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Introduction 

Over the past nine months, this series has examined the most important topics in ECG 

interpretation.  These include cardiac anatomy and physiology, arrhythmias, heart blocks, pre-

excitation, the cardiac axis, chamber enlargement, and myocardial ischaemia (Garcia, 2015).   We 

have also discussed many of the key principles of electrocardiography, and emphasised the need for 

a structured approach to ECG evaluation (Gregory, 2006).   

Inevitably in such a large subject, there are topics that we have not touched on.  Some of these are 

less relevant to cardiac nurses, and some more so.  In this last instalment of the series, we address 

three issues that have particular relevance to practitioners caring for cardiac patients.  These are  

 The recognition of cardiac pacing and pacing problems 

 The ECG in the management of cardiovascular drugs 

 And the diagnosis of electrolyte disturbances.   

As with previous articles in the series, we will place the ECG in the context of clinical practice, and 

consider important aspects of patient management.    

 

Cardiac pacing 

A pacemaker is essentially a device that delivers an electrical stimulus to the heart, resulting in 

depolarisation of the myocardium, and cardiac contraction (Davies, 2009).   Early devices could do 

little more than this basic function, and were large and unreliable (Ward et al, 2013).   Electricity was 

delivered to the myocardium regardless of intrinsic electrical activity, creating the possibility of 

competition between native and paced rhythms (Furman, 2003).  While this was life-saving 

treatment in patients with complete heart block, there was considerable potential for complications 

and pacemaker mediated arrhythmias (Bennett, 2013).  

In the modern era, pacemakers are small, reliable, and considerably more sophisticated (Harper & 

Morris, 2009).  They are able to sense and interpret intrinsic electrical activity, and are usually 

programmed to deliver electrical stimulation only when this is absent, or when the rate of 

depolarisation is too slow (Davies, 2009).  Pacing may be delivered in the atrium, the ventricle or in 

both chambers sequentially, depending on underlying electrical function (Kalahasty et al, 2014).  

Complex computer algorithms allow customisation of pacemaker function, and ensure that the 
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pacemaker responds appropriately to changing physiological conditions.   Pacemaker-mediated 

problems are less common, although they have not disappeared altogether (Wiper et al, 2008).     

According to the National Institute for Cardiovascular Outcomes Research (NICOR) and the British 

Heart Rhythm Society (BHRS), the number of patients receiving a pacemaker has increased year on 

year, with around 50 000 new systems implanted in England in 2013–14 (Murgatroyd et al, 2014). 

The management of individuals with pacing systems is highly relevant to cardiac nursing (Davies, 

2009) as these patients are cared for by cardiac nurses. Temporary pacing systems are also 

commonly used on cardiac wards and critical care units, especially in patients recovering from 

myocardial infarction or cardiac surgery (McNaughton, 2013). The ability to evaluate the ECG in the 

paced patient, and to recognise common problems, is therefore an important skill for cardiac nurses 

to have. 

 

Modes of pacing 

The mode of pacing used will depend on the indication for pacing, the presence or absence intrinsic 

electrical activity, and the number of leads placed in the heart (Bennett, 2013).  A number of 

different modes are possible, of which the most commonly used are atrial demand, ventricular 

demand, and dual chamber pacing.  These can be described as AAI, VVI and DDD, using the code 

devised by the North American Society of Pacing and Electrophysiology (NASPE) and British Pacing 

and Electrophysiology Group (BPEG) (Bernstein et al, 2002) (table 1).   

 

First letter 

Chamber paced 

Second letter 

Chamber sensed 

Third letter 

Response to 
sensing 

Fourth Letter 

Rate modulation 

Fifth letter 

Multisite pacing 

O = None O = None O = None O = None O = None 

A = Atrium A = Atrium T = Triggered 
R = Rate 
modulation 

A = Atrium 

V = Ventricle V = Ventricle I = Inhibited  V = Ventricle 

D = Dual (A+V) D = Dual (A+V) D = Dual (T+I)  D = Dual (A+V) 

Table 1.  NASPE / BPEG pacing code (Bernstein et al, 2002) 

 

Atrial demand pacing (AAI) 

In atrial demand pacing, an electrical impulse is sent to the right atrium only when the heart rate 

falls below a level programmed into the pacemaker, typically between 50 and 70 beats per minute 

(Harper & Morris, 2009).  The electrical impulse spreads through the atria, causing them to 

depolarise and contract, and is then conducted to the ventricles via the AV node and distal 

conduction system (Bennett, 2013).  On the ECG, atrial pacing can be recognised by a small pacing 

spike in front of the P-wave (Houghton & Gray, 2014) (figure 1).   The pacing spike is a small ECG 
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deflection created by the electrical energy delivered by the pacemaker (Garcia, 2015).  Provided that 

the AV node and distal conduction system are normal, the P-wave will be followed by a normal, 

narrow QRS (Hampton, 2013). 

 

 

Figure 1.  Atrial pacing.  Note the pacing spike in front of the P-wave, and the normal QRS 

complex.  In this example, pacing spikes are most obvious in leads II, III, aVL, aVF, V1, V2, but 

difficult to determine in the other leads.  This is a common finding with permanent pacing systems.   

 

The most common indication for atrial demand pacing is sick sinus syndrome (Brignole et al, 2013).  

In this disease, the sinus node may fail to depolarise intermittently, or fibrous tissue may prevent the 

impulse from exiting the node (Ewy, 2014).  This results in pauses in the sinus rate, which may cause 

dizziness or loss of consciousness (Jensen et al, 2014).  The amount of pacing that an individual 

receives will depend on how slow their underlying rhythm is, the number of pauses that occur, and 

the minimum rate set on the pacemaker (Kalahasty et al, 2014).  The atrial lead is commonly placed 

in the right atrial appendage, and may be the only lead placed if AV conduction is normal (Bennett, 

2013).  The disadvantage of this approach is that ventricular pacing is not possible; if atrioventricular 

(AV) block develops, the patient will have to undergo re-operation to implant an additional lead.  A 

recent study demonstrated a two-fold risk of re-operation in people receiving an atrial versus a dual 

chamber system, suggesting that this is not an insignificant risk (Nielsen et al, 2011).    

 

Ventricular demand pacing (VVI) 

In VVI pacing, an electrical impulse is sent to the right ventricle, stimulating ventricular contraction if 

heart rate falls below a pre-set value (Hampton, 2013).  On the ECG, this results in a pacing spike in 

front of the QRS complex (Garcia, 2015).  Because conduction through the ventricles bypasses the 

normal His-Purkinje system, the QRS complex that follows is broad and bizarre, with a discordant T-

wave (Houghton & Gray, 2014) (figure 2).  There is often QT prolongation (Harper & Morris, 2009).     



4 
 

Historically, ventricular leads have been placed in the right ventricular (RV) apex (Hampton, 2013).  

There is emerging evidence that this can result in ventricular dyssynchrony, and an increased risk of 

heart failure (Shimony et al, 2012).  As a result, there is a trend away from this site, and towards lead 

placement in the RV outflow tract (RVOT) or interventricular septum (Bennett, 2013).  When the 

pacing lead is in the RV apex, the spread of electricity is from apex to base, and from right to left.  

This results in an ECG with left axis deviation, and a left bundle branch block (LBBB) type pattern 

(Harper & Morris, 2009) (figure 2).  If pacing is from the RVOT, ventricular activation is still right to 

left, however the impulse sweeps down from base to apex, resulting in right axis deviation but the 

same LBBB configuration (Bennett, 2013).   

 

 

Figure 2.  Ventricular pacing.  Note the broad QRS with an LBBB configuration.  There is left axis 

deviation, suggesting that the lead is in the RV apex.  The underlying rhythm is atrial tachycardia 

(best seen in lead V1).   

 

In the past, VVI pacing was commonly used in patients with intermittent bradycardia, however its 

use has declined in recent years (Harper & Morris, 2009).  This is largely due to concerns about 

pacemaker related symptoms.  In ventricular pacing, the atria are not stimulated, so they contract 

out of sequence and their contribution to ventricular filling is lost (Klabunde, 2012).  The normal 

chronotropic response to exercise is also lost, meaning that heart rate does not increase during 

exertion (Bennett, 2013).  These physiological effects reduce cardiac output and exercise capacity, 

and may cause breathlessness, fatigue and hypotension; this problem is described as ‘pacemaker 

syndrome’ (Wiper et al, 2008).  In the modern era, the only common indication for VVI pacing is 

permanent atrial fibrillation; atrial pacing and sensing are ineffective in this condition, leaving VVI as 

the only choice (Camm et al, 2010).   

 

 

 



5 
 

Dual chamber pacing (DDD) 

In most individuals, a dual chamber system is implanted, with leads in both the right atrium and right 

ventricle (Brignole et al, 2013).  This overcomes many of the problems inherent in single chamber 

pacing; the system can act as an atrial or ventricular pacemaker, or both chambers can be paced 

sequentially.  This ensures that intrinsic rhythm and conduction are used as much as possible, and 

that when pacing is delivered, normal AV synchrony is maintained (Bennett, 2013).  This usually 

prevents the symptoms associated with pacemaker syndrome, providing that programming is 

appropriate (Wiper et al, 2008).  This type of pacing is described as DDD because both chambers are 

sensed, both are paced, and the response to sensing can be either inhibition or triggering (Kalahasty 

et al, 2014).   

On the ECG, dual chamber pacing combines the features of atrial and ventricular pacing, provided 

that both chambers are being paced (Houghton & Gray, 2014).  A pacing spike precedes both the P-

wave and the QRS complex, and the QRS is broad as previously described (Garcia, 2015) (figure 3). 

 

 

Figure 3.  Dual chamber pacing.  Note the pacing spikes in front of both the P-wave and QRS 

complex (not visible in every lead).  The P-wave is quite flat, and hard to see in many of the leads.   

 

Pacing problems 

From an electrical viewpoint, pacing problems are either sensing-related or pacing-related (Bennett, 

2013).  They can be further divided into undersensing, oversensing, failure to pace, and failure to 

capture (Harper & Morris, 2009).  These problems can be detected on the ECG, and should be sought 

during evaluation of the patient, especially if the heart rate is unexpectedly high or low.  Problems 

are more common in temporary systems because lead insertion is often undertaken in emergency 

conditions, and by less senior clinicians (Bennett, 2013).  Temporary leads are also more vulnerable 

to damage or displacement because they are not designed for permanent fixation in the heart, and 

are connected to a pacing box that is outside of the body (Jowett & Thompson, 2007). 
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Undersensing 

A pacemaker will only withhold pacing if it detects intrinsic electrical activity.  In undersensing, the 

pacemaker fails to detect this activity, and delivers inappropriate pacing stimuli (Harper & Morris, 

2009).   This can be detected on the ECG by pacing spikes despite an adequate intrinsic rate 

(Hampton, 2013) (figure 4).  These unnecessary pacing spikes may or may not capture the 

myocardium (i.e. result in depolarisation of the chamber), depending on where they fall within the 

cardiac cycle (Davies, 2009).   

 

 

Figure 4.  Undersensing.  Pacing spikes can be seen despite an adequate intrinsic rhythm; they 

have not captured the myocardium. 

 

Although undersensing is often a relatively benign occurrence, there is the potential for serious 

complication (Bennett, 2013).  A pacing impulse falling on the latter part of the T-wave can trigger 

depolarisation during the relative refractory period, at which time the myocardium is only partially 

repolarised (Fogoros, 2007).  The heart is vulnerable to arrhythmia formation at this point; an ‘R on 

T’ pacing impulse can initiate a ventricular arrhythmia, potentially causing cardiac arrest (Chemello 

et al, 2010).   The sensing threshold can be adjusted on both permanent and temporary pacing 

generators; lowering the threshold allows the device to ‘see’ more electrical activity, and can rectify 

undersensing (Bennett, 2013).  Care must be taken to avoid too low a threshold, as this may result in 

oversensing.   

 

Oversensing 

Oversensing occurs when extraneous electrical activity is sensed by the pacemaker, and incorrectly 

interpreted as chamber depolarisation (Aehlert, 2011).  This can result in inappropriate inhibition of 

pacing; the pacemaker fails to deliver pacing when it is in fact needed (figure 5).  If interference is 

prolonged, severe bradycardia or asystole are possible (Furrer et al, 2004).  Causes of oversensing 

include myopotentials from skeletal muscle contraction, electromagnetic interference, electrical 

activity from other chambers, and lead damage or failure (Harper & Morris, 2009).   Modern 

implantable devices are shielded from most sources of electromagnetic interference, making this a 

rare cause of malfunction in permanent systems (Misiri et al, 2012).   
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Figure 5.  Oversensing.  Pacemaker activity has been inhibited by myopotentials from skeletal 

muscular activity, resulting in a brief period of asystole.   

 

Failure to pace 

Failure to pace occurs when the pacing system fails to deliver an electrical stimulus to the heart 

(Davies, 2009).  Causes include power failure as well as disconnection, fracture or displacement of 

the lead (Aehlert, 2011).  Failure to pace can be recognised when the heart rate on the ECG is below 

the rate set on the pacemaker, but no pacing spikes are visible (Harper & Morris, 2009).  In other 

words, the heart rate is too low, but the pacemaker has failed to respond.  Intermittent failure is 

possible, in which case some pacing spikes will appear as expected, while other will be absent 

(Davies, 2009) (figure 6).  Careful evaluation of the system for power supply or connection faults 

should be undertaken if pacing failure occurs (McNaughton, 2013). 

 

 

Figure 6.  Intermittent failure to pace. There is a single ventricular paced beat, followed by a long 

pause.  Pacing resumes after approximately three seconds.  This is a dangerous situation, as the 

patient appears to have no underlying rhythm; complete pacing failure will result in asystole. 

 

Failure to capture 

Capture refers to myocardial depolarisation following a pacing impulse (Houghton & Gray, 2014).  

Capture fails if the pacing stimulus occurs while the heart tissue is refractory, or if the stimulus is not 

large enough to trigger depolarisation (Aehlert, 2011).  Failure to capture is relatively simple to 

recognise on the ECG; pacing spikes will be seen as expected, however they will not be followed by 

P-waves (in atrial pacing) or QRS complexes (in ventricular pacing) (Harper & Morris, 2009) (figure 7).  

The most common cause of failure to capture is displacement of the pacing lead; the lead may pull 

back from the heart wall, losing adequate contact, or push forward, perforating the heart wall 

(Aehlert, 2011; Harper & Morris, 2009).  Other causes include battery depletion, device or lead 

failure, and an increase in stimulation threshold (Aehlert, 2011).  Stimulation threshold is the 

minimum voltage required to capture the myocardium consistently (Bennett, 2013).  An increase in 

threshold can occur over time, especially if oedema or fibrous tissue develop around the lead tip 

(McNaughton, 2013).  Hyperkalaemia, acidosis and drug therapy (for example flecainide) can also 

increase the threshold (Kalahasty et al, 2014).  Increasing the pacing output (the voltage delivered to 
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the heart) so that it exceeds the stimulation threshold will restore capture in this situation (Aehlert, 

2011).  The increased output should include a safety margin; it is common practice to set the output 

at several times the threshold on temporary pacing systems (McNaughton, 2013).    

 

 

Figure 7.  Failure to capture.  There are regular pacing spikes, however only the first, second, fifth 

and eighth are followed by QRS complexes.  The remaining pacing impulses have failed to capture 

the myocardium. 

 

Management of pacing problems 

The management of pacing problems depends to some degree on the type of system.  Permanent 

pacemakers can be interrogated by placing a sensor over the pacing generator, attached to a 

portable computer (Bennett, 2013).  Sensing and pacing thresholds can be checked and adjusted, 

and lead impedance measured (Kalahasty et al, 2014).  Pacing function can be evaluated from 

current performance, as well as from information stored in the memory of the device (Harper & 

Morris, 2009).   

Temporary systems lack this sophistication, and the investigation of problems relies on evaluation of 

the patient, ECG, and device settings (McNaughton, 2013).  Power supply and lead connections 

should be checked, alongside sensing and pacing parameters (Aehlert, 2011).  Unless a simple 

problem is found, for example a loose connection, expert help should be sought from a cardiologist.  

If lead displacement is suspected, chest x-ray is useful in determining lead position; posterior-

anterior and lateral chest films are typically needed (Torres-Ayala et al, 2014).  Lead repositioning or 

replacement may be necessary, and may be urgent if the patient is compromised, or if there is 

perforation of the heart (Seegers et al, 2009).   

 

Cardiovascular drugs 

Some cardiovascular drugs have little or no direct effect on cardiac electrical activity (Bunker, 2014).  

Others, however, have profound effects on sinus rate, conduction speed through the heart, and the 

repolarisation of myocytes (Fogoros, 2007).  These electrical changes are reflected in the ECG, and 

are useful in guiding drug therapy (Garcia, 2015).  Understanding how drugs influence the ECG 

allows practitioners to predict how safe it is to prescribe or administer these medications (Opie & 

Gersh, 2013).  It also ensures that drug effects are not misconstrued; this is especially important 

when they alter the ST-segment or T-wave, mimicking the effects of ischaemia (Houghton & Gray, 

2014).  Among the most commonly used cardiovascular drugs affecting the ECG are beta-blockers, 

digoxin, flecainide, sotalol and amiodarone (Bennett, 2013).   
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Beta-blockers 

Beta-blockers are among the most widely used drugs in the treatment of cardiovascular disease 

(Khan, 2006).   They bind to beta-adrenergic receptors on multiple organs including the heart, 

attenuating the effects of the sympathetic nervous system and circulating catecholamines (Fogoros, 

2007).  This makes them useful in conditions such as angina, chronic heart failure, and hypertension, 

where a reduction in sympathetic stimulation is desirable (Joint Formulary Committee, 2016).  They 

also reduce the ventricular response during atrial arrhythmias, making them the first choice in the 

management of atrial fibrillation (AF) (Camm et al, 2010).    

Beta-blockers slow the rate of sinus node discharge, as well as conduction speed through the AV 

node (Opie & Gersh, 2013).  During sinus rhythm, this may result in sinus bradycardia and an 

increase in the PR interval (Bennett, 2013).  During AF, the ventricular rate is decreased both at rest 

and during exercise (Lafuente-Lafuente et al, 2009).  The effect of beta-blockers on heart rate can be 

hard to predict; in some individuals it may be minimal despite large doses, while in others even small 

doses can result in profound bradycardia (Erdmann, 2009).  This is especially so in individuals with 

latent conduction system disease, in whom beta-blockers may cause asystolic pauses or AV block 

(Volgler et al, 2012) (figure 8).   The ECG is a useful tool in evaluating this response, although an 

ambulatory recording (e.g. a 24-hour Holter monitor) is often necessary to uncover the true extent 

of any drug effect (Bennett, 2013).  Drug withdrawal may be necessary if there is extreme 

bradycardia, long pauses, or high level AV block.  If stopping the drug is undesirable, a pacemaker 

can be implanted to permit ongoing drug treatment (Camm et al, 2010).   

 

 

Figure 8.   An asystolic pause of almost five seconds in a patient taking bisoprolol for paroxysmal 

atrial fibrillation; the patient reported dizzy spells, but had not lost consciousness. 

 

Digoxin 

The principal use of digoxin is to control the heart rate during atrial fibrillation; the drug is also used 

as an adjunct in chronic heart failure (Camm et al, 2010; McMurray et al, 2012).  Digoxin binds to the 

sodium-potassium pump within the cell membrane, causing increases in intracellular sodium and 

calcium (Chung, 2006).  This results in two significant effects.  Firstly, parasympathetic stimulation to 

the heart is increased, slowing sinus rate and AV conduction (Opie & Gersh, 2013).  Secondly, the 

increase in calcium availability within myocardial cells results in a mild, positive inotropic effect 

(Fogoros, 2007).   

On the ECG, the effects of digoxin are similar to those of beta-blockers (Bennett, 2013).  In sinus 

rhythm, heart rate falls and the PR interval may increase.  During AF, ventricular response is slowed, 

although this effect is seen only at rest (Panchmatia, 2010).  The failure of digoxin to control the 

heart rate during exercise explains why the drug is not recommended as monotherapy in AF, except 

in sedentary individuals (National Institute of Health and Care Excellence (NICE), 2014).  As with 

beta-blockers, patients should be monitored for profound bradycardia, pauses and AV block (Joint 



10 
 

Formulary Committee, 2016).  Digoxin at therapeutic doses also causes changes to the ST-segment 

and T-wave, especially in the lateral leads (Houghton & Gray, 2014).  Down-sloping ST-segment 

depression commonly occurs, in association with T wave inversion (figure 9).  This may be difficult to 

distinguish from other causes of repolarisation abnormality, for example ischaemia, however the 

presence of AF on the ECG, and a current prescription for digoxin, strongly suggests a drug effect 

(Hampton, 2013).   

 

 

Figure 9.  Digoxin effect.  There is widespread down-sloping ST depression and T-wave inversion, 

most obviously in leads V3-V6.  Note that the rhythm is atrial fibrillation; the patient had been 

taking digoxin for several months. 

 

Flecainide 

Flecainide is a class IC antiarrhythmic drug, used in the management of both supraventricular and 

ventricular arrhythmias (Joint Formulary Committee, 2016).   Its most common use is the 

management of paroxysmal atrial fibrillation (PAF); orally, it reduces the frequency of attacks, while 

an acute episode can be terminated by an infusion of the drug (Opie & Gersh, 2013).  Flecainide 

works by blocking sodium channels within cardiac myocytes; this slows the speed of depolarisation, 

and therefore conduction of electrical activity through the myocardium (Bennett, 2013).  On the 

ECG, flecainide may prolong the QRS and PR intervals, although it has little effect on the QT interval 

or heart rate (Fogoros, 2007).  The effect on the ECG is dose-dependent; at higher doses, greater 

prolongation of conduction intervals occurs.   

Like all antiarrhythmic drugs, flecainide is capable of pro-arrhythmia.  This was demonstrated most 

clearly in the Cardiac Arrhythmia Suppression Trial (CAST), in which there was higher mortality in 

heart attack survivors taking the drug compared to placebo (CAST Investigators, 1989).  The 

mechanism of death was thought to be ventricular arrhythmia provoked by the drug.  This finding 

has limited our modern use of the drug to patients without structural heart disease, in whom the 

drug is relatively safe (Aliot et al, 2011).  Flecainide can exacerbate conduction disorders, and 
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precipitate asystolic pauses and AV blocks (Joint Formulary Committee, 2016).  If these occur, or 

there is extreme widening of the QRS or PR intervals, the drug may need to be stopped.   

 

Sotalol 

Although sotalol is a beta-blocker it also has class III antiarrhythmic properties, meaning that it 

prolongs cardiac repolarisation (Joint Formulary Committee, 2016).  It does this by blocking 

potassium channels within cardiac tissues (Fogoros, 2007).  Like flecainide, sotalol is widely used in 

the management of PAF, although it can also be used for other supraventricular or ventricular 

arrhythmias (Camm et al, 2010).   On the ECG, the usual effects of beta-blockers on heart rate and 

AV conduction are observed (Opie & Gersh, 2013).  In addition, there may a significant increase in 

the QT interval, reflecting the prolongation of repolarisation (Hampton, 2013) (figure 10).  This 

results in an increased risk of torsade de pointes, with the level of risk directly proportional to the 

length of the QT interval (Nachimuthu et al, 2012).   If the QTc reaches 500ms, the drug should be 

stopped (Bennett, 2013).  

As well as the length of the QT interval, several other factors should be considered when using 

sotalol.  Firstly, the risk of torsade de pointes is further increased by hypokalaemia; care should be 

taken when using potassium wasting diuretics (Opie & Gersh, 2013).  Secondly, sotalol is excreted 

primarily by the kidney, and will accumulate if renal function is significantly reduced (Joint Formulary 

Committee, 2016).  The drug should therefore be avoided in patients with renal impairment, or the 

dose reduced.  Finally, although sotalol can be used with relative safety in patients with normal 

hearts or uncomplicated coronary artery disease, it should be avoided in patients with structurally 

abnormal hearts (Bennett, 2013).  This recommendation stems from the SWORD trial, which 

demonstrated increased mortality in individuals with left ventricular systolic dysfunction who were 

taking sotalol (Waldo et al, 1996).   

 

 

Figure 10.  QT prolongation in a patient taking sotalol.  The QTc calculated by the ECG machine 

was 506ms; the drug was stopped. 



12 
 

Amiodarone 

Amiodarone is also considered a class III antiarrhythmic drug, because its principal effect is to 

prolong repolarisation by blocking potassium channels (O’Donovan, 2006).  Uniquely, however, it 

also blocks sodium and calcium channels, and exerts a degree of beta blockade (Fogoros, 2007).  It 

therefore has properties from of all of the major antiarrhythmic drug groups.  This makes it a very 

versatile drug in clinical practice; it is highly effective for both atrial and ventricular arrhythmias, has 

little proarrhythmic potential, and can be used in individuals with structurally abnormal hearts (Opie 

& Gersh, 2013).  Unfortunately, this impressive performance comes at a price; amiodarone is 

associated with serious complications including liver, thyroid and lung toxicity (Siddoway, 2003).  

These problems occur most often during prolonged treatment; long term use is therefore limited to 

dangerous arrhythmias such as ventricular tachycardia, or to arrhythmias resistant to other drugs 

(Bennett, 2013).   

Amiodarone slows the heart rate during sinus rhythm as well as during atrial arrhythmias (Garcia, 

2015).  It may also prolong the PR, QRS and QT intervals.  Because of the long loading period needed 

to achieve therapeutic levels of the drug, ECG effects typically develop gradually over a period of 

months (Fogoros, 2007).  Although bradycardia and AV block can be problematic, QT prolongation is 

rarely an issue as, unlike sotalol, amiodarone is not associated with a significant risk of torsade de 

pointes (Siddoway, 2003).   In addition to a regular ECG, patients taking amiodarone should undergo 

regular blood testing for liver and thyroid function, as well as evaluation of lung function (Dixon et al, 

2013). 

 

Electrolyte disturbance and the ECG 

The contraction of cardiac myocytes depends on electrical activity created by the movement of 

electrolytes across the cell membrane (Grant, 2009).  Normal levels of potassium, sodium and 

calcium are important in maintaining normal function; abnormalities can result in arrhythmias, 

cardiac dysfunction or death (Kaplana & Kellum, 2010).   The role of the ECG in detecting electrolyte 

imbalance is limited; changes in serum sodium have little effect on the ECG, while hypokalaemia, 

hypercalcemia, and hypocalcaemia result in minor and non-specific ECG changes (Garcia, 2015).  

These are described in table 2.  The most dangerous electrolyte problem, hyperkalaemia, does result 

in significant electrical changes, making the ECG an important tool in its detection and management 

(Alfonzo et al, 2014).   
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Electrolyte imbalance Possible ECG findings Notes 

Hypokalaemia  Mild ST-segment depression 

 Mild decrease in T-wave 
amplitude 

 Minimal prolongation of the QRS 
complex 

 Prominent U-wave 

ECG changes are usually seen only 
in severe hypokalaemia, e.g. below 
2.7mmol/l (Slovis & Jenkins, 2009). 
 
Hypokalaemia encourages the 
development of ectopic beats, and 
can contribute to the development 
of arrhythmias such as AF and 
flutter 

Hypercalcemia  Shortened QT interval owing to 
ST segment shortening 

 

Hypocalcaemia  QT prolongation caused by 
lengthening of the ST segment  

 

Table 2.  ECG findings in hypokalaemia and calcium disturbance 

 

Hyperkalaemia 

In a normal individual, serum potassium is kept between 3.5 and 5.0mmol/l (Klabunde, 2012).  Blood 

levels are regulated by the kidneys, with excess potassium excreted in the urine (Marieb & Hoehn, 

2015).  Hyperkalaemia, defined as a serum potassium of 5.5mmol/l or more, occurs when renal 

excretion is inadequate, and may be exacerbated by excessive intake of potassium in the diet or the 

release of intracellular potassium into the bloodstream (Alfonzo et al, 2014).   Renal failure is the 

most common cause of hyperkalaemia; others contributory factors include drugs that cause 

potassium accumulation, for example ACE inhibitors, the use of potassium supplements, acidaemia, 

and cell damage due to burns or crush injuries (Aehlert, 2011).  Hyperkalaemia can be classified as 

mild, moderate or severe (Soar et al, 2010) (table 3).   

 

Level Serum potassium 

Mild 5.5 – 5.9mmol/l 

Moderate 6 – 6.4mmol/l 

Severe ≥6.5mmol/l 

Table 3.  Levels of hyperkalaemia (Soar et al, 2010) 

 

On the ECG, progressive change occurs as serum potassium rises; this makes the ECG a useful tool in 

the detection of hyperkalaemia, and in predicting its severity (Alfonzo et al, 2014).  The first change, 

seen in mild to moderate hyperkalaemia, is an alteration in the size and shape of the T-waves 

(Houghton & Gray, 2014).  On a normal ECG, T-waves are asymmetrical and their height does not 

exceed 6mm in the limb leads, and 12mm in the precordials (Garcia, 2015).  In hyperkalaemia, the T-

waves become taller, and may exceed the height of the R-wave (Slovis & Jenkins, 2009).  This gives 

them a peaked or tented appearance (Hampton, 2013).  In one in five individuals, the T-waves also 

develop a narrow, symmetrical shape which contrasts shapely with their usual width and asymmetry 

(Garcia, 2015).  T-wave changes can occur in any ECG lead, but most are most commonly seen in II, 

III and V2 to V4 (Slovis & Jenkins, 2009).  Care must be taken to exclude differentials, which include 
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the hyperacute T-waves of ST elevation myocardial infarction, raised intracranial pressure, and 

normal variant (Houghton & Gray, 2014).  If hyperkalaemia is suspected, immediate assessment of 

serum potassium using arterial or venous blood gas analysis is recommended (Guthrie, 2010).   

As serum potassium climbs above 6.5mmol/l, the PR interval prolongs, and the P-wave progressively 

flattens and widens until it disappears altogether (Garcia, 2015) (figure 11).  The QRS starts to widen, 

and gradually merges with the T-wave, until a rhythm resembling a sine-wave is seen (Garcia, 2015) 

(figure 12).  This is a pre-terminal finding, leading rapidly to asystole, ventricular fibrillation, or a 

wide, pulseless idioventricular rhythm (Slovis & Jenkins, 2009).  ECG progression can be rapid, and 

even small rises above 6.5mmol/l can result in rapid deterioration from tall T-waves to cardiac arrest 

(Alfonzo et al, 2014).  Urgent action to prevent clinical deterioration is therefore paramount; initial 

treatment can be divided into three initial stages 

 Stabilisation of cardiac electrical activity 

 The movement of potassium out of the blood and into the cells 

 The removal of excess potassium from the body  

Methods to achieve these three steps are considered in table 4, and should be complemented by 

continuous monitoring of ECG and vital signs, regular assessment of serum potassium (at least 

hourly initially), and frequent blood glucose sampling if insulin and glucose are given (Alfonzo et al, 

2014).  Once treatment has been initiated, steps to prevent recurrence should be taken, for example 

managing renal function and reviewing the drug chart for medications that may be contributory 

(Houghton & Gray, 2014).   

 

 

Figure 11.  ECG from a patient with a serum potassium of 7.1mmol/l.  T-waves in lead II and the 

precordials are tall, narrow, symmetrical and peaked.  P-waves have disappeared, and the QRS is 

starting to widen.  Urgent action to stabilise the heart, and to correct serum potassium, is 

required. 
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Figure 12.  ECG from a patient with a serum potassium of 9mmol/l.  The QRS has broadened and 

merged with the T-wave, creating a pattern resembling a sine-wave.  This is an ominous finding; 

cardiac arrest is likely without rapid intervention.    

 

 

Step and purpose Treatment  Notes 

1. Stabilise cardiac 
electrical function 

Intravenous calcium chloride or 
calcium gluconate 

10-20ml of calcium gluconate 10% by slow 
injection is commonly used. 

2. Shift potassium into 
the cells 

5-10 units of fast acting insulin 
(e.g. Actrapid) given with 50ml 
of 50% glucose over 5-10 mins 

 

 

10-20mg of salbutamol given by 
nebuliser 

 

 

Sodium bicarbonate may be 
useful if there is acidosis 

Blood glucose should be checked at 0, 15, 
30, 60, 90, 120, 180, 240, 300 and 360 
minutes after insulin administration, and 
then as required. 

 

Salbutamol should only be used in 
additional to, not instead of, insulin and 
glucose. 

 

Sodium bicarbonate is not recommended 
for routine use 

3. Remove potassium 
from the body 

Ion exchange resins (e.g. 
calcium resonium) 

 

Haemodialysis 

Treatment will depend on the cause of 
hyperkalaemia, as well as its severity.  Ion 
exchange resins are only indicated in mild 
to moderate hyperkalaemia. 

Table 4. Management of hyperkalaemia (source: Alfonzo et al 2014; Joint Formulary Committee, 

2016) 
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Conclusion 

Pacing, cardiovascular drugs, and electrolyte disturbance produce characteristic ECG features that 

can alert practitioners to potential problems, and guide patient management (Houghton & Gray, 

2014).  In the paced patient, careful evaluation of the relationship between pacing spikes and the P-

waves or QRS complexes allows the ECG reader to determine whether the atrium or ventricle is 

being paced, or both chambers sequentially (Davies, 2009).  Pacing problems such as undersensing 

or failure to capture can be determined by studying this same relationship (Aehlert, 2011).   The 

detection of pacing problems should trigger an evaluation of the system for faults, with the 

involvement of a cardiologist as necessary. 

The ECG is also useful in evaluating the effect of drugs on cardiac electrical function.  Effects include 

a decrease in heart rate, widening of the PR interval or QRS duration, as well as prolongation of the 

QT interval (Fogoros, 2007).  Profound bradycardia, asystolic pauses, and AV blocks can develop, and 

should be sought using ambulatory monitoring if necessary.   In drugs that prolong repolarisation, 

especially sotalol, careful evaluation of the QT interval is necessary because of the risk of torsade de 

pointes; if the QTc exceeds 500ms, drug discontinuation is recommended (Bennett, 2013).   

Finally, most electrolyte disturbances cause minimal and non-specific change on the ECG (Garcia, 

2015).  The exception is hyperkalaemia, which results in progressive change including tall, peaked T-

waves, loss of the P-wave, and QRS widening (Slovis & Jenkins, 2009).  This dangerous condition can 

rapidly result in cardiac arrest, especially when serum potassium rises above 6.5mmol/l (Alfonzo et 

al, 2014).  Urgent action to stabilise cardiac electrical activity, and reduce serum potassium level is 

essential (Joint Formulary Committee, 2016). 

 

Key points 

 Pacing can be recognised by the presence of pacing spikes in front of the P-wave or QRS 

complex.  Ventricular pacing produces a QRS complex that is broad, and has a left bundle branch 

block configuration.    

 Problems with pacing include under- and over-sensing, as well as failure to pace or capture.  

Examination of the ECG for the presence of pacing spikes, and their relationship to the P-waves 

and QRS complexes permits diagnosis of these problems.  Simple measures to correct problems 

in temporary systems include checking generator settings, power supply, and lead connections.   

 Cardiovascular drugs that affect the ECG include beta-blockers, digoxin, flecainide, sotalol and 

amiodarone.  Changes include slowing of the heart rate, widening of the PR interval or QRS 

duration, and prolongation of the QT interval.   

 All rate slowing and antiarrhythmic drugs can cause profound bradycardia, asystolic pauses, and 

AV blocks.  Sotalol and amiodarone prolong the QT interval, which increases the risk of torsade 

de pointes.  Sotalol is especially dangerous in this respect; if the QTc exceeds 500ms the drug 

should be stopped.    

 Most electrolyte disturbances cause minimal change to the ECG.  The exception is 

hyperkalaemia, in which tall, peaked T-waves progress to loss of the P-wave, and QRS widening 

as serum potassium rises.  Urgent action to prevent cardiac arrest is required; cardiac electrical 

activity must be stabilised and serum potassium level reduced.   
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