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Abstract

This article is set within the real options approach applied to patent valu-
ation. Such evaluation is based on the knowledge of the impact of some events
on the underlying state, which is modeled in discrete time as a spatial point
process, i.e. both size and time of the jumps can be treated as random vari-
ables. This assumption allows us to improve upon the current theory of patent
valuation in some respects. In particular, the propagation of the jumps from
the economic environment to the patent value is not restricted to be immediate,
but can occur with a random delay and with varying intensity, depending on
the time to maturity. These actual features lead to a more general formula for
patent value, that may give rise to a non trivial difference not accounted for in
the existing literature.
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1 Introduction

This paper provides a contribution to the literature on patents valuation. Assigning
economic value to patents is relevant for patentees and at social level. Probably
due to this twofold relevance, the economic valuation of patents has attracted much
attention and efforts among researchers, insomuch that extensive documentation has
been provided since the second half of the ’80s. In this paper we move from the
common assumption that a patent is an option over a technology so that modeling
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can proceed as a derivative contract where the patent value is linked to the properties
of the underlying asset. Indeed, a patent gives the holder the exclusive right (option)
on an invention. The right can be renewed to the expiration date T or be dropped
before the statutory limit, if the holder decides not to pay the renewal fee. The
real options approach is based on the definition of an underlying asset the evolution
of which drives the patent value. In agreement with industrial economics theory,
the underlying asset is given by the cash flow associated to the patent. Specifically,
the fluctuations in the underlying asset represent the quantitative translation of the
qualitative characteristics of the economic environment. Under this assumption, the
underlying is able to capture the uncertainty affecting supply and demand of goods,
the production of which is entitled through patent ownership, research programs from
other firms, the attainment of patents, the changes in the regulatory environment,
etc. These factors are not associated to a continuous time horizon, but rather they
occur at discrete points in time, causing the underlying state to undergo a jump (for
instance, it is quite unrealistic to assume that changes in the laws protecting patents
occur continuously). This fact implies the presence of jumps in the dynamics of the
patent value.
In spite of the relevance that jumps can take place in the real world, to the best of
our knowledge, very little has been said in the literature, bacause most of the models
are formalized in continuous time.

Within the real options approach we will present a very general model meant to
provide a unifying theoretical framework where the existing models of patent valua-
tion can be considered as special cases. The generality of the model also allows for
unconsidered theoretical hypotheses, taking a step forward towards a more realistic
model. As we will see, this can be achieved by incurring the cost of adopting an
unusual process: the Spatial Mixed Poisson Process, SMPP.
Is this cost worth incurring? The answer must be given both in terms of theoretical
advances the model can generate and in terms of economic implications.
As to the theoretical aspects, the approach can produce several new results with
respect to the existing literature. First, it allows tackling the problem of the value
of patents in the presence of both negative and positive jumps in the underlying.1

Second, the renewal process is not contemplated in that part of the literature which
models (only negative) jumps through a Poisson process.2 At the same time, the
renewal process has been extensively modeled in the literature, but dropouts have
been modeled under the ”no jumps” assumption. Our general model puts together
the two strands of literature, modeling the jumping value of a patent in the presence
of a renewal schedule. Specifically, the results generated by the model can be easily
compared to those accruing from the studies related to the patent valuation with
renewal schedule (from Pakes (1986) onward). In this respect, an explicit connection
between real options and the patent renewal schedule literature is proposed. Third,

1As an example of positive jumps think of more effective or rigorous protection policies, such as
the establishment of the Court of Appeals of the Federal Circuit by US Congress or the EU directive
2004/48 on the enforcement of intellectual property rights.

2See for instance Weeds (2003), Lambrecht and Perraudin (2003), Schwartz (2004) and Miltersen
and Schwartz (2004)
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we introduce the realistic feature that not any jump can kill the patent, but only a
large enough jump can do it. This feature is consistent withthe good news principle,
as first spelled out by Bernanke (1983) and more recently taken up by Boyarchenko
(2004) and the literature therein. The principle can be stated as follows. Suppose
that a negative jump is followed by a positive one. If the firm disinvested, after the
unlucky jump, but then the cash flow increased, the firm cannot invest again because
of investment irreversibility. Hence, it was better not to disinvest. In our specific case
disinvestment is represented by not paying the renewal fee, once the patentee misses
one fee the patent cannot be resumed. Hence, the assumption that not any jump kills
the patent is consistent with the good news principle. By the same token, the same
argument applies for the bad news principle in case of investment decisions3.

Fourth, there is a random delay in the transmission of the jump from the under-
lying state to the patent value. Fifth, as the patent gets older, namely approaching
the final date T, its value becomes less sensitive to the jumps in the underlying asset.
That is because the propagation can take place progressively rather than abruptly
and also because some jumps in the underlying asset do not have enough time to
propagate to the patent value. Therefore, we can realistically affirm that the sen-
sitivity of the patent value decreases with respect to the time of the jumps. Sixth,
the adoption of the SMPP avoids the unpleasant hypothesis of no expiration date
(Schwartz and Moon (2000), Bloom and Van Reenen (2002)). Finally, the adoption
of SMPP allows to take into account the dependence between time and size of jumps
in the cash flow. We will turn to all these points in more details when introducing
them formally.
These theoretical advances spawn relevant economic and policy implications. The
main message from the model is that, in principle, the valuation can drastically differ
and policy recommendations can be mistakenly inferred if one neglects the possibility
of positive jumps, and the delay and decay in jumps propagation. Neither a sensible
comparison of patent rights can be made between countries and sectors. Hence, if the
value of patent rights is inadequately estimated, biased incentives will be fostered.
It is important to highlight that the cost to incur in terms of algebra to enjoy the
benefits is not sunk, in the sense that the Mixed Poisson Processes on the line and the
infinite-server queue models are widely known and used (see e.g. Grandell (1997));
and also a spatial setting can be useful in modeling several practical situations (e.g.
spatial queues, see Cinlar (1995)).
From a purely technical point of view, the dynamics of the underlying state is as-
sumed to evolve in discrete time and both sizes and times of the jumps are assumed
to be stochastic variables. This set up allows to obtain an approximation formula
of patent value by providing a computation of the total size of its jumps in a given
period. Since patents are supposed to jump with a certain delay with respect to the
occurrence of the event, the jumps that will occur ”tomorrow” are partially due to
the jumps in the economy that occur ”today”. Hence, to value a patent tomorrow one
must have the knowledge of the jumps in the economy already occurred, the effect
of which will be exerted tomorrow. Moreover, the information set to be used for the

3We are indebted with an anonymous referee for having raised this point.
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estimation contains also a sample of how external events impact on the underlying
asset.

The remaining part of the paper is organized as follows. Section 2 briefly reviews
the real options literature on patents valuation. Section 3 presents the set up of the
model describing the dynamics of the underlying asset, constrained by some economic
and statutory terms which patents are subject to. Section 4 presents the valuation
mechanism for valuing a patent at a given point in time. Finally, Section 5 summarizes
the results and provides some conclusive remarks. The main definitions and the key
results on SMPPs are contained in the Appendix.

2 Review of the literature

The literature on patent valuation is very broad. In this short review we will restrict
our attention to the contributions which tackle the problem with a real option per-
spective. Special attention will be paid to those contributions in which the underlying
asset is supposed to undergo possible jumps.

As patents have the three characteristics of: i) partial irreversibility of the invest-
ment undertaken, ii) uncertainty of future payoffs, iii) possibility to delay the actions,
a prominent part of the literature has regarded at the problem of patent valuation as
one of the (real) options valuation. In this respect, some important papers are worth
mentioning. Pakes (1986) deals with the analysis of future cash flow generated by a
patent in presence of a renewal fee schedule, and solves the optimal stopping problem
of the abandonment of a patented project. The main parameters of Pakes’ model
are estimable from aggregate data on proportions renewed and the author applies
the model to some Western countries. The estimation of patents value in a renewal
fee model is also faced by Pakes and Simpson (1989) who, differently from Pakes,
adopt a parametric estimation strategy. Bloom and Van Reenen (2002) still formu-
late an estimable real option model, but taking advantage of citations data, rather
than renewal, and estimate the impact of patents on firm-level productivity and mar-
ket value. The analysis they propose is eminently empirical, as that of Laxam and
Aggarwal (2003), where the value of a specific patent related to a telecommunication
technology is assigned by means of the real option approach. Baudry and Dumont
(2006) is a prominent Pakes (1986)’s follower. The authors regard at renewal sched-
ules as a tool to evaluate patents in a more general context than that presented by
Pakes and important policy implications are derived. Specifically, renewal fees can be
used to discourage low-value patents, reducing the burden of patent offices. Indeed,
the authors introduce a binomial tree framework, hence a discrete time framework in
which the underlying asset takes on jumping values, to make their results comparable
to a wide number of studies related to financial options.

In spite of the relevance that jumps can take place in the real world, to the best of
our knowledge, very little has been said in the literature. Some exceptions are worth
mentioning: Pennings and Lint (1997) is the first contribution dealing with patent
evaluation in a real options framework in presence of jumps of stochastic amplitude
obeying a Poisson law. The option value of the proposed model depends on the
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expected number and size of the jumps. The model is also verified with an empirical
application to a company operating in the electronic field. We refer the reader to this
paper for a review of earlier contributions on real options and jumps in other areas,
different from patents. Schwartz (2004) models changes in regulatory environment as
a possible jump in the Poisson process that the net cash flow generated by the project
can undergo. In the spirit of McDonald and Siegel (1986) he considers only negative
jumps affecting the value of the patent in two ways. First, reducing the expected rate
of capital gain in the underlying asset, which reduces the value of the option. Second,
increasing the variance of percentage changes in the underlying asset over finite time
intervals, and this tends to increase the value of the option. The net effect is a
reduction in the value of the option (patent). Pennings and Sereno (2011) are close
to Schwartz (2004) for the application to pharmaceutical companies, and assume that
the underlying asset is driven by a a mixed jump-diffusion law. The authors build
a simple model, where the intervention of jumps is limited to the representation of
the binary event of occurrence (or not) of technological failure. Also in this case, the
arrival times are of Poisson-type.

In a context of strategic interactions, the real options approach has been exten-
sively used (Hsu (2007) and Meng (2008) and the literature therein), and jumps
in a Poisson process are used to capture other firms patent attainment (Miltersen
and Schwartz (2004), Lambrecht and Perraudin (2003), Weeds (2002), Schwartz and
Moon (2000)). According to a different approach, Baudry and Dumont (2006) give
a definition of a very broad class of discrete time stochastic processes to describe the
evolution of the rent generated by a patent. In such a way they model regulatory
interventions, such as a change in the schedule of renewal fees, highlighting how the
profile of renewal fees can reduce applications from worthless patents.
In keeping with the idea of Baudry and Dumont to use a new stochastic process, in the
next section we will make use of the SMPP. To the best of our knowledge, few studies
are present in the literature implementing SMPP processes in a real option context.
The first contribution is due to Cerqueti et al. (2009) who develop a real option-like
model with SMPP applied to insurance-reinsurance issues. Cerqueti (2013) proposes
a similar setting to the problem of available stock of natural resources. Whereas, the
contribution of Cerqueti and Ventura (2013) is closer to our paper, as they deal with
a (would-be) patent related problem, still in the real option language with SMPP.
Specifically, Cerqueti and Ventura (2013) model theR&D phase before patent attain-
ment, and focus on competition and strategic interactions in a race context. In their
work, the real option approach hinges on the optimal time for taking out a patent, as
well as on discussing the payoff of the R&D phase. Differently, the model presented
in the next section focuses on the valuation of a patent, right after the R&D phase.

3 The model

The model for the valuation of a patent presented hereafter is in accordance with the
real options approach. The value of a patent, denoted by Ct, is supposed to be driven
by the evolution of an underlying state. According to the literature, the underlying
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state is represented by the cash flow. We stress that the evolution of patent value can
drastically change in the presence of impulsive events. A technological improvement
or the introduction of laws modifying the protection rules can be reasons for a jump
in the dynamics involved in the patent valuation process. Therefore, as already said
in the Introduction, we rely on an underlying process able to provide a quantitative
description of the qualitative shocks occurring in the economic environment, adopting
a discrete time framework. To this respect, it is interesting to note that some models
of patent valuation approximate the results obtained in continuous time with an
approximate formulation in discrete time, recognizing the latter to be more realistic.
”[...] The decision to abandon the project is evaluated at discrete points in time,
instead of continuously. This would seem to be a more reasonable assumption when
analyzing R&D projects [...]” (Schwartz (2004) p. 52).
To make the model as clear as possible, we present it in a stepwise form.

3.1 The cash flow components

The cash flow is supposed to be composed by three parts: the ”normal” component
due to the net cash flow generated by the presence of the patented good on the market,
plus the algebraic value of the jumps due to the events in the economy, minus the
renewal fees. Substantially, for each time t ≥ 0, we can write

Ct = CN
t + CJ

t − CF
t , (1)

where the superscripts F, N and J concern fees, normal flow and jumps, respectively.

To formalize the processes, let us consider a probability space with filtration (Ω,F , {Ft}t≥0, P )
containing all the random variables used throughout the paper.

• The first component can be represented by a stochastic process {Yt}, where t
takes values in a discrete time set S = {sk}k∈N ⊆ (0, +∞), such that Yt are
i.i.d., with mean µ and variance σ2. To avoid unnecessary complexities of the
model, we assume that the dates s’s are deterministic, in that the net cash flows
generated by the presence of the patented good in the market are measured at
fixed times. However, our theoretical proposal remains valid also in the case of
stochastic s’s.

• To model the second component let us denote as T the set of the stopping
times in [0, +∞), i.e.

T := {τ : Ω → [0, +∞) | {τ ≤ t} ∈ Ft, ∀ t ≥ 0}. (2)

We introduce a stochastic point process R = {(τi, ξi)}i∈N capturing qualitative
events and transforming them into quantitative amounts, where the coordinates
τi and ξi represent, respectively, the arrival time and the size of the i-th jump in
the economy. The quantitative events impact on the cash flow through a trans-
formed point process, N . The latter process represents the jumps in the cash
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flow generated by the jumps in R, namely the jumps in the underlying state
generated by the events occurring in the economy. In particular, τi ∈ T , i ∈ N,
with τi taking values in [0, +∞) and ξi ∈ Fτi

, i ∈ N, with ξi taking values in R.
From now on we will interchangeably refer to events or jumps, as they are two
sides of the same coin, being the latter the quantitative image of the former.
The random variables ξi are i.i.d. and independent from the one-dimensional
process {τi}i∈N. It is worth noting that the events are random both in arrival
time and in size.
In our setting we will consider ξi > 0 as a good news for the patent value, and
ξi < 0 as a bad news. For instance, good news can be represented by any policy
aimed at strengthening or widening the patentee’s rights, such as a more effi-
cient judicial system, a decrease in costs of suing an infringer, an enhancement
of the enforcement system, a tougher infringer’s punishment, an increase in the
statutory limit, etc. Shortly, good news are such to produce additional opportu-
nities to exploit the patented innovation, conversely for bad news (Baudry and
Dumont (2006)).
Recall that the presence of jumps in the economy generates jumps in the un-
derlying state, eventually causing the patent value to jump. We describe this
mechanism by introducing a bivariate random variable wi = (w

(1)
i , w

(2)
i ), i ∈ N,

and a transformation φ as follows: wi takes values on [0, +∞)2; w
(1)
i and w

(2)
i

represent a stochastic delay and a stochastic scale factor, respectively, and they
are assumed to be i.i.d.. The function φ is such that

φ : [0, +∞)× R× [0, +∞)2 → [0, +∞)× R,

with
φ(τi, ξi, wi) := (τi + w

(1)
i , w

(2)
i ξie

−τi), i ∈ N, (3)

The transformation φ explains how times and sizes of the jumps in the economy
propagate to the cash flow of the patent. By defining

λi := τi + w
(1)
i , γi := w

(2)
i ξie

−τi , ∀ i ∈ N. (4)

we can define the process N of the jumps in the cash flow as a transformation
of R:

N = {(λi, γi)}i∈N. (5)

Remark 1. Even if the sizes of the stochastic jumps are theoretically unbounded,
without loss of generality one can reasonably assume the existence of a positive
upper and a negative lower threshold sufficiently large for the jumps sizes in the
underlying state dynamics and patent value. Therefore, we assume hereafter the
existence of two positive constants a and b such that, fixed i ∈ N, ξi and γi are
random variables with support in [−a, a] and [−b, b], respectively.

• The third cash flow component is a sequence of known positive amounts {Xj}j∈N
at deterministic fixed dates Tj, with j ∈ N.
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3.2 Economic interpretation of the process N

The definition of φ is based on some important aspects allowing to make the valuation
process as general as possible. We describe hereafter the benefits of the assumed
functional form of φ.

i) In accordance with the current literature, the presence of a jump in the under-
lying asset is meant to capture some stylized facts, for instance, when another
firm takes out a patent on a new, more technologically-sophisticated product.
The new product is supposed to make the valued patent immediately outdated.
In the real world it takes time before the new product is marketed and, once
marketed, it takes time before it is widely diffused to the point of cutting to zero
the profits accruing from the old patent. According to the model, it takes time
before a jump in the economy turns into a corresponding jump in the patent
value. For instance, let’s think of a new patent for some electronic device, such
as a new cell phone or a new television incorporating technology improvements.
It is quite evident that it takes time between the new patent registration and the
complete obsolescence of the old patent. Especially for consumer electronics,
elderly people are less willing to adopt new technologies, making still temporar-
ily worth the old ones. In such a case, the assumption of a no-delay condition
is a näıve approximation. At the same time, we do not deny that there can be
circumstances in which the delay is almost null. For instance, it may be that
clinical trials reveal that a patented drug has some terrible side effects, or it
may be that the government prohibits certain classes of drugs (Miltersen and
Schwartz (2004)). In order to make the transmission mechanism of the jump
from the economy to the patent value as general as possible, we assume that
there is a random delay between the time of occurrence of a shock in the econ-
omy and the time of the correspondent jump in the underlying state dynamics,
i.e. in the patent value. The no delay case can thus be regarded as a special
case, embedded into this very general assumption. This general transmission
mechanism has practical spillovers when determining licensing or selling prices.
If the parties do not take the transmission delay into account, the deal can
finally set a too high (low) price whenever a negative (positive) jump in the
economy occurs and is not yet propagated to the patent. At aggregate level,
macro valuations of patents rights can end up with over/under estimates. It
follows that if important patent-protection measures, concerning other means of
returns-appropriation from invention, are constructed4, misleading policy impli-
cations can be drawn and misleading comparison can be made between countries
and sectors.

ii) The value of a patent falls (rises) when a bad (good) news appears in the
economic system, i.e. the presence of a jump of negative (positive) size. The
entity of the rise or fall of the patent value is not fully controlled by the economic
actors, i.e., the patentees.

4Such as the Equivalent Subsidy Rate, ESR, given by the ratio of the total value of patent rights
relative to R&D used to produce those patents.
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iii) The value of the patent is increasing with respect to the size of the jumps in
the underlying asset.

iv) The propagation process can be progressive rather than abrupt and some jumps
in the economy have not enough time to propagate to the patent value. There-
fore, when modeling the realistic feature, we also consider that the sensitivity
of the patent value decreases with respect to the time of the jumps. Formally,
if two jumps of the same size occur at two different points in time, say τ1 < τ2

the value of the patent has a less remarkable jump in τ2, since the end of the
patent life is nearer. As a by-product, this sort of decay in the strength of the
jumps, associated to the delay in the transmission mechanism, allows to capture
those limiting cases in which the jump in the economy is not transmitted to the
patent because too close to expiry. For instance, suppose a rival firm takes out
a new patent when the old one is close to expiration. The expected profit loss
will be almost negligible, both because of the residual short life of the patent
and because of the delay in the jump propagation to the patent value.

Delay and decay, as explained in points i) and iv), confer the patent valuation
approach the realistic feature to be able to generate worthless patents before the
statutory term, even without the occurrence of a catastrophic event. Indeed, some
jumps occurring in the economy in a final part of the patent life can be not transmitted
to the patent and those jumps transmitted may have a little impact. Indeed, as the
patent ages there are few years in which the patent can earn returns, renewal fees
rise making the patent to be worthless. This feature is not accounted for in the other
models, which necessarily require a killing jump to put an end to the patent life.
In this respect, the model is consistent with the empirical finding by Shankerman
(1998), Lanjouw et al (1998) and Pakes and Simpson (1989) who report that only a
negligible part of patents reaches the final statutory term.

3.3 The null patent conditions

In the spirit of Pindyck (1993), in our context the process R affects N that drives
the value of the patent. Hence, as the patent valuation theory states, the value of a
patent is null when a negative jump with a large enough size occurs. Define as τ ? ∈ T
the random time at which a negative jump with a large enough size occurs. Then one
of the following alternatives holds:

• τ ? = +∞;

• ∃ j ∈ N | τ ? ≡ τj.

Moreover, patents are subject to a statutory limit, i.e. the expiration date T > 0,
when the patent loses its value and the production of the protected good becomes of
public domain5. Hence, the underlying state must be observed till the threshold T if

5Generally, T = 20 years.
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a negative jump large enough does not occur before.
Importantly, a delay is assumed between jumps in the economy and jumps in the
cash flow, but no delay occurs between jumps in the cash flow and jumps in the
patent value. Put another way, differently from the relationship between economic
environment and cash flow, the jumps in the cash flow propagate immediately on the
value of the patent, without any delay. Patents owe their value to the cash flow they
can generate. It follows that one must rule out situations wherein patents take on
values different from zero, although they are unable to generate positive cash flow.
That would happen if a delay occurred between a negative large enough jump in the
cash flow and the corresponding jump in the patent.
Denote as λ? the delay of the stopping time τ ?, according to formula (4). Consistently
with a deadly jump in R at τ ? φ propagates that jump to the patent at the random
time λ? ≥ τ ?.
Hence, the entire cash flow sequence stops naturally in three situations:

• when the expiration date T is reached;

• after the random time λ?, e.g. when the value of the underlying asset becomes
null. In this case, obviously, the last periodical payment is the one immediately
before the stopping time λ?;

• if the patentee reckons that patent renewal is not a suitable economic strategy.
This can happen if the expected net gain from holding the patent is negative.
Formally, for the time being, we can assume that there exists a deterministic
time-varying threshold Ψ(t) such that Xk = 0, for each integer k > j?, where

j? := min{j ∈ N | Xj ≥ Ψ(Tj)}. (6)

We will refer to Ψ(t) as the renewal threshold.

Remark 2. In the patent value literature, some studies focus on the construction of
endogenous models for Ψ(t) and derive the optimal stopping related to the renewal
process. In this respect, the Bellman principle has been used both in deterministic
and stochastic framework (see Pakes (1986) and Pakes and Shankerman (1986)). Of
course our model can be re-formulated in terms of the Bellman equation, but this is
far beyond the scope of the paper and it would imply the writing of a new paper. We
leave this intriguing issue to future research. Rather than an optimization model, we
deal with the construction of patent value dynamics in a very general stochastic set
up, characterized by unpredictable jumps, in order to concentrate on the effects of the
jumps on the patent value when allowing for delay and decay phenomena.

In order to formalize the intervention of the critical index j? we define the time-
dependent property Πt as

Πt := {Tj? ≤ t}.
indicating the renewal time at which the patentee decides not to renew the patent.
When the patent is not renewed, its future cash flow obviously becomes null from
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that time onward. More specifically, when the underlying asset dynamics reaches the
expiration date T or the patent is not renewed, the cash flow becomes immediately
null, without time transformations. Differently, when the economy undergoes a large
enough jump the cash flow becomes null at the random time-transformation of τ ?,
i.e. in λ? and the patent immediately dies.

3.4 The patent value

We introduce an appropriate discount factor β ∈ (0, 1) and denote the patent value at
time t as Ct. As clearly explained by Pakes and Simpson (1989) and Shankerman and
Pakes (1986), Ct can be regarded as the value of patent protection to the patentee
before the next patent renewal. Actually, Ct is a random variable in that it is given
by the future random cash flow. As we will see later, an estimation of the patent
value will be obtained through the computation of its conditioned expected value.
If the renewal fee is paid, the patentee earns the current return to patent protection,
provided that a deadly jump has not intervened yet. Measuring the value of patent
protection by the net present value, the value of the patent equals the future expected
discounted value of the cash flow from holding the patent.
To fix notation, we distinguish two cases.

• If t < λ? ∧ T and property Πt does not hold, then

Ct =
+∞∑
i=1

γiβ
λi−t1{t≤λi≤λ?∧T}−

+∞∑
j=1

Xjβ
Tj−t1{t≤Tj ≤λ?∧T}+

+∞∑

k=1

Ykβ
sk−t1{t≤sk ≤λ?∧T}

(7)
The value of a patent at time t, when a large enough jump in the underlying
asset has not occurred, t < λ?, and the final expiration date, T , has not been
reached is given by the expected discounted sum of the three parts of the cash
flow. The discounted value of the jumps, minus the term related to all the
discounted renewal fees, plus the future expected normal cash flow.

• Otherwise
Ct = 0. (8)

4 Estimation of the patent value

This section is devoted to provide a mechanism for the computation of the patent
value at a given time t.
First of all, a discussion on the randomness of the process involved in the patent value
is needed.
There is a clear correlation between γi and the (τi, ξi) couple. This fact does not allow
to consider R as a stochastic process on the line, and we need to treat R as a Spatial
Point Process. The following Assumption will stand in force hereafter:

Assumption 1. R is a SMPP.
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For the formal definition of SMPP, see Definition 1 in the Appendix.
The statement of Assumption 1 is important for two reasons. First of all, it contributes
to construct a model for simultaneously computing the number and the size of the
jumps in the economy and, consequently, the number and the size of the jumps in
the patent value dynamics. Secondly, according to some recent results, SMPPs can
guarantee the invariance of the stochastic structure between R and N . More precisely,
if R is a SMPP, then the process N is a SMPP too (see the Appendix). This is a key
result for the estimation procedure.
In order to proceed, we now need to define a time interval

I := [0, T ′]

with T ′ ≤ T . The interval I represents the period under scrutiny, and it plays a key
role in providing the estimate we are dealing with.
We now define the regions I ≡ I×[−a, a] and J ≡ I×[−b, b]. Moreover, in agreement
with a common used mathematical notation, we introduce 4 ⊆ R2 and denote by
R(4) and N(4) the number of the elements of the Spatial Point Process R and N
respectively, that are contained in 4. Further, let us define the random subset of
indexes {i1, . . . , iK} ⊂ N, such that

{(τi1 , ξi1), . . . , (τiK , ξiK )} = I ∩R.

We notice that K ≡ R(I).
The stopping time τ ? is located at random jumping time τiK̄

, where K̄ ∈ N or,
alternatively, τ ? = +∞. We denote by Iτ? the restriction of the counting spatial
process R in the set I up to the stochastic threshold τ ?. Formally, we have

{(τi1 , ξi1), . . . , (τin∧K̄
, ξin∧K̄

)}n=1...,K = Iτ? ∩R,

and K ∧ K̄ ≡ R(Iτ?).
Equally, let us denote the random subset of indexes {i1, . . . , iK̃} ⊂ N, such that

{(λi1 , γi1), . . . , (λiK̃
, γiK̃

)} = Jτ? ∩N,

where Jτ? denotes the propagation on the process N in the set J of the restriction of
R due to the presence of the stopping time τ ?. We notice that K̃ ≡ N(Jτ?).
Furthermore, property Πt implies the existence of an index K̃? ≤ K̃ such that K̃? <
j? ≤ K̃? + 1. We denote as Jτ?,? the further restriction on Jτ? driven by property Πt.
We have

{(λi1 , γi1), . . . , (λiK̃? , γiK̃? )} = Jτ?,? ∩N.

We also consider the random subset of indexes {i′1, . . . , i′K′} ⊆ {i1, . . . , in∧K̄}n=1,...,K

such that the delay λi, with i ∈ {i′1, . . . , i′K′}, falls in the set J . We have a conditioning
on the set Iτ? . Taking into account property Πt, we finally define:

{(λi′1 , γi′1), . . . , (λi′
K̃
, γi′

K̃
)} ∩ {(λi1 , γi1), . . . , (λiK̃? , γiK̃? )} = Jτ?,? ∩N

∣∣∣Iτ? .

We denote K ′ ∧ K̃? ≡ N(Iτ? )(Jτ?,?). Evidently, P (N(Iτ? )(Jτ?,?) ≤ R(Iτ?)) = 1.

12



Remark 3. Since a SMPP is a simple process (see Appendix, Lemma 1) and regions
Iτ? and Jτ?,? are bounded, then E[R(Iτ?)] < +∞ and E[N(Jτ?,?)] < +∞.

We now apply the approach of Cerqueti et al. (2009) to provide an approxima-
tion of the expected value of the patent at time t in formula (7). The mechanism is
based on the knowledge of the both the jumps in the economy and in the cash flow
occurring over the time interval I. Define the time interval H = [T ′, T ], the region
H = H × [−b, b] and also consider t ∈ H.
Let Υ = {j1, . . . , jK′′} be the random subset of indexes such that {(λj1 , γj1), . . . , (λjK′′ , γjK′′ )} =
Hτ?,? ∩N. As usual, Hτ?,? denotes the restrictions on the process N in H due to the
presence of the threshold τ ? for R and the property Πt for N . By definition of the
process N , we can also write K ′′ ≡ N(Hτ?,?).
We omit hereafter the subscripts τ ? in I and τ ?, ? in J and H to have a less cumber-
some notation. Nevertheless, the computed quantities have to be intended under the
threshold condition τ ? for the process R and under the property Πt for the process N .
In this framework, the random amount CJ

t can be written as follows:

CJ
t ≡

∑
j∈Υ

γj. (9)

We will approximate the conditional expectation of CJ
t given:

• the number R(I) of jumps in the economy during the interval I;

• the number N(J) of the jumps in the cash flow, and therefore in the patent
during I;

• the number of jumps in the economy occurred over I propagated to the patent
in the same time interval. We denote this quantity as N(I)(J).

We consider two partitions ∆ and Ψ of H as follows:

∆k := {H(k)
s }s=1,...,k, k ∈ N, (10)

where H
(k)
s := H × (c

(k)
s−1, c

(k)
s ], with s = 1, . . . , k, c

(k)
0 = −b, c

(k)
k = b and, for each k,

{c(k)
s } is increasing with respect to s;

Ψh := {G(h)
v }v=1,...,h, h ∈ N, (11)

where G
(h)
v := (t

(h)
v−1, t

(h)
v ]× [−b, b], with v = 1, . . . , h, t

(h)
0 = T ′, t

(h)
h = T and, for each

h, {t(h)
v } is increasing with respect to v.

A further refined partition of H can be obtained by the intersection of the partitions
defined in (10) and (11). We have

∆k ∩Ψh =
{

H(k)
s ∩G(h)

v

}
v≤h; s≤k

k, h ∈ N, (12)
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Fix the four integers s, v, h, k. We denote by b
(k,h)
s,v the expected number patent jumps

observed in the time interval (t
(h)
v−1, t

(h)
v ] with size (c

(k)
s−1, c

(k)
s ], conditioned on the pre-

vious history in period I, i.e.

b(k,h)
s,v ≡ E

[
N(H(k)

s ∩G(h)
v )|R(I) = n′, N(J) = n′′, N(I)(J) = m

]
. (13)

The next result provides a closed form expression to compute b
(k,h)
s,v , for any (k, h) ∈ N2

and (s, v) ∈ {1, . . . , k} × {1, . . . , h}. Evidence is given in Cerqueti et al. (2009).

Proposition 1.

b(k,h)
s,v =

+∞∑
n=0

n∑

l=0

n
[M?

(Ī)
(H

(k)
s ∩G

(h)
v )]n−l

(n− l)!

[M?
(I)(H

(k)
s ∩G

(h)
v )]l

l!
×

×
∫ +∞

0

λn−le
−λM?

(Ī)
(H

(k)
s ∩G

(h)
v )

u(λ; I, J, n′, n′′,m)dλ·
∫ +∞

0

λle−λM?
(I)

(H
(k)
s ∩G

(h)
v )u(λ; I, J, n′, n′′,m)dλ,

where

u(λ; I, J, n′, n′′,m) =
λn′′−m+n′e

−λ[M?
(Ī)

(J)+M(I)]
u(λ)∫ ∞

0

λn′′−m+n′e
−λ[M?

(Ī)
(J)+M(I)]

u(λ)dλ

is the posterior distribution on Λ defined in Eq. (23).

Proposition 1 allows to get an upper and a lower approximation of E[CJ
t |R(I) =

n′, N(J) = n′′, N(I)(J) = m].
Consider the following sequences:

φ̄k,h :=
k∑

s=1

h∑
v=1

c(k)
s β−(t−t

(h)
v−1)b(k,h)

s,v ,

φ̂k,h :=
k∑

s=1

h∑
v=1

c
(k)
s−1β

−(t−t
(h)
v )b(k,h)

s,v .

For any h, k ∈ N, we have

φ̂k,h ≤ E[CJ
t |R(I) = n′, N(J) = n′′, N(I)(J) = m] ≤ φ̄k,h. (14)

{φ̂k,h} is non-decreasing and {φ̄k,h} is non-increasing with respect to k and h. More-
over, there exists a nonnegative constant dependent on t, named p(t), such that

lim
k,h→+∞

φ̂k,h = lim
k,h→+∞

φ̄k,h = p(t).

By (14), taking the limit, we can conclude that

E[CJ
t |R(I) = n′, N(J) = n′′, N(I)(J) = m] = p(t). (15)
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Assume that Fλ? is the (marginal) distribution function of λ?.
We have

E[Ct|R(I) = n′, N(J) = n′′, N(I)(J) = m] =

= p(t)− E
[ +∞∑

j=1

Xjβ
Tj−t · 1{Tj∈[t,λ?∧T ]}

]
+ E

[ +∞∑

k=1

Ykβ
sk−t1{sk ∈[t,λ?∧T ]}

]
=

= p(t)−
+∞∑
j=1

Xjβ
Tj−t · 1{Tj∈[t,T ]} · P (Tj ≤ λ?) +

+∞∑

k=1

µβsk−t · 1{sk∈[t,T ]} · P (sk ≤ λ?) =

= p(t)−
+∞∑
j=1

Xjβ
Tj−t ·1{Tj∈[t,T ]} ·[1−Fλ?(Tj)]+

+∞∑

k=1

µβsk−t ·1{sk∈[t,T ]} ·[1−Fλ?(sk)]. (16)

4.1 Economic discussion of the mathematical result

Equation (16) provides the value of the patent at time t. This value is different from
zero under the constraints relative to the negative jump large enough, the renewal
threshold and the expiration date.
It is worth noting that Equation (16) is perfectly in line with the literature on renewals
(e.g. Shankerman and Pakes (1986) eq. (1), Pakes and Simpson (1989) eq. (1),
Baudry and Dumont (2006) eq. (4)), in that the value of the patent at time t is
nothing but the expected net gain discounted from the valuation time, t, till its
possible death. Not surprisingly, this value is given by the sum of three components.
A first component stemming from the discounted expected value of the jumps in
the underlying asset, p(t); a second negative component due to the discounted value
of the renewal fees payable in the future. In this quantity, the term [1 − Fλ?(·)]
captures the presence of the stopping time λ? associated to a ”catastrophic jump” of
the underlying asset, responsible for the collapse of the patent value. That is, if a
renewal fee Xj is due in a time Tj smaller than the delay λ? of the stochastic time
τ ?, it has to be inserted in the computation. Otherwise Xj does not feed into the
summation in (16). Finally, a third component concerning the expected discounted
value of the normal flow, where the same agument about [1− Fλ?(·)] applies.

Despite its intuitive significance and the close similarity to the aforementioned
literature, (16) reveals some critical considerations. Recall that p(t) is a theoretical
computation of the aggregate discounted cash flow at a given time t due to the jumps
in the economy, conditional on past information. Looking at the time profile of the
computation of patent value, we can claim that p(t) comes form the the algebraic
sum of three components:

p(t) = p
(a)
H (t) + p

(b)
H (t)− p

(c)
H (t), (17)

where p
(a)
H (t) represents the jumps in the patent due to the jumps in the economy

occurred in H; p
(b)
H (t) represents the jumps in the patent value due to the jumps in

the economy occurred before H and propagated in H; finally, p
(c)
H (t) represents the

jumps in the patent due to the jumps in the economy occurred in H and propagated
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after H.
For given renewal schedule and normal flow, formula (17) is useful to compare the
patent value obtained under (16) with the patent value obtained under an alternative
naive model. By naive model, we mean a model in which no delay between the
economy and the patent jump is assumed. Under this restrictive hypothesis, let us
denote by p̃H(t) the aggregation of the expected discounted value of the jumps in the
cash flow at time t, due to the jumps in the economy over a time interval H. The no
delay condition implies that

p̃H(t) = p
(a)
H (t), (18)

where p
(a)
H (t) is defined as in (17).

By (17) and (18), we generally have that p(t) 6= p̃H(t), since there is no reason to

expect p
(b)
H (t) = p

(c)
H (t). Therefore, we argue that paying a little price in terms of

algebraic effort, the model better fit the real world, providing us with the patent
value in a closed form solution. More remarkably, (16) and (17) show potential
source of bias when estimating the value of patents in the ”no delay” hypothesis. So
far, the comparison between our model and an alternative naive one has been kept
as simple as possible, but the bias can be worsened if one considers also that naive
models contemplate neither the possibility of positive jumps nor the decay process of
the transmission mechanism. Furthermore, if a naive model is applied to determine
the value of patent rights in two countries or in two sectors, there is no reason to
believe that the two biases will take on the same sign and the same intensity, hence
the comparison can be meaningless. In other words, p(t) = p̃H(t) is a special case of
(16).
A quantitative appraisal of the difference is far beyond the scope of this paper. We
limit ourselves to bring it to notice.

5 Conclusions and further research

This paper is a generalization of the existing models for valuing a patent in a real
options framework. Briefly speaking, the generalization consists in accounting for
positive and negative random jumps, inducing possible delays in the transmission
mechanism between the jumps in the underlying process and the corresponding jumps
in the patent value, considering a decay process of the intensity of the shocks occurred
to the economy and considering also the dependence between size and time of the
jumps in the cash flow due to jumps in the economy. In this respect, if a shock
intervenes in the economy when the patent is close to expiration, caeteris paribus, it
will affect the patent with lower intensity.
We have suggested that the inclusion of these hypotheses is essential to add realism
to the valuation process. In turn, this step also brings significant improvements, such
as a solution to patent valuation in a closed form, without assuming the absence of
expiration and considering the presence of non killing jumps. It follows that patent
evaluation can greatly differ whether our model is adopted or a more naive approach
is followed. Many factors account for that difference. Empirical works (Schankerman
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(1998), Lanjouw et al. (1998)) report that the distribution of the value of patents
is highly skewed, there are many patents with low value and just a few with a high
one. Our model sensibly assumes that when a low-valued patent is taken out by
a competing firm, the high-valued patents undergo a non deadly jump. Therefore,
the number of these jumps is quite far from being negligible and, consequently, the
cumulated change in the high-valued patent is not marginal too. Moreover, the delay
in the transmission mechanism is such that the patents value is accidentally equal
under the two models, and the differences in both sign and magnitude can be hardly
predicted.
Giving an estimate of the value of patent rights through a naive model, from a policy
point of view, can lead to biased results that hinder a meaningful comparison between
sectors and countries. If policy recommendations and interventions are based on a
biased comparison, misleading incentives may be put into play.
From a theoretical point of view, it is worth stressing that the dependence of the γ’s
on the τ ’s prevents to deal with processes on the line and motivates the assumption
that R is a SMPP. In fact, consider the familiar simple model described as follows:
(i) the process {τi}i∈N is a one-dimensional Mixed Poisson Process; (ii) the ξ’s are
i.i.d. and independent of the τ ’s; (iii) the γ’s are i.i.d. and independent from the
process R.
Then, N has the same stochastic structure described by the process R identified by
conditions (i) and (ii). In our specific case, as condition (iii) does not hold, R and
N do not have the same structure. To state an invariant property between R and
N and, at the same time, maintaining the validity of conditions (i) − (iii), we need
to abandon the usual Mixed Poisson framework and let the process R be a SMPP.
This allows us to maintain the model as general al possible and to proceed with the
estimation.

Another key point that would be worthwhile tackling in a succeeding study is
the empirical evaluation of patent rights under the present approach, through an
econometric estimate. A natural comparison between our model and Pennings and
Lint (1997) can be then put forward: indeed, Pennings and Lint (1997) model can
be viewed as a benchmark model, and our framework as an extension. Specifically,
in Pennings and Lint (1997) the cash flow process does not include delays and time-
variations of the jump times. However, Pennings and Lint do not deal with SMPPs,
and so their paper is radically different from the present one. Having said this, it is
important to note that simulating a SMPP represents a challenging issue, which has
never been treated in the literature. We are currently working in this direction.
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6 Appendix: some theory on Spatial Mixed Pois-

son Processes

This Appendix contains the definition and some recent results on SMPPs, that can
be already found in the literature.
Let us define a probability space (Ω,F , P ) containing all the random variables in-
volved in our discussion.
SMPPs are particular spatial point processes. For a survey of the general theory of
spatial point processes, we remind to Daley and Vere-Jones (1988) and Stoyan et al.
(1995).
Let us consider a measure space (Rk,B(Rk),M), where B(Rk) is the Borel σ-algebra
and M is absolutely continuous with respect to the Lebesgue measure. We also intro-
duce a nonnegative random variable Λ with probability distribution U : R→ [0, 1].

Definition 1. A spatial process R is Mixed Poisson with mixing distribution U and
baseline intensity measure M(·) if and only if, for I ∈ B(Rk) and for n ∈ N,

P (R(I) = n) =

∫ ∞

0

e−λM(I) [λM(I)]n

n!
dU(λ). (19)

We need some properties on the SMPPs, that have been used in our work.
Since M is absolutely continuous with respect to the Lebesgue measure, the following
result states immediately.

Lemma 1. A SMPP is a simple point process.

Now, consider a spatial point process R ≡ {Xi}i∈N, with Xi ∈ X ⊆ Rk, k ∈ N,
for any i ∈ N.
Consider a sequence of i.i.d. random variables W = {Wi}i∈N taking values on a set
W ⊆ Rn for some n ∈ N.
Define a transformation

φ : X ×W → Y ⊆ Rk,

where φ (·, w) : X → Y is measurable and one-to-one for any fixed w ∈ W .
We define the transformed spatial point process as follows:

N = {φ(Xi,Wi)}i∈N. (20)
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We can also write N = Φφ (R,W) instead of (20).
The following theorem is already known in the literature (see e.g. Cinlar (1995))
and a proof based on stochastic geometrical arguments can be found in Foschi and
Spizzichino (2008).

Theorem 1. Let R be a SMPP with mixing distribution U and baseline intensity
measure M . Consider a sequence of i.i.d. random variables W = {Wi}i∈N, with
distribution G and independent of R.
Then N = Φφ(R,W) is a SMPP with the same mixing distribution U and intensity
measure

M?(J) =

∫

Rn

M(φ−1
w (J))dG(w),

where J ⊆ Y and X ∈ φ−1
w (J) if and only if φ(X, w) ∈ J .

Theorem 1 is a key result in our work, since it explains the invariance of SMPPs
with respect to a very general class of transformations.
A further result can be provided concerning conditional estimates of SMPPs realiza-
tions. Let us consider three regions I ⊆ X , J,H ⊆ Y . We aim at estimating the
number of points of N fallen in H, knowing the restriction of the processes R and
N to the regions I and J respectively. First of all, we need to introduce a notation
describing the number of points of R fallen in I and sent by the transformation φ into
J or into H. The latter quantities are represented by the random variables N(I)(J)
and N(I)(H) respectively, given by:

N(I)(K) ≡
∑
α∈A

1{φ(Xα,Wα)∈K}1{Xα∈I}, K ∈ {J,H}. (21)

A straightforward computation proves the following result:

Lemma 2. For a given I ⊆ X , N(I) can be thought of as a SMPP of its own, with
mixing distribution U and baseline intensity measure

M?
(I)(J) =

∫

Rn

M(I ∩ φ−1
w (J))dG(w).

Define the event:

E(l,m) ≡ {N(I)(H) = l, N(I)(J) = m}, l, m ∈ N ∪ {0}.
In Cerqueti et al. (2009), the following theorem is proved:

Theorem 2. For arbitrary subsets I, J, H, we have

P (N(H) = n|R(I) = n′, N(J) = n′′, E(l,m)) (22)

=

∫ ∞

0

[λM?
(Ī)

(H)]n−l

(n− l)!
e
−λM?

(Ī)
(H)

u(λ; I, J, n′, n′′,m)dλ,

where

u(λ; I, J, n′, n′′, m) =
λn′′−m+n′e

−λ[M?
(Ī)

(J)+M(I)]
u(λ)∫ ∞

0

λn′′−m+n′e
−λ[M?

(Ī)
(J)+M(I)]

u(λ)dλ

. (23)
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Theorem 2 also provides an estimate of the parameter Λ. We notice, in fact, that
u(λ; I, J, n′, n′′,m) coincides with the posterior distribution of Λ given the observa-
tion of the event {R(I) = n′, N(J) = n′′, N(I)(J) = m}, i.e. u(λ; I, J, n′, n′′,m) =
U(λ|R(I) = n′, N(J) = n′′, N(I)(J) = m). This fact allows us to explicitly derive the
distribution of the transformed process N , starting from the definition of the SMPP
R.
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