

2013.
[20] W. Guan, X. Wen, L. Wang, Z. Lu, and Y. Shen, “A

service-oriented deployment policy of end-to-end
network slicing based on complex network theory,”
IEEE Access, vol. 6, pp. 19691–19701, 2018.

[21] Y. Minami, A. Taniguchi, T. Kawabata, N. Sakaida, and
K. Shimano, “An architecture and implementation of
automatic network slicing for microservices,” IEEE/IFIP
Netw. Oper. Manag. Symp. Cogn. Manag. a Cyber
World, NOMS 2018, pp. 1–4, 2018.

[22] J. Medved et al., “OpenDaylight OpenFlow Manager
(OFM) App.” .

[23] T. Khan, S. Ghosh, M. Iqbal, G. Ubakanma, and T.
Dagiuklas, “RESCUE  : A Resilient Cloud-Based IoT
System for Emergency and Disaster Recovery,” 2018
IEEE 20th Int. Conf. High Perform. Comput. Commun.
IEEE 16th Int. Conf. Smart City; IEEE 4th Int. Conf.
Data Sci. Syst., pp. 1043–1047, 2018.

[24] S. Ghosh, T. Dagiuklas, and M. Iqbal. (2018). Energy-
Aware IP Routing Over SDN. 2018 IEEE Global
Communications Conference (GLOBECOM).

SAPTARSHI GHOSH received the B.Sc.
degree (Hons.) in computer science from
the University of Calcutta, India, in 2010,
the M.E. degree in software engineering
from Jadavpur University, India, as a
GATE Scholar, in 2016, and the M.Sc.
degree in smart networks from the
University of the west of Scotland, U.K.,
as an Erasmus Mundus Scholar in 2017.

He is currently pursuing the Ph.D. degree in computer science
and informatics from London South Bank University, U.K.,
under SONNET (an MSCA-RISE project). He was a Software
Developer with Webel Informatics Ltd., India, with 2 years of
experience. His primary research interests lie in the field of
applying machine learning in software defined networks for
route optimization and self-organization in 5G.

EMEKA E. UGWUANYI received the
B.Sc.degree in Computing from London
School of Commerce in partnership with
Cardiff Metropolitan University, U.K., in
2014, and the M.Sc. degree in internet and
database systems from London South
Bank University, U.K., in 2016, where he
is currently pursuing the Ph.D. degree in

computer science. His current research interest lies in resource
management in multi-access mobile edge computing (MEC).
This includes deadlock avoidance and cache storage
management in MEC

TASOS DAGIUKLAS received the
Engineering Degree from the
University of Patras-Greece in 1989,
the M.Sc. from the University of
Manchester, U.K., in 1991, and the
Ph.D. degree from the University of
Essex-U.K. in 1995, all in Electrical
Engineering. He is a leading
researcher and expert in the fields of
Internet and multimedia technologies
for smart cities, ambient assisted

living, healthcare, and smart agriculture. He has been a principle
investigator, a co-investigator, a project and technical manager,
a coordinator, and a focal person of over 20 internationally
R&D and capacity training projects with total funding of
approximately £5.0m from different international organizations.
He is currently the Leader of the SuITE Research Group,
London South Bank University, where he also acts as the Head
of the Division in Computer Science. His research interests
include smart internet technologies, media optimization across
heterogeneous networks, QoE, virtual reality, augmented
reality, and cloud infrastructures and services

MUDDESAR IQBAL received the
Ph.D. degree from Kingston
University in 2010 with a dissertation
titled ‘‘Design, development, and
implementation of a high-performance
wireless mesh network for application
in emergency and disaster recovery’’.
He has been a principal investigator, a
co-investigator, a project manager, a
coordinator, and a focal person of over
10 internationally teamed research and

development, capacity building and training projects. He is an
established researcher and expert in the fields of: mobile cloud
computing and openbased networking for applications in
education, disaster management, and healthcare; community
networks; and smart cities. He is currently a Senior Lecturer in
mobile computing with the Division of Computer Science and
Informatics, School of Engineering, London South Bank
University. His research interests include 5G networking
technologies, multimedia cloud computing, mobile edge
computing, fog computing, Internet of Things, software-defined
networking, network function virtualization, quality of
experience, and cloud infrastructures and services. He was a
recipient of the EPSRC Doctoral Training Award in 2007

