
Enabling Real-Time AI Edge Video Analytics
Vassilis Tsakanikas

SuITE Research Group
Department of Computer Science

London South Bank University
London, UK

tsakaniv@lsbu.ac.uk

Tasos Dagiuklas
SuITE Research Group

Department of Computer Science
London South Bank University

London, UK
tdagiuklas@lsbu.ac.uk

Abstract—This paper introduces a novel distributed AI model
for managing in real-time, edge based intelligent analytics, such
as the ones required for smart video surveillance. The novelty
relies on distributing the applications in several decomposed
functions which are linked together, creating virtual chain func-
tions, where both computational and communication limitations
are considered. Both theoretical analysis and simulation analysis
in a real-case scenario have shown that the proposed model
can enable real-time surveillance analytics on a low-cost edge
network. Finally, a caching mechanism is proposed and evaluated,
reducing further the operational costs of the edge network.

Index Terms—edge computing, AI applications, Virtual Func-
tion Chaining, caching, cost optimization

I. INTRODUCTION

Artificial Intelligence (AI), as expressed by the latest devel-
opments of Machine Learning (ML) and Deep Learning (DL),
has produced numerous models which are mature enough
to reach the market massively during the next few years.
The main reasons for this, mainly involves the improvements
on data-capturing devices, the re-engineering of several ML
algorithms and the release of ML and DL toolkits, like
PyTorch and TensorFlow [1]. Video analytics is an um-
brella term for describing applications like object tracking,
pedestrian detection, face recognition, behavioral analytics etc.
The common business - technology model for deploying AI
surveillance services nowadays is Cloud Computing [2], where
the captured video streams are uploaded to a centralized data
center. This imposes a round-trip time to the throughput of
the service which, in many cases reduces significantly the
Quality of Service (QoS). This leads the service providers
to either reduce the processing frames per second (fps) or
lower the resolution of the captured videos, nullifying the
advances of new video sensors, like UHD and HDR sensors.
Edge Computing has been proposed as a computing paradigm
according to which the data are processed ’near’ the generating
data devices and comprises many low-capacity devices [3].
While this paradigm addresses the large round-trip times of
Cloud Computing, the QoS is now limited due to the capacity
of the edge devices. Not only academia, but lately industry
has placed focus on Edge Computing, by providing software
(e.g. Google Lite TensorFlow©) and hardware (e.g. NVIDIA
Jetson AGX Xavier© and AWS DeepLens©) solutions are
suitable for edge processing. This paper proposes a novel
distributing framework which explores the Virtual Function

Chaining (V FC) concept inspired from the Software-Defined
Networks and enables the real-time inference for surveillance
applications at the Edge. In this model, an AI smart video
analytics service can be decomposed to a set of Virtual
Functions (V Fs), which can be deployed on different edge
devices. Using these V Fs, a V FC is created which process
the streaming data in a distributed fashion.

Fig. 1. Conceptual architecture of the proposed system.

The contributions of this work mainly include: (i) A model
for designing the optimum setup for a V FC, in terms of
V F instances, V F placement on the edge devices. Each V F
may appears in the V FC at several instances and intercon-
nected V FCs. (ii) A system architecture which seamlessly
integrates V FCs. The proposed architecture’s services are
mainly hosted on the Virtual Function Orchestrator (V FO).
(iii) An optimization framework for effectively deploying AI
video surveillance services on the Edge. (iv) A prototype
of the described architecture, which is used to evaluate the
described models and provide a proof of concept, in terms
of effectiveness and feasibility, on enabling V FCs as a
model for real-time AI surveillance applications. (v) A caching
mechanism, which demonstrates the scalability of the proposed
model when multiple services are required.

While the proposed model is inspired by the Service Func-
tion Chaining (SFC) concept, it alters and extends several

of its features, in order to meet the requirements of video
analytic services. First, it introduces a load-balancing mech-
anism connected with the desired QoS, which monitors the
output of the service and rearranges the V FC automatically.
Additionally, it extends the SFC model by allowing one V F
instance to be part in several V FCs (e.g. face detection,
gender identification, etc.).

Several research studies have been focused on enabling
edge computing to support demanding latency sensitive ap-
plications. Author in [4] has proposed a scheme for handling
mass video data coming from city surveillance services on
heterogeneous digital devices. Zhou et al. [5] have described
a model for offloading cloud by utilizing an edge meshed
network. Li et al. [6] have proposed a general virtualization
architecture, based on VMs, mainly focusing on its networking
aspects. Chen et al. [7] have described an architecture which
explores fog computing as a processing infrastructure for
supporting dynamic urban surveillance streams. Dautov et al.
[8] have performed a comparison study among cloud, fog
and edge computing for supporting intelligent surveillance
applications. The authors in [9] provides a survey of the
applications that can be supported from edge computing.
Author in [10] provides a holistic vision about surveillance
applications on edge / fog computing paradigms, where the
basic concepts, challenges and opportunities are discussed.
Finally, Chen et al. [11] have proposed a distributed deep
learning model for video surveillance systems, while Puthal
et al. [12] have presented a novel approach on load balancing
of distributed edge servers. Our model has compared with
the current state-of-the art literature and does not require any
special virtualization (e.g. Virtual Machines) [6] or distribution
[13] (e.g. Apache Spark©) middle-ware in order to perform
the real-time calculation of AI analytics, offloading the edge
devices from the substantial overhead these approaches re-
quire. Additionally, surveillance applications are decomposed
in virtual functions that are deployed in nodes with the
available resources. Such functions are scaled up based on
demands. The rest of this paper is organized as follows.
Section II describes the V FC model while Section III includes
the system implementation details. In Section IV, the results
from the experiments are discussed and the conclusions and
future work are drawn in Section V.

II. MODEL FORMULATION

Aiming to enable edge as a real time inference mechanism
for AI video analytics services, a generalization framework
is proposed, according to which a video analytic service is
decomposed to a set of V Fs, creating a V FC. The proposed
model aims to facilitate the efficient offloading of surveillance
cloud services to a cooperative distributed edge environment.
The basic principles of the proposed model (Figure 1) are the
following: (i) Each surveillance service is decomposed to set of
processes. Each process implements certain tasks, like image
enhancement, edge detection, etc. (ii) Each process instantiates
a V F and is deployed as an edge node. Each V F comprises
three parallel threads, the Input Queue, the Output Queue and

TABLE I
BASIC ENTITIES OF THE PROPOSED MODEL.

Entity Formulation Description

Surveillance
service

−→
S =
[fps, {V Fj}]

fps is the processed frames / sec
the service requires (QoS)
{V Fj} is the set of processes com-
prise the service

Virtual
Function

−−→
V F =
[cpuload,
outdata]

cpuload is the required CPU in-
structions per frame
oudata is amount of data virtual
function produces after processing
the input data

Edge
Node

−→
K =
[m, c(l), r(l)]

m is the CPU instructions / sec the
device can execute
c(l) is the cost function of the
device, when performing l CPU
instructions. Cost is a general term
which includes battery life, main-
tenance cost, etc.
r(l) is the required time to process
l CPU instructions

Link

−−→
Wab =
[bw]

bw is the communication bandwidth
among edge nodes a and b

the Running agent. (iii) A surveillance service is realized by
a V FC, similar to the service function chaining proposed
by the IETF WG [14]. A V FC must include at least one
instance of each V F . The main concept of the model proposed
by [14] includes network services, like firewall and packet
filtering. (iv)The V FO manages the V Fs allocation to the
physical devices and established the communication channels
among them. Additionally, V FO monitors the performance
criteria of the service (e.g. processed frames/sec, total cost,
etc.) and performs actions in order to meet them. Each service
is described by a V FC, and in general, a single V F can
have multiple instances within the edge environment. When
a user subscribes to a service (e.g. object detection, etc.),
V FO instantiates the V FC by implementing the following
tasks: (i) Calculates the required number of instances for each
V F , in order to meet the service’s QoS criteria, (ii) allocates
the V Fs to edge devices and (iii) establishes communication
channels between the edge devices. A V F instance can be part
of several service chains. Table I summarizes the formulations
of the main entities of the proposed modeling framework.

A. Problems definition

V FO node needs to assign the V FC to the edge en-
vironment. In order to achieve this, the following general
assignment constrained problem needs to be solved:

Problem 1: Determine the number of V F instances and
assign each instance to an edge device, such that the video
analytics are generated while maintaining the required fps,
and the total network cost be minimum.

Problem 1 can be formulated as:

min


n∑

i=1

y∑
j=1

xi,jci,j

 (1) min

y =

m∑
j=1

instancesj

 (2)

y∑
j=1

xi,j = 1(3)

n∑
i=1

xij ≤ 1(4)

timecomputational + timecommunication ≤
1

fps
(5), with

timecomputational =

n∑
i=1

y∑
j=1

xi,jti,j

timecommunication =

n∑
i=1

n∑
i′=1

y−1∑
j=1

xi,jxi′,j+1
outputj
Wi,i′

, where n is the number of edge devices, m is the number

of the V Fs, xij =

{
1 if V Fj is assigned on node ni
0 otherwise

, tij is

the required time for device Di to execute V Fj and process
the data produced from a single frame and instancesj is the
number of the required instances for V Fj . Finally, Wi,i′ is the
bandwidth of the communication link between nodes i and i′,
which host two adjacent V Fs, j and j + 1. This formulation
describes a model which aims to minimize the total cost of
the service (eq. 1) while meeting the QoS constrains (eq. 5),
with the minimum number of V F instances (eq. 2), requiring
that each V F instance must by assigned to exactly one edge
device (eq. 3) and each edge device can undertake no more
than one V F instance (eq. 4). This is a NP-Hard problem [15],
which requires a substantial computational time to be solved.
In order to acquire a feasible solution within an acceptable
timeframe, we decouple Problem 1 to two sub-problems: (A)
V F instances sub-problem and (B) the assignment (placement)
sub-problem.

Sub-problem A aims to identify the minimum number of
instances for each V F . As discussed in the previous section,
one instance from each V F must be deployed on the V FC, in
order to support the service. Let GV F = [V F1, V F2, ..., V Fn]
be the set of the first instances of each V F . Each one of
these V Fs will be deployed to a different edge device. At
this point of the assigning workflow, the allocation cost is not
considered. Yet, we seek if there is a feasible solution of the
placement, such that the QoS constrain is met. This results to
the following relaxation.

min


n∑

i=1

m∑
j=1

xijtij +

n∑
i=1

n∑
i′=1

y−1∑
j=1

xi,jxi′,j+1
outputj
Wi,i′

 (6)

m∑
j=1

xij = 1 (7)

n∑
i=1

xij ≤ 1 (8)

Regarding tij , it can be calculated using the rd() function
of the edge device d. Thus tij = ri(Nj), where Nj is the
CPU instructions required by V Fj to complete its task. (Eq.
7) reflects the fact that each V F from the GV F set must be
appointed only to one node and (eq. 8) that each edge node
can not undertake more than one V F . Sub-problem A can be

solved in a polynomial time by modeling it as a Min Cost Flow
problem, which is a widely studied problem [16]. The utilized
solver is a typical Hungarian algorithm. This process results
to an allocation of the GV F with the minimum required time
that the network can support. Let t∗ be the resulting time. If
t∗ ≤ 1

fpsserv
, then the edge network can support the service

without having to replicate a subset of the V Fs. In this case,
we can re-formulate the assignment problem as a constrained
mixed integer problem, with the following formulation

Sub-problem B:

min


n∑

i=1

m∑
j=1

xi,jci,j

 (9)

m∑
j=1

xi,j = 1(10)

n∑
i=1

xi,j ≤ 1(11)

n∑
i=1

m∑
j=1

xi,jti,j+

n∑
i=1

n∑
i′=1

m−1∑
j=1

xi,jxi′,j+1
outputj
Wi,i′

≤ 1

fpsserv
(12)

The objective function (eq. 9) of this formulation aims
to minimize the total cost of the V FC deployment to edge
network, while fulfilling the QoS constrains of the service (eq.
12) and assigning all V Fs to a device (eq. 10) while limiting
the number of deployed V Fs to a device (eq. 11). This
problem, can be solved by utilizing Constrained Programming
[17] in a polynomial time.

 0

 2x108

 4x108

 6x108

 8x108

 1x109

 1.2x109

 1.4x109

4 6 8 10 12

 0.1

 1

 10

 100

 1000

to
ta

l
c
o
s
t

re
q
u
ir

e
d
 t

im
e
 (

s
e
c
)

number of VFs
Greedy Algorithm - cost

Proposed Algorithm - cost
Proposed Algorithm - time

Greedy Algorithm - time

Fig. 2. Comparison between the optimum solution (greedy algorithm) and
the proposed algorithm.

1) Solving Problem 1: If t∗ > 1
fpsserv

, then the computa-
tional capacity of the edge devices is insufficient to support the
service’s QoS, if only one instance of each V F is deployed.
In order to tackle this, we draw inspiration from the recently
launched concept of Cloud-native functions [18], which handle
dynamically the number of their instances aiming to handle the
incoming requests. Thus, we propose a mechanism according
to which a V F can be launched to multiple devices, and share
the data coming from the previous V F of the V FC following
a round-robin approach.

Thus, if we deploy a second instance of V Fj , the required
time for the function to process the data related to a single

frame changes from rk(l) to rk(l)
2 + b, where b is the time

overhead implied for handling the data separation on V Fk−1
(previous V F in the chain) and data merging on V Fk+1 (next
V F in the chain), assuming that the two instances of the V F
is deployed to identical nodes.

This case leads as to the formulation of a new sub-problem
(sub-problem C). Its objective is to identify the minimum
number of replicate instances for each V F that need to be
deployed on the edge network, in order to meet the QoS
constrains. Let

−→
S = [s1, s2, ..., sm] represent the number of

instances for each one of the V Fs, with si being an integer
larger or equal to one (si ≥ 1). Thus, we derive the following
problem formulation:

min


m∑
j=1

sj

 (13)

m∑
j=1

(
rf (Nj)

sj
+ (sj − 1)b+

outputj
Wff ′

) ≤ 1

fpsserv
(14)

, where Nj are the required instructions per frame required
for executing V Fj on device f , with f ′ undertaking V Fj+1.
(Eq. 13) drives our model to produce solutions with the
minimum total new instances of the V Fs, while (eq. 14)
satisfies the QoS of the surveillance service. Unlike the
problem formulated by eq. (9-12), this is a non-linear mixed
integer problem, which required the utilization of the active
set solver APOPT [19]. Let the result of this sub-problem
be instances = [ins1, ins2, ..., insm]. Using instances, we
can revisit Sub-problem B and solve the allocation problem as
before. The discrepancy of the latest described sub-problem is
that the utilized nodes f and f ′ are unknown. This is rational,
because we seek the number of the V F instances with regard
to the computational time, which depends not only on the
V F load but also on the node that will undertake the V F . We
resolve this deviation by using Algorithm 1. This algorithm
can provide two approaches: (a) worstCase scenario, where
the edge device used to calculate (eq. 14) is the one with the
lowest processing capacity and (b) bestCase scenario, where
the highest processing capacity device is utilized.

Algorithm 1 receives as input the processing fps implied
by the QoS and the allocation of the initial instances of
the V Fs. As depicted in Fig. 3 (’model’ plots), both ap-
proaches converge to the desired processing fps. The re-
ported results have been derived by a simulation framework
that has been developed in order to evaluated the reported
approach (github.com/blind-review- process). As far as the
two functions (addReplicate() and removeReplicate()) used
in Algorithm 1, they calculate for each V F the improve-
ment (for the addReplicate()) or the regression (for the
removeReplicate()) a new instance will have to the total
cost. Let {vi} be these values. Then, we choose the V F
which minimizes the difference |fpscurrent − vi|. In each
iteration, Sub-problem B is solved. Aiming to evaluate the
accuracy of the proposed algorithm for solving Problem 1,

Algorithm 1: Online placement optimization algo-
rithm
Input: fps, xij , ε (error tolerance)
deploy(xij);
fpscurrent = measurefps();
if |fpsserv − fpscurrent| < ε then

return xij
else

while (|fps− fpscurrent| > ε) do
sleep(1);
if (fpsreal < fpscurrent − ε) then

xij = addReplicate(xij)
else if (fpsreal > fpscurrent + ε) then

xij = removeReplicate(xij)
else

return xij
end
deploy(xij);
fpscurrent = measurefps();

end
end

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0 2 4 6 8 10

p
ro

c
e
s
s
e
d

 f
p
s

time (sec)

WorstCase (simulation)
BestCase (simulation)

WorstCase (system)
BestCase (system)

Fig. 3. Comparison between modelling and real-case system implementation.

a set of scenarios (edge networks and V FCs) have been
setup, solving Problem 1 both using a naive greedy algorithm
(which calculates the optimum solution) and the proposed
approach. Five different V FCs have been used. For each
V FC, 15 scenarios have been established by setting cpuload =
104N(10, 0.8), mk = 103N(20, 0.9), Wtt′ = 105N(10, 0.7)
and output = 103N(200, 0.65). Figure 2 presents the results
of this comparison. The reported results are the average values
of the total cost among the 15 different scenarios. The total
average extra cost imposed by the proposed approach was
≈ 1.97%, while the required time for each algorithm to solve
the problem was ≈ 5.61sec for the proposed approach and
7.89× 103sec for the greedy algorithm (Fig. 2). The solvers,
which have been implemented using GEKKO suite [20], have
been executed on a Intel i7 2.8GHz (8-core) on 8GB of RAM.

III. SYSTEM IMPLEMENTATION

Aiming to evaluate the model described in Section II, both a
simulation and a prototype edge network has been used, where
all the necessary functionalities have been developed and de-

ployed, to support AI real-time video analytics of surveillance
services. The simulation framework modeled each edge device
as a Linux process. Linux commands cpulimit and ulimit
were utilized to mock specific computational capacities for
each ’device’. Each video analytic service has been modeled
as a set of n V Fs, where n is a random integer ∈ [3, 5].
Finally, each V F could by either a light V F , a moderate V F
or a heavy V F , with relative computational characteristics
each. Each V F may by identical with another V F with a
probability of 15%, enabling the caching mechanism described
in the following sections. Two different setups have been
implemented. Setup I deploys a much simpler distribution
model (as described in Section IV), while Setup II utilizes the
V FC model with the caching mechanism. The implemented
edge network comprise 6 Raspberry PI 3 (model B+) devices,
with a Quad Core 64bit CPU @ 1.2GHz and 1GB RAM and
2 Raspberry PI 4 devices with a Quad core Cortex-A72 (ARM
v8) 64-bit CPU @ 1.5GHz with 4GB RAM, running Raspbian
OS. The feed from the camera was mocked as video file from
the VIRAT dataset [21]. Two video analytics services have
been deployed on the edge network. Service A and Service
B, requiring gender and age classification respectively (pre
trained deep learning models, based on [22]). Both Service A
and Service B decompose to 4 V Fs. Service A includes V F1(),
V F2(), V F3() and V F4(), while Service B includes V F1(),
V F2(), V F5() and V F6(). Details on the V Fs: V F1(): Frame
acquisition and image enhancement (histogram equalization
and Multi-scale retinex on low light conditions, V F2():Blob
calculation for a specific frame, V F3(): Convolutional Neural
Network (MobileNet v2) pass and probability matrix acquisi-
tion, V F4(): Coordinates calculation for the detected objects
and non maxima suppression for overlapping objects, V F5():
Convolutional Neural Network (gender CNN networks) pass
and probability matrix acquisition, V F6(): Results reporting.
The model’s basic parameters are: n = 8, W = 100
Mbps, cpuload =

[
103, 5× 103, 106, 102

]
instructions/frame,

output =
[
105, 3× 104, 107, 104

]
bytes, ck(l) = l2+0.8

1000 ,
r(l) = 20l+9

mk
sec, m1 = 104 instructions/sec(PI 3) and

m2 = 107 instructions/sec (PI 4). The values have been
selected after performing a set of experiments for different
workloads. A non-linear model for the cost function has been
chosen. V Fs have been implemented using Python3, utilizing
the multiprocessing library.

IV. RESULTS

One can argue that the V FC approach adds a lot of
complexity on the management of the edge network, while the
same results could be reached if multiple agents have been
deployed on the network and each agent would execute the
full stack of the V Fs. It is obvious that this approach would
only require one device to distribute the frames among the
agents (Setup I). Yet, this approach, despite its simplicity, share
two main drawbacks. The total cost of the edge network is
greater than the V FC approach. In case of multiple services,
there is no space for sharing the data among the services.
The next section reports an analysis on these aspects, based

TABLE II
EXPERIMENTS’ SETUPS.

Setup Description Remarks

Setup I
devices execute
the whole stack
of V Fs

The network was setup using the ap-
proach described in Section II, assum-
ing a V FC with only one V F .

Setup
II Proposed V FC model.

Setup
III Services A (gender classification) and B (age classifica-

tion) deployed on Virtual Chains. No caching between
common V Fs.

Setup
IV Services A and B deployed on Virtual Chains. Caching

mechanism deployed.

on experiments held on the edge network described in the
previous section. Fig. 5 and Fig. 4 present the experimental
results of the simulation environment on Setups I and in II
(Setup II refers to the proposed V FC model). It is obvious that

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

to
ta

l
c
o
s
t

(x
1

0
8
)

number of services

Setup I
Setup II

Fig. 4. Total network cost (simulation environment).

the V FC model enables the support of a specific number of
services with fewer edge devices and with substantially lower
total cost, as the service demand scales. Regarding the real
edge network, in order to support Service A, V FO deployed
1 instance of V F1, 2 of V F2, 4 of V F3 and 1 instance of
V F4. For Service B, the resulted instances were 1, 3, 3 and 1
for V F1, V F2, V F5 and V F6 respectively. The calculated
V FCs are in accordance with the V F characteristics, as the
most demanding V Fs (V F3 and V F5) participated in the
chains with the largest number of instances.

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

e
d

g
e
 d

e
v
ic

e
s

number of services

Setup I
Setup II

Fig. 5. Number of required edge devices for different number of deployed
services (simulation environment).

A. Caching mechanism

Services A and B can share V F1() and V F2(). For this,
we have developed a caching mechanism, according to which
when a node executes a V F for data related with frame k,
it stores the results in a stack for a specific timeframe. In
case another video analytics service request from the same
V F to process data related to an already processed frame, it
retrieves the results and forwards them to the next V F of the
V FC, without recalculations. A set of experiments has been
conducted, trying to reveal the benefits of the V FC approach.
The results have been reported on Fig. 6 were collected after
a 10 minute run of the system, for each setup. Four different
setups were tested (Table II). Setups were configured in order
to support the QoS constrains of Services A (fps = 1

12) and B
(fps = 1

10). Fig. 6 illustrates that the QoS has been reached for
all setups, i.e. the edge network was able to support all setups.
When comparing though the total cost between Setups I and
II, we notice that the V FC model outperforms the typical
’all-in-one’ setup by saving approximately 51.2% of the cost.
Finally, the caching mechanism tested in Setup IV decreases
by 47.3% the total cost, when compared with Setup III.

 0

 2x108

 4x108

 6x108

 8x108

 1x109

 1.2x109

 1.4x109

I II III IV

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

to
ta

l
c
o
s
t

p
ro

c
e
s
s
e
d

 f
p
s

Setup

Total Cost - cost
Processed fps

Fig. 6. Total network cost & processed fps for the different setups (real case
environment).

V. CONCLUSIONS AND FUTURE WORK

Edge computing is expected to be an important part of the
AI industry during the next few years. Its advantages lie not
only on the proximity with the processing data, but also on
the data protection and safety issues, which are debatable on
the Cloud computing paradigm. This paper proposes a novel
concept for enabling real-time AI applications on an Edge
network. Our proposal is based on the V FCs which are used
to distribute an AI application across the edge network on
an scalable fashion. After providing a mathematical model
for our system, we report the results of a real-case scenario,
where the system has been implemented and tested in various
setups. A caching mechanism is also described, which extents
even further the capacity of our system. The experiments have
provided evidence that such this approach can be used to
undertake heavy-load AI applications and handle them real-
time. Regarding the next step of our work, we plan to extent
our model to have the capacity to handle node failures, by

adding a migration mechanism to our architecture. Finally,
a more extented comparison framework will be developed,
aiming to compare the performance of the proposed model
against general distribution frameworks like Apache Spark©.

ACKNOWLEDGMENT

This is work is partially funded by the Innovate UK Open
Round 2 program: Wide Smart Safe, Robust and Resilient
Smart Cities Application Using Fog Computing (WATCH,
TSB-103845) project.

REFERENCES

[1] Jain et al., “Performance characterization of dnn training using tensor-
flow and pytorch on modern clusters,” in Proc. of the 2019 CLUSTER.
2019, IEEE.

[2] He et al., “A Survey to Predict the Trend of AI-able Server Evolution in
the Cloud,” Special Section on Emerging Trends, Issues and Challenges
in energy - efficient Cloud Computing, vol. 6, Feb. 2018.

[3] Sun et al., “Vu: Edge computing-enabled video usefulness detection and
its application in large-scale video surveillance systems,” IEEE Internet
of Things Journal, 2019.

[4] Rob Kitchin, “The real-time city? Big data and smart urbanism.,”
GeoJournal, vol. 79, no. 1, pp. 1–14, Feb. 2014.

[5] W. Zhou et al., “A System Architecture to Aggregate Video Surveillance
Data in Smart Cities,” in 2015 IEEE Global Communications Conference
(GLOBECOM), 2015, pp. 1–7.

[6] Li, Jianhua et al., “Virtual Fog: A Virtualization Enabled Fog Computing
Framework for Internet of Things,” IEEE Internet of Things Journal,
vol. 5, no. 1, Feb. 2018.

[7] Chen et al., “Dynamic Urban Surveillance Video Stream Processing
Using Fog Computing,” in 2016 IEEE Second International Conference
on Multimedia Big Data (BigMM), 2016, pp. 105–112.

[8] Dautov et al., “Metropolitan intelligent surveillance systems for urban
areas by harnessing IoT and edge computing paradigms,” Softw Pract
Expe., vol. 48, no. 1, pp. 1475–1492, 2018.

[9] M. Satyanarayanan, “The Emergence of Edge Computing,” Computer,
vol. 50, no. 1, pp. 30–39, Jan. 2019.

[10] Ning Chen and Yu Chen, “Smart City Surveillance at the Network Edge
in the Era of IoT: Opportunities and Challenges,” in Smart Cities, pp.
153–176. Apr. 2018.

[11] Chen et al., “Distributed deep learning model for intelligent video
surveillance systems with edge computing.,” IEEE Transactions on
Industrial Informatics., 2019.

[12] Puthal et al., “Secure authentication and load balancing of distributed
edge datacenters,” Journal of Parallel and Distributed Computing, vol.
124, pp. 60–69, 2019.

[13] Hwejoo et al., “A data streaming performance evaluation using resource
constrained edge device,” in 2017 ICTC, Jeju, South Korea, 2017, IEEE.

[14] J. Halpern and C. Pignataro, “RFC 7665 - Service Function Chaining
(SFC) Architecture,” Oct. 2015.

[15] C. Besse and B. Chaib-draa, “An Efficient Model for Dynamic and
Constrained Resource Allocation Problems,” in 2nd COPLAS ’07, 2007.

[16] Ahuja, Ravindra et al., Network Flows: Theory, Algorithms, and
Applications, Prentice-Hall, 1993.

[17] Laborie, P. et al., “IBM ILOG CP optimizer for scheduling,” Constraints,
vol. 23, no. 2, pp. 210–250, 2018.

[18] Aderaldo et al., “Kubow: an architecture-based self-adaptation service
for cloud native applications,” in Proc. of the 13th ECSA, Paris, France,
2019, vol. 2, pp. 42–45, ACM.

[19] Hedengren et al., “Apopt: Minlp solver for differential and algebraic
systems with benchmark testing,” in Proceedings of INFORMS National
Meeting, 2012.

[20] Beal et al., “Gekko optimization suite,” Processes, vol. 6, no. 8, 2018.
[21] Sangmin et al., “A Large-scale Benchmark Dataset for Event Recogni-

tion in Surveillance Video,” in Proceedings of IEEE Comptuer Vision
and Pattern Recognition (CVPR), 2011. 2011, IEEE.

[22] Google AI Blog, “MobileNetV2: The Next Generation of On-Device
Computer Vision Networks,” 2018.

