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Abstract The space of rigid-body displacements that move a line so that its remains
in contact with a fixed point is studied. This constraint variety is related to robot
surgery where a straight, rigid cannula is inserted into the patient through a trocar.
A surgical robot manipulates the cannula so the insertion point is fixed. The space
of displacements determined by a pair of these constraints is also studied briefly.
This correspond to a pair cannulas with their ends rigidly connected.

1 Introduction

This work is inspired by robot surgery, however the subject of this article is the
geometry of robots. In robot surgery, tools are introduced into the patient’s body
through a trocar or “port”. This port is a point on the patient’s body through which
the robot inserts a long thin cannula, the robot can also rotate the cannula about the
point defined by the port. The rigid-body motion of a cannula is thus subject to a
geometric constraint. The line defined by the cannula must pass through the point
specified by the port. See [2] for a brief review of the history of this subject from
the point of view of kinematics.

We begin with some mathematical background. The use of dual quaternions to
represent rigid-body displacements dates back to E. Study at the beginning of the
20th century and is well known, see for example [3]. A rigid-body displacement can
be represented in two ways by dual quaternions. A dual quaternion has the form,

g = (a0 + a1i + a2 j + a3k) + ε(c0 + c1i + c2 j + c3k).
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Here, i, j and k form a base for the quaternions satisfying the usual rules for quater-
nions i2 = j2 = k2 = −1, i j = − ji = k and so forth. The element ε is the dual unit
which commutes with all quaterions but squares to zero, ε2 = 0. The Study param-
eters, a0 , a1 , . . . , c3, are real numbers. Not all dual quaterions represent rigid-body
displacements. Taking only the dual quaternions satisfying the equations,

a2
0 + a2

1 + a2
2 + a2

3 = 1 (1)

and
a0c0 + a1c1 + a2c2 + a3c3 = 0 (2)

gives elements that comprise the double cover of the group of rigid-body displace-
ments. This is the group Spin(3) o R3. Both, g and −g give the same rigid-body
displacement. The elements satisfying these two equations form an affine algebraic
variety.

Alternatively, we can think of the Study parameters as homogeneous coordinates
in a 7-dimensional projective space P7. This has the effect of identifying the ele-
ments g and −g since they only differ by multiplication by −1, a non-zero constant.
Equation (1) cannot apply to these elements as it is not homogeneous. Equation
(2) does apply, and dual quaternions satisfying this homogeneous equations form
a 6-dimensional projective quadric variety usually known as the Study quadric.
(A quadric is simply a variety of degree 2). Every rigid-body displacement cor-
responds to a unique dual quaternion in the Study quadric. Some elements of the
Study quadric however, are not rigid-body displacements. These elements lie on
the 3-dimensional plane lying entirely in the Study quadric and are defined by the
equations a0 = a1 = a2 = a3 = 0. This 3-plane will be referred to as A∞.

Away from A∞, dual quaternions in the Study quadric can be written as,

g = (a0 + a1i + a2 j + a3k) + ε(c0 + c1i + c2 j + c3k) = r + ε
1
2

tr

where r is an ordinary quaternion representing a pure rotation and t = txi+ty j+tz k is
a pure quaternion representing a translation with translation vector ~t = (tx , ty , tz)T .
The action of such a rigid-body displacement on a point (x , y, z) is given by the
product,(
r + ε

1
2

tr
) (

1 + ε(xi + y j + zk)
) (

r− + ε
1
2

r−t
)

= (rr−)
(
1 + ε

(
r xi + y j + zk)r− + t

))
where − denotes the quaternion conjugate so that rr− is a real scalar. Further, details
can be found in several standard texts including [3].

In algebraic geometry the concepts of Veronese and Segre embeddings are fun-
damental. The Veronese embedding maps a projective space Pn into a projective
space of larger dimension. Consider the n-dimensional projective space Pn with ho-
mogeneous n + 1 coordinates, x0 , x1 , . . . , xn. The image of the degree d-Veronese
embedding is parameterised by all

(
n+d−1

d

)
degree d monomials in the xi coordinates.

That is, the image lies in Pm with coordinates y0 , y1 , . . . , ym where m =
(

n+d−1
d

)
− 1
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and y0 = xd
0 , y1 = xn−1

0 x1 , . . . , ym = xd
n . The image of the this map is known as a

Veronese variety, it can be shown to lie on a number of quadric hypersurfaces in Pm.
The simplest example is the degree 2 embedding of P1 in P2. This Veronese variety
is a conic curve parameterised as (x2

0 : x0x1 : x2
1) which is clearly the conic deter-

mined by the homogeneous equation y0y2 − y2
1 = 0. Veronese varieties are generally

not complete intersections, so Bézout’s theorem cannot give their degree. However,
it is possible to find the degree of a general Veronese variety, in [1, p.231] it is shown
that the degree of the degree d embedding of Pn is dn.

The Segre embedding maps the Cartesian product of projective spaces into an-
other projective space. If the original projective spaces are Pn × Pm with coordinates
xi and y j then the image of the Segre embedding, is parameterised by the possi-
ble products of pairs of coordinates. If zk are the homogeneous coordinates of a Pq

where q = (n + 1)(m + 1)− 1 = nm + n + m, then the image of the Segre embedding,
the Segre variety, is parameterised by z0 = x0y0 , z1 = x0y1 , . . . , zq = xn ym. The
simplest example here is the embedding of P1 × P1 in P3, given by, z0 = x0y0 , z1 =

x0y1 , z2 = x1y0 and z3 = x1y1. This Segre variety is given by the quadric surface
z0z3 − z1z2 = 0. In general, Segre varieties are not complete intersections but lie on
several quadric hypersurfaces. The degree of the Segre variety Pn × Pm is

(
n+m

n

)
, see

[1, p.233].

2 The Displacement Variety

In [6] the problem of finding the subvariety of displacements that move a point so
that it remains in contact with a fixed plane was studied. Here the inverse problem of
how to move a plane so that is remains in contact with a fixed point is addressed first.
In [7], it was shown that reversing the order of an open loop kinemetic chain inverts
the displacements that the end-effector can perform. If the variety determined by
the possible displacements is given implicitly by equations in the Study parameters,
then the equations satisfied by the inverses can be found by changing the signs of the
coefficients which multiply odd numbers of the parameters a1 , a2 , a3 and c1 , c2 , c3.

Here we begin by looking at the varieties defined in terms other representations
of the group of rigid-body displacements. Suppose we represent the fixed point by
the extended vector,

p̃ =


px

py

pz

1

 and the plane by the 4-vector, π =


nx

xy

nz

−d

 ,
where nx , ny and nz are the components of the unit normal vector to the plane and
d is the perpendicular distance from the plane to the origin. If the plane contains the
point we have the following relation,

p̃Tπ = pxnx + pyny + pznz − d = 0.
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The action of the group of rigid-body displacements on the plane is given by the
inverse-transpose of the standard 4 × 4 representation of SE(3),

π′ =

(
R 0
−~t T R 1

)
π = Mπ,

where, as usual, R is a 3 × 3 rotation matrix and ~t the translation vector of the dis-
placement. So, the displacements of the plane which preserve the contact between
the point p̃ and the plane π must satisfy the equation,

p̃T Mπ = p̃T
(

R 0
−~t T R 1

)
π = 0. (3)

Substituting the Study parameters a0 , . . . c0 , . . . c3, for the components of the 4 × 4
matrix M gives,

M =


a2

0 + a2
1 − a2

2 − a2
3 2(a1a2 − a0a3) 2(a1a3 + a0a2) 0

2(a1a2 + a0a3) a2
0 − a2

1 + a2
2 − a2

3 2(a2a3 − a0a1) 0
2(a1a3 − a0a2) 2(a2a3 + a0a1) a2

0 − a2
1 − a2

2 + a2
3 0

τx τy τz ∆

 , (4)

where

τx = 2(a1c0 − a0c1 − a3c2 + a2c3),
τy = 2(a2c0 + a3c1 − a0c2 − a1c3),
τz = 2(a3c0 − a2c1 + a1c2 − a0c3),

(5)

and ∆ = a2
0 + a2

1 + a2
2 + a2

3, which has been included to make the equations homoge-
neous. Equation (3) can then be written as,

gT Q(p, π)g = 0,

with gT = (a0 , a1 , a2 , a3 , c0 , c1 , c2 , c3). These quadrics can be written as 8 × 8 sym-
metric matrices, see [6] for details on how this can be done.

As examples, suppose the fixed point is the origin, p̃T
0 = (0, 0, 0, 1) and the plane

is initially the xy-plane, πT
xy = (0, 0, 1, 0) or initially the xz-plane πT

xz = (0, 1, 0, 0),
the quadrics for the possible displacements of these planes will be,

gT Q(p̃0 , πxy)g = 2(a3c0 − a2c1 + a1c2 − a0c3)

and
gT Q(p̃0 , πxz)g = 2(a2c0 + a3c1 − a0c2 − a1c3).

Now, it is tempting to think that the conditions for a single point to lie on a
line can be thought of as a pair of point-plane constraints where the same point is
constrained to a pair of planes intersecting along the given line. For example, the
displacements which move the x-axis so that it remains in contact with the origin,
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lie in the intersection of the Study quadric with both Q(p̃0 , πxy) and Q(p̃0 , πxz).
However, this is not the whole story.

Consider how this subspace of displacements could be parameterised. The dual
quaternions which preserve the incidence of a point with a line form a P3 × P1 Segre
variety in the Study quadric. Suppose the point is initially located at the origin and
is constrained to remain on the x-axis. Clearly any translation along the line will
be such an element as will any rotation about the origin. Combining these gives a
4-dimensional set of dual quaternions that can be parameterised as,

g = (µ0 + µ1i + µ2 j + µ3k)(λ0 + ελ1i),

where µi and λ j are arbitrary parameters. The parameters (λ0 : λ1) can be thought
of as homogeneous coordinates for a P1 and (µ0 : µ1 : µ2 : µ3) for P3. The image in
P7 is given in coordinates by g = a + εc with,

a = λ0µ0 + λ0µ1i + λ0µ2 j + λ0µ3k ,

c = −λ1µ1 + λ1µ0i + λ1µ3 j − λ1µ2k .
(6)

It is clear that any point-on-a-line can be transformed to this configuration using
a suitable conjugation in the SE(3). This Segre variety lies in several quadrics in
P7, the equations of these quadrics can be found by asserting that the rank of the
following matrix is 1 or less: (

a0 a1 a2 a3
c1 −c0 −c3 c2

)
.

This gives 6 quadrics,

Q1 = a0c0 + a1c1 = 0, Q4 = a1c3 − a2c0 = 0,
Q2 = a0c3 + a2c1 = 0, Q5 = a1c2 + a3c0 = 0,
Q3 = a0c2 − a3c1 = 0, Q6 = a2c2 + a3c3 = 0.

The variety will lie on any linear combination of these six. In particular, it is
straightforward to check that the Study quadric and the quadrics gT Q(p̃0 , πxy)g
and gT Q(p̃0 , πxz)g, all lie in the linear system formed by these quadrics, the Study
quadric is, Q1 + Q6 = a0c0 + a1c1 + a2c2 + a3c3 = 0, see (2). The other two are,
gT Q(p̃0 , πxy)g = 2(Q5 − Q2) = 0 and gT Q(p̃0 , πxz)g = −2(Q3 + Q4) = 0.

The degree of such a Segre variety is
(

n+m
n

)
=

(
3+1

1

)
= 4. This suggests that there

is another component to the intersection of the 3 quadrics. The intersection of the
quadrics gT Q(p̃0 , πxy)g and gT Q(p̃0 , πxz)g is a five dimensional variety, that can be
parameterised as,

a0 = λ0µ0 , c0 = −λ1µ1 + λ2µ0 ,
a1 = λ0µ1 , c1 = λ1µ0 + λ2µ1 ,
a2 = λ0µ2 , c2 = λ1µ3 + λ2µ2 ,
a3 = λ0µ3 , c3 = −λ1µ2 + λ2µ3.
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This is a linear projection of the Segre variety, P2 × P3. Now, substituting this pa-
rameterisation into the Study quadric gives,

a0c0 + a1c1 + a2c2 + a3c3 = λ0λ2(µ2
0 + µ2

1 + µ2
2 + µ2

3)

Hence the intersection of all three quadrics consists of two 4-dimensional varieties.
For the first λ2 = 0 and the Segre variety discussed above is recovered. The second
component arises when (µ2

0 + µ2
1 + µ2

2 + µ2
3) = 0. All solutions to this condition will

be complex and are thus not physically valid displacements. When λ0 = 0 the result
is the 3-plane A∞, which lies in the both the Segre variety P1 × P3 and the complex
residual variety.

The displacement variety described above can be realised with an SP dyad. That
is, the end effector of a linkage consisting of a spherical and a prismatic joint will
be able to adopt all displacements that maintain contact between a line parallel to
the prismatic joint passing through the centre of the spherical joint. If the final link
of this mechanism is rigidly attached to, say an RR linkage then, in general, the re-
sulting closed-loop mechanism will have 4 assembly configurations. This is because
the displacement variety of the RR mechanism is known to be the intersection of the
Study quadric with a 3-plane. The general number of assembly configurations is the
intersection of this variety with the P3 × P1 Segre variety traced by the SP linkage.
The Segre variety lies in the Study quadric so intersecting with the 3-plane gives 4
points; the degree of the Segre variety.

3 Two Ports

In robot surgery, several cannulas are used. Suppose the micro grippers at the ends
of two such cannulas hold a rigid body, a needle perhaps. What rigid displacements
can the body be subjected to now? In terms of mechanisms, this question is equiva-
lent to asking for the coupler variety of a single loop mechanism consisting of two
SP legs. The solution should be the intersection of two P3 × P1 Segre varieties, but
any such Segre variety will contain the 3-plane A∞. Since we expect the variety to
be 2-dimensional, the intersection cannot be a complete intersection. To get around
this difficulty a birational map can be applied to the varieties. In [4] a birational map
between the Study quadric and a variety defined by the standard homogeneous rep-
resentation of SE(3) was studied. Here, a map to the variety defined by the inverse-
transpose to the standard representation will be used. This map is very similar to
the one given in [4], in fact only few signs are changed. The map from the Study
quadric is essentially given by equations (4) and (5), the non-zero elements of the
matrix M are taken as homogeneous coordinates in a P12. The point of doing this is
that the exceptional set of the map, the set on which the map is not defined, is just
A∞.

The inverse map is given by,
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a0 = −2(∆ + m11 + m22 + m33)∆,
a1 = 2(m23 − m32)∆,
a2 = 2(m31 − m13)∆,
a3 = 2(m12 − m21)∆,

c0 = −((m23 − m32)τx + (m31 − m13)τy + (m12 − m21)τz),
c1 = (−(∆ + m11 + m22 + m33)τx − (m12 − m21)τy + (m31 − m13)τz),
c2 = ((m12 − m21)τx − (∆ + m11 + m22 + m33)τy − (m23 − m32)τz),
c3 = (−(m31 − m13)τx + (m23 − m32)τy − (∆ + m11 + m22 + ρ33)τz).

As with the homogeneous representation, the image of the Study quadric in the P12

with coordinates mi j , τk and ∆, can be shown to be the join of the 3-dimensional
Veronese variety with a disjoint 2-plane. Call this variety Y , the degree of Y is thus
8, see [4]. The image of the two quadrics, gT Q(p̃0 , πxy)g = 0 and gT Q(p̃0 , πxz)g = 0
are simply the hyperplanes τy = 0 and τz = 0. On the other hand the image of the
Segre variety can be parameterised as,

Mp =


λ0(µ2

0 + µ2
1 − µ

2
2 − µ

2
3) 2λ0(µ1µ2 − µ0µ3) 2λ0(µ1µ3 + µ0µ2) 0

2λ0(µ1µ2 + µ0µ3) λ0(µ2
0 − µ

2
1 + µ2

2 − µ
2
3) 2λ0(µ2µ3 − µ0µ1) 0

2λ0(µ1µ3 − µ0µ2) 2λ0(µ2µ3 + µ0µ1) λ0(µ2
0 − µ

2
1 − µ

2
2 + µ2

3) 0
−λ1∆ 0 0 λ0∆

 (7)

with ∆ = µ2
0+µ2

1+µ2
2+µ2

3. This can be found either by multiplying an arbitrary trans-
lation in the x-direction by a general rotation about the origin or by substituting the
parameterisation given in (6) into the map for the inverse-transpose representation
(equations (4) and (5)) and cancelling the common factor λ0. This can be thought
of as the join of the Veronese variety with a single point, ∆ = mi j = τy = τz = 0.
Hence the image of the Segre variety has degree 8 and can thus be identified with
the intersection of Y with the two hyperplanes.

Returning to the original problem, suppose we choose coordinates so that one
point is located at the origin and the other at the point p̃a, the x-axis will be aligned
with the initial position of the first line and the second point will initially lie on the
planes π1 and π2. Now, substitute the parameterisation for the first Segre variety (7),
into the two equations for the second line-plane constraint,

p̃T
a Mpπ1 = 0, and p̃T

a Mpπ2 = 0.

The result will be a pair of equations linear in the “λ” variables and quadratic in the
“µ” parameters. In fact it is clear that the equations will have the form, −nix∆λ1 +

qiλ0 = 0, where i = 1, 2; q1 and q2 are quadratic functions of the µ js and nix

is the x component of the normal vector to πi . To get non-trivial solutions for the
λs we must have that q1n2x − q2n1x = 0. This is a quadratic equation in the four
homogeneous parameters µ0 , . . . , µ3, hence determines a 2-dimensional quadric in
a P3. This is itself a Segre variety, P1×P1. So the µi can be written as linear functions
of homogeneous parameters α j βk where j, k = 0, 1. That is, the µs are separately
linear in the α and β variables. The solutions for the λs however, are quadratic in
these variables, since, λ0 = n1x∆ and λ1 = q1. Substituting these results back into
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the parameterisation given in (6) will result in a parameterisation of a 2-dimensional
variety in the Study quadric that is the image of P1 × P1 by a map that is separately
cubic in the coordinates of each P1. Notice that, at any configuration the two lines
can rotate about the axis joining the two fixed points p̃0 and p̃a.

Alternatively, if we use equation (7) to map this 2-dimensional variety into Y , the
inverse-transpose representation of SE(3), the image will have a parameterisation
that is degree 4 in both the α and β parameters. Since the image variety is the
intersection of Y with a pair of hyperplanes, it will have degree 8.

Finally, a parallel mechanism consisting of 3 SP linkages, that is three cannulas
holding a rigid object, we would expect a finite number of assembly configurations.
This is the intersection of the group variety Y with six hyperplanes. In general, the
number of assemblies is then just the degree of Y , that is 8. However, if for example
the lines are mutually parallel then a one degree-of-freedom motion is possible. This
corresponds to the a linear dependency between the 6 hyperplanes.

4 Conclusions

The study of displacement varieties seems to be fundamental to the theory of mech-
anisms and linkages. Although the inspiration for this work comes from problems
in surgical robotics it is hoped that there are wider applications of the results and
techniques outlined. There are several other interesting problems relevant to robot
surgery and other application. For example, how can general 6R robots be controlled
to respect a geometrical constraint such as the line-on-point constraint studied here?
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