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Definition

There are essentially two ways to keep track of a rigid body. In the passive view each
rigid body carries a coordinate frame and the position and orientation of the body
is specified by giving the transformation which relates coordinates in a standard
reference frame to the local frame moving with the body.

In the active view there is a single fixed coordinate frame. The position and ori-
entation of a rigid body is specified by the transformation which moves the body
from a standard (home) position to its current position.

Overview

When there are several bodies and when bodies also carry several different frames
it can be hard to account for all the different frames. The alternative active view
simplifies much of the labour of setting up the forward kinematics and dynamics of
serial robots. This active view is completely equivalent to the passive view, but the
passive view seems to be preferred in current texts on robotics.

Historically the first approach to robot kinematics seems to be due to Paul
(Paul 1981). He used the Denavit-Hartenberg parameters to write down the coor-
dinate transform between the world frame and tool frame of a serial robot arm.
The Denavit-Hartenberg parameters themselves are an older idea that dates back to
Jacques Denavit’s master’s thesis. This was done under the supervision of Richard
Hartenberg at Northwestern University in the mid 1950s. The parameters were used
to analyse closed loop spatial mechanisms, see (Denavit and Hartenberg 1955).
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The Denavit-Hartenberg parameters give an efficient way to specify the relative
positions of lines in space, this was important in the early days when computer
memory was a scarce resource. Today computer memory is cheap and so the active
viewpoint outlined below is probably easier to learn and use. This method seem to
date back to Gupta (Gupta 1986) but has been rediscovered many times, see for
example (Selig 2006).

Many texts give rules for assigning coordinate frames to links but unfortunately
there are many special cases and often these special cases coincide with the designs
of commercially available machines. For example, in the PUMA robot studied be-
low, the parameter d3 is not an offset as defined in the text, since the joints 2 and 3
are parallel there is not a unique common perpendicular to measure the offset from.
There is a common perpendicular between the first and second joint axes and be-
tween third and fourth joint axes. So the distance in the direction of the second or
third axes from the point where the common perpendicular between J1 and J2 meets
J2 and the point where the common perpendicular between J3 and J4 meets J3 is
constant as the robot moves and this is labelled d3, see Fig. 2.

There are many more special cases, particularly if one or more of the joints are
prismatic joints. Moreover, there are now several variants of the Denavit-Hartenberg
method, that is several different ways to specify coordinate systems in the robot’s
links, see for example(Lipkin 2005) or (Waldron and Schmiedeler 2008). By con-
trast, the Plücker coordinates of a line are completely unambiguous, further if we
give the matrix for rotations about the line or translations along the line or even
helical motions about the line, then we don’t even need to know about Plücker co-
ordinates. However, for some reason this approach is still not common in robotics
textbooks.

The Relation Between the Active and Passive Viewpoints

The connection between the active and passive viewpoints is that if the pose of the
body, that is, its position and orientation, is given in the active view by a matrix
X then in the passive view the coordinate transformation is given by the inverse
matrix X−1. To see this, let p be a point in space. If the rigid-body displacements
are given by matrices in the 4×4 standard representation then we will have to used
“extended” vectors to represent the points, that is 4-vectors of the form,

p̃ =

(
p
1

)
=


px
py
pz
1

 .

In coordinate system A we can write the coordinates of the point as A p̃. Now suppose
we subject the point and the coordinate system to a rigid-body displacement AX .
Let us call the displaced coordinate system B and the displaced point A p̃′ = AX A p̃.
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The displaced point clearly has the same coordinates relative to the B-frame as the
original point has relative to the A coordinate frame, A p̃ = B p̃′. Combining these
equations gives,

A p̃′ = AX A p̃ = AX B p̃′

The point p̃, or equivalently p̃′, are arbitrary so given the coordinates of a point in
the A-frame to get the coordinates of the same point referred to the B-frame we must
multiply by AX−1,

B p̃ = AX−1 A p̃.

The matrix AX−1 is the inverse of the matrix which actively moves the A-frame to
the B-frame.

The notation AX is intended to signify that the components of the matrix are com-
puted with respect to the coordinate frame A. Suppose we have a matrix AM given
in the A coordinate frame how can it be expressed with respect to the B coordinates?
As above, the effect of the matrix on an arbitrary point can be considered. Assume
that the transformation maps a point q̃ to q̃′. In the A frame the matrix is,

AM Aq̃ = Aq̃′.

The same points in the B frame have the coordinates Bq̃ = AX−1 Aq̃ and Bq̃′ =
AX−1 Aq̃′. Substituting in the previous equation gives,

AM AX Bq̃ = AX Bq̃′.

So we may conclude that in the B frame the matrix AM is given by the conjugation,

BM = AX−1 AM AX ,

where AX is the active displacement mapping the A frame to the B frame. This con-
jugation can also be thought of as changing the coordinates from the B frame to
the A frame, applying the A-frame version of the matrix and then changing coordi-
nates back from the A frame to the B frame. See chapter (Wang) for a more detailed
account.

A-Matrices

It is quite straightforward to write down the matrices representing rotations about
joints. These matrices are usually referred to as A-matrices. For example it is simple
to see that a rotation by an angle θ about the z-axis is given by the 4×4 matrix,

A(θ) =


cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1

 .
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This is simple to verify since it is clear that points on the z axis are unchanged under
the application of this matrix. Matrices corresponding to rotations about other lines
in space can be found by conjugations. For example, suppose we wanted to find
the matrix representing a rotation about a line parallel to the z-axis but displaced a
distance d in the y-direction. Notice that there is a point on this displaced axis given
by p = (0, d, 0)T . The A-matrix we seek can be found by translating the line so that
p coincides with the origin, rotating about the z-axis and then translating the origin
back to the point p, that is,

A(θ) =


1 0 0 0
0 1 0 d
0 0 1 0
0 0 0 1




cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 −d
0 0 1 0
0 0 0 1



=


cosθ −sinθ 0 d sinθ

sinθ cosθ 0 d−d cosθ

0 0 1 0
0 0 0 1

 .

Note that in the active viewpoint the first transformation performed is written on the
extreme right.

More generally, suppose that Rv(θ) is the 3× 3 rotation matrix representing a
rotation by θ about a line through the origin with direction v then the A-matrix
representing a rotation about an axis parallel to v but passing through a point p will
be given by,

A(θ) =
(

I p
0 1

)(
Rv(θ) 0

0 1

)(
I −p
0 1

)
=

(
Rv(θ) (I−Rv(θ))p

0 1

)
Hence, to find the A-matrix for a particular revolute joint in a robot all that is re-
quired is the direction of the axis and any point on the axis.

A-matrices for prismatic joints are even simpler. Translations only require a di-
rection not an axis, so a translation in the direction v can be parametrised as,

A(λ ) =
(

I λv
0 1

)
where λ is the joint parameter. For a prismatic joint the joint parameter is a length
giving the extension of the joint from its home configuration.

This formalism can also deal with helical or screw joints, although these are
rarely used for practical robots. The A-matrix for a helical joint of pitch h screwing
about an axis with direction v through a point p is given by,

A(θ) =
(

Rv(θ) θhv+(I−Rv(θ))p
0 1

)
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The kinematics for a 6-joint serial robot arm can now be given simply as the
matrix product,

K(θ1, . . . ,θ6) = A1(θ1)A2(θ2)A3(θ3)A4(θ4)A5(θ5)A6(θ6). (1)

The matrix K(θ1, . . . ,θ6) here represents the active displacement of the robot’s
end-effector from its home configuration, where all the joint angles are 0 to the
configuration where the joint angles are set to θ1, . . . ,θ6. Notice the order of the
A-matrices here. This order corresponds to rotating the last joint θ6 about its joint
axis in the home position, followed by rotating the fifth joint about its axis in the
home position, and so on down to rotating the first joint about its axis in the home
position by θ1. Performing the operations in this order, distal to proximal, means
that the joints nearer the base are not disturbed until the joint is set.

All matrices here are given with respect to the fixed coordinate frame chosen at
the beginning of the procedure.

Finally here, notice that each A-matrix is a parametrised matrix. It is not too dif-
ficult to see that each A-matrix determines a one parameter subgroup of the group
of rigid-body displacements SE(3) and hence can be represented by an exponen-
tial. This leads immediately to the product of exponentials formula, see chapter
(Chirikjian).

J1

a1

α

d2
a2

J2

J3

Fig. 1 Link Length, Twist Angle and Joint Offset
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Denavit-Hartenberg Parameters and Method

In the active view, the design of a robot is specified by giving the home position
of all joints. That is, by giving the directions of the joint axis and a point on the
axis. However, the more common way to specify the design is in terms of Denavit-
Hartenberg parameters. The two methods are essentially equivalent.

For a planar mechanism with hinge joints, only the lengths of the links are needed
to specify the design. For spatial systems the situation is a bit more complicated.
To make things as simple as possible we will concentrate on systems of revolute
joints. There are three kinds of design parameters. To begin with, consider just two
revolute joints, see Fig. 1. Each joint determines a line in space. Between any pair
of lines there is a unique shortest distance, along the line perpendicular to both.
This length is called the link length. If the lines happen to intersect then the link
length is zero. A problem might arise here if the lines are parallel. Then there are
many common perpendiculars. However, the distance between the lines along any
common perpendicular is always the same, so no ambiguity arises.

Now looking along the common perpendicular the lines will appear to cross. The
angle at which they cross is called the twist angle. Another way to think of this is
as the angle between the direction vectors along the lines. There are two possible
choices for the direction of the line, differing by π radians. The twist angle α , can
be chosen to be in the range −π

2 < α ≤ π

2 . Alternatively we could fix the direction
of the lines and then use the right-hand rule to determine the twist angle.

The final design parameter is the joint offset. This is only relevant if we have three
or more joints, see Fig. 1. The line perpendicular to joint 1 and joint 2 meets the axis
of joint 2 at some point. Likewise, the common perpendicular to the second and third
joints meets the axis of the second joint. The distance between these two points is
the joint offset. The joint offset is positive when measured along the direction of the
axis. A possible ambiguity can arise here, if two consecutive axes are parallel; then,
as mentioned above, the joint offset cannot be defined.

By considering Fig. 2 a table of the design parameters for the PUMA robot
can be prepared: These design parameters are also sometimes called the Denavit-

Table 1 Devanit-Hartenberg Parameters for the PUMA Robot

Link Link length Twist angle Offset
J1—J2 0 π/2 –
J2—J3 a2 0 (axes parallel)
J3—J4 0 π/2 d3
J4—J5 0 π/2 d4
J5—J6 0 π/2 0

Hartenberg parameters. If prismatic joints are included, the offset for such a joint
is now a variable. The joint angle, that is the angle between the common perpendic-
ulars, is now fixed, and hence is the new design parameter.
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The Denavit-Hartenberg method is a method for writing down the kinematics of
the robot by assigning a coordinate frame in each link of the robot aligned with one
of the joints in the link. There are several different methods to do this but a key point
is that the z-direction of the coordinate system is always aligned with the axis of the
joint. Rather than worry about the detail of the frame assignment we will look at
how the method works in general. Suppose that Xi is the matrix corresponding to
the active displacement of the world frame to the frame assigned to the i-th link.
The A-matrix written in the previous section for rotation about this joint could now
be written using conjugation as,

Ai(θi) = X−1
i A(θi)Xi

where the matrix A(θi) on the right is simply the matrix for rotation about the z-axis,

A(θi) =


cosθi −sinθi 0 0
sinθi cosθi 0 0

0 0 1 0
0 0 0 1


As above, the kinematic map of the robot can be written,

K(θ1, . . . ,θ6) = A1(θ1)A2(θ2)A3(θ3)A4(θ4)A5(θ5)A6(θ6).

Substituting for the A-matrices then gives,

K(θ1, . . . ,θ6) = X−1
1 A(θ1)X1X−1

2 A(θ2)X2 · · ·X−1
5 A(θ5)X5X−1

6 A(θ6)X6.

Writing, Bi = XiX−1
i+1 for 1≤ i≤ 5 and with B0 = X−1

1 this becomes,

K(θ1, . . . ,θ6) = B0A(θ1)B1A(θ2)B2 · · ·BA(θ5)B5A(θ6)X6.

Notice that the B matrices can be interpreted as the active displacement taking the ith
coordinate frame back to the (i−1)th frame, in the home configuration of the robot.
This is usually extended to include the tool frame as above. If we write B6 = X6X−1

t
then the active displacement of the world frame to the tool frame will be given by,

Kt(θ1, . . . ,θ6) = B0A(θ1)B1A(θ2)B2A(θ3)B3A(θ4)B4A(θ5)B5A(θ6)B6.

Here B6 can be interpreted as the active displacement from the tool frame to the
frame fixed at the final joint, or the passive transformation from the frame at the
final joint to the tool frame.

Traditionally the Denavit-Hartenberg method is done rather differently. First co-
ordinate frames are attached to each link. As mentioned above, there are several
conventions for setting up and numbering these frames. In most common versions
the axes of the frames are positioned so that the z-axis of the frame is aligned with a
joint axis and the x-axis is positioned along the common perpendicular line between
the joint and the next joint in the robot. Next, the transformation matrices iT k

j are
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introduced, these represent the active transformation from the jth frame to the kth
frame expressed in the ith frame. Notice, however, that they can also be thought of
as representing the coordinate transformation from the kth frame to the jth frame.
The matrices iT i+1

i are simple to write down. The active transformation from the
ith to the (i+ 1)th frame is given in the ith frame as screw displacement about the
x-axis followed by a screw displacement about the z axis in the (i+1) frame,

iT i+1
i =

(
Rk′(θi+1) di+1k′

0 1

)(
Ri(αi) aii

0 1

)
,

where k′ is the direction of the z-axis of the i+1th frame. To find the displacement
about the z-axis in the i+1 frame we can use a conjugations to move the axis back
to the z-axis in the i frame screw about this axis and then move the axis back to
where it was. That is,(

Rk′(θi+1) di+1k′
0 1

)
=

(
Ri(αi) aii

0 1

)(
Rk(θi+1) di+1k

0 1

)(
Ri(αi) aii

0 1

)−1

The transformation is then,

iT i+1
i =

(
RT

i (αi) −aii
0 1

)(
RT

k (θi+1) −di+1k
0 1

)
.

Notice that in this method, the home configuration of the robot is implicit rather
than explicit. It is given by the configuration where all of the joint angles θ1 are
zero. Also in contrast to the previous method, the rotation about the joint is coded
into the matrix iT i+1

i . To deal with a robot with a prismatic joint all that is needed is
to make the offset di variable and fix the angle θi as a design parameter of the robot.

Consider three coordinate frames, labelled i, j and k. The active transformation
from frame i to frame k with respect to frame i can be split into a transformation
from i to j followed by the transformation from j to k all expressed in frame i,

iT k
i = iT k

j
iT j

i .

From above, the transformations that are easy to compute have the form iT i+1
i . So

we need to write transformations like iT k
j in coordinates referred to the j frame.

Recall from above that the a coordinate change for such matrices can be effected by
a conjugation,

iT k
j = iT j

i
jT k

j

(
iT j

i

)−1
.

Substituting this into the previous relation gives,

iT k
i = iT j

i
jT k

j

(
iT j

i

)−1
iT j

i = iT j
i

jT k
j .

Now the aim here is to find the transformation 0T 6
0 , the coordinate change from

frame 6, the tool frame, to frame 0 the world frame. So using the above relation we
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z J4, J6

J5

d4

J3

a2

J2

x
J1

y

Fig. 2 The PUMA robot in its home configuration.

can expand this as follows,
0T 6

0 = 0T 5
0

5T 6
5 ,

then
0T 5

0 = 0T 4
0

4T 5
4 ,

and so forth, until we can put all these relations together to get,

0T 6
0 = 0T 1

0
1T 2

1
2T 3

2
3T 4

3
4T 5

4
5T 6

5 .

Examples of Application

Forward Kinematics of a Serial Robot

As a concrete example we will find the A-matrices for a PUMA style robot see
Fig. 2. We first need to fix a convenient coordinate frame and home configuration
for the robot. Since the first two joints meet at right-angles it is sensible to choose
the origin of our coordinates at this meeting point and align two of the coordinate
axes with the home positions of joints 1 and 2. We can draw up a short list of the
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directions of the joints in the home configuration and convenient points on the joint
axes, see table 2.

Table 2 Home Positions for the Joints of a PUMA Robot

Joint v p
J1 k 0
J2 i 0
J3 i a2k
J4 k d3i
J5 i (a2 +d4)k
J6 k d3i

Here i, j and k are unit vectors in the x, y and z-directions respectively. The
fixed lengths a2, d3 and d4 are the design parameters of the robot. Notice that the
parameter d3 is not shown in Fig. 2, it is the perpendicular distance between the first
and forth joints.

Now it is a simple matter to find the A-matrices. The first one is simply a rotation
about the z-axis,

A1(θ1) =


cosθ1 −sinθ1 0 0
sinθ1 cosθ1 0 0

0 0 1 0
0 0 0 1

 .

The second one is also simple, this time a rotation about the x-axis,

A2(θ2) =


1 0 0 0
0 cosθ2 −sinθ2 0
0 sinθ2 cosθ2 0
0 0 0 1

 .

For A3 we need to know the term (I−R)p. The rotation is again about the x-axis.
1 0 0

0 1 0
0 0 1

−
1 0 0

0 cosθ3 −sinθ3
0 sinθ3 cosθ3


 0

0
a2

=

 0
a2 sinθ3

a2(1− cosθ3)

 .

So that,

A3(θ3) =


1 0 0 0
0 cosθ3 −sinθ3 a2 sinθ3
0 sinθ3 cosθ3 a2(1− cosθ3)
0 0 0 1

 .

Similarly we have,
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A4(θ4) =


cosθ4 −sinθ4 0 (1− cosθ4)d3
sinθ4 cosθ4 0 −sinθ4d3

0 0 1 0
0 0 0 1

 ,

and also,

A5(θ5) =


1 0 0 0
0 cosθ5 −sinθ5 (a2 +d4)sinθ5
0 sinθ3 cosθ3 (a2 +d4)(1− cosθ5)
0 0 0 1

 .

Finally we have,

A6(θ6) =


cosθ6 −sinθ6 0 (1− cosθ6)d3
sinθ6 cosθ6 0 −sinθ6d3

0 0 1 0
0 0 0 1

 .

Tool Frame Coordinates

It is common to use tool frame coordinates to specify the motion of the robot’s end-
effector. These are the coordinates for a coordinate frame that is rigidly attached to
the final link of the robot, the tool or end-effector. Using the active viewpoint we
have just one coordinate frame and it is fixed. This fixed coordinate frame is usually
called the world frame.

Notice that the kinematic map of the robot, equation (1) above is the active trans-
formation which takes the tool frame in the home configuration of the robot to the
tool frame when the joint angles are set to θ1, . . . ,θ6. To find the active transfor-
mation which maps the world frame to the current tool frame we can prepend the
kinematic map with another transformation. This transformation must be the one
which takes the world frame to the tool frame in its home configuration,

Kt(θ1, . . . ,θ6) = A1(θ1)A2(θ2)A3(θ3)A4(θ4)A5(θ5)A6(θ6)X−1
t .

For example, for the PUMA style robot studied in the previous section we could
have,

X−1
t =


1 0 0 d3
0 1 0 0
0 0 1 a2 +d4
0 0 0 1

 ,

a pure translation. The reason for using the inverse will become apparent later.
The passive viewpoint can be easily recovered by inverting the above. That is, the

coordinate transformation that changes the coordinates of points given in the world
frame to the coordinates in the current tool frame will be given by,
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K−1
t (θ1, . . . ,θ6) = XtA−1

6 (θ6)A−1
5 (θ5)A−1

4 (θ4)A−1
3 (θ3)A−1

2 (θ2)A−1
1 (θ1).

The A-matrices are very easy to invert. In general, for a 4×4 matrix representing
a rigid-body displacement we have,(

R t
0 1

)−1

=

(
RT −RT t
0 1

)
.

So, for a matrix representing a rotation about a line we have,(
R (I−R)p
0 1

)−1

=

(
RT (I−RT )p
0 1

)
,

and for a general screw displacement,(
R (I−R)p+θhv
0 1

)−1

=

(
RT (I−RT )p−θhv
0 1

)
.

Where v is the vector along the axis of R so that Rv = RT v = v.
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