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ABSTRACT 

 

A large proportion of individuals who live with type2 diabetes suffer from plantar sensory 

neuropathy (PSN). Regular testing and assessment for the condition is required to avoid 

ulceration or other damage to patients’ feet. Currently accepted practice involves a trained 

podiatrist testing patients’ feet manually with a hand-held nylon monofilament probe. The 

procedure is time consuming and labour intensive, requires training, is susceptible to error and 

is difficult to repeat.  

This thesis presents the first investigation into a novel automated approach to automatically 

identify the pressure points on a given patient’s foot for the examination of sensory neuropathy 

via optical image processing via RGB and HSV colour space incorporating plantar 

anthropometry. The developed system effectively automates the traditional Semmes–

Weinstein monofilament examination (SWME).   

Further work presented demonstrates the development and demonstration of a generic 

automated lesion detection algorithms to recognise and avoid probe application on a plantar 

surface. A combination of local binary pattern and support vector machine methods in layered 

combination are used to avoid probe application where lesion and chosen pressure points 

overlap.  The trained lesion detection and avoidance method was 100% effective on the lesions 

used. 
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CHAPTER 1. Introduction 

 

Diabetes is a common metabolic disorder and may lead to different complications, such as heart 

disease, kidney failure, dementia, retinopathy, neuropathy and limb amputation, if not properly 

treated and self-managed. Diabetes is concomitant with disability and death through its associated 

complications such as kidney disease, blindness and cardiovascular disease, as well as through the 

development of chronic wounds, especially the diabetic foot ulcer (DFU) and diabetic peripheral 

neuropathy [1]. 

This thesis presents the first investigation into a novel automated approach to automatically 

identify the pressure points on a given patient’s foot for the examination of sensory neuropathy 

via optical image processing via RGB and HSV colour space incorporating plantar anthropometry. 

The developed system effectively automates the traditional Semmes–Weinstein monofilament 

examination (SWME).   

Further work presented demonstrates the development and demonstration of a generic automated 

lesion detection algorithms to recognise and avoid probe application on a plantar surface. A 

combination of local binary pattern and support vector machine methods in layered combination 

are used to avoid probe application where lesion and chosen pressure points overlap.  The trained 

lesion detection and avoidance method was 100% effective on the lesions used.  

The Thesis structured as follows 

Chapter 1 discusses Diabetes and one of its complications namely Peripheral Sensor Neuropathy 

(PSN), its assessment techniques and high plantar pressure areas. Chapter 2 covers flaws in 

existing Semmes Weinstein Monofilament Examination (SWME), a semi mechanical approach to 

exercise SWME, plantar pressure measuring devices and optical image processing background. 

Chapter 3 discusses the proposed system architecture and the first algorithm to select suitable 

pressure test point using optical imaging and binary processing technique. Chapter 4 presents 

improved algorithms using foot stopper and subsequently using sectorisation and foot 

anthropometry. Chapter 5 discusses the methodology to avoid plantar lesion to be probed using 



ABSTRACT 

 

Page | 2  

 

the combination of Local Binary Pattern (LBP) and Support Vector Machine (SVM). The PerSeNT 

evaluation in terms of efficiency and accuracy by comparing PerSeNT with a trained podiatrist 

and with commercial pressure plate and signal detection theory followed by test-retest Pearson 

coefficient reliability are discussed in chapter 6. Chapter 7 end the thesis with conclusion and 

chapter 8 contains appendix. 

The contribution and achievements are given below  

1. A University patent has been lodged.  

2. “Automated Peripheral Neuropathy Assessment of Diabetic Patients using Optical Imaging 

and Binary Processing Techniques”, Hafeez U. R. Siddiqui Michelle Spruce, Stephen R. 

Alty, Sandra Dudley, International IEEE Conference on IEEE Point-of-Care Healthcare 

Technologies (PHT) Bangalore, India, 16 - 18 January, 2013. 

3. “Automated Peripheral Neuropathy Assessment Using Optical Imaging and Foot 

Anthropometry”, Hafeez U. R. Siddiqui Michelle Spruce, Stephen R. Alty, Sandra Dudley, 

IEEE Transactions on Biomedical Engineering  (Volume:62 ,  Issue: 8 ) Page(s):1911 – 

1917, 24 February 2015 DOI: 10.1109/TBME.2015.2407056 

4. “Automated Semmes Weinstein monofilament examination replication using optical 

imaging and mechanical probe assembly”, Hafeez U. R. Siddiqui Michelle Spruce, Stephen 

R. Alty, Sandra Dudley, Biomedical Imaging (ISBI), 2015 IEEE 12th International 

Symposium on, New York, 16-19 April 2015, pp. 552 – 555, DOI: 

10.1109/ISBI.2015.7163933. 

5. “Plantar Surface Lesion Avoidance using LBP and SVM for Automated Peripheral 

Neuropathy Assessment Techniques”, Hafeez-Ur-Rehman.  Siddiqui, Sandra Dudley, 

IEEE Transactions on Biomedical Circuits and Systems (submitted). 

6. “PerSenT Performance Evaluation”, Hafeez-Ur-Rehman.  Siddiqui, Russo Riccardo, 

Sandra E. Dudley. (under review). 
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1.1 The Diabetic Epidemic 

Diabetes is a major health challenge currently affecting more than 8% of the population of the 

developed world, with much higher growth rates in developing countries such as China and India. 

The prevalence of diabetes in adults within the 20–79 age range was estimated at 382 million 

worldwide for 2012 and it is expected to affect 592 million people by 2035 [2].  

It is assessed that 175 million people have undiagnosed type 2 diabetes. According to the 

International Diabetes Federation (IDF), in 2013 five countries had more than 10 million people 

with diabetes: China, India, the United States of America, Brazil, and the Russian Federation [2]. 

The statistics are shown graphically in Figure 1 and 2. 

Further, the report showed that in 2013 the 10 countries with the highest diabetes prevalence in 

the adult population were Tokelau (37.5%), Micronesia, Marshall Islands, Kiribati, Cook Islands, 

Vanuatu, Saudi Arabia, Nauru, Kuwait and Qatar (22.9%). Diabetes affects people in both urban 

and rural settings worldwide, with 64% of cases in urban areas and 36% in rural areas [2]. 

Roughly 27 million diabetics are registered in Europe alone and the majority of these individuals, 

China 
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U.S 

Brazil 

Russia 
 

98.4 Million 

65.1 

24.4 

11.9 

10.9 

Figure 2: Top five countries by number of people with 

diabetes in 2013 aged 20 to 79 [2] 
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around half of whom are aged 60 or over (>80%), present with type2 diabetes. It is estimated that 

more than one in 17 people in the UK have diabetes (diagnosed or undiagnosed). It is estimated 

that there are around 630,000 people in the UK who have diabetes but have not been diagnosed 

[2]. 

In the UK there are currently approximately 3.8 million people living with diabetes and that 

number will reach five million by 2025[2] and potentially 6.25 million by 2035/36. 

This is equivalent to:  

 More than 400 people every day (410) 

 Over 17 people every hour (17.12) 

 Around three people every 10 minutes (2.85) 

The Department of Health estimates that up to 24,000 people with diabetes are dying each year 

from causes that could be avoided through better management of their condition [3]. Diabetes 

causes one death every six seconds globally, and is responsible for 8.4% of all global mortality in 

the 20–79 age group. 48% of deaths occur in those under 60 years of age [2]. 

This projected increase is likely to have a significant impact on the National Health Service’s 

(NHS) resources. Of course, this is not simply a UK problem, since it is an enormous global issue.               

1.2 Neuropathy 

Peripheral sensory neuropathy (PSN) is one the many complications of type2 diabetes that affects 

the peripheral extremities of the body. Typically, around 60% of all type2 diabetics will develop 

 
Figure 3: Recorded diabetic growth and future estimation in UK [2] 
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this condition within 10 years of being first diagnosed.  

It manifests as sharp, shooting pain, burning, tingling, a feeling of being pricked with pins, 

throbbing and numbness in extremities [4]. PSN is commonly regarded as a key factor in the 

development of ulcerations. It is often termed stocking-glove neuropathy, damaging the longest 

nerves before progressing proximally [5]. In such a condition, the central nerves wouldn’t know 

what’s happening at extremities; this is more often the case in patients with long-standing diabetes 

[6]. Controlling the blood glucose level is considered key to minimising the risk of neuropathy 

development and its severity [2]. Neuropathy may affect up to 50% of diabetic sufferers [2]. 

The frequency of diabetic neuropathies is noticeably increasing with the enormous growth of type2 

diabetes, but the actual number remains undisclosed [1]. The statistics are recorded variably in 

reports on diabetic patients, depending mostly on the criteria and methods used to identify 

neuropathy [1]. 

Chronic painful PSN is the most common type of neuropathy and is estimated to affect up to 26% 

of people with diabetes [2]. It reduces sensation in the lower extremities and contributes to the 

increased possibility of ulceration and amputation in diabetes sufferers. Autonomic neuropathy 

can have rigorously devastating effects on various body functions. Gastroparesis (delayed 

emptying of the stomach leading to abdominal pain, nausea and vomiting) affects up to 50% of 

people with diabetes at some time [2]. Cardiovascular autonomic neuropathy (CAN) affects the 

nerves that control the heart and blood vessels. This can lead to a rapid heartbeat, exercise 

intolerance, sudden low blood pressure on standing, and even a silent heart attack [2]. 

More complications arise when the nerve damage leads to a loss of sensation in the feet of a patient 

with diabetes, so that injuries due to trauma or the damage caused by ill-fitting footwear, which 

would normally be painful, go undetected [4]. The loss of sensation can lead to a psychological 

disconnect with the affected limb to which the patient with diabetes can become uncaring and 

which may reduce compliance with preventative or therapeutic treatments. 

Additionally, a subordinate impediment of the neuropathy is abnormal and persistent muscular 

contractures in the feet, which causes disfigurements and high-pressure zones in footwear, 
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affecting the individual’s gait or causing loss of mobility, resulting in a greater risk of trauma and 

chronic ulceration. This degenerative process has an obvious dramatic impact on their quality of 

life [6].  

PSN leads to DFU that can go unnoticed due to the lack of sensation. If DFU develops, the wound 

can deepen and become infected; in this scenario, healing wouldn’t help much because the 

originating cause of the DFU remains. Such infection has serious consequences for limb survival 

and can be life threatening [6].  

Diabetes sufferers in England and Wales are 37.5% more likely to die earlier than their peers in 

other countries. For type 1 diabetes, mortality is 129.5% greater than expected and it is 34.5% 

greater for type 2 diabetes. The greatest increase in risk of death is in younger age groups and 

females [7]. 

With type 1 diabetes, the remaining life expectancy figures between those with type 1 diabetes and 

those without reduce as the age range increases. In men, the difference between the 20 to 24 age 

groups is 11 years, whereas it is five years in the 65 to 69 age groups. Similarly, in women the 

difference is 14 years between the 20 to 24 age groups, and seven years in the 65 to 69 age groups 

[2].  

In type 2 diabetes, the average reduced life expectancy for someone diagnosed in their fifties is 

about six years [2]. Data from the National Diabetes Audit (NDA) for the last few years suggest 

that more than 20,000 people with diabetes die before their time each year in England and Wales 

[2]. 

1.3 Amputation 

Any diabetes sufferer can be affected by foot problems. A lack of proper care and health 

management can lead sufferers to nerve impairment, devastated muscles, sweat glands and poor 

blood circulation in the feet and legs, which subsequently, ends in amputation. 

Reviewing the feet of people with diabetes regularly and keeping blood glucose, blood fats and 

blood pressure under control can prevent some of the complications associated with the feet [8].  
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Patients with diabetes have a 15 to 40times greater risk of leg amputations than those without 

diabetes, due to a loss of protective sensation, ulceration, infection, and gangrene [9]. Diabetes is 

the most common cause of lower limb amputations and over 6,000 leg, toe or foot amputations 

happen each year in England alone [7]. There are over 

100 amputations a week amongst people with diabetes 

[2].  

According to some studies, amputation carries with it 

a significantly higher mortality rate at follow-up, 

ranging from 13–40% at one year to 39–80% at five 

years [10]. Many amputations are preceded by foot 

ulceration caused by a combination of impaired 

circulation and nerve damage. Various studies suggest 

that about 2.5% of people with diabetes have foot 

ulcers at any given time [2]. This would suggest that there are about 80,000 people with foot ulcers 

across the UK [2]. 

A multi-disciplinary team of diabetes specialists of wound care, vascular and musculoskeletal 

disease cover the diverse treatment options and match these to the specific needs of individual 

patients [5]. However, during the whole process to figure out the specific needs of individual 

patients, DFUs can worsen and become infected and this infection can lead to amputation.  

Typically, of the 70% of patients that present to the multi-disciplinary clinic with neuropathy, 25% 

will go on to develop a foot ulcer. Among those foot ulcer sufferers, around 50% will become 

infected; 20% of those with infected ulcers will unfortunately undergo varying degrees of 

amputation [11]. 

Thus early diagnosis, correct assessment and patient self-management are important factors that 

permit remedial action to be taken earlier and manage the condition properly, identifying higher 

risk patients. Sufferers lose mobility and this degenerative process has an obvious dramatic impact 

on their quality of life. If not carefully monitored and treated in a timely fashion, lower limb 

amputation is unfortunately commonly prescribed [12].  

 

Figure 4: Amputation sufferers’ ratio out of total 
number of neuropathy sufferers 
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1.4 Costs 

The maintenance of healthy feet is clearly fundamental in enabling sufferers to preserve an active 

and healthy lifestyle and reduces sufferers’ risk of falling. One of the main causes of ulceration is 

diabetic neuropathy [13, 14]. Foot complications are, indeed, some of the most frequent problems 

of diabetic mellitus, a key contributor to medical costs, as 50% of all inpatient admissions for 

diabetes are due to foot complications [15]. The current direct patient care cost (which includes 

treatment, intervention and assistance with complications) for those living with diabetes is 

estimated at £10 billion [1, 2]; in other words, 10% of the NHS budget is spent on diabetes.  This 

works out at around £286 a second [2]. The total cost (direct care and indirect costs) associated 

with diabetes in the UK is presently at £23.7 billion and is anticipated to rise to £39.8 billion by 

2035/6 [2]. 

One in ten hospital beds is occupied by someone who has diabetes [10]. People with diabetes are 

twice as likely to be admitted to hospital [10]. One out of four people admitted to hospital with 

heart failure, a heart attack or a stroke has diabetes [2]. In 2012, 42.2 million prescriptions were 

distributed in primary care units across England at a net ingredient cost of nearly £768 million. 

This is an increase in cost of 7.7% over 2010 [2].  

One out of twenty people with diabetes incurs social services costs. More than three-quarters of 

these costs were associated with residential and nursing care, while home-help services accounted 

for a further one-fifth [2]. Consequently, the presence of complications increases social services 

costs four-fold [2]. 

1.5 Peripheral Neuropathy Assessments 

The noteworthy morbidity and mortality associated with PSN have provided a driving force for 

the development of better means to screen, diagnose and assess the condition. Screening for loss 

of sensation helps to prevent foot ulcerations and amputations [1]. Clinical practice guidelines 

recommend annual screening for neuropathy [16]. Currently accepted techniques for the 

assessment of peripheral neuropathy such as the vibration, neurometer and SWME methods, used 

to identify insensitive regions on the plantar surface of the patient, are considered quite 
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rudimentary [17]. Several different methods are commonly used to screen for and assess DPN. 

Descriptions of these methods are below. 

1.5.1 Reflex Testing 

The inability to perceive ankle reflexes is associated with increased risk of foot ulceration [4]. In 

neurology, it is traditional to test all reflexes for the DPN assessment but it is most common to test 

only the ankle reflexes. The examiner gently strikes the Achilles tendon of the subject with a reflex 

hammer while he/she is in a sitting position; if no reflex occurs, the process is repeated with 

reinforcement [1, 4]. However, the test is a poor predictor of ulceration [1]. 

1.5.2 Pinprick Sensation 

Pain sensation can be tested with a sterile safety pin. The inability of a subject to perceive pinprick 

sensation has been associated with an increased risk of ulceration [4]. The site of the testing varies 

with the specific algorithm, but may include the dorsum of the greater toe or the plantar aspect of 

the distal first, third, and fifth toe of each foot [1]. The pin is applied just proximal to the toenail 

on the dorsal surface of the hallux with a force that is enough to deform the skin. The inability to 

perceive a pinprick, when it is applied, is regarded as an abnormal test result [4]. The assessment 

of neuropathy using pinpricks is highly subjective and is thus poorly reproducible [1]. 

1.5.3  Vibration Testing 

The tuning fork is widely used in clinical practice and provides an easy and inexpensive test of 

vibratory sensation. Traditionally, vibration perception has been measured with a 64, 128 or 256 

Hz tuning fork [1]. The tuning fork provides an easy and inexpensive test of vibratory sensation, 

but tuning fork results are less predictive of ulceration than results from tests using monofilament 

[17]. Vibratory sensation should be tested over the tip of the great toe bilaterally. An abnormal 

response can be defined as when the patient loses vibratory sensation and the examiner still 

perceives it while holding the fork on the tip of the toe [4]. The test relies on examiner experience, 

which has a variable correlation with quantitative tests [1]. Although vibration testing can be a 

highly subjective measure of the severity of neuropathy and may be poorly reproducible, the 

absence of vibration sensation at the great toe is significantly associated with development of foot 
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ulcers [1]. 

1.5.4 Neurometer Testing 

In this test a painless electrical stimulus is applied to a specific location on the foot that can be 

detected by the patient.  The Neurometer generates a constant current stimulus by monitoring and 

compensating for tissue impedance variations [18]. Common metabolic/toxic and progressive 

neuropathies affect sensory nerves and the subsequently affected sensory nerves pass through 

reversible stages of hyperesthesia (often sub-clinical) followed by hypoesthesia and anaesthesia 

[18]. The Neurometer detects hyperaesthetic sensory neuropathy in non-diabetics with impaired 

glucose tolerance and in non-diabetic overweight individuals [18]. This ability to detect 

abnormalities in conditions potential to a high risk of polyneuropathy is a great clinical diagnostic 

advantage [18]. It also detects the hypoesthesia of advanced neuropathic conditions as well as 

nerve regeneration. 

Electrodes are placed at the agreed test site and held in place with tape. The subject is instructed 

to press a button, releasing it when a stimulus is detected at the site of the electrode(s). At this 

point the CPT measure is verified. This effectively monitors responses for consistency [18]. 

A different range of AC frequencies is applied on a different spot [19]. At each frequency (2000, 

250 and 5 Hz), an R-CPT value was generated from one to 25. A value from six to 13 is categorised 

as normal, while a value from one to five is known hyperesthesia (increased sensation). The rest 

of the value, i.e. from 14 and 25, showed hypoesthesia (decreased sensation). Hyperesthesia and 

hypoesthesia show the presence of sensory neuropathy. 

1.5.5 Sympathetic Skin Response 

The sympathetic skin response is a reflex that happens in response to a variation in the electrical 

potential of the skin. It is transient in nature, and can be caused by a variety of stimuli [20]. 

Measurement requires special equipment that is not typically available in most physicians’ offices 

[20]. 
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1.5.6 Quantitative Sensory Testing 

Quantitative sensory testing is an extension of the sensory portion of the neurological evaluation. 

It is the determination of the absolute sensory threshold, which is useful when assessing the 

integrity of the axons that form the peripheral nervous system and their distal receptors [20].  

1.5.7 Semmes–Weinstein Monofilament Examination (SWME) 

Max Von Frey presented variable diameters of monofilament, horse hair mounted inside a tube, to 

evaluate cutaneous sensation for the first time in 1899 [20]. The monofilament was applied 

perpendicularly with a known force that caused an obvious bend; at this stage, the patient was 

asked for verbal feedback to acknowledge that he felt the force applied by the monofilament [20]. 

The device was refined in 1960 by psychologists Florence Semmes and Sidney Weinstein [20]. 

After gaining increased recognition through its use in leprosy research, the SWME was approved 

as the standard assessment tool for patients with peripheral neuropathy [4, 20]. Peripheral 

neuropathy is the most common cause in the pathway to a diabetic foot ulcer [4]. 10g 

monofilament, also known as Semmes–Weinstein monofilament, is a non-invasive, simple to use, 

readily accessible and relatively inexpensive screening instrument [20]. These qualities make it an 

effective, commonly used and traditional approach to examining peripheral sensory neuropathy. 

Research has shown that the inability to detect a 10g force (i.e. 98mN) applied to key weight-

bearing points indicates a degree of neuropathy consistent with increased risk of ulceration [21]. 

The use of 10g monofilament is prevalent across the world and its efficacy in this regard has been 

confirmed in a number of trials, including the recent Seattle Diabetic Foot Study [4]. Currently, in 

order to test this, an extruded homopolymer, known as the Semmes–Weinstein monofilament 

(SWM), is applied to the patient’s foot at various pressure points by a trained clinician. Nylon 

monofilaments are designed to buckle 10mm when a 10g (98mN) force is applied; at this point, 

the patient is required to acknowledge whether they can or cannot feel the probe on the area in 

question and the process is repeated for a number of sites on both feet.  

The loss of the ability to detect this pressure at one or more anatomic sites on the plantar surface 

of the foot has been associated with the loss of large-fibre nerve function. It is recommended that 
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four sites (first, third, and fifth metatarsal heads and the plantar surface of the distal hallux) be 

tested on each foot [4]. The sensation of pressure using the 10mm buckling 10g monofilament 

should first be demonstrated to the patient on a proximal site (e.g. the upper arm). The sites of the 

foot may then be examined by asking the patient to respond “yes” or “no” when asked whether the 

monofilament is being applied to the plantar surface; the patient should recognise the introduction 

of pressure as well as identify the correct site. Areas of callus should always be avoided when 

testing for pressure perception [4]. Many studies have established that loss of pressure sensation 

using the 10g monofilament is highly predictive of subsequent ulceration [4]. 

1.6 High-Pressure Areas on Plantar Surface 

A statistical study of foot pressure indicates distinguishing trends and 

was based on new parameters: normalised peak pressure (NPP) and 

pressure contact ratio (PCR) [22]. According to these methods, the 

foot is divided into 10 areas, as shown in Figure 5, and the foot 

pressure is measured using optical pedobarograph.  

Foot pressures P have been shown to be affected by the body weight 

and walking velocity of the subject [22]. One of the new parameters 

(NPP) is obtained by normalising the pressure P with reference to the 

body weight and walking velocity parameters using the following 

equation: 

𝑁𝑃𝑃 =
𝑃

𝑊∗𝑉
∗ 100      1.1 

Where P is the peak pressure in the specified area, W and V are the weight and walking velocity 

of the subject respectively. The obtained NPP values for each of the 10 areas are shown in Figure 

5.  

The mean values of the NPP in different foot areas have been obtained. In diabetic sufferers with 

sensory paralysis, it is found that the foot, once subjected to moderate pressure for a longer 

duration, is more prone to ulcers than the one subjected to high pressure for a shorter duration [22]. 

 

Figure 5: Areas of the foot [22] 
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In this context, a newer parameter known as PCR is considered; this new parameter takes into 

account both the magnitude of pressure and the time for which it acts. It is defined by the following 

equation: 

𝑃𝐶𝑅 =
𝑡

𝑇
 ∗  

𝑃

𝑊∗𝑉
∗ 100 1.2 

Where t is the time during which pressure ≥50% of the peak pressure acts on the specified area, T 

is the total contact time of the same foot. 

Seventy-eight people of different classes, i.e. normal, diabetic, diabetic neuropathic and diabetic 

neuropathic with ulcers, were studied and the highest pressure areas were found to be the toe, 

metatarsal and heel areas. The NPP values for diabetic subjects are higher than normal and the 

highest pressure regions, in descending order, are the big toe, the fifth, second and first metatarsals 

and the heel. The diabetic neuropathic subject with ulcers also shows higher NPP values than the 

corresponding normal values, the highest being in the toe, metatarsal and heel regions as shown in 

Figure 6 and 7. 

Another study also investigates the high-pressure region of the plantar surface [23]. The system 

used in this study was Electronisches Meßsystemzue Erfassung von Druck verteilungen (EMED 

Novel Inc.). Eight subjects were examined at different clinics and the data was recorded and 

analysed; it was concluded that the peak pressure areas are the heel, the first, third and fifth 

metatarsals, and a big toe [23].  
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Figure 7: PCR values of the foot areas [22] 
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Figure 6: NPP values of the foot areas [22] 
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J. Jacqueline et al. [24] developed a portable insole plantar pressure acquisition system. To place 

sensors at a suitable place, higher pressure regions were evaluated using an APEX foot imprinter 

(APEX, Hackensack, NJ). The subjects had to walk three times on an APEX footprint mat. The 

highest pressure areas determined were the heel, the first, third and fifth metatarsals, and the great 

toe. 

N. K. Rana [23] investigated this area to develop a dynamic pressure scanner. Prior to the 

development of the foot pressure scanner system, a study was carried out to determine the highest 

pressure regions of the plantar surface. A group of healthy people were asked to walk over an 

EMED foot mat system at different clinics. The finding of the study was that the highest pressure 

zones of the plantar surface were the heel, the first metatarsal head, the third metatarsal head, the 

fifth metatarsal head and a big toe. 

The same pressure regions, i.e. big toe, first, third and fifth metatarsals, and heel, were selected as 

high-pressure regions by L. Shu et al. [25] to develop an in-shoe plantar pressure measurement 

and analysis system based on a textile fabric sensor array. 

1.9 Conclusion 

Diabetes is a common metabolic disorder and may lead to different complications of which PSN 

affects the peripheral extremities of the body. PSN leads to diabetic foot ulcer and lack of proper 

care and management may ends up into amputations. The current direct cost of patient care for 

those living with diabetes is estimated at £10 billion which is 10% total NHS budget. Regular 

screening of diabetic patient is required for the assessment of peripheral sensory neuropathy. 

Neurometry, vibration and SWME are the most practice methods for the assessment of PSN. 

SWME is the most popular and efficient assessment techniques, high-pressure areas (Toe, 

metatarsal and heel) are assessed. Further the image processing is discussed in the research 

perspective.  
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CHAPTER 2. Literature Review 

 

A large proportion of individuals who live with type2 diabetes suffer from plantar sensory 

neuropathy (PSN). Regular testing and assessment for the condition is required to avoid ulceration 

or other damage to patients’ feet. Currently most accepted practice known as SWME involves a 

trained podiatrist testing patients’ feet manually with a hand-held nylon monofilament probe.  

2.1 Manual and Mechanical SWME 

Hitherto the Semmes–Weinstein Monofilament Examination (SWME) is one of the most common 

methods to test pressure points at specific weight-bearing areas, namely toe (hallux), metatarsal 

and heel (calcaneum).  

The SWME is designed to bend by 10mm when 10g force is applied. Studies have shown that the 

inability of the patient to feel the pressure of monofilament, when the monofilament bends by 

10mm at 10g force, indicates a degree of neuropathy. This technique although most widely used, 

incurs its own shortcomings. The key downside related to the SWME is the judgment of acceptable 

force. The precision of the accepted 10g force is based on the practitioner’s guess by observing 

the perceived bend or buckle of the filament i.e. observing the 10 mm bend through the naked eye. 

There are opportunities to misjudge the bend and consequently misdiagnose the patient. The 

measurements to meet standard by guessing can become more erroneous, if one takes the fact into 

consideration that monofilaments age and lose compressible strength due to repeated use [58].  

Even though the monofilament size and buckling criteria are well documented, manufacturers 

often fail to perform accurately within these parameters. K. D. Smith et al. [59] studied the force 

of 10 unused monofilaments, which were specifically designed to collapse with approximately 10 

grams of direct force. The results discovered that the monofilaments buckled on average after only 

8.4 grams of force, a 16% discrepancy, during the first application. This outcome was statistically 

significant as the calibrated 10 grams of buckling force was outside of the designed 5% window 

of standard deviation; therefore, even calibrated monofilaments may provide inaccurate results 

[59]. 



ABSTRACT 

 

Page | 16  

 

A series of random applications may be needed to minimise any guessing by the patient. This test 

often requires 10 to 15 minutes to complete, which is often not practical in a busy clinic. Aside 

from time considerations, the reliability of the monofilament has inherent flaws. This makes 

interpretation of the testing results questionable and, therefore, limits its clinical application [20]. 

Another complicating factor inherent in the design of the SWM is mechanical exhaustion incurred 

after a series of continuous applications. Once the monofilament is subjected to cyclical stress, the 

reproducibility of the testing device is altered. Several monofilaments have been tested with a 

fatigue testing device [60]. After 500 consecutive cycles, the results showed there was an average 

reduction of 1.2 grams (12%) needed to bend the monofilament. Other than obvious manufacturing 

and/or injury -related defects in the monofilament, there are no guidelines that describe the service 

life of a standard SWM [60]. 

Further, currently Podiatrists rely on subjective judgement as to which areas may constitute a high-

pressure site, this is frequently based upon bony prominences, deformity or soft tissue indicators. 

On this basis it is the gold standard that all these identified areas are then tested for peripheral 

neuropathy (a risk factor for the development of ulceration). However, this process potentially fails 

to identify all high-pressure sites and also cannot indicate the progression of diabetic foot disease 

in a measurable manner. Moreover, this test is the first to allow response times to the neuropathy 

test to be recorded, thus providing the earliest possible indicator of those individuals who may be 

at risk of ulceration and amputation. 

In short the traditional approach is considered cumbersome, labour-intensive, repeatability is 

difficult to maintain and prone to experimenter bias [16]. Ultimately, those suffering have already 

reached such numbers as to make a traditional manual PSN test unfeasible. 

Furthermore, the resources required simply to test current sufferers outstrips that which is available 

from National Health providers. Therefore, there is a clear and present need to expedite, simplify 

and automate the testing procedure that is, autonomous, repeatable, and simplifies the testing 

procedure. Additionally, a system that provides photographic evidence of patients’ feet and their 

condition over time is also valuable to both medical practitioners and researchers. Automated 
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techniques such as this would reduce waiting time, increase throughput and have neutral, unbiased 

selection of test points. 

 Previous work, was presented by [61] using a robotic monofilament probe to exercise SWM 

mechanically as shown in Figure 15. But the approach of selection of pressure points of plantar 

surface is manual i.e. each time the robotic arm is adjusted manually to apply the probe at various 

pressure points, moreover selected areas were limited to three sites namely toe, first metatarsal and 

fifth metatarsal. The toe and first metatarsal heads are taken geometrically in the same vertical 

line, while the first and fifth metatarsals are taken in the same horizontal line as shown in Figure 

16. 

 These three points do not cover all the pressure points on plantar surface. Moreover, this might 

work perfectly for a normal foot anatomy, but a patient with inborn deformities such as flat or high 

arched foot, clubfoot, and extra digit may alter the pressure bearing points [23]. 

The research work describes a novel approach to automatically select suitable pressure points, 

namely toe (Hallux), metatarsal heads and heel (Calcaneum), on a given patient’s foot that 

corresponds to those chosen by a trained podiatrist for sensory neuropathy examination via optical 

image processing incorporating plantar anthropometry i.e. automating the current manual SWME.  

  

Figure 16: Monofilament testing sites [61]. 

 

Figure 15: The model for the plantar aspect of the fifth 
metatarsal position [61]. 
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2.2 Plantar pressure distribution Measurement 

Human plantar pressure distribution measurement provides key information to be used in medical 

diagnosis related satisfactory function in the foot [23] and its foot shape as well as shoe making 

industry. Plantar pressure measurement is an integral part of diabetic analysis [23]. Early 

identification of individuals at risk of developing ulceration of foot lesion is one of the important 

means to reduce devastating effects and played an important role in the management of lower limb 

disorders. Specifically, footwear adjustments and redistributive insoles aimed at unloading areas 

of high pressure prone to ulceration have been evaluated for efficacy in patients with diabetic 

peripheral neuropathy. Investigations carried out and established a relationship between ulceration 

and high-pressure areas at plantar surface [23]. 

 Methods dealing with plantar pressure distribution measurement can be categorises into 

quantitative and qualitative methods [62]. Qualitative methods are mainly used to measure the 

shape of the foot rather than the magnitude of load distribution. 

Early systems to measure foot pressures utilised ink prints of the subject’s foot to show contact 

distributions [63]. Likewise, pressure sensitive films have been used for direct static pressure 

measurements [63]. Pedobarograph systems, consisting of a camera positioned below plastic and 

glass plates, were the first devices used to capture dynamic information [63]. Introduction of array 

force transducers controlled by multiplexers has led to easy to use systems which can record 

samples at fast intervals, thus yielding dynamic information. Previous investigators have used 

these devices to study a variety of diseases, deformities, activities, normal variations and changes, 

treatment procedures and devices. Plantar pressure measurements have been used to study diabetes 

club foot, hallux valgus, Marfan’s syndrome Charcot-Marie-Tooth neuropathic ulcers Morton’s 

foot and flat foot [29]. 

 A variety of the plantar pressure measuring systems are currently available in the market or 

research laboratories. These systems based on several types of sensors/ mechanical arrangements 

e.g. capacitance methods [11, 13, 62], piezoelectric sensors [14, 62], force sensitive resistors [15, 

16, 62] and optical techniques [1, 3, 65]. 
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These systems are used for miscellaneous applications e.g. Assessment of foot wear [60], gait and 

standing posture problems. Some work by R. M. Queen et al., has been carried out to find the 

difference between gender plantar pressures distributions [66], R. L. William, et. al., have focused 

on foot ulceration problems due to diabetes [67]. Further research on improvement in balance 

related to gait and elder people or impaired individuals have been carried out by A. Gioftsidou et. 

al [68]. 

The electronic sensors technologies most commonly used in pressure measurement systems are 

capacitance sensors, resistance sensors, piezoelectric and piezoresistive sensors. All of these are 

able to provide an electronic signal (voltage, current) that is proportional to the pressure applied 

on the sensor. The selection of sensors depends on the nature of applications and can be grouped 

into the following [64]. It has been suggested that sensor sizes should not be greater than 6.4 × 6.2 

mm [69]. Sensors always measure the average pressure over the whole sensor surface [67]. For a 

small anatomic structure, produces a defined peak pressure, the larger sensors and smaller spatial 

resolution will underestimate the real pressure values due to the lower pressure around the peak 

[70]. The pressure range should be sufficiently high to accommodate expected pressure and loads 

[69]. 

2.2.1 Pressure measuring sensors 

Followings are some sensors used in most common pressure measuring systems. 

2.2.1.1  Capacitive sensors 

Capacitive sensors electronically measure the 

capacitance between two conductors in a 

dielectric environment, usually air or a liquid. 

Once a pressure is applied the dielectric elastic 

layer bend, which shorten the distance between 

the two plates resulting in a voltage change 

proportional to the applied pressure [68, 71]. 

The schematic diagram is shown in Figure 17.  

 

Figure 17: Capacitive pressure sensor construction [68] 
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2.2.1.2  Resistive sensors 

Resistive sensors measure resistance of conductive foam enclosed between two electrodes. The 

electrical current through the resistance sensor increases as the conductive layer deforms under 

pressure [68, 71]. FSR is true example of resistive sensors. The schematic diagram is shown in 

Figure 18.  

2.2.1.3  Piezoelectric sensors 

Piezoelectric sensors produce an electric field (voltage) in response to pressure [57]. The most 

suitable materials for clinically-oriented body pressure measurements appear to be polymers, such 

as polyvinylidene fluoride (PVDF) [71]. The reason behind this is because polymer-based sensors 

can be made as thin, flexible, and deformable elements (e.g. in-shoe device configurations). A thin 

layer of metallisation is applied to both sides of the polymeric piezoelectric sheet to collect the 

electrical charge and permit electrical 

connections [71]. The schematic 

diagram of piezoelectric sensors is 

shown in Figure 19. Piezoelectric 

pressure sensors measure dynamic 

pressure. They are typically not 

suited for static pressure 

measurements [71]. 

                   

 

Figure 18: Resistive pressure sensor construction [68] 

Resistive film

A           B

 
Output voltage 

Electrodes 
Piezoelectric 

element 

Applied pressure 

Figure 19: Piezoelectric pressure sensor construction [71] 

P+ 



ABSTRACT 

 

Page | 21  

 

2.2.1.4  Piezoresistive sensors 

Piezoresistive sensors are made of semiconductor materials e.g. polycrystalline that act as force or 

pressure sensing resistors in an electrical circuit. piezoresistivity is a material property of 

semiconductors where the bulk resistivity is influenced by forces or pressures applied to the 

material [71]. Hence, when a piezoresistive sensor is loaded, its resistance reduced and vice versa. 

The schematic diagram of piezoresistive sensors is shown in Figure 20. 

2.2.2 Strain Gauge Mechanical system 

The strain gauge sensors change their resistance when mechanical deformation occurs due to load. 

The external load changes the conductor length and cross sectional area that are directly related to 

it resistance. A mechanical assembly of the sensor system developed by [62], consists of a 9×3 

matrix of cantilevers. The cantilevers are supported by beams. Studs are welded on the end of 

 

Figure 20: Piezoresistive pressure sensor construction [71] 
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Figure 21: Schematic of the cantilever sensing elements with studs 
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cantilever to transmit the load. There are holes on top plate through which studs can move freely 

when force is exerted. A stopper is provided under each cantilever to avoid a permanent 

deformation due to sudden heavy load. A pair of foil type strain gauge cantilever sensing elements, 

mounted on either side of cantilever, connected in Wheatstone bridge configurations and shown 

in Figure 21.  

Twenty-seven pairs of wires coming from the Wheatstone bridge network in the sensor array are 

wired to a 32-1 analogue multiplexer. Any change in selected array element is coordinated with 

an on-chip ADC using 8-bit microcontroller. The data obtained from the microcontroller is passed 

on to a PC and displayed in a suitable graphical interface. Each matrix values are observed before 

and after loading and the variation in the pressure distribution is then plotted. 

2.2.3 Pressure measuring system design 

Generally, the plantar pressure measurement systems are divided into two classes in terms of 

design [64]. 

2.2.3.1 In-shoe system 

Force plate studies generally represent barefoot, isolated steps and do not allow the analysis of the 

ongoing step to step variation in normal walking [72]. Coupling information from both feet during 

walking is not easily obtained. To analyse plantar pressure during daily life activities, a portable 

pressure measurement system is needed. The required sensors in insole approach must be small, 

thin and invariant to permanent deformation when overload for a longer period of time. Placing 

sensors within an insole provide a method to quantify plantar pressure measurement during daily 

life activities. Thus the site of the sensors placement is critical. In-shoe sensors are flexible and 

embedded in the shoe such that measurements reflect the interface between the foot and the shoe. 

The system is flexible, portable, provides range of studies with different gait, footwear design [64]. 

Microprocessors embedded into the sole have been used to measure pressure by [24]. The system 

here had a capability to collect data for up to 2 hours from 14 pressure sensors within the sole. The 

chosen sensors were inexpensive and 0.25 mm thick.  To define the sites of greatest weight-
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loading, a subject was required to walk three times on an APEX, foot imprinter, footprint mat that 

has been evenly inked and covered with paper. The locations of the highest pressure area centres, 

which appear dark, were averaged. 

Subsequently, the APEX 

paper is then aligned on the 

insole to lay out the seven 

sensor locations. Figure 22 

shows an instrumented insole 

with seven sensors and the 

connecting cable. They 

aimed to investigate sensate 

and insensate plantar 

pressure, shuffling gait 

versus normal walking. The 

data acquisition unit is 20 x 

18 x 7 cm in size and weighs 

0.8 kg. Subjects carry it in a 

backpack during ambulation.  

The test data are downloaded 

to the IBM PC, translates the 

voltages into pressures by looking up pre stored calibration tables. The system has the ability to 

run for 8 hours without a battery change and can be conveniently reprogrammed. 

A low cost dynamic foot pressure scanner is developed [23]. Peak pressure points on plantar 

surface are determined by placing 8 subjects on EMED (from Novel Inc.) foot mat system [23]. 

The analysis of recorded data indicated the peak pressure areas are heel, 1st, 3rd, 5th metatarsal 

head and toe. Force sensing resistors FSR are embedded into shoe sole of different size at peak 

pressure areas to measure peak pressure during walking condition [23]. These sensors are 

connected to data acquisition system by multi-channel Biopac MP100 as shown in Figure 23. Once 

data is collected, it can be sent to the computer system for analysis using USB interface. 

Figure 22: Seven pressure sensors 

placed under plantar pressure areas 
Figure 23: The placement of sensors and the 

developed foot sole. 
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2.2.3.2 Platform system 

During walking or standing, the human foot exerts force upon the ground or underlying surface, 

an equal magnitude of force but in opposite direction is exerted in response. This force is termed 

ground reaction force [24]. Elevated plantar pressures have been widely recognised as a 

contributory factor in the development of several pedal pathologies, including the development of 

stress fractures, plantar calluses, neuropathic ulceration, forefoot deformity, increased heel pad 

stiffness and lesser toe deformity [24]. Elevated plantar pressures have been widely recognised as 

a contributory factor in the development of several pedal pathologies, including the development 

of stress fractures, plantar calluses, neuropathic ulceration, forefoot deformity, increased heel pad 

stiffness and lesser toe deformity [24]. Pressure sensing elements are arranged in a matrix 

configuration and embedded in the floor and can be used for both static and dynamic pressure 

measurement. Its usage is easy because it is fixed and flat. The disadvantage here is that the 

participant is required to ensure they have a natural gait. It is restricted to use in a laboratory 

environment. Furthermore, for an accurate reading the foot must be placed centre of the sensing 

area [64]. 

Platform pressure measurement system has been used by researchers from various discipline. Used 

capacitive pressure distribution platform (EMED AT, Novel GmbH, Munich, Germany) was 

designed shown as in Figure 24 by [73], to investigate the reliability of repeated plantar pressure 

 

Figure 24: Capacitive pressure distribution platform 

 

Figure 25: CTekscan platform 
pressure distribution system 
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distribution measurements during normal gait. Four parameters were investigated: peak pressure, 

maximum force, impulse, and contact time, and these were investigated in 10 areas of the foot 

after using the PRC mask method of subdividing the foot into ten anatomical areas of interest. A 

comparison of plantar pressure distribution of hemiparetic patients with a control group was 

performed using capacitive pressure distribution platform (EMED-F01 system, Novel GmbH) to 

determine quantitative, objective and reproducible criteria for better assessment of hemiparetic 

gait [74].  

Reliability of assessing plantar pressure variables in a group of typically developing children, 

during barefoot level walking has been investigated using Tekscan system. Tekscan is one of the 

popular platform pressure measurement system [75]. It consists of 5 mm floor mat composed of 

2,288 resistive sensors.  

2.2.3.3 Optical System (Pedobarograph) 

An optical technique is used to measure pressure distribution across the plantar surface [65]. A 

simplified diagram is shown in the Figure 26. A glass plate illuminated at the edge of the plate by 

strip of lights is used. An opaque plastic mat is laid over the glass on which the subject stands. The 

area of the foot in greater contact due to high load or pressure can be viewed from below with 

greater intensity of light. 

The phenomena emerged because of the difference in the refractive indices of i.e. glass, plastic 

mat and air. Commercially available 

systems currently employed by 

clinicians and researchers to assess 

dynamic plantar pressures include in-

shoe measurement systems (Novel 

Pedar®, TekScan F-Scan®, RS-Scan 

Insole® and IVB Biofoot ®) and 

platform systems (Novel Emed®and the RSScanFootscan®) [24]. The validity of these 

measurement systems has been documented throughout the literature, suggesting they are able to 

Glass Plate 
Reflector Applied Pressure Plastic sheet Fluorescent 

 

Camera Mirror 

Figure 26: Schematic of pedobarograph 



ABSTRACT 

 

Page | 26  

 

accurately quantify dynamic plantar loading patterns of the foot [58].  

The key difference and advantage of the system developed and presented in this report is that it 

can be used to not only identify the pressure areas but also apply a mechanical probe as well i.e. a 

complete and automated replication of SWME. The probe driven mechanical system is impossible 

to fit into the above mentioned plantar pressure area measurement systems and these systems only 

carry out one characterisation, the pressure points.  With the system presented here, pressure points 

are detected followed by a mechanical probe that tests for PSN. Clinicians and patients are 

provided with an image of their foot surface with resulting data that can be stored and viewed over 

time, providing them with photographic evidence of the health of their feet, empowering them to 

take action on and developing a mature healthy behaviour. 

The human foot is a complex structure, playing an important role in the locomotion processes of 

the lower extremity [77]. People vary in foot shape; gender, age, race, and even lifestyle habits 

play an important role in shaping the foot [78]. 

Foot anthropometry is the measurement of the size and proportion of different parameters of the 

foot and is accepted in studies related to ergonomics, forensics science and anthropology. 

Parameters often measured include foot length and foot breadth [79]. The most common foot 

parameters used for foot anthropometry are foot length, ball length, ball width, girth, heel width, 

instep height, instep width and toe height [79, 80, 81, 82, and 83]. 

Previous anthropometric studies of foot shape have used different protocols and measurement 

devices. Most anthropometric approaches directly measure the foot dimensions using a Vernier 

calliper or cloth tape flat ruler, whilst others have used foot prints. Additional studies have devised 

physical foot measurement platforms [81]. There are also methods devised to quantify foot posture 

or mobility from digital images; these methods have a commonality in that they involve capturing 

a digital image of the foot. However, the post-processing procedures differentiate amongst them 

[84, 85, 29, and 86]. 

Though their research objectives are diverse, the methods followed by those referenced involved 

manual intervention like marking “bony” land marks [85], painting the plantar surface with ‘‘face 
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and body’’ paint and attached retro reflective targets [30], making the procedures cumbersome and 

difficult to repeat.   

An automated selection of pressure points of plantar surface lies on plantar contact area using 

optical imaging is proposed and discussed in chapter 4 [87]. An optical scanner was used to obtain 

the human plantar surface with specific skin colour tone detection. In Chapter 5 a superior method 

is proposed using the same system architecture as described in [87] but an improved algorithm is 

presented that extracts a plantar surface pressure point using a combined optical image processing 

and plantar anthropometry approach independently of subject ethnicity. Chapter 6 presents a 

further algorithm that improves the method used in chapter 5 to make the algorithm independent 

of optical point of reference i.e. an integrated foot stopper. 

 

2.3  Image Processing 

It is necessary to understand the importance 

of different colour spaces in this presented 

research perspective. A digital image is a 

numeric representation of two-dimensional 

data representing spatial and intensity or 

colour information as shown in Figure 8.  

The two-dimensional (2D) digital image 

I(m,n) represents the 2D continuous spatial 

signal I(x, y) through a sampling process 

[26]. The indices m and n designate rows 

and columns of the image, respectively. 

Digital images are composed of individual pixels, formed by the words “picture” and “element”, 

to which discrete brightness or colour values are assigned [27]. The image pixel located at the 

intersection of the mth row and nth column is denoted by I(m, n). 

 

 Figure 8: Digital image layout 
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2.3.1 Colour Representation 

The colours are actually electromagnetic waves described by their wavelength. The visible 

spectrum, i.e. the portion of the electromagnetic spectrum that can be detected by the human eye, 

ranges from 390nm (violet) to 750nm (red) [28]. 

The following attributes characterise the light. 

a) Intensity 

b) Radiance 

c) Luminance 

d) Brightness 

Intensity is the only attribute involved in the case of achromatic light. On the other hand, in the 

case of chromatic light, the other three attributes are used to measure the quality of the light source 

[28]. Radiance refers to the amount of energy emitted by the light source. The luminance measures 

the amount of radiation perceived by an observer. The brightness is associated with the light 

intensity [28].  

The colour depth measures the amount of colour information available to display each pixel of a 

digital image. A binary image has a depth of one bit. A pixel with a depth of eight bits has 256 

possible values, and so on [28].   

Colour spaces indicates the colour coordinate system in which the image values of a colour image 

are represented [29]. The colour models are used to specify colours as points in a coordinate 

system, creating a specific standard. In the following section, the most common colour spaces are 

briefly presented. 

2.3.1.1 RGB Colour Model 

One of the most frequently used colour spaces, especially for eight-bit digital images, is known as 

RGB (red, green, and blue) colour space. RGB colour space is generally used for the 

representation, transmission and storage of colour images on analogue devices, such as television 

sets, as well as digital devices, such as computers, digital cameras and scanners [30]. The scanned 
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foot is initially obtained in RGB colour space. RGB is an additive model where the red, green and 

blue colours are combined in different quantities to reproduce other colours. The pixels of an image 

represented in the RGB model usually have eight-bit depth, resulting in 256 possible intensities, 

i.e. the range of [0, 255] for each colour [28]. 

A colour, C, in the RGB model can be described to indicate the amount of red, green, and blue. 

Each colour can vary between the minimum value (totally dark) and the maximum value (totally 

intense).  

 C=rR + gG + bB        1.3 

Where C is a colour in RGB, and r, g and b indicate the relative amounts of red, green, and blue 

respectively.  

When all the colours have the minimum value, the resulting colour is black. On the contrary, when 

all the colours have the maximum value, the resulting colour is white [28]. The RGB colour model 

is easy to depict graphically as a cube on the Cartesian coordinate system as shown in Figure 9. 

The primary and secondary colours are at the corners of the cube. The black colour is at the origin 

and the white colour is at its opposite corner. The diagonal between the black and the white colours 

is the greyscale [28].  The primary colour components are highly correlated and it is therefore 

difficult to execute some image processing techniques that only operate on the intensity component 

 

(a)                                                                                        (b) 

Figure 9: RGB colour model 
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of an image [31]. In RGB colour space, the luminance information is embedded into each band in 

the visible light spectrum of the image. Varying levels of brightness in an image cause RGB values 

to shift.  

2.3.1.2  CMY(K) Colour Model 

Like the RGB colour model, the CMY(K) colour model divides a colour into three primaries, using 

a subtractive rather than an additive colour creation process. The CMY(K) model is composed of 

the cyan, magenta, yellow and black colours [29]. This space is usually used by printers and 

photocopiers to reproduce the majority of the colours in the visible spectrum. The system is the 

subtractive colour system, in opposition to the additive system RGB. Cyan is the opposite colour 

of red, i.e. it acts as a filter that absorbs the red colour. The same occurs with magenta and green, 

and with yellow and blue [29]. 

It generally happens that some visible colours on the screen of a computer monitor are not printed 

properly on paper. This occurs because the CMY(K) used in the printers is based on a mixture of 

inks on the paper, and the CMY(K) used in computer monitors is a variation of the RGB space 

[29]. Consequently, the CMY(K) colour spectrum happens to be smaller than the RGB colour 

spectrum.  

Since cyan, magenta, and yellow are the complementary colours to red, green and blue, the RGB 

colour space and the CMY colour space can be transferred through 

 

2.3.1.3 Perceptual Colour Space 

Perceptual colour space is another way of representing true colour images in a manner that is more 

natural to human perception and understanding of colour than the RGB representation. Colour 

spaces that are based intuitively on human colour perception are of interest to the fields of 

computer vision and computer graphics. Many alternative colour representations exist, but here 

1.4 
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we concentrate on the hue, saturation and value/voluminous (HSV) colour, which is also called 

hue, saturation, brightness (HSB), a space popular in image analysis applications [29]. The HSV 

colour system, created by Alvy Ray Smith, is composed of three components: hue, saturation, and 

value. This model is also known as HSB [28].  

By projecting the RGB unit cube along the diagonals of white to black, a hexacone results that 

forms the topside of the HSV pyramid shown in Figure 10 [29]. As shown, the hue H is indicated 

as an angle around the vertical axle that can be read in degrees from 0 to 360. Red is determined 

with H = 0°; as the H values increase, it moves counter clockwise through yellow, green, cyan, 

etc. and back to red at 360°. The hue attribute contains the information concerning the main 

wavelength in the colour, i.e. it is responsible for verifying the colour in the complete spectrum, 

from red to violet and magenta. 

Saturation is a function of the colour’s distance from the central axis (i.e. the value axis). The 

saturation describes the level of mixture between the hue and the white light; a fully saturated 

colour does not contain white light [28]. The further a colour is from this axis, the more saturated 

the colour in considered. The value/voluminous axis lies from the black point of the hexacone 

through to the centre of the circle, with values ranging from 0 for black to 1 for white, where 0 is 

at the tip and 1 is on the surface of the hexacone as shown in Figure 10. 

Changes within this colour space follow a perceptually acceptable colour gradient. From an image 

 

Figure 10: Hexacone and cylindrical representation of HSV colour model 
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analysis perspective, it allows the separation of colour from lighting to a greater degree [29]. The 

HSV model is based on cylindrical coordinates and a nonlinear transformation of the RGB system. 

Hence, it is possible to directly transform a colour from the HSV system to the RGB system, and 

vice versa [29]. HSV space decouples the brightness information from the colour information. 

Thus, HSV has one layer for brightness information, i.e. V, and two layers for colour information, 

i.e. H and S. It is widely used in artificial vision systems, as it is a powerful tool for the 

development of a digital image processing algorithm based on the human colour perception model. 

The HSV model is perfectly suited to portraying colours in practical terms for human 

understanding and is, therefore, ideal for medical application where the human eye is the ultimate 

diagnostic tool. It is widely used in artificial vision systems, as it is a powerful tool for the 

development of digital image processing algorithms based on the human colour perception model. 

Indeed, the HSV model is well suited to characterising colours in practical terms for human 

interpretation, differently from the RGB and CMYK models [29]. 

2.3.2 Mathematical Morphology in Image Processing 

The image obtained by Peripheral Sensory Neuropathy Test (PerSeNT) is processed and 

converted into binary image. Further the morphological operation known as ‘closing’, is used to 

connect objects in a binary image that are close to each other, or to fill the gaps in the object by 

using a structural element. 

Mathematical morphology is one of the most dynamic areas in image processing; it deals with the 

study of shapes, using mathematical theory to define shapes using sets. Mathematical morphology 

is a tool used for extracting image components, useful for representation and description. It is used 

to investigate the interaction between an image and a certain chosen structuring element. The 

techniques were originally presented by Matheron and Serra at the Ecole des Mines in Paris [32]. 

 The impetus comes from the collection of structural information about the image domain. 

Mathematical morphology contents are entirely based on set theory. Based on set operations and 

logical operators, many useful operators are defined in mathematical morphology [32]. It is a 

collection of nonlinear processes that can be applied to an image to remove details smaller than a 
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certain reference shape, i.e. structural elements (SE).  

Mathematical morphology stands quite apart from traditional linear image processing, since the 

basic operations of morphology are nonlinear in nature, and thus make use of a totally different 

type of algebra to linear algebra [33].  

The structuring element in a morphological operation plays a central role in determining its shape 

and size. Shape and size are defined by the numbers of 0s and 1s in the structuring elements [32]. 

The resultant value is applied on the circle shown in Figure 11 and called the centre pixel. This 

circle can be anywhere in the structuring element according to the user’s perception, generally 

occupying the centre of the structuring element.   

Morphological operation works as follows. 

A mask representing a structuring element is slid over the binary image to be modified in such a 

way that it is centred over every pixel at some point. When the mask is centred over a region of 

the image, a logical operation is carried out on the pixels covered by the structuring element, 

yielding a binary output. Morphological image processing is like a convolution process, as shown 

in Figure 12. 

 

(a)                              (b)                                (c)                                    (d)                               (e)  

 

 

 

 

 

                   (f)                             (g)                                   (h)                                       (i)                             (j) 

Figure 11: Some possibilities of 5 × 5 square structuring elements are shown. They are named as: (a) N8 (8-neighbour-

hood centred); (b) N4 (4-neighbourhood centred); (c)Flat plus; (d) Shifted version; (e) 2 × 3 sized rectangular; (f) 

Reflected structuring element of Fig. (e); (g) Line-structuring element of 45o; (h) Line-structuring element of 135o;(i) 
Horizontal structuring element with size 1 × 3; (j) Vertical structuring element with size 3 × 1 [32] 
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Like the convolution kernel, the structuring element 

can be of any size, and it contains a complement of 

1s and 0s. At each pixel position a specified logical 

operation is performed between the structuring 

element and the underlying binary image. The binary 

image result of that logical operation is stored in the 

output image at that pixel position [32]. In its 

approach, pattern recognition by mathematical 

morphology consists of analysing the relationships 

between an object, a subset of R, and its environment using structuring elements, i.e. predefined 

geometrical sets [34]. 

From a geometric perspective, the most morphological idea is to examine an image with a 

structural element and mark the locations at which the structuring element fits within the image, 

deriving from this structural information concerning the image. This information depends on both 

the size and shape of the structuring element, and, as emphasised by Matheron, the nature of that 

information is therefore dependent on the choice of the structuring element [33]. Nonlinear image 

processing is two-fold in nature; it is fundamentally both geometric and logical in character [33]. 

Numerous sophisticated and efficient morphological architectures, algorithms, and applications 

have been developed by researchers. One may be interested in morphological techniques such as 

filtering, thinning, and pruning for image pre-and post-processing [35]. Mathematical morphology 

can also be used as the basis for developing image segmentation procedures with a wide range of 

applications, and it also plays a major role in procedures for image description [32].  

Morphological operations can simplify image data while preserving their necessary shape 

characteristics and eliminating irrelevancies; additionally, they can extract shape features such as 

edges, fillets, holes, corners, wedges, and cracks using structuring elements of varied sizes and 

shapes [35]. 

Mathematical morphology is also known as the study of shape. In image processing, mathematical 

 

Figure 12: Morphological image processing [32] 
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morphology is used to study the interaction between an image and structural elements using the 

basic operations of erosion and dilation. Unlike traditional linear image processing, the basic 

operations of morphology are nonlinear in nature, thus implementing different types of algebra to 

linear algebra [36]. Morphological operators aim to extract the relevant structures of the image by 

probing the image with another set of given shapes, i.e. structural elements. 

Dilation and erosion are the two elementary morphological operators, and all other operators are 

based on the combination of these two [37]. 

In dilation, the 'rich get richer' and in erosion the 'poor get poorer'. In dilation, the centre or active 

pixel is set to the maximum of its neighbours and in erosion it is set to the minimum of its 

neighbours, i.e. dilation tends to expand edges, borders, or regions while erosion tends to decrease 

or even eliminate small regions [34]. Since both operations are nonlinear, they are not invertible 

i.e. one followed by the other will not generally result in the original image.   

The bases for the above two basic operations are Minkowski basic operations. For any given two 

sets, A and B, the Minkowski addition and subtraction are given below [36]. 

Minkowski addition -            1.5   

 

Minkowski subtraction -                                                                                     1.6 

where β is the element(s) that comprises set B. 

Dilation is an operation that grows or thickens objects in a binary image. The specific manner and 

extent of this thickening are controlled by structural elements. 

On the other hand, the key process in the dilation operation is the local comparison of a shape, 

called a structural element, with the object to be transformed. When the structural element is placed 

at a given point and it touches the object, then this point will appear in the result of the 

transformation, otherwise it will not. 
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 Dilation –                                                                                                            1.7 

 Or can be expressed with A and B as sets in Z (means binary image) 

                      A  B = {z | (�̃�)
z
 ∩ A ≠Ф}                                           1.8 

Where �̃� = {−𝛽 | 𝛽𝜖𝐵} and Ф is the empty set and B is the structural element. The equation 1.8 

shows that dilation of A by B is a set of all displacements z such that �̃� and A overlap by at least 

one element [38]. 

For example, Figure 13 shows an original object and the result of its dilation by a 3×3 square 

structural element. In other words, the dilation of A by B is the set consisting of all the structural 

element origin locations where the reflected and translated B overlaps with at least some portion 

of A. 

Unlike dilation, erosion shrinks or thins the object in an image. The shrinkage of the object is 

controlled by structural elements. 

Erosion –                                                                                                             1.9 

Or can be written as  

         A    B = {z | (B)
z⊆ 𝐴}                                                              1.10 

Erosion of A by B is the set of all points z such that, shifted by z is contained in A [38]. The key 

mechanism under the erosion operator is the local comparison of a shape, called the structural 

element, with the object that will be transformed. If, when positioned at a given point, the structural 

element is included in the object then this point will appear in the result of the transformation 

 

 

 

 

Figure 13: Dilation operation with a square SE Figure 14: Erosion with a cross-shaped SE 
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(otherwise it will not). Figure14 shows an object and the result of its erosion by a 3×3 cross. 

The above basic morphology operations are used to facilitate noise removal from images, as edge 

detectors, to carry out image compression and conduct feature extraction [36]. 

Erosion and dilation are the building blocks of an important operation of morphology called 

opening and closing. Both of these operations have been used in the image processing program in 

the developed algorithm to remove noise; combined, the plantar surface patches appeared in the 

foot binary image because of the poor light [37]. 

If erosion is followed by dilation, the operation is termed opening; if the image is binary, this 

combined operation will tend to remove small objects without changing the shape and size of 

larger objects. If the order is reversed and dilation is performed first followed by erosion, the 

combined operation is called closing. Closing connects objects that are close to each other, tends 

to fill up small holes and smoothes an object’s outline by filling small gaps [80]. A mathematical 

representation of opening and closing for image A and structural element B is given in equation s 

(1.11) and (1.12) [37]: 

O(A, B) = A ○ B = D(E(A.B),B)      1.11 

C(A, B) = A ● B = E(D(A,�̃�),�̃�)      1.12 

where O, C, D and E are opening, closing, dilation and erosion, respectively. 

2.3.3 Digital Image Processing in Medical Applications 

Image processing gained popularity in different areas of research. In the past, it was limited to 

satellite imagery [29]. The influence and impact of digital images on modern society has been 

incredible, and image processing is now a significant component of science and technology. The 

most speedy progress in reconstruction of computerised medical image, associated developments 

in analysis methods and computer-aided diagnosis, has made medical imaging one of the most 

important sub-fields in scientific imaging [39]. In the past few years, the influence of digital image 

processing has been felt in the medical and healthcare domain. A multitude of diagnostic medical 

imaging systems are used to examine the human body. They comprise both microscopic (viz. 
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cellular level) and macroscopic (viz. organ and systems level) modalities. Interpretation of the 

resulting images requires sophisticated image processing methods that enhance visual 

interpretation and image analysis methods and consequently provide automated or semi-automated 

tissue detection, measurement, and characterisation [39]. 

These images contain a lot of information and can be exploited for better understanding. Extracting 

information from images and analysing them requires special techniques. Image processing is a 

technique that involves image interpretation, image enhancement and segmentation of the area of 

interest [40]. 

In many medical applications, X-rays, which traditionally exist as greyscale images, are used to 

diagnose. The visualisation of nuance areas is improved by transferring the grey image into pseudo 

colours [27]. The interior portion of the body can be seen using imaging technology in medicine, 

and consequently the diagnostic process is improved. It also helped surgeons to reach interior parts 

of the body without invasive procedures [29].  

Since the discovery of X-ray by Roentgen in 1895, imaging techniques have evolved into magnetic 

resonance imaging (MRI) and computed tomography (CT). Imaging technology has progressed 

greatly, the focus having now shifted from the mere generation and acquisition of images to post-

processing and the management of image data [40]. 

Some research studies carried out skin tumour classification based on colour image processing. 

An accurate evaluation of a pigment sample and a hue typical of a melanocyte are necessary for 

classification. In [41], the automatic classification of skin tumours based on feature extraction 

using several neural networks is discussed without practical realisation. 

Diabetes-related eye diseases are the most common causes of blindness in the world. Early 

detection is the prime key to effective treatment. H. Wang et al. [42] employed image processing 

techniques to automatically detect the presence of abnormalities in the retinal images. The 

approach combines brightness adjustment procedures with statistical classification methods and a 

local window-based verification strategy. 
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A productive way to effectively (with accuracy of 96.25%) segment malignant melanoma in colour 

dermoscopy images is presented by [43]. A combination of methods, including smoothing filters, 

PSNR, spline, edge detection, morphological operations and segmentation, is used to discriminate 

malignant melanoma boundaries [43]. This process employs the spline function, followed by noise 

removal, to improve edge detection, while morphological operations are used to segment the lesion 

from the image.  

An automated gastroscopic image lesion detection method has been designed by [44]. Two multi-

scale textual features, contourlet transform with grey level co-occurrence matrix (GLCM) and 

local binary pattern (LBP) respectively, are employed and compared respectively. 

2.4 Lesion Detection 

Automatic lesion detection also is a challenging issue because of the presence of inconsistencies 

in lesion appearance. Wounds have great variation in shape, low contrast between lesion and the 

surrounding skin, irregular or fuzzy boundaries, variegated colouring inside the lesion, and 

artefacts such as skin lines, hairs, black frames and blood vessels [45, 46]. Further complexity is 

created by slough and coagulated blood in and around the lesion, which can, due to the influence 

of some dressing materials, cause the wound colour to alter [46]. 

Imaging is already used to diagnose abnormalities within the body, e.g. X-Ray, dermoscopy, 

magnetic resonance imaging (MRI), thermal imaging, Nevoscope, gastroscopy, fundus camera, 

CCD colour camera. An expert is needed to read images produced by the above mentioned devices. 

Skin lesions are detected and classified based on different features, and are characteristically 

evaluated by dermatologists using the “ABCD” rule, an easy guide to analysing the asymmetry, 

border irregularity, colour variation and diameter of a lesion. Practically, rules A, B, and C analyse 

texture information, and this confirms the importance of texture [51]. 

In the domain of automatic lesion detection using image processing techniques, much research has 

been carried out, ranging from simple edge-based detection and greyscale segmentation to 

sophisticated statistical analysis of colour and patterns using different image capturing devices and 

techniques including dermoscopy, MRI, thermal imaging, Nevoscope, gastroscopy, fundus 
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camera, and CCD colour camera. Neither of the algorithmic approaches using current imaging 

techniques developed so far could produce a robust solution [47]. 

A. Chodorowski et al. evaluated a semi-automatic real time segmentation method called livewire 

to find the boundaries of oral lesions [48]. The live wire technique is considered a member of the 

active contour model, which is also known as the snakes model. 

Another piece of research was carried out to effectively detect malignant melanoma in the colour 

images produced by dermoscopy [49]. The techniques used consisted of a combination of methods, 

including average, median, bilateral Gaussian filters and PSNR spline, to reduce the noise and 

smoothing of the image; additionally, canny and zero crossing edge detection were used to detect 

the edge around the skin and segment the lesion by morphological operations. The research was 

specific to malignant melanoma and showed 96.26% accuracy. It cannot be used as a generic 

approach to detect all sorts of lesions. Moreover, the filters used in the research are unable to 

preserve the details used to detect early stage lesions related to the plantar surface.  

Automated analysis of retinal lesions using image processing is conducted by many researchers. 

A particular effective method used Lab view. A novel technique is presented to diagnose the lesion 

through fluoresce in angiographic images using virtual instrumentation [50]. Clinical 

photographers usually capture colour images of the retinas of the patients suffering from retinal 

diseases. A fluoresce in dye is injected into a vein in the subject’s arm. Several pictures are taken, 

by a colour fundus camera, as the dye propagates through retinal blood vessels. Once vessel 

extraction is carried out from the two fluoresce in images, these two images are then aligned and 

fused to identify the region of abnormality and lesion growth. The colour image is converted into 

a greyscale I mage and binary images are created using iterative thresholding. In iterative 

thresholding, the image is segmented into background and foreground sections with the threshold 

T. The averages (T1 and T2) of the two sets are calculated and a new threshold T is calculated by 

taking the average of T1 and T2, i.e. 

T = 𝑇1+𝑇2

2
.                            1.13 



ABSTRACT 

 

Page | 41  

 

The process is repeated until the new threshold matches the previous threshold. Morphological 

operation is used to remove small objects from the image obtained from iterative thresholding. 

Fusion of the two images is used to isolate invariant geometric features. The most common 

invariant features observed in this specific kind of retinal image are the optic disc, optic vessel 

image edges and Y-features [50]. The images, taken during fusion with the same alignment and 

containing Y-features, are compared in terms of pattern matching. Any discrepancy in the 

propagation is indicated as a dark or bright spot because of the leakage of flow.  

Sophisticated research is undertaken by [51] to automatically detect tumours related to breast 

cancer, i.e. computer-aided tumour detection. Breast cancer has emerged as one of the prime 

mortality causes among females in Europe and North America. The chance of survival is directly 

proportional to the stage at which the cancer is detected. To assess a high number of mammograms, 

a computer-aided diagnosis is proposed. The proposed system potentially eases the radiologist’s 

workload by filtering out truly negative cases, so only suspected positive cases will be referred to 

experts. To achieve the overall goal, the research has several main phases: 

Phase 1: Suspected locations are to be found. 

Phase 2: Foreground ‘lesion’ to be extracted from background ‘skin’. 

Phase 3: The shape of the foreground is to be characterised. 

In phase 1 a dual binarisation with combination of Bezier-smoothed histogram is used. Since there 

is no global threshold to apply in all situations to extract a required object in an image, an adaptive 

approach is used. Morphological operation is used to reduce the noise in the binary image. As 

tumours generally have a specific shape, a shape description method is used to decide whether the 

object in question is tumour or not suing textural analysis by histogram. Two methods were used 

in this regards moment-based method and principal component analysis (PCA) on the binarised 

images is applied. The proposed method was trialled on 71 images and the detection rate was 93%.  

Support vector machine (SVM) is a pattern recognition technique which learns to assign labels to 

objects through training. It has been used for oral lesion classification by C. Artur et al. [52]. Only 
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two lesion types related to oral were considered namely oral leukoplakia (a pre-cancerous lesion) 

and oral lichenoid. A digitised colour image of human oral cavity is obtained and an assumption 

is made that size, orientation and position of the lesion have no impact on the decision [52]. The 

features used for SVM were based largely on shape and colour namely solidity, eccentricity, form 

factor, roundness, area factor, difference in intensity, hue, saturation, transition area, hue and 

saturation within the lesion area, intensities differences, hue and saturation between adjacent area 

and the lesion area, normalised Fourier descriptors and colour histogram. They found 89% success 

rate in a two class problem i.e. pre-cancerous and non-pre-cancerous and 78% into four classes i.e. 

leukoplakia, lichenoid, normal area and transition area [52]. 

The adopted approach is specific to two types of oral lesions and the assumption doesn’t fit for 

large domain of lesions. The required approach for automated peripheral sensory neuropathy 

assessment using optical imaging system needs a generic approach. 

X. Yuan et al. worked on early skin cancer detection decision support system based on analysis of 

the pigmentation characteristics of a skin lesion, detected using cross polarisation imaging, and the 

increased vasculature associated with malignant lesions [53]. The researchers focussed here on 

texture information to classify the benign and malignancy of the skin lesion. Firstly, pre-processing 

step is carried out where noise (hair etc.) in the image is removed and conversion of RGB colour 

space to intensity grey image [52]. The grey image is fed into the input layer where feature 

extraction is carried out and feature vector space is generated. In the second layer the input spatial 

imaging space is transformed into nonlinear space [54]. The output layer applies a hyper plane 

classifier to classify the skin lesions (benign and malignant). 

B. A. Abdullah et al. proposed a technique for automated segmentation of multiple sclerosis (MS) 

lesion. MS affects nerves in the brain and spinal cord, and manifests itself via a range of symptoms 

including problems with muscle movement, balance and vision [55]. The techniques based on 

position and neighbourhood of brain textural features. SVM is trained and used to binary classify 

MS lesions region and non-MS lesions region. Fluid attenuation inversion recovery (FLAIR) 

images of brain are taken due to a better quality and its high accuracy. The FLAIR images are then 

pre-processed for intensity correction and noise reduction. The next step involves building the 
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feature vector space, consisting of textural features like histogram, gradient features, grey level 

non uniformity and co-occurrence matrix based features [55]. An SVM is trained for the above 

mentioned feature and use it as a classifier. Post-processing is carries out in the last step to address 

the false positive and false negative issues. 

N. Abdullah et al. used SVM techniques in their research to classify brain MRI image into normal 

and abnormal brain (brain tumour). The pattern classification based on the fact that there is 

symmetry in the brain image which manifests in the axial and coronal images [56]. Like any SVM 

algorithm, the process consists of the training phase and the testing phase. The Flair MRI images 

of 10 normal and 22 abnormal are taken. Subjects with abnormal images were at the very first 

stage of brain tumour. 

L. Wang et al. research targets the automation of foot ulcer detection, the wound image is captured 

by an Android smart phone using an image capture box [57]. Foot boundary is determined based 

on skin colour and the wound extraction is performed by accelerated mean shift algorithm and 

simple connected region detection method. A quantitative analysis of healing status is carried out 

by trend analysis for time records for a given patient. The research based on three assumptions; 

firstly, prior to capturing the image from smart phone, it must be ensured the visibility of wound 

is high and clear. Secondly, the healthy skin of the plantar surface is nearly uniform and thirdly, 

the wound is not located at the edge of the foot boundary [57]. The algorithm was efficiently used 

on wound images collected from a health care wound clinic. Different methods work well on 

different types of lesions, but no attempt has been made towards a generic approach. 

A generic approach has been attempted in this thesis and yet further research is underway to ensure 

the probe isn’t applied to a lesion, if a suspected lesion and the chosen pressure point overlap.  

2.5 Conclusion 

The SWME incurs its own downsides. The key disadvantage is the potential misjudgement 

acceptable force. The precision of the accepted 10g force is based on the practitioner’s guess by 

observing the perceived bend or buckle of the filament i.e. observing the 10 mm bend through the 

naked eye. Therefore, there is a clear need to further, simplify and automate the testing procedure 
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that is, autonomous, repeatable, and simplifies the testing procedure with the storage capacity of 

photographic evidence of patients’ feet and their condition over time. Previous work based on semi 

mechanical selection of three test points is compared. Selection of pressure points from pressure 

region is vital and provides key information to be used in medical diagnosis associated with 

satisfactory function in the foot. Plantar pressure measurements systems ranges from simple 

system to more complex system. These systems come into two design platform and in-show. 

Further these can be classified into qualitative and quantitative measurements. Though their 

research objectives are diverse, the methods followed by those referenced involved manual 

intervention. Image processing gained popularity in medical applications. Most common colour 

spaces used in image processing are RGB and HSV. Dilation, erosion, opening and closing are the 

building blocks of basic mathematical morphology operations in image processing. Many 

algorithms have been developed and under further research to detect specific lesions. 
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CHAPTER 3. Automated SWME System Design 

 

This chapter discusses the physical design and attributes of the Periphery Sensor Neuropathy Test 

(PerSeNT) system. It was essential to make a system that copied the SWME method closely by 

scanning the foot and finding the pressure points.  Subsequently enabling a probe to be applied to 

those pressure points detecting (or not) PSN. Importantly the system should be automated, have a 

unique scanning and probe all-in-one capability, portable, provide repeatable testing and provide 

photographic evidence of test, again a unique feature. This charter describes the overall system 

architecture. A physical description of the system is presented which aims to assist the readers 

understanding of the design and the subsequent embedded system development. 

 

3.1 PerSeNT System architecture 

In order to provide an automated SWME experience the system must be able to replicate a health 

practitioner carrying out a typical SWM examination. That is to scan a user’s foot, find the pressure 

points, apply a 98mN probe and for the user to declare a yes or no to the probe application.  The 

system presented contains a scanning (image capturing) section, subtended by a perforated sheet 

that would (a) enable the foot placement and scan, and (b) permit the subsequent probe application.  

The probe mechanism was fabricated in-house using precision components and a commercial 

amplifier. This assembly is driven by stepper motor controlled rails in both the X and Y-axes. A 

further Z-axis stepper motor is then used to drive the probe onto the plantar surface to apply exactly 

98mN. If the patient feels the probe, they record their response by pressing a handheld button 

which is wired into the microcontroller. The original algorithms related image capturing and test 

points extraction will be explained later in the thesis.  An overall schematic and photo of the 

individual physical parts of the PerSeNT system are shown in Figures 27 and 28 respectively. Each 

of the essential components will be subsequently explained. 
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Figure 28: Actual internal view of PerSeNT 

3 

4 

1 

2 

5 

7 6 

8 
9 

1 Optical scanner 

2 Probe and assembly 

3 Arduino 

4 Battery 

5 Linear rail system 

6 PC-Scanner USB 

connectivity 

7 LCD display 

8 PC-Arduino USB 

connectivity 

9 User Response button 

10 Perforated sheet 

10 

 

Figure 27:  (a) PerSeNT schematic diagram, (b) Actual (PerSeNT) device 
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Details of major parts of the system are explained: 

3.1.1. Raspberry Pi (RPi) 

RPi is a microprocessor based single-board 

computer (SBC). It has a BCM2835 system-on-

chip (SoC module) provides general purpose 

processing, graphics rendering and 

input/output capabilities [88]. Stacked on top of 

the chip there is a RAM. It has 8 I/O interfaces. 

Above and below the chip, there are two video 

outputs. The silver colour is an HDMI socket 

for modern TV or monitor and the above (in 

yellow) is for the older TVs. For audio 

streaming there is a separate 3.5 mm audio jack just right of the composite video socket. General 

purpose input-output (GPIO) pins are mounted on the top left corner of the Pi. It is used to connect 

Pi with other hardware. Generally, it is used to connect an add-on board. Below the GPIO port is 

the display serial interface (DSI) port for digital flat display systems. On the right of the HDMI 

port, a camera serial interface (CSI) is mounted to connect camera to RPi.  Power socket (micro 

USB socket) to power the RPi is stacked at very bottom left on the board. Underside of the RPi on 

the left hand side there is a secure digital (SD) memory card slot. SD card provides storage for the 

operating system, programs, data etc. 

There are different connectors on the right edge of the RPi depending on the model of RPi. The 

RPi comes as two model basis Model A, and Model B. Model A comes with single USB port and 

limited 256 MB Read Access memory (RAM), moreover it doesn’t have Ethernet port, while the 

model B has two USB ports and an Ethernet port. The RPi has low power consumption, the model 

B draws at most 3.5 W only [88].  

Figure 29:  Raspberry Pi 
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3.1.2 Perforated Sheet 

This sheet is where the subject places their feet for the test and 

shown in Figure 30. It consists of a polycarbonate glass sheet 

that is 30cm long, 21cm wide and 1 cm height perforated in 18 

rows. Each row has 11 holes with diameter 4mm equally 1 cm 

spaced i.e. total perforations are 198. The equidistance holes on 

the perforated sheet permit the mechanical probe (discussed 

later) to pass through for required force application. 

 

3.1.3 Optical Scanner Mechanism 

Copy Cat is a handheld, portable scanner used to capture books, papers, photos and other 

documents. It is a light weight high resolution, up to 600 DPI resolution capabilities, scanning 

device [89] as in shown in Figure 31. It stores images in a micro SD card. It can be connected to 

the RPi as a USB drive using USB type B cable. It works as USB memory card when plugged into 

a computer.  

It inherits a limitation in terms of scanner mode and memory mode. It serves as a scanner when 

disconnected with RPi and serves as a USB drive when connected to RPi. An in-house created 

circuitry and code was developed to toggle between scanner mode and USB memory mode. 

3.1.4 Arduino Mega/UNO 

Arduino is an open source physical computing platform, shown in Figure 32, based on a simple 

microcontroller board and a development environment for writing software for the board.  

Figure 31:  Portable scanner 

 

Figure 30:  Perforated sheet 
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On the left edge, there is a Universal serial bus (USB) that connects the board to computer for 

power supply, uploading the sketches (computer program for Arduino) and for serial 

communication. Below the USB connector there is another alternate poser connector. At lower 

middle of the board is the processor 

"Atmega328P-PU". Two small sockets 

in a row are mounted just below the 

microprocessor. The one set on left is 

for power and the other set contains 

sockets (A0 to A5) for analog data. 

Along the top of the board is another 

row of sockets numbered 0 to 13 (digital 

I/O). 

In the system, Arduino UNO controls the scanner modes toggling, controls the mechanical probe 

movement in x and y direction, and controlling the force sensor to make sure 10g force is applied 

on the plantar surface through mechanical probe. 

 

3.2 Automated Peripheral Sensor Neuropathy (PSN) Algorithm Design and Test 

A unique approach to automate the Semmes–Weinstein Monofilament Examination (SWME) is 

proposed in this thesis by exploiting optical detection and binary image processing. Although the 

SWME method is one of the most common tests used to identify PSN and increased risk of 

ulceration, through the examination of five pressure points at specific weight-bearing areas, 

namely the toe (hallux), metatarsal, and heel (Calcaneum). 

An extruded homopolymer monofilament (SWM) probe is applied by a trained clinician. The 

SWM is designed to bend by 10mm (gauged commonly by sight) when 10 g (98 mN) force is 

applied. Studies have shown that the inability to detect the SWM, when it bends by 10 mm at 10 

g force, indicates a degree of neuropathy. The rationale for this is based upon World Health 

Organization (WHO) and National Institute for Health and Care Excellence (NICE) guidelines, 

which indicate that reduced sensation to a high-pressure site is an accepted risk factor for the 

Figure 32:  Arduino UNO 
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development of ulceration [90]. Currently, professionals 

rely on subjective judgment as to which areas may 

constitute a high-pressure site; this is frequently based 

upon bony prominences, deformity, or soft tissue 

indicators. On this basis, it is the gold standard that all 

these identified areas are then tested for PSN (a risk factor 

for the development of ulceration). The SWME, although 

the most widely used, is considered cumbersome and labor 

intensive. Repeatability is difficult to maintain and testing 

can be prone to experimenter bias. Moreover, this issue 

may be amplified when a patient is seen by a different 

practitioner on each visit [91]. Further the number of 

sufferers reached to such a huge number that made it unfeasible for the podiatrist or health expert 

to attend each patient individually. Thus an automated system that replicates the traditional manual 

SWMME is the need of the time. This test replicates the same protocol as the WHO and NICE 

standard test for this risk factor. 

Overall the system schematic and actual design is shown in Figures 27 and 28 respectively. Here 

the fibre glass perforated sheet rests on a scanner structure with built in mechanically driven probe 

element. The optical scanner section is used to obtain the image of the plantar surface of the patient. 

The built in perforated fibreglass sheet that has two purposes  

(a) To enable a clear optical image of the plantar surface. 

(b) Holes within the sheet permit probe to pass through so that the accepted bend by 10mm when 

10g (98mN) of force can be applied.  

To reduce overall system software and hardware complexity holes on the sheet are equidistant in 

both the horizontal (x) and vertical (y) domains as shown in Figure 33. 

The image has a resolution of 300 dpi to aid the visualisation of the patients’ pressure points. The 

orientation of these pressure points was evaluated in x, y domains by an image processing 

application developed as part of the research. The localisation information is then sent to a micro 

controller (robotic-arm with monofilament probe) controlled serially by a computer. The 

Figure 33: Image taken of foot resting on 
perforated sheet 
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microcontroller drives two stepper motors, to give x and y directional control. The movement of 

the monofilament probe in x, y direction is dictated by the results (pressure points stream) of the 

image processing found from Figure 33 and will be discussed subsequently. To aid the movement 

of the robotic arm a reference point is used along z-axis and directs the probe to move vertically 

up & downward accordingly to specific degree so that the probe reaches the specific pressure 

points of plantar surface required number of times (possibly three times) and force (10g (98mN)). 

The image processing development from the initial foot image algorithm development consists of 

a number of discrete repeated steps  

 

1. Obtain an image in RGB 

2. Convert the image into HSV (grey colour) colour space 

3. Turn all the pixels’ colour white that come in specific range (human plantar colour range) 

4. Dilate, Erode and Smooth the image to remove noise 

5. Draw counters of resulting binary image  

6. Calculate the central point of specific contours (polygon) in terms of coordinates 

7. Send these points to micro controller 

8. Execution of micro controller. 

 

The image shown in Figure33 is taken as the obvious starting point. The software for image 

processing was developed in C/C++ using OpenCV library. The image in Figure 33 is converted 

into a black and white, binary (threshold) image as shown in Figure 34(a).  

Using existing OpenCV library functions (cvInrange() and cvInranges()) the image can be 

specified into explicit colour ranges. These two functions can be used to clarify if the pixels in an 

image fall within a particular specified range. In the case of cvInRange(), each pixel of source 

image (such as that shown in Figure 33) is compared with that particular specified range. If the 

pixel’s value in source image is outside of the specified range, here the specified range is the colour 

space of pressed plantar areas with the said contact surface, then the corresponding value in 

destination will be set to 0 (Black); otherwise, the value in destination image will be set to 1 

(white). 
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Further analysis on generic colour space is ongoing to account for different patient ethnicities. The 

function cvInRangeS() works exactly the same way except that the source image is compared to 

the constant (CvScalar) values in lower and upper [92]. Once an image in binary form is obtained, 

edge detection becomes less complex. From here the foot boundary is obtained and subsequently 

the pressure point coordinates are calculated. Library functions cvFindContours() detect edges and 

computes the contours, while approxPolyDP() function draws a polygon of these contours [92]. 

Two dimensional dynamic array (vector) of type Points are used to store these contours. The 

boundingRec() function bound each contour in a rectangle by calculating the extreme contour 

points.  

3.2.1 Finding the Pressure Points of a Plantar Surface 

When a foot is pressed against a surface in the normal manner some parts of plantar surface are in 

greater contact with the said surface and experience more pressure than other parts of the foot [64]. 

The area of interest for this research is the plantar surface that are in greater contact with the surface 

as the pressure points lie in those areas, as can be seen from the scan of a foot in Figure 33. Figure 

34(b) shows the resulting contours bounded by rectangles and can be identified by their sizes. Toe 

contour (hallux), Contour (metatarsal head), Heel contour (Condyle). The pressure points are now 

easily recognizable. From here a decision is made where to apply the probe. The central point o f 

a polygon is obtained by the equation given below [93]. 
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Where TA the area of the polygon and T is the central point with coordinate (T
x
, T

y
). The pixels in 

an image are arranged so that the top left pixel has coordinates (0, 0) and bottom right pixels has 

maximum width and height values as coordinates as shown in Figure 35.  

The centre of toe polygon (contours) can be calculated using above polygon centroid equations 

(3.1) and (3.2). For clarity the central point of these polygons are taken as the centre of circles of 
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equal radius. Specific points must now be 

chosen at different locations on these polygons 

to represent the probe contact pressure points. 

For the metatarsal head areas, three areas are 

chosen based on the pressure images provided 

by health experts as shown in the Figure 34(b). 

Three circles are chosen but this number can be 

increased or decreased depending on 

requirements. The above formulae provide the 

centre of the polygon that will give one circle in 

the middle. To create the circles at right and left 

edges, lowest and highest x-coordinates are 

obtained in the contour respectively. 

For the right most circle on metatarsal pressure point area, largest x coordinate (to get the right 

most point of the contour) of the contour is taken providing an arc on the right most part of the 

metatarsal pressure point area.  

The heel polygon (contours) requires a circle positioned at the edge of the heel colour contrast 

shown in the Figure 36.  

As contours are stored in two dimensional vectors points, the above location can be identified by 

finding the largest height (y- coordinate) values in these contours. The largest height value of 

 
                    (a)                                                    (b) 

Figure 34: (a) Binary image from Figure 33; (b) Contours 

polygon/circle 

 

 

Figure 35: Pixel image dimensions 
 

Figure 37: Mismatching of circle’s 
centre and holes of holey sheet 

 

Figure 36: Edge of heel 
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contours should logically always be located at the edge of the heel. This of course will be tested 

further for reliability. Once the circles are determined, it must be ensured that they align fully with 

an entire hole on the perforated sheet to enable appropriate pressure application and to avoid probe 

damage. Although the probe pressure points have been determined, it does not mean a probe point 

will align appropriately with the centre of these circles as shown in Figure 37.  

In order to ensure that a probe point is found accurately within the pressure circle, the following 

method is applied. 

a) The first top left hole on the perforated sheet is taken the reference point as shown in the 

Figure 38. This will remain as the reference coordinates for all further processing and 

images are aligned to match this reference point. The top left hole from a fixed image is 

now known as “ref coordinates” and has fixed coordinates (156,107). Furthermore, the 

pressure point is taken as the center of the circle with coordinates (X
c
, Y

c
). Since all the 

holes are equidistant (row-wise 88 pixels) and columns (column-wise176 pixels), 

(excluding at the moment bowing from heavy feet (currently being analysed). This then 

helps to identify the position of all holes. 

b) Identify the closest hole on perforated sheet to the centre of the pressure point circle C 

 

The process of selecting appropriate holes on the perforated sheet to apply the probe is same for 

Reference point 

A(XA,YA) B(XB,YB) 

D(XD,YD) 

C(XC,YC) 

Figure 39: Hole coordinates calculation 

XC = 475,YC = 245 

Figure 38: Reference point marked blue on 

perforated sheet 
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all circles. Consider the selection of the closest hole to the extracted test point at toe. The pixel 

coordinates of the extracted test point “C” at toe is determined i.e. X
c
=464, Y

c
=245. As shown in 

Figure 39. Three holes can be seen around the centre of the circle. Euclidian distance formula is 

applied to obtain the closest hole to the point C(X
C
, Y

C
). For the distance formula to be applied, 

coordinates of the three holes around the extracted pressure point must be evaluated. 

To obtain the first left hole coordinates (X
A
, Y

A
) to (X

C
, Y

C
) where X

C
, Y

C 
are centre of circles 

coordinates and X
A
, Y

A
 are the coordinate of left hole to the circle’s centre.  

X
A 

= 156 + { (X
c 
/88 (quotient) ) – 2 if < 77 or -1 if >=77} * 88 

X
c 
/88=464/88 will give 5 as quotient and 35 as remainder so subtracting 2 from quotient will give 

3 

X
A 

= 156 +3 * 88 = 420 

Y
A 

=107 +(Y
c 
/176(quotient) )* 176. 

y
c
/176= 245/178 will give quotient 1 so 

Y
A
 = 107 + (1) *176 =107 

Once the coordinates of left hole (A) to the centre of the circle are obtained, the other two holes (B 

and D) can easily be identified in terms of their coordinates as holes are equidistant as shown in 

the Figure 39. 

For example, adding 88 to left hole x coordinate will give x coordinate of next hole and similarly 

adding 176 to the y coordinate of hole will give y coordinate of next hole in downward. 

Applying Euclidian line distance formula  

 d = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2      (3.3) 
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on AC, AB, AD, one can identify the nearest hole that will be entirely within the circle. Hence get 

the required output as shown in Figure 40. 

 

3.3 Conclusion 

The key constituent components of the PerSeNT machine includes a Raspberry pi, Arduino Uno, 

portable scanner, perforated sheet and stepper motor to control x, y and z directional motion. A 

novel approach towards automation of plantar surface sensory neuropathy is proposed. In this 

approach a scanner is used to obtain the patients plantar surface image in RGB colour space. Then 

via developed image processing using a specific colour space and three largest size of contours, 

the orientations of pressure points are identified. This information is then sent to a robotic arm 

holding a monofilament probe. The robotic arm will be used to conduct the SWME procedure as 

it is conducted in hospital or health care centre manually. The patient’s feedback will be recorded 

to identify the insensate area of plantar surface. 

  

 

Figure 40:  Selecting the next best closest hole of a perforated sheet to the pressure point 
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CHAPTER 4. PSN Algorithm Improvements 

 

The previously and initially developed algorithm was specific and used to detect the plantar contact 

area of one ethnic group (Caucasian) and did not include flat feet probabilities in subjects. In this 

chapter an improved method is introduced to make the automated pressure area selection on plantar 

surface independent of ethnicities and to account for non-standard foot pressures. In order to reflect 

the accepted SWME method, the foot rest again is a perforated sheet enabling a mechanically 

driven 10g probe to be admitted to 

the patient’s foot through the 

perforations once the pressure points 

have been correctly identified via the 

optical imaging method described. 

To assist the supervisory 

development of the programme, a 

fixed small and soft stud is 

introduced to the underside of the 

perforated sheet as shown in Figure 

41(a). 

The stud is known as a foot stopper (FS) and has two existence reasons: 

1) It helps the patient position their foot on the perforated sheet. 

2) It acts as a reference point for the algorithms used to perform the foot anthropometry 

calculations.  

The specific colour of the FS helps in its identification during the image processing of the plantar 

surface in terms of spatial coordinates. The foot is scanned and then obtained foot image in RGB 

colour space as shown in Figure 41(a). RGB colour space is generally used for representation, 

transmission and storage of colour images on analogue devices such as television sets as well as 

digital devices such as computers, digital cameras, and scanners [94]. RGB is an additive colour 

 

          (a)                             (b)                             (c)                         (d) 

Figure 41: From left to right: (a) Plantar image in RGB colour space; (b) 

Plantar image in HSV space; (c) Binary image; (d) Foot anthropometric 

reference point and bounded rectangle 
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system, where primary colours are combined in different quantities to form other colours. In this 

space (RGB) a colour is described by indicating the amount of red, green, and blue colour. When 

all colours have the maximum value, the resulting colour is white and black when vice versa [95]. 

The primary colours components are highly correlated and therefore difficult to execute some 

image processing techniques that operate on the intensity component of an image only [31].   

An alternative is a perceptual colour space like HSV that is more close to the human perception 

and understanding of colour [31]. HSV model is based on cylindrical coordinates and it is actually 

a nonlinear transformation of the RGB system. The importance of HSV space in terms of image 

processing is the ability of separation of the three components of a specific colour (hue, saturation, 

and voluminous). It is widely used in artificial vision systems, as it is a powerful tool for the 

development of digital image processing algorithm based on human colour perception model. HSV 

model is well suited to portray colours in practical terms for human understanding [96]. Therefore, 

the scanned foot image is converted into HSV (hue, saturation, value) colour space, Figure 41(b), 

and then a skin classifier is used as a threshold against the image in HSV space. Let A be the HSV 

image with dimension M×N and H be the set of human plantar skin colour HSV space. 

 

 A        =   

 

 

H   =   {x | ∀  x ∈ human colour skin tone, x∈ }                                                       (4.1) 

Using the selected threshold, an object (foot) image is extracted from the background image and 

yields a binary image, where the white area shows the entire foot and black is the foreground as 

shown in Figure 41(c).  

If 𝑓(x) is a function given as 

a11 a12 a13 …        a1N 

a21 a22 a23 …        a2N 

 

a(M-1)1 a(M-1)2 a(M-1)3 …        a(M-1)N 

aM1 aM2 aM3 …          aMN  

…
 

M×N 

http://en.wikipedia.org/wiki/∀


 

 

Page | 59  

 

𝑓(𝑥) = {
    1          𝐻𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝐻𝑚𝑎𝑥

 
0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                       (4.2) 

Where H
min

 and H
max

 is the minimum and maximum values of H respectively and serves as a lower 

and upper threshold bounds. Any pixel of HSV image A, shown as a matrix A, that lies within the 

human skin colour space H is considered the object (foot) pixels. Otherwise, the pixels belong to 

the background and set to black in colour.       

The HSV image A under 𝑓(x) is a binary image and can be represented in a matrix B with 

dimension M×N as given below, 

 

 

            B =  

 

 

Each b
i,j

 has value either 0 or 1where i=0,1,2,...,M and j=0,1,2,...,N. The element of B with value 

1 is the part of the plantar surface. 

Let F is the set that contains all points belonging to plantar surface or foreground or more precisely 

F contains all white colour pixels. 

    F = { p(x, y) | ∀𝑓(𝑝) = 1Ʌ p(x,y) ∈ B }                              (4.3) 

S is the set that contains foot stopper colour values in HSV space. 

S = { x | ∀  x ∈ foot stopper colour, x∈ }                               (4.4) 

              𝑔(𝑥) = {
1,                   𝑥 ∈ 𝑆
0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                                                     (4.5) 

The HSV image A under g(x) gives the exact foot stopper reference point FS(x’,y’).  

…
 

M×N 

b11 b12 b13 …        b1N 

b21 b22 b23 …        b2N 

 

b(M-1)1 b(M-1)2 b(M-1)3 …        b(M-1)N 

bM1 bM2 bM3 …        bMN  
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In further stages, a contour is drawn around the plantar 

surface and is then bounded by a rectangle called the 

foot rectangle. The bounded rectangle encloses the 

entire foot, representing the foot dimension in terms of 

width and length as shown in Figure 41(d). The total 

foot length including toe can be identified by the total 

length of the rectangle bounding the entire foot. 

Before explaining the pressure points extraction, it is 

important to show the Cartesian plane used in the 

image processing. The origin of Cartesian plane in the image processing lies at top left corner of 

the image. Therefore, the x-axis increases from left to right as usual, while the y-axis grows from 

the top of the foot to bottom as indicated in Figure 42. Subsequently, the extreme points along the 

x-axis of the contours define the width of the rectangle. 

The region of interest (ROI) for the toe pressure area is bounded by a sub-rectangle, shown by 

dashed line in Figure 41(d), created mathematically using FS point and top left corner point of the 

original foot rectangle area. The subsequent algorithm then considers only those contours’ points 

at toe that lies within this sub-rectangle and is explained in the algorithm section. 

A set T represents all the points in Toe pressure region 

 T = { p(x,y) | ∀ y ≤ y’ Ʌ𝑓(𝑝) =1 }       (4.6) 

The work [87], is used to obtain the central point of the toe polygon of set T as follows 
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Where TA is the area of the polygon comprises with the points of T. N is the cardinality of the set 

T or more specifically N is the number of vertices in the polygon. Subsequently the pressure point 

Y-axis  

Figure 42: V- and U-shaped feet [77] 

(0,0)                                             X-axis 

http://en.wikipedia.org/wiki/∀


 

 

Page | 61  

 

of toe region is given as 

    T’ (T
x
 , T

y
)                                             (4.9) 

Following this the metatarsal area should be discovered in order to place pressure points correctly 

for this region. Pressure points at edges of the metatarsal area normally lie on the first and fifth 

metatarsophalngeal joint. Generally, the metatarsal area is the widest area of the plantar surface 

but this is not the case for all feet. There are currently two shapes of foot considered V and U and 

are classified [81].    

The ratio of ball width (distance from first metatarsophalngeal joint to fifth metatarsal joint) and 

heel width, see Figure 42, changes from person to person. A large value of the ratio indicates a V-

shape foot, while a small value indicates a U-shape foot [81]. The only difference between U and 

V shape foot is that the widest part of the foot, in a V-shaped foot, always lies in the metatarsal 

region. Subsequently in V-shape foot the extreme edges along x-axis are the metatarsophalngeal 

joint, first metatarsal joint at one side and fifth metatarsal joint on the other. 

In the case of a U-shaped foot, the metatarsal area 

is first defined as the widest part of the plantar 

surface may not be the actual metatarsal region. 

To address these possible errors with such feet, 

the metatarsal pressure points are ascertained by 

using the process of foot anthropometry and the 

contour’s extreme points along the x-axis and the 

FS. To aid algorithm speed, the same process 

takes place for both V and U shaped feet. 

As the metatarsal area lies in the forefoot area minus the toe, any extreme x-axis points lying above 

and below the forefoot area are excluded for metatarsal pressure point search. The metatarsal ROI 

algorithm produces an area bound by two dotted lines, as shown in Figure 43. 

The lower boundary is the line dividing the entire plantar surface foot rectangle in two, 

Figure 43: Pressure points extracted by anthropometry of 

plantar surface 
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perpendicular to the y-axis, while the upper boundary is the line that the FS takes again 

perpendicular to that point on the y-axis across the plantar surface. The area extracted between the 

bounded lines is qualified for the metatarsal pressure points search. 

For pressure points at metatarsal area a subset M of F is considered i.e. M ⊂ F 

M = { p(x,y) | ∀ y ≥ y’ Ʌ  y ≤
𝑚𝑎𝑥  𝑝(𝑦)+𝑚𝑖𝑛  𝑝(𝑦)

2
 Ʌ p(x,y) ∈ F}   (4.10) 

Where, max p(y) is the highest position in vertical direction (y-axis) in F. Similarly, the min p(y) 

is the lowest position vertically (y-axis) in the set F.     

Once the metatarsal area is defined, the extreme points of contours are found by running the 

algorithm on the selected metatarsal area. The extreme points along the x-axis represent the first 

and fifth metatarsal pressure points that are associated with the metatarsal pressure points region.  

The required pressure points at metatarsal are given as 

M
1
(M

x1
,M

y1
) | M

x1
=min (x) Ʌ  M1 ∈ M                     (4.11) 

M
2
(M

x2
,M

y2
) | M

x2
= max (x) Ʌ M2 ∈ M                                         (4.12) 

M
3
(M

x3
,M

y3
) |  𝑀1(𝑀𝑥1,𝑀𝑦1) + 𝑀2(𝑀𝑥2,𝑀𝑦2)

2
Ʌ  M

3
∈ M                                                  (4.13) 

where M1, M2 and M3 are left, right, and middle metatarsal pressure points. 

The pressure point at heel is a point in Set F with largest y coordinate 

H(x,y) | y=max H(y) ∈ F                                                                 (4.14) 

Hence 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 are the extracted pressure points i.e. 

T’(T
x
 , T

y
),  M

1
(M

x1
,M

y1
) ,  M

2
(M

x2
,M

y2
) ,  M

3
(M

x3
,M

y3
), H(H

x
, H

y
) 

The algorithm output depends on the following pre-process conditions given below: 

1. The foot must be placed straight on the scanner using the FS. 

2. No other part of the skin, except the plantar surface should be exposed to the scanner. 

http://en.wikipedia.org/wiki/⊂
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3. Though the background noise in the image is filtered, controlling the background noise 

will minimize the possibility of failure, as will be shown. 

The following algorithm shows the step-by-step procedure to find the required pressure points 

from the ROI’s previously described. Those specific regions namely toe (Hallux), metatarsal heads 

and heel (Calcaneum). 

1. Obtain the dimension of foot in length and width using the bounded rectangle Rec1. 

2. Obtain the Region Of Interest (ROI) for the toe by drawing a rectangle Rec2 

mathematically using FS(x’, y’) and the rectangle top left point TL(X
TL

, Y
TL

) as shown in 

Figure 43. 

3. Draw the polygon from the toe contour points bounded by Rec2. 

4. Obtain the central point of the toe contour using a trapezoidal centroid.  

5. The metatarsal region is ascertained using the foot anthropometry. Once the ROI for the 

metatarsal is framed, a leftmost point along the x-axis is obtained as a left metatarsal 

point. Similarly, the right most point at metatarsal region is assured by discovering the 

point with the largest x-coordinate of the contour. 

6. Heel pressure point can be identified by finding the point with the largest y-coordinate 

in contours. 

4.1 Further Progress:  Toe Groove 

Although the method previously described 

is very useful, however the use of a foot 

stopper (FS) could be problematic for 

patients with severe foot problems. In this 

chapter a foot groove on the perforated 

sheet is considered in order to alleviate 

these issues. A patient’s foot is scanned 

optically and the subsequent image processing and the use of fixed foot groove reference reliably 

identify the plantar surface sensory neuropathy pressure points on a given patient’s foot. 

Figure 44: Top and left toe grooves on perforated sheet  



 

 

Page | 64  

 

Subsequently, these coordinates are relayed to an automated mechanical probe driven by a 

microcontroller where it randomly applies the accepted 98mN (10g) of force to those pressure 

points.  

Toe groove, left and right feet, are introduced on the perforated sheet, as shown in Figure 44, to 

guide foot placement. Both grooves contain a hole in the centre, it guides the patient to place their 

toe right over the groove. As both holes have fixed position on perforated sheet, these holes serve 

as a reference point for anthropometric calculation similar to the Foot stopper in previous 

algorithm. 

Once the foot is bounded by a rectangle Rec1, another rectangle Rec2 is drawn with the help of 

two points TL(X
TL

, Y
TL

) an G’(X’
G
, Y’

G
) as 

shown in Figure 45 in dotted line. 

Here TL(X
TL

, Y
TL

) is the top left point of Rec1 

and G’(X’
G
, Y’

G
) is the bottom right point of 

Rec2. 

X’
G
= 2 * (X

G
 - X

TL
)           

Y’
G 

= 2 * (Y
G
 - Y

TL
) 

where G (X
G,

 Y
G
) are the coordinates of the hole inside the groove. 

In the next phase metatarsal area is outlined by the boundary lines, as shown in Figure 43. The 

lower boundary is the line dividing the entire plantar surface foot rectangle in two, perpendicular 

to the y-axis, while the upper boundary is the line that passes through the point G’(X’
G
, Y’

G
) and 

perpendicular to that point on the y-axis across the plantar surface. The area extracted between 

the bounded lines is qualified for the metatarsal pressure points search. 

The heel areas are approximated and in the last phase by considering the lowest y-coordinate of 

the contour. The approximated areas are processed to localise the pressure point inside the specific 

pressure regions. Paddings are added to avoid selection of pressure point at edge of the plantar 

surface in a specific pressure region. 

The plantar surface bounded rectangle is internally divided vertically by 6 columns as shown in 

Figure 46(a). Each vertically segmented space is correlated with the width of the foot. The first 

TL(XTL,YTL ) 

G(XG,YG 

G’(X’G, Y’G) 

Rec1
176 Rec2 

Figure 45: Test pressure point extraction under toe 
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and last vertical spaces acts as paddings. The 

extreme pressure points at both ends of 

metatarsal must be selected in between these 

pads. 

The plantar surface bounded rectangle is 

internally divided horizontally by 25 segments 

and shown in Figure 46(b). Each segment 

space is correlated with the length of the foot. 

The heel pressure point must be above the last 

two segment space so that it lies well inside the 

heel. 

To test the systems accuracy, a qualified 

podiatrist with over 15 years’ experience collaborated to compare the automated and manual 

SWM pressure detection methods. Foot images from all 70 subjects were provided and the 

podiatrist independently marked what she identified as the five pressure points on each foot. She 

then drew a “circle of acceptance” with a diameter of 1 cm bounding those points and each image 

was stored separately from the automated findings. A success was considered when the output of 

the machine identified the same area (anywhere inside the podiatrists drawn circle), a failure if 

not. 

The time efficiency of the system against the manual method was also evaluated. This evaluation 

included testing, manual reporting and result storage. The proposed automated system takes 47 

                  (a)                                                       (b)   

Figure 46:  (a)Vertical segmented into six columns; 
(b) Internal division into 25 columns 

Ethnicity          Quantity 

Western European 15 

Eastern European 11 

African 15 

Asian 20 

Chinese 9 

Total 70 

  

Age Group Quantity 

20-25 5 

25-30 11 

30-35 16 

35-40 25 

40-45 8 

50-70 5 

     Table 1: Database age group                  Table 2: Database ethnicities         



 

 

Page | 66  

 

seconds to a single foot test. It includes handshaking of personal computer (PC) with scanner (4 

sec), picturise the foot (36 sec), extract 5 test points displaying the test results visually (5 sec) and 

sending them to health care provider via internet i.e. email. (2 sec). The manual SWME process 

takes in total 180 second per foot between viewing a foot, making a pressure-point decision, final 

data handling and storage. This does not include SWM application in either case. This clearly 

shows the time and information advantages of such an automated approach. 

A group of healthy subjects (44 male and 26 female participants with a mean age of 32.85 (±7.4) 

years) were selected. The database consists of 70 images of different ethnicities, age groups, and 

gender, as given in Table I and II. In the first phase, the algorithm initially showed 96% agreement 

with the pressure points chosen by the podiatrist. Issues causing the4% failure rates were 

identified and are presented. In the first phase, the algorithm initially showed 96% agreement with 

the pressure points chosen by the podiatrist. Issues causing the 4% failure rates were identified 

and are presented. The primary failure occurs when the image processing algorithm mistakenly 

detects a portion of background as a part of the object (foot), e.g. if a skin tone exists in the 

background, as shown in the Figure 47(a). 

The actual image and the detected edges are superimposed to help the reader visualize the 

unwanted background as part of the foreground (foot) as shown in Figure 47(c). 

A controlled background mitigates such false positive detection.  

 
 (a)     (b)                                    (c) 
Figure 47:  Spots in the background similar to skin tone: (a): Input image; (b) Contours of detected plantar surface 

and false positive detected object in the background; (c) Superimposed of image (a) and image (b). 
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This controlled background was achieved by the use of a short range optical flat-bed scanner and 

reduced external lighting conditions. Failure may also occur if skin, other than foot plantar surface, 

is exposed to the scanner, as shown in Figure 48.  

The algorithm extenuates minor patches in the background similar to plantar skin colour by 

Gaussian blur filtering and only considers the single large patch of plantar skin in the image. This 

constraint is avoided by ensuring foot placement is performed in a straight and upright manner. 

This is now ensured by a voice activated system explaining to the user how to place their foot 

correctly on the scanner and a 5 second sub-scan test performed.  

 

                   (a)                                      (b)                                      (c)                                          

Figure 48: Unwanted skin detection proximal to the plantar surface: (a) Input image; (b) Binary 
image of detected plantar and skin other than plantar surface; (c) Incorrectly detected pressure points 

 

 

 
Figure 49: Object’s (foot) patches are numbered in binary image 
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A final cause of failure is the object, the foot in this case, appearing as separated patches in the 

binary image, rooted from poor light. Consider Figure 49, where the toe and other foot digits, 

numbered by 1, 2, 3 and 4, appear separated from the rest of the foot image i.e. patch 5. The 5th 

patch is the largest patch and comprises a major portion of the foot, while the rest of the patches 

are the separated foot digits. The rectangle only bounds the largest patch that represents the foot. 

The combination of a dilation followed by erosion morphological operations in image processing, 

known as ‘closing’, can be used to connect objects in a binary image that are close to each other, 

or to fill the gaps in the object by using a structural element [96]. The operation is controlled by a 

structural element which is used to “smooth” the regional boundaries without significant or 

obvious changes to the area [99]. If ‘I’ is a binary image and E is a structural element, then 

I  E = (I  E)  E       (4.15)       

Where  and  denote dilation and erosion respectively. Post-closing operation reduced the 

number of patches without deteriorating the actual size of the foot as shown in Figure 50.   

             

The proposed solutions above were implemented in a second test phase with the same participants 

and procedures as before and a 100% success rate was achieved.  

Manual and automated testing time comparisons were also evaluated. This evaluation included 

   

  

 

Figure 50: After dilation with visible contour boundary 
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pressure point detection, manual reporting (original SWME) and result storage. The automated 

system proposed takes a total 47s per foot including data storage and email transmission.  

The manual SWME process takes in total 180s per foot between viewing a foot, making a pressure 

point decision, final data handling and storage. This does not include SWM application in either 

case. This clearly shows the time and information advantages of such an automated approach. 

Future research will focus on (a) adding the developed algorithm directly to the physical system 

architecture and (b) more complex image processing mechanisms to substitute the foot stopper 

with an embedded left and right large toe groove in the perforated sheet. In parallel with the above, 

lesion recognition on the plantar surface will be performed to avoid subsequent probe application 

on pressure points where they may overlap a lesion. The authors will consider 3G system options 

to account for broadband and wireless fidelity (Wi-Fi) restrictions in developing countries, making 

use of mobile phone and tablet systems at practitioner sites.  

4.1.2 Foot Sectorisation 

The introduction of foot grove method in perforated sheet mitigate the issues related to foot 

stopper (FS) but at the same time foot placement is dependent on the toe groove. It is sometimes 

difficult to locate the toe groove easily. Another robust change in algorithm has been 

recommended, the foot sectorisation. The proposed algorithm is required on place the foot 

anywhere on the perforated sheet but in a straight and upright manner. A patient’s foot is scanned 

optically and the subsequent image processing and grid information algorithms presented reliably 

identify the plantar surface sensory neuropathy pressure points on a given patient’s foot. 

Subsequently, these coordinates are relayed to an automated mechanical probe driven by a 

microcontroller where it randomly applies the accepted 98mN (10g) of force to those pressure 

points. The current approach is more generic and can accommodate flat and non-flat feet as well 

as different ethnicities. Grid sectorisation enables faster pressure point recognition. 

4.1.2.1 Methodology 

As before the foot image is scanned using a flatbed scanning technique and the obtained image is 
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shown in Figure 51(a). The in-

house designed image 

processing code extracts the 

object (foot) from the 

background (image) and draws a 

border around the detected foot 

as shown in Figure 51(b). The 

obtained foot image (object) is 

then sub-divided into a fixed 

dimensions of grid as shown in 

Figure 51(c). The space, cell size 

of the grid, amongst grid rows 

and columns is correlated to the size of the foot being scanned. Following the grid incorporation, 

two computational phases are then performed.  

In phase 1, the foot image is sub-sectioned into approximated pressure regions of interest using 

the grid information. The sub-sectioned regions are namely the toe, metatarsal, and heel regions.     

For a better understanding, an analogy of matrix element position and grid cell position is made, 

hence the entire grid is represented by a matrix ‘G’ as given below. 

  G = [g 
i, j

] 
M×N

                                        (4.16) 

here, ‘g’ represents the sub-element, (grid cell) within the grid G, i and j are cell position within 

the rows M and columns N respectively, where 1 ≤ i ≤ M and 1 ≤ j ≤ N and M=12 and N=6. For 

example, the first top left cell in the grid is represented by g
1,1 

and the 2nd cell in first row is 

represented by g
1,2 

and so on. 

The region of interest (ROI) for the toe pressure area always lies in a sub-rectangle or sub-matrix 

‘T’ i.e. T ⊆ G;  

            T= [t 
i,j

] 
2×2

     (4.17) 

 

          (a)                            (b)                                  (c) 

Figure 51: Processing the input image: (a) Input image; (b) External boundary; (c) Foot 

in grid. 
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where 1 ≤ i ≤ 2 and 1 ≤ j ≤ 2, where ‘t’ represents one cell inside the T, subset of G, as shown in 

Figure 52. The element of matrix, grid, T are (t
1,1

, t
1,2

,t
2,1

,t
2,2

 ). 

The metatarsal area is then computed so as to correctly identify the pressure points for this region. 

Using the same matrices analogy, the metatarsal area lies at fore foot minus toe and it always 

resides in grid area, represented by a matrix ‘M
e
’ as follows: 

  M
e
= [m 

i, j
] 

4×6
                                        (4.18) 

where 3≤ i ≤ 6 and 1≤ j ≤ 6 and Me ⊆ G and ‘m’ represent one cell inside the subset ‘M
e
’ with 

relative position of i
th

 row and j
th

 column in G as shown in Figure 53(a).  

Figure 52: Extraction of toe area using grid 

 

(a)                                                        (b) 
Figure 53: (a) Sectorisation of metatarsal area and (b) heel area by dissecting grid 
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To avoid the mechanical probe hitting the outer edge of a patient’s foot, the heel area pressure 

point is defined by subtracting one grid row from the max y-coordinate of the external boundary 

contour. The heel area always lies in the grid area, represented by a matrix, grid ‘H’ as follows: 

  H= [h
i, j

] 
2×4

       (4.19) 

where 11 ≤ i ≤ 12 and 2 ≤ j ≤ 5 and H ⊆ G and ‘h’ represent one cell inside the subset H with 

relative position of i
th

 row and j
th

 column in G as shown in Figure 53(b).  

The grid formation is used in phase 1 to dissect the foot image further and to produce areas that 

represent the plantar surface pressure points in the regions found above. Using the grid in this 

phase enables a faster processing time as it promotes a more accurate sub-detection of the pressure 

region via the grid and excludes regions outside the area of interest.  

The subsequent algorithm then considers only those contour points of the toe that lie within this 

sub-rectangle T. A central point of the toe polygon is obtained by applying trapezoidal centroid.  

Figure 54: Foot images with a grid of 12 rows and six columns and extracted pressure points 
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The algorithm is then applied on the sub rectangle M and three pressure points, the first 

metatarsophalangeal joint and a central point between these two points are found, using the 

extreme contour points on the x-axis.  

The pressure point at the heel is extracted by subtracting one grid step from the y-coordinate of 

the contour’s point that has the largest y-coordinates. Results for 9 participants are shown in Figure 

54. Participant details are presented in Table’s 1 and 2.  

Investigations to optimise the grid size were performed and it was established that that the 

performance of the grid increased and peaked when it had dimensions of 12 rows and 6 columns, 

with further division of the grid deteriorating the performance. This is to say that the grid is 

optimized as above, but the cell size of the grid varies with foot size. The grid information 

successfully classifies the pressure regions i.e. the accepted toe, metatarsal and heel areas.  

Subsequently, the mechanical phase takes place. The locations of the extracted pressure points are 

then translated in terms of rows and columns position which are then aligned to a hole in the 

perforated sheet closest to the chosen pressure point. This information is then relayed to an off the 

shelf microcontroller board via serial communication.  

A probe assembly was fabricated in-house using precision components and a commercial amplifier 

and calibrated to apply exactly 98mN ±1%. This assembly is driven by stepper motor controlled 

rails in both the X and Y-axes. Once the microcontroller has received the correct coordinates from 

the algorithms as described it directs the probe assembly accordingly, a further Z-axis stepper 

motor is then used to drive the probe onto the plantar surface to apply exactly 98mN to each site 

in turn. If the patient feels the probe, they record their response by pressing a handheld button 

which is wired into the microcontroller. The response latency is recorded by the microcontroller 

and a two second window is permitted for a positive response to be recorded. Furthermore, a 

random delay is introduced before the probe is activated to mitigate false positives or “guessing” 

by the patient. Once all five test sites have been examined the microcontroller returns the probe to 

its home location and transfers the results of the tests to the host PC.  



 

 

Page | 74  

 

4.1.2.2  System Flow Chart 

The overall sequence of the system test execution is shown in Figure 55. Here PC stands for host 

Computer and MC stands for microcontroller.  

                           

  

 

Figure 55: System flow chart 
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4.2 CONCLUSION 

An improved method is introduced to make the automated pressure area selection on plantar 

surface independent of ethnicities and to account for non-standard foot pressures. A fixed small 

and soft stud is used to assist the supervisory development of the programme, introduced to the 

underside of the perforated sheet. The foot stopper, stud, improved the algorithm but at the same 

time the use of a (FS) could be problematic for patients with severe foot problems. Another 

improvement made by introducing toe groove on the perforated sheet in Lieu of FS in order to 

alleviate issues associated with FS. The proposed method performs a thresholding process and 

bounds the foot image in a rectangle followed by contours. Plantar pressure points are then 

obtained using a combined approach of optical imaging over the HSV three-dimensional colour 

space and plantar anthropometry. The algorithm was successfully applied on 70 participants with 

a 100% success result, regardless of the patient’s race, age or gender. The introduction of foot 

grove method in perforated sheet mitigate the issues related to foot stopper (FS) but at the same 

time foot placement is dependent on the toe groove. It is sometimes difficult to locate the toe 

groove easily. Another robust change in algorithm has been recommended, the foot sectorisation. 

The proposed algorithm is required on place the foot anywhere on the perforated sheet but in a 

straight and upright manner. A patient’s foot is scanned optically and the subsequent image 

processing and grid information algorithms presented reliably identify the plantar surface sensory 

neuropathy pressure points on a given patient’s foot. The current approach is more generic and can 

accommodate flat and non-flat feet as well as different ethnicities. Further research focuses on 

lesion recognition on the plantar surface to avoid the probe application on pressure points where 

they overlap a lesion. 
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CHAPTER 5. Plantar Surface Lesion Detection Using Layered 

Approach of LBP and SVM 

 

When a photographic image of the plantar surface is obtained, the PerSeNT image processing 

program extracts five pressure points to be tested by a mechanically driven probe. These five 

pressure points match those chosen by the SWME method. There may be some areas where probe 

shouldn’t be applied e.g. cuts or bruises, thus the algorithm must be smart enough to discriminate 

normal and abnormal skin or lesions and avoid the probe application on pressure points that are 

overlapped with lesions. 

A breach in the skin is known as lesion and the trained podiatrist obviously through appearance 

and sight avoid applying the probe to it. The PerSeNT should comply with the same rule, but in 

an automated manner. If test points on the plantar surface and lesion overlap the area must be 

avoided and an adjacent non-overlapped suitable pressure test point needs to be selected.  

Given such a system obvious care must be taken to recognise areas where the probe must not be 

applied such as on lesions, blisters and open wounds. Research hitherto focused on lesion detection 

on the plantar surface to avoid the probe application on pressure points where they overlap the 

lesion. Automatic lesion detection is a challenging issue because the presence of inconsistencies 

in lesion appearance. Wounds have great variation in shape, low contrast between lesion and the 

surrounding skin, irregular or fuzzy boundaries, variegated colouring inside the lesion, and 

artefacts such as skin line, hairs, black frames and blood vessels [45, 46]. Further complexities 

include slough and coagulated blood in and around the lesion while due to the influence of some 

dressing materials, the wound colour as a whole may be shifted [46]. Several algorithms have been 

developed and deployed to deal with the challenge but these algorithms are lesion specific oriented. 

These are generally classified as a thresholding, edge based detection or region based methods 

[92]. Thresholding performance is high when there is a good contrast between skin and lesion but 

degrades if the two are overlap [45, 101]. Edge based detection performs poorly if boundaries are 

not well defined and region based detection has difficulties when the lesion or skin region are 

textured or have different colours present which leads to over segmentation [46].  
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Texture information is a key and proficient tool to estimate the structure, orientation, roughness, 

smoothness, or regularity of various regions in a set of images to distinguish between discriminate 

objects [102].  Yet texture analysis is considered as one of the most challenges in computer vision 

and image analysis. Generally, Image texture is defined as a certain pattern repeated in a local area 

of an image [102].  

Texture analysis is usually performed in two steps  

(i) Texture feature extraction 

(ii) Texture identification and classification.  

 

Commonly used texture extraction methods include statistical, model-based, and filtering-based 

methods, while classification and identification methods for texture include neural networks, 

decision trees, and support vector machines [102]. 

Some of the algorithms based on colour space segmentation and histogram equalisation use special 

equipment, Nevoscope, and specific lesion (melanoma) [103]. Some have used edge-based 

segmentation [104], again here detection is confined to a specific lesion, malignant melanoma, of 

dermoscopy images. Regional-based wound detection based on the colour and texture or 

combination of both was remained the subject of many algorithms, including Local Binary Pattern 

(LBP), Gray Level Co-Occurrence Matrix (GLCM) [105, 106]. There are few robust algorithms 

in the machine learning domain for classifications e.g. neural network, support vector machine 

[107, 108]. 

Different statistical and mathematical tools are available in image processing to obtain textural 

information of a specific object in an image e.g. histogram, Scale-Invariant Feature Transform 

(SIFT), Speeded Up Robust Features (SURF), Colour intensity distribution of an object within an 

image using different colour space can also facilitate the recognition of a particular object. 

Combining machine learning and textural recognition algorithms can be used to efficiently 

discriminate normal and abnormal skin based on the appearance using image processing –A non-

invasive and non-aversive approach. 
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The scenario presented in this thesis is different from others in that, the intended algorithm should 

be smart enough to detect all types of lesions related to the plantar surface. The main objective is 

to discriminate the location of plantar surface whether it is normal or abnormal skin. Two 

approaches, LBP and SVM are used in a layered fashion to detect lesions on the plantar surface. 

LBP detects the lesion on plantar surface, once it is trained. The detected area by LBP is then 

passed through SVM that has seven dimensions or features space built by the statistical data of 

colour intensities of constituent channels of BGR and HSV colour space and histogram of the 

lesion image. The area is qualified as a lesion area if SVM identifies it as a lesion based on its 

training.  

5.1 Local Binary Pattern (LBP) 

LBP is one of the most popular discriminating tools based on the texture. LBP is computationally 

extremely simple and invariant to monotonic greyscale changes [102]. The basic idea behind LBP 

is the extraction of the pattern by thresholding the neighbouring pixels of 3 * 3 block by its central 

pixel and then obtaining an LBP code for the central pixel [108]. A histogram is drawn using LBP 

code to show the distribution of the pattern and used in pattern comparison as shown in Figure 56 

and 57. 

The original LBP was invariant to image rotation, and many extensions have been made to make 

it scale and rotation invariant. To make the LBP discriminate for different texture sizes, the block 

is considered as a circle where neighbouring pixels are evenly spaced on a circle. The notation 

used for such kind of LBP is given as (P, R) and the LBP code is given by the expression below 

[109]. 

                  LBP
 (P, R) 

= ∑  𝑝−1
𝑝=0

s(g
p
 - g

c
) 2p                                                                                                     (5.1) 

Here P is the total number of neighbours of the central pixel of the circle, R is the radius of the 

circle, g
c 

and g
p
 are the grey values of the central pixel, and particular neighbour pixels 

respectively. 

            S(x) = {
1, 𝑥 ≥ 0
0, 𝑥 ≤ 0 

                                       (5.2) 
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Where S(x) is the thresholding function. Based on P and R, different size of LBP can be used to 

achieve scale invariant LBP texture descriptor as shown in Figure 58. 

For rotation invariant LBP the original approach is used where LBP bit code is circularly rotating 

to its minimum LBP code value. For example, if the LBP code extracted as  

10000111= 143, 11000011= 195, 11100001= 225, 11110000=240, 01111000=120, 00111100=60, 

00011110=30, 00001111=15 

In the above example the minimum value is 15 so the LBP code 00001111 will be used as a LBP 

descriptor for that particular central pixels. 

5.2 Support Vector Machine (SVM) 

Support Vector Machine (SVM) is one of the widely used supervised learning algorithm. It has a 

main method used for prediction based on a set of training data. SVM is trained under supervised 

learning to discriminate each extracted test point’s surrounding area as absent and present of lesion. 

Currently the SVM is trained with 11 different lesions, further investigation is underway.  

Let vectors x1,x2,….,xn Є Rn are patterns to be classified and scalar y1, y2, …, yn Є{-1, +1} are 

labels. Then the pair {(xi, yi) | i=1, 2, … , n} is the set of n training examples, where each training 

pattern is paired with one of y value. A hyperplane is required to divide same set of pattern or 

examples on one side and other are on other side. SVM finds a decision boundary that has 

maximum margin between two classes using linear function [110, 111, and 112] as shown in 

Figure 59(a) 

Figure 58: Differently sized LBP descriptors based on P and R values 
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Let is a vector and perpendicular to the central line and there are some unknown ‘x’, pointed by a 

vector as shown in Figure 59 (b). To find whether x is on positive side or negative side. The 

projection of X on W will determine its class i.e. 

w̄ .  x̄ ≥ c   

where c is some constant. Let c=-b 

w̄ . x̄  + b ≥ 0                                                                                  (5.3) 

If (5.3) is true then it is a positive sample, this is called “Decision Rule”. Let 

Let w̄ .  x̄ ++  b  ≥ + 1 likewise  w̄ .  x̄ - + b  ≤  -1 

For a mathematical convenient a single equation is substituted keeping the above unaffected.  

Take y
i  

such that y
i
 = +1 for positive samples and y

i
= -1 for negative samples,  

Where i=1, 2, …, n 

Now the above equation can be written as 

yi(w̄ .  x̄  + b) – 1 ≥ 0    for all i=1, 2…, n                                                                  (5.4) 

For a maximum margin or wider space between the two classes M=2 / ||w̄ || must be maximum. 

The only factor that contributes in M to maximize it, is ||w̄ ||. For mathematical convenient 2 / ||w̄ 

(a)                                                                                      (b) 
Figure 59: (a) Hyperplane separating two classes with maximum margin using the SVM; (b) Vector w normal 
to central line and vector x points to sample x. 

𝑤
՜ 

𝑥
՜ 
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|| is replaced by ||w̄ ||2/2. 

Thus for maximum M, ||w̄ ||2/2 is needed to be minimum subject to (4). 

Now the decision rule 

ƒ : x̄    ̶ y is then ƒ(x) = sgn( ∑  𝑛
𝑖=1  yi w̄ .  x̄ + b)                                                         (5.5) 

To find the extremum of a function under the given constraint, Lagrange’s multiplier was used. 

L=
1

2
||w̄ ||2-   ∑  𝑛

𝑖=1 αi[yi(w̄ .  x̄ + b) - 1] 

By taking partial derivative with respect to “w” and b 

w̄  = ∑  𝑛
𝑖=1 αiyi .x̄ i 

∑  𝑛
𝑖=1 αiyi = 0. 

Replacing them back into L following is obtained 

L = ∑  𝑛
𝑖=1 αi- 

1

2
∑  𝑛

𝑖,𝑗=1  αiαjyiyj(x̄ i . x̄ j)                                                                         (5.6) 

Subject to ∑  𝑛
𝑖=1

α
i
y

i
= 0, 0 ≤α

i
 ≤ 𝑐

𝑛
, for i = 1,2, …, n. The decision rule, then becomes 

ƒ(x) = sgn( ∑  𝑛
𝑖=1  yi αix̄ i. x̄  + b) 

Practically, data input space becomes nonlinear and difficult to make it linearly separable. SVM 

needs a kernel function to transform an input data set into higher dimensions and the Lagrange’s 

multipliers associated with minimum ||w̄ ||2/2takes the following form. 

L = ∑  𝑛
𝑖=1 αi-   

1

2
∑  𝑛

𝑖,𝑗=1  αiαj yiyj(Ф( x̄ i) . Ф( x̄ j ))  (5.7) 

Subject to ∑  𝑛
𝑖=1 αiyi= 0, 0 ≤αi ≤ 

𝑐

𝑛
, for i = 1,2, …, n.  

The decision rule is 

ƒ(x) = sgn( ∑  𝑛
𝑖=1  yi αi Ф( x̄ i). Ф( x̄ j ) + b) 

Mercer’s theorem indicates that there exists a mapping Ф such that  
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K( x̄ i, x̄ j) = Ф( x̄ i). Ф( x̄ j ), the decision function then becomes 

ƒ(x) = sgn( ∑  𝑛
𝑖=1 yi αi K( x̄ i, x̄ j) + b)    (5.8) 

In the case presented here in this thesis, the radial basis function (RBF) kernel is selected to be the 

kernel of the SVM. 

5.3 Methodology 

Firstly, obtained the statistical data (mean ± SD) of constituent colors (channels) intensities of the 

stored lesion images and plantar pressure regions from a different ethnic groups in two most 

commonly used color spaces in image processing BGR and HSV and obtained their hue histogram 

Hh, the hue distribution. 

If f(x, y) is the lesion image then features set F is obtained as 

F = [B
avg,

G
avg

, R
avg

 , H
avg

 , S
avg

 , V
avg

 , H
h
] 

All the sample images are then labelled either +1 or -1 to discriminate 

normal and abnormal plantar surface skin. The SVM is trained by the 

stored sample lesion and non-lesion images, based on the above 

mentioned features space F. Once the SVM has learned or been 

trained with above features or parameters, the SVM is applied on 

input image that classifies it into lesion and non-lesion areas based 

on the training. 

The surrounding area of the extracted test point is examined by the 

lesion detection code in the manner presented below. The input 

image as show in Figure 60 is divided into equal sized patches such 

that each patch contains a hole roughly at its centre. The holes on the perforated sheet are laid out 

in 11 columns and 16 rows i.e. total number of holes is 176. Consequently, the input image is 

divided into 176 patches 

Figure 60: Scanned input image 
with perforated sheet 
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The patches can have any one of the 

following patterns as shown in the Figure 61. 

i.  Blank Patch 

The patch of the input image residing outside 

the plantar surface, as shown in Figure 61(a). 

ii. Foot Edge Patch 

The patch that lies at the edge of the plantar 

surface in the image as shown in Figure 

60(b). 

iii. Foot Pressure Area Patch 

The patch of the input image that lies inside 

the pressure area of the plantar surface and 

shown in Figure 61(c). 

iv. Foot Non-Pressure Area Patch 

It is the patch that lies in the plantar surface non pressure area e.g. middle arch and shown in the 

Figure 61(d). 

The local binary pattern is trained with these patches from a wide range plantar surface using 

different ethnicities; the local binary pattern information is transformed into LBP histogram and 

stored for future use.                         

When the algorithm extracts the pressure points, the corresponding patch is sent to LBP section to 

compute the LBP pattern, an example is shown in Figure 62(b). In the LBP section, LBP code 

histogram for the patch is obtained as shown in Figure 62(c). In the next step the LBP histogram 

of input image patch is compared with the stored LBP histogram. The Bhatta Charia histogram 

comparison is used to discriminate normal and abnormal patch. The Bhatta Charia histogram 

comparison gives comparison results via value in the range from 0 to 1. 

 

(a)                                        (b) 

 

(c)                                  (d) 

Figure 61: Perforated sheet’s patch patterns: (a) Blank hole; (b) 
Edge; (c) Plantar pressure area; (d) Plantar non-pressure area 
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For identical patterns the Bhatta Charia 

histogram comparison results in 0 and 1 for 

opposite. In this research, the Bhatta Charia 

histogram comparison value that falls in the 

range of 0 to 0.05 is considered identical normal 

plantar pressure area pattern and outside the 

above mentioned range is considered as an 

abnormal skin patch. 

The range 0 to 0.05 is taken to accommodate any 

minor changes in normal plantar pressure area 

patterns. If the pattern matches the stored 

patches, it is classified as a normal patch. In the 

case of an abnormal patch, the patch is sent to SVM for further examination, where it is classified 

as a lesion or non-lesion patch. In the SVM layer, the patch is further divided into segments or 

windows. If the patch is found as a non-lesion or in other words ‘normal skin’, by the SVM layer, 

the extracted pressure points are added to the pressure point stream to be sent to microcontroller 

for the subsequent probe application. If the SVM results in a lesion patch, the corresponding hole 

is encircled in red as shown in Figure 63 and the next best hole is selected.  This process is repeated 

until a healthy pressure skin area is found in the respective pressure region. 

For example, using the extracted test point P(x, y) shown as a white dot in Figure 63. The 

surrounding best and closest holes to the extracted pressure point are determined as shown in 

Figure 8 with white circles. If the “best” hole overlaps a lesion, encircled with red colour, the next 

closest “best” hole is chosen and the process is repeated to find out whether it overlaps the lesion 

or not. The 2-dimensional location of the corresponding “best” hole is stored in the stream of points 

subsequently sent to microcontroller in the case of “best” non-lesion hole shown as a circle with 

black colour in Figure 63. 

The lesion detection process is divided into three main steps 

 
(a) (b) 

 
 

Figure 62: (a) Perforated sheet patch; (b) LBP pattern 

of the patch Figure 57(a); (c) LBP code histogram 
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 Step 1 is known as pre-processing; the patch is examined by scale and rotation invariant LBP 

to detect suspected lesion regions, using two different scales of LBP (8, 1) and (16, 2) 

respectively and compared with the stored LBP code histogram of normal pressure areas. If it 

doesn’t match, step 2 is performed. 

 In step 2, the patch of the plantar surface of the input image, suspected as a lesion in step 1, is 

further examined under SVM. The patch image serves as an input image and the SVM identifies 

whether the area lies on positive side, one side of the hyperplane, or on negative side, the other 

side of the hyperplane. 

  In step 3, if SVM classifies the area enclosed in the patch as a lesion, the corresponding hole 

in the input image is encircled in red and the next “best” patch closest to the extracted pressure 

point patch is examined. The process is repeated until a normal pressure area patch is found. 

All the lesions used in the study were taken from 

internet and a podiatrists files and superimposed 

(via Photoshop) on healthy feet used in the project 

work described in this Thesis. The algorithm was 

then executed for validation. The following images 

show the initial results. The result shows a fraction 

of false positive and false negative phenomena but 

this due to the lack of training. If the algorithm is 

trained with more lesion the detection rate will 

increase. This is proven in the result section. 

5.4 Probe Application over Non Lesion Area Algorithm Flow Chart 

A probe assembly module was designed, I am not responsible for its design but the code that 

managed it, in-house using precision components and a commercial amplifier and calibrated to 

apply exactly 98mN ±1%.  The module is driven by stepper motor controlled rails in both the X 

and Y-axes as it receives coordinates from the algorithms, a further Z-axis stepper motor is then 

used to drive the probe onto the plantar surface to apply exactly 98mN to each site in turn.  The 

 
 Figure 63: Best perforated sheet hole selec-

tion 
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overall flow diagram of the system is given in Figure 64. 

 

 

 

 

  

Figure 64: Flow chart of PerSeNT lesion avoidance technique 
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5.5 Result and Discussion 

As previously discussed, LBP is trained with the patches shown in Figure 61 using different ethnic 

groups; Caucasian, Chinese, Asian and African. SVM is trained with lesions and patterns of normal 

pressure areas. All the lesions used were taken from internet and a trained podiatrist and 

superimposed on images of healthy feet. Figure 65 shows an image example superimposed with 

lesions at the pressure regions. The algorithm successfully detects these lesions and the adjacent 

hole lying on same pressure region normal plantar surface is selected. 

In the current research scenario, the performance of the SVM is reciprocal with the window size. 

Keeping the SVM parameters the same, the larger the window size provides faster run times, but 

results in poor performance.  A smaller size window has shown better performance of detecting 

patches that contain lesions but takes longer to process. Through repeated experimentation a 

window size 8 × 8 was found to be optimum. This window size was then used subsequently. 

Figure 65: Next best hole selection 
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5.6 Conclusion 

As presented, obvious care must be taken to recognise area where the probe must not be applied 

such as on lesions. A layered approach of LBP and SVM has been used in previously developed 

automated peripheral sensory neuropathy assessment using optical imaging to avoid probe 

application on lesion on plantar surface. Several different types of lesion are taken from internet 

and superimposed on plantar surface image. The proposed approach successfully detects all of the 

lesions available in database.  
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CHAPTER 6. Result and Analysis 

 

In this chapter the PerSeNT system efficiency in terms of latency, accuracy and reliability are 

assessed. In detail, a comparison will be made between the time it takes to manually screen a 

person’s foot for pressure points by a practitioner and the time the automated approach instantiated 

of PerSeNT takes. The accuracy of the automated approach refers to the correctness in the selection 

of the standard test five accepted pressure points under foot. In test 1, the PerSeNT accuracy is 

compared against the gold standard, this being the selection of the pressure points by a trained 

podiatrist. Moreover, in a second test the PerSeNT accuracy is compared to a commercially 

available pressure plate to test for pressure area detection accuracy. In the last test, user’s signal 

detection and the reliability of PerSeNT is measured via the test-retest Pearson correlation 

coefficient. 

The study was approved by the university ethics committee. Informed consent was obtained from 

each participant and the form is provided in Appendix 8.6. 

In all experiments, the PerSeNT apparatus was set so that the machine was placed on the floor in 

front of a chair. All participants were given a prior demonstration about the posture required and 

experience of the magnitude of the force exerted by the probe. Subjects were then asked to place 

one barefoot on the perforated sheet, the foot image was scanned and pressure test points were 

extracted from the pressure regions. The same procedure was performed for the other foot. 

6.1 Efficiency: Processing Latency Analysis 

 

The overall efficiency of the PerSeNT system is tested against the manual SWME (Semmes 

Weinstein Monofilament Examination) method in terms of the time taken to screen a person’s 

foot for pressure points. This evaluation included preparation time for the test, manual/automated 

reporting and manual/automated result storage. Timings for the PerSeNT system is shown in table 

3. The PerSeNT activity flow can be seen in section 4.1.2.2. 

In the case of manual SWME process, it is difficult to accurately time each of the above 
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components, so the overall time was considered. A typical test on a participant was performed by 

a trained podiatrist and it was observed that the manual approach took on average 180 seconds 

per foot per trial between viewing the foot, making a pressure-point decision, final data handling 

and storage. On the other hand, PerSeNT took 47 second per foot per trial. For both the 

practitioner and the PerSeNT machine the SWM (Semmes Weinstein Monofilament) application 

was excluded. From the table below, where the data from this measurement exercise are reported, 

it appears that the automated approach is more than 2 minutes shorter than the manual one per 

foot. 

Handshaking (PC and scanner) in the automated method is considered equivalent to the scene in 

the manual case of a patient sitting and preparing for the manual test, scanning the foot and pressure 

point extraction is equivalent to manual viewing of pressure points and preparing SWM, and the 

results’ dissemination is equivalent to the practitioner writing the results of patient’s test. This of 

course does not include any patient/practitioner interaction. 

6.2 Accuracy 

6.2.1  Test No 1:  Test Point Selection (Podiatrist VS PerSeNT) 

To test the system’s accuracy in the extraction of the test points under the foot (where to apply 

pressure), a qualified podiatrist with over 15 years’ experience collaborated to compare the 

PerSeNT Activity Time 

(second) 

Manual Activity Time 

(second) 

Hand shaking (PC-Optical scanner) 4 Patient preparation for 

test 

 

Scanning foot 36 Viewing PP and prepar-

ing SWM 

 

Pressure point extraction and result 

display 

5  

Transmitting result over the internet 2  Writing test result  

Total time 47 Total average time 180 

  
Table 3: PerSeNT latency analysis 
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automated and manual SWM pressure detection methods. Foot images from seventy multi-ethnic 

volunteers were provided and the podiatrist independently marked (with a blue dot) where she 

identified the five pressure points on each foot that would be used in the manual SWME and this 

is shown in the Figure 66. The podiatrist added a “circle of acceptance”, also shown in black 

colour in the Figure 66, with a diameter of 1 cm bounding those points. Each of these images was 

stored separately from the automated findings.  Every time the machine identified a pressure test 

point (white dot shown in Figure 66), the same area (anywhere inside the podiatrists drawn circle) 

a success was marked while a failure was assumed if the dot was not identified within the circle.  

The test showed a 100% success rate. 

 

6.2.2 Test No 2: Test Point Selection from Pressure Region Test (PerSeNT Vs Pressure Plate) 

To further validate the selection accuracy of the chosen pressure areas, a comparison of the 

Figure 66: Test points marked by PerSeNT 

and trained podiatrist. 
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PerSeNT system and a commercially available pressure plate, which displays pressure region on 

the plantar surface when pressure is applied to the plate, known as footscan®PLTES 

(manufactured by RSscan) [113] was performed.  The comparison was enacted to ensure that the 

PerSeNT innovative and unique embedded signal processing system extracted test points which 

lie inside actual pressure regions. The commercial system operates with a sampling rate of 125Hz 

and can record data up to 500 frames per second. 

The embedded sensors resolution of 5mm × 7mm permit an accurate analysis of pressure 

deviations under all regions of the foot.  Such commercial systems are considered for use in PSN 

detection methods but there are two major disadvantages: (A) The commercial system requires the 

participant to apply a large amount of force on the pressure mat to discover the pressure areas; 

This is not a problem for healthy participants here but would be problematic for diabetes sufferers 

with existing foot problem, display the added advantage of PerSeNT. (B) An automated follow-

up of the mechanical probe cannot be performed meaning that a system with this approach could 

not be an all in one design. This is where the PerSeNT machine far exceeds anything currently in 

existence.  

Nine healthy volunteers were selected from the original 70 and their foot images obtained using 

Figure 67: (a) PerSeNT’s detected pressure points (b) Pressure region detected by pressure plate (c) 

Superimposed image of (a) and (b) 
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the two approaches (automated and pressure plate) systems. The obtained images were then 

superimposed and qualitatively examined. It is found that almost 98% of the chosen points by the 

proposed system were selected from plantar pressure regions as shown in the Figure 67. 

The test result analysis is summarised in the table 4. Thus the sensitivity of the PerSeNT vs 

pressure plate test is 97.7% 

A failure occurred when/if the PerSeNT extracted test point did not fully match one of the pressure 

regions defined by pressure plate. The 

problem lay here with the pressure plate, 

where a slight tilt in the foot posture may 

shift the detected pressure regions. The 

(2%) failure consists of those points that 

were inside the accepted region according 

to podiatrist but were not inside the region 

detected by the pressure plate as a pressure 

region as shown in the Figure 69, where 

pressure plate image and PerSeNT image 

are superimposed. This issue was verified 

by the podiatrist.  An example is shown in 

Figure 69 were the accepted extracted test 

Total extracted Test point 45 

Total extracted points by PerSeNT lying inside the pressure 

areas defined by the commercial plate 

44 

Average extraction of test points from the pressure region sen-

sitivity/ true positive  

97.7% 

Incorrectly identified pressure test point or False positive 1 

Average of false positive rate  2.2% 

Table 4: Pressure point selection from the pressu0re region detected by 

pressure plate. Figure 68: True and False positive 

 

Figure 69: First metatarsophalangeal PP extracted by PerSeNT lying 

outside the pressure region (highlighted by yellowish) extracted using the 

pressure plate. 
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point by PerSeNT at first metatarsal is an acceptable location (podiatrist) but doesn’t lie on the 

region detected as a pressure region by the pressure plate foot leaning and hence a change in 

pressure perceived by the commercial plate by the participant is obvious in the Figure 69. 

6.3  Validity: Test No. 3 

6.3.1 Signal Detection Theory and Test-retest Pearson Coefficient Reliability 

Signal detection theory provides a general framework to analyse the accuracy of targets’ detection 

occurring in uncertain or ambiguous situations.  In the current test, the detection of a signal means 

the acknowledgement (pressing a push button) of the 98mN force applied by the probe on the 

plantar surface at the critical 5 pressure points. The 98mN is considered the correct and accepted 

force used by podiatrists using the accepted SWME method, thus the system was designed to apply 

the same pressure.  If in future this is considered too low or too high then the PerSeNT system can 

simply be adjusted to new levels, this is much more difficult and costly for podiatrist in the field 

considering training and information costs as well as new instrumentation needs.  

To ensure that the systems chosen probe method was appropriate and that the ability to detect a 

signal was appropriate for patients (10g of force through a hole of the perforated sheet) the 

following study was performed. Twenty-eight healthy subjects were tested in five sessions. Each 

session consisted of two consecutive subsessions; subjects undertook 2 trials in each subsession: 

one trial where the protruding probe touched the plantar face of the foot in five pressure regions 

and in another type of trial where the probe protruded but did not touch the foot (sham trial). A 

trial refers to a one complete test in which the foot was scanned and five extracted pressure points 

were detected and examined by the PerSeNT.  

Hence it was possible to assess the proportion of HIT and FALSE Alarms in each session, thus 

obtaining a measure of accuracy of participants’ ability to detect the actual probe pressing the foot. 

The procedure was repeated in five sessions, each 10 minutes apart. Within each session there 

were two sub-sessions in sequence. Each subsession comprised a random sequence of 2 trials with 

respect to both the location of the plantar surface pressure area being touched and the trial being 

either real or sham. 
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Furthermore, and importantly, in order not to bias the measurement outcome, the delivery of each 

sequence occurred in a double-blind format (i.e. neither the experimenter nor the participants were 

aware of the type of stimulation delivered during any single trial, i.e. either real or sham).  

 

Overall, this procedure allowed the assessment of the extent to which participants’ responses 

correlated across sessions, i.e. high test-retest correlations support reliable measurements.  

 

Figure 70: Real test with PerSeNT 

Figure 71: Sham test with PerSeNT 
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6.3.1.1 Signal Detection Test Results: Sensitivity & Specificity (Validity) 

Initially the accuracy of a total number of subjects 28 tested in all five sessions of   

10 real and 10 sham trials was measured. 

Total number of participant was 28, a computer code was developed for PerSeNT machine to 

conduct the real and sham trials. Overall, the number of times the probe was applied in the real 

test was 1400:  Total number of trials (Real/Sham) × total number of subjects × total number of 

test points in a subject = 10 × 28 × 5. 

The number of trials where the probe was detected (Hit event) was 1265, and those where the 

probe was not detected (Miss event) was 135. 

In the case of the 1400 sham trials, no False Alarms occurred, therefore “Correct” rejections 

numbered 1400. Table 5 below summarises the data. 

Thus the Sensitivity of the test (true positive correctly identified as such – i.e.  Hit/ (Hit + Miss) = 

1265/ (1265+135)) is 0.9 and its specificity (true negative correctly identified as such, i.e. Correct 

Rejection / (Correct Rejection + False Alarm) = 1400/ 1400+0 = 1. 

The above test result shows a clear discrimination of the signal (real test) from the noise (sham 

test) occurred: no participant falsely detected the probe when it was not applied on the plantar 

surface. Given the absence of false alarms no measure of d’ score was performed and the following 

analyses were performed on Hit rates. 

6.3.1.2 Test-retest Pearson coefficient correlation 

Reliability, the consistency of a test or measurement, is frequently quantified in research literature 

  Signal (Probe application) 

Present Absent 

Re-

sponse 

Present 1365/1400 = 0.90 0 

Absent 135/1400 = 0.096 1400/1400= 1 

Table 5: Signal detection results 
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e.g. test-retest Pearson coefficient correlation. A test is given at some time and the same test under 

the same conditions is repeated after a designated time period [114]. The score of both tests are 

then correlated. This correlation is known as the test-retest Pearson coefficient correlation or the 

coefficient of stability. A correlation coefficient tells us to what extent people obtain relatively 

stables scores across two testing occasions [114]. A reliability coefficient above 0.70 is considered  

relatively stable over time and a reliability coefficient between 0.80 and 0.90 suggests strongly 

reliable results [114]. 

To assess the reliability and repeatability of the PerSeNT system, the following analysis was 

carried out, based on the Hit rates using the same data acquired in section 6.3.1.  The Hit is the 

sub-session when the probe was physically applied to the plantar surface of the participants.  

In the table 6, the first column is the number of participants and the next ten columns contain the 

number of hit responses to the 98mN force applied by the probe out of 5 probes applications in 

each trial.  The value 1 stands for the correct detection of all the five probes, 0.8 means 4 out of 5 

probe hits has been correctly detected and 0.6 is the score for 3 out 5 probe acknowledgements. 

The last two columns are the mean and standard deviation for each participant across the 10 trials. 

While the bottom two rows show the mean and standard deviation values across participants for 

each sub-session.  

It can be seen that the means per subject vary from 0.66 to 1 across the 28 participants for the 10 

trials, while means varied between 89% and 91% across trials for the 28 participants.  

On the basis of hit ratio, the 280 cells in table 6 could be categorised into A, B and C categories as 

shown in table 7. Category A represents 3 out of 5 hit ratio, B represents 4 out of 5 hit ratio and C 

represents 5 out of 5 hit ratio i.e. 0.6, 0.8 and 1 respectively. 

 Session1 S2 S3 S4 S5   

 Subsession (sub)1 Sub2 Sub3 sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10     

 Hit Hit Hit Hit Hit Hit Hit Hit Hit Hit Mean STDEV 

1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0 

2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0 
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3 1 1 1 1 1 1 1 1 1 1 1 0 

4 1 1 1 1 1 1 1 1 1 1 1 0 

5 0.8 1 1 1 1 0.8 1 1 0.8 0.8 0.92 0.1 

6 1 1 1 1 1 1 1 1 1 1 1 0 

7 1 1 1 1 1 1 1 1 1 1 1 0 

8 0.8 1 1 1 0.8 1 1 1 1 1 0.96 0.08 

9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0 

10 0.8 1 0.8 0.8 0.8 1 0.8 1 1 1 0.9 0.11 

11 1 1 1 1 1 1 1 1 1 1 1 0 

12 0.8 1 0.8 1 1 1 1 0.8 0.8 0.8 0.9 0.11 

13 0.8 0.8 0.8 0.6 0.8 0.8 0.6 0.6 0.6 0.8 0.72 0.1 

14 1 1 1 1 1 1 1 1 1 1 1 0 

15 0.8 1 0.8 1 1 0.8 1 1 1 1 0.94 0.1 

16 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0 

17 1 1 1 1 1 1 1 1 0.6 0.6 0.92 0.17 

18 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0 

19 1 1 1 1 1 1 1 1 1 1 1 0 

20 1 1 1 0.8 1 1 1 0.8 1 1 0.96 0.08 

21 1 1 0.8 1 1 0.8 1 1 1 1 0.96 0.08 

22 0.8 0.8 0.8 0.8 0.8 1 1 1 1 0.8 0.88 0.1 

23 0.8 0.6 1 0.6 0.6 1 1 1 0.6 0.6 0.78 0.2 

24 0.6 0.6 0.6 0.6 0.8 0.8 0.6 0.6 0.6 0.8 0.66 0.1 

25 1 1 1 1 1 1 1 1 1 1 1 0 

26 1 1 1 1 1 1 1 1 1 1 1 0 

27 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0 

28 1 1 1 1 1 1 1 1 1 1 1 0 

Mean 0.89 0.91 0.9 0.89 0.91 0.92 0.92 0.91 0.89 0.89   

STDEV 0.11 0.13 0.12 0.14 0.12 0.1 0.13 0.13 0.15 0.13   

 

Table 7 and Figure 71 show that the performance mode is category C i.e. 5 out 5 real trials correctly 

detected by participants (one at toe, three at metatarsals and one at heel).   

Table 6: Real trial test statistics 
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The next table, table 8, consists of the mean of first five real trials and the last five real trials shown 

in table 6 for each participant (Sub1-5 and Sub6-10). The last column provides the difference 

between Sub1-5 and Sub6-10. Figure 72 shows Graphical representation of two test groups’ 

correlation. 

 Sub1-5 Sub6-10 Differences Sub1-5 and Sub6-10 

1 0.800 0.800 0.00 

2 0.800 0.800 0.00 

3 1.000 1.000 0.00 

4 1.000 1.000 0.00 

5 0.960 0.880 -0.08 

6 1.000 1.000 0.00 

7 1.000 1.000 0.00 

8 0.920 1.000 0.08 

9 0.800 0.800 0.00 

10 0.840 0.960 0.12 

11 0.800 0.800 0.00 

12 0.920 0.880 -0.04 

13 0.760 0.680 -0.08 

14 1.000 1.000 0.00 

15 0.920 0.960 0.04 

16 0.800 0.800 0.00 

17 1.000 0.840 -0.16 

18 0.800 0.800 0.00 

19 1.000 1.000 0.00 

20 0.960 0.960 0.00 

21 0.960 0.960 0.00 

22 0.800 0.960 0.16 

Category Hit Ratio N. of Cells 

A 0.6 18 

B 0.8 99 

C 1 163 
Table 7: Categorisation of participant base on 

the Hit Ratio 

Figure 71: Pi Chart representing the Hit Ratio 

amongst categories A (100 hits rate), B (80% hits 
rate) and C (60% hits rate). 
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23 0.720 0.840 0.12 

24 0.640 0.680 0.04 

25 1.000 1.000 0.00 

26 1.000 1.000 0.00 

27 1.000 1.000 0.00 

28 1.000 1.000 0.00 

Mean   0.007 

Correlation  0.832 

 

The test-rest reliability coefficient or the coefficient of stability or Pearson’s correlation coefficient 

r between the first five and last five sub-sessions is 0.832, which is quite high and shows a strongly 

reliable performance of the test. A second analysis was performed to assess test re-test stability. 

Given that it is possible to have a perfect test re-retest correlation when there is a constant 

difference between performance at time 1 and time 2 (e.g. each participant detects 100% hits at 

time 1 and 80% hits at time 2), the extent to which performance was reliable and stable in absolute 

terms was assessed. To this aim the performance for the first 5 trials was subtracted from the 

performance for the last 5 trials. This was done for each participant and their mean was calculated. 

If performance is stable and constant over time, this difference should be close to zero. Indeed, 

this difference was found to be negligible, i.e. 0.007 (t = 0.55, p > .10). Therefore, participants 

showed reliable test retest performances that were very similar in precision across test and retest 

sub-sessions. 

A further analysis was performed to identify 

any systematic patterns in sites where correct 

detection was hard. The overall miss ratio, out 

of 1400, at toe, first, fifth, central metatarsal 

phalangeal joints and heel were 0.5%, 1.29%, 

0.86%, 0.64% and 6.35%, respectively. 

Taking into account the total of the 135 Miss 

events, it appears that the Miss ratio at the toe 

was 5.19%; at the first metatarsal phalangeal 

Table 8: Correlation between first five real tests and last five real tests 

 

 

Figure 72: Graphical representation of two test groups’ 
correlation 
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joint area was 13.3%; at fifth metatarsal 

phalangeal joint area was 8.88%; at the central 

metatarsal was 6.66%; and at the Heel it was 

65.9% as shown in Figure 73. This means 

contribution of Heel in miss ratio is higher. 

From the above test, it is evident that an area of 

concern for accurate detection using PerSeNT is 

the Heel. This phenomenon also confirmed by 

the podiatrist that the heel is the least sensitive 

area. J. Clifford et al. [115] and W. I. Rhee et al. 

[116] also showed that heel is the least sensitive site, with 1/6th the sensitivity of the most sensitive 

toes. A large proportion to the failure in recognising the probe at heel leads to the question for 

further study, which is beyond the scope of this report. Further research must be done to either 

revisit the magnitude of the force (98mN) applied at heel or perhaps reconsider the heel as being 

an important pressure point to detect neuropathy. 

Figure 73: Pi Chart representing the Hit and Miss Ratio  
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6.4 Conclusion 

The automated SWME replica, PerSeNT, was compared with the manual SWME through a 

number of tests.  In test1, the proposed system was found 100% accurate in selection of suitable 

test points and about 4 times more efficient in terms of latency. Further comparison of PerSeNT 

was made with a commercially available pressure plate in test 2. A high success rate of 97.7% was 

achieved and showed that all the extracted test points by PerSeNT were from pressure regions of 

the plantar surface. Test 3 consisted of two phases; phase 1 signal detection theory test was 

exercised and it was found that no false alarm had been detected. In phase 2, it has been observed 

that out of 28 healthy volunteers, most (58%) have recognised the probe and 35% recognise probe 

at 4 pressure regions while 7% failed to recognise at 2 out of five pressure regions. Further 

investigation revealed that the heel is the area where most of recognition failures occurred in 

category A and B. This was expected as heel is the least sensitive area. Further investigation must 

be carried out to either reconsider the magnitude of force at heel or reconsidered the heel as being 

an important pressure point to detect sensory neuropathy. These tests evaluations support the 

system repeatability, reliability and efficiency. 
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CHAPTER 7. Conclusion 

 

Diabetes Mellitus is a chronic illness and may lead to peripheral neuropathy. Lack of proper care 

and management of peripheral neuropathy may result in amputation. The current direct cost of 

patient care for those living with diabetes is estimated at £10 billion which is 10% total UK 

National Health Service budget. Regular screening of diabetic patients is required for the 

assessment of peripheral sensory neuropathy. The Semmes–Weinstein Monofilament Examination 

(SWME) is one of the most common methods to test pressure points at specific weight-bearing 

areas, namely the toe (Hallux), metatarsal and heel (Calcaneum) and the test incurs its own 

downsides. The key disadvantage is the potential misjudgement of acceptable force. The precision 

of the accepted 10g force is based on the practitioner’s guess by observing the perceived bend or 

buckle of the filament i.e. observing the 10 mm bend through the naked eye. Therefore, there is a 

clear need to further, simplify and automate the testing procedure that is, autonomous, repeatable, 

and simplifies the testing procedure with the storage capacity of photographic evidence of patients’ 

feet and their condition over time.  

Selection of pressure points from the chosen pressure regions is vital and provides key information 

to be used in medical diagnosis associated with satisfactory function in the foot. Plantar pressure 

measurements systems range from simple scheme e.g. ink prints, clay, sensitive films to more 

complex innovations such as pedobarograph, force transducers, capacitive sensors, resistance 

sensors, piezoelectric sensors, piezoresistive sensors and strain gauge mechanical systems. These 

systems come into two categories: design platform and in-shoe. Further these can be classified into 

qualitative and quantitative measurements. Though their research objectives are diverse, the 

methods followed by those referenced involved manual intervention and seems impractical to 

embed automated probe application mechanism.  

The Thesis presents as far as the author is aware, the first complete off the-shelf system for 

automated selection of pressure points for peripheral neuropathy assessment of a diabetic patient’s 

plantar surface using optical imaging and binary processing techniques. In this approach a scanner 

is used to obtain the patients plantar surface image in RGB colour space. Then via developed image 
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processing using a specific colour space that represents skin colour and three largest size of 

contours, the orientations of pressure points are identified. This information is then sent to a robotic 

arm holding a monofilament probe. The robotic arm is used to conduct the Semmes–Weinstein 

Monofilament Examination (SWME) procedure as it is exercised in hospital or health care centre 

manually. Patient’s feedback is recorded to identify the insensate area of plantar surface. All ethnic 

groups were considered and tested.  The proposed method performs a thresholding process and 

bounds the foot image in a rectangle followed by contours. Plantar pressure points are then 

obtained using a combined approach of optical imaging over the HSV three-dimensional colour 

space and plantar anthropometry. The algorithm was successfully applied on 70 participants with 

a 100% success result, regardless of the patient’s race, age or gender. The introduction of foot 

grove method embedded in perforated sheet mitigated the issues related to the original foot stopper 

(FS) but at the same time foot placement is dependent on the toe groove. It is sometimes difficult 

to locate the toe groove easily, thus new approach was considered. The foot sectorisation 

algorithm, subsequent image processing and grid information algorithms presented reliably 

identify the plantar surface sensory neuropathy pressure points on a given patient’s foot. This 

approach is generic and accommodates flat and non-flat feet as well as different ethnicities.  

Due to the automation of the system, obvious care had to be taken to ensure lesions are detected 

(or characteristics that could be a lesion) and the probe is not applied to those areas.  A layered 

approach of LBP and SVM is used in previously developed automated peripheral sensory 

neuropathy assessment using optical imaging to avoid probe application on lesion on plantar 

surface. Several different types of plantar lesions were taken from appropriate internet sites and 

the collaborating podiatrists’ collection.  These were then experimentally superimposed on plantar 

surface images of feet already stored. The proposed approach successfully detected all of the 

lesions available in database. 

The efficiency, reliability and validation stages were the final set of tests. The study was approved 

by the university ethics committee. Three different tests carried out, Test 1 was the verification of 

PerSeNT selection of test point and a trained podiatrist, the results showed 100% success rate. In 

test 2 a comparison has been made between PerSeNT and commercially available pressure plate 
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to make sure the PerSeNT extracts test points from plantar pressure region. A high success rate of 

97.7% was observed. Signal detection test was carried out in test 3, phase 1 was executed to find 

out the discrimination of true and false alarm, it was observed that no false alarm been detected. 

In phase 2, it has been observed that out of 28 healthy volunteer, most (58%) have recognised the 

probe and 33% recognise probe at 4 pressure region while 25% failed to recognise at 2 different 

pressure region. Further investigation revealed that the heel is area where category A and B most 

of the time was failed to recognise the probe. This was expected as heel is the least sensitive area. 

Further investigation must be carried out to either reconsider the magnitude of force at heel or 

reconsidered the heel as being an important pressure point to detect sensory neuropathy. These 

tests evaluations support the system repeatability, reliability and efficiency. 
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CHAPTER 8. Appendix 

 

8.1 Portable scanner 

Copy Cat is a handheld, portable scanner used to capture books, papers, photos and other 

documents on the go with high-resolution up to 600 DPI and saves files to an included micro SD 

card. Copy Cat also has a USB cable to connect the portable scanner to the RPi as a USB drive.  

It inherits a limitation in terms of scanner mode and memory mode. It serves as a scanner when 

disconnected with RPi and serves as a USB drive when connected to RPi. A hardware arrangement 

is designed and code is developed to toggle it in between two modes i.e. scanner and USB drive.  

8.2 Usbmount.sh 

A bash script (usbmount.sh) is written so that RPi’s operating system (Debian wheezy) can mount 

the USB drive mode of portable scanner. 

#!/bin/bash 

Sudo chmod 775 /media/usbstick 

for ch in {a..z} 

do  

s=’sd’ 

d=$ch 

num=’1’ 

drivename=$s$d$num 

sudo moun  –t vfat –o uid=pi,gid=pi /dev/$drivename /media/usbstick 

done 

8.3 USBUNmount.sh 

It is a bash file that is used to unmount the USB drive (scanner in USB mode) from RPi safely. 

The script runs immediately after the image is fetched from the scanner SD card by a c++ code 

8.4 C/C++ Image processing code 

C/C++ Image processing code (getPlantarImage.cpp) is developed to extract pressure points of 

plantar surface. Another C/C++ code (SerialComm.cpp) is written to establish the serial 

communication between RPi and Arduino. First a connection is established by the code 

cs=open(“/dev/ttyACM0”, O_RDWR | O_NOCTTY); 

struct options_at; 
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tcgetattr(cs, &options_at); 

speed_t bdrate = B9600; 

cfsetispeed(&options_at, bdrate); 

cfsetospeed(&options_at, bdrate); 

The image processing code runs in RPi in waiting mode.  

while (signal !=’$’) 

{ signal=readFromArduino(); } 

As the “getPlantarImage.cpp” gets a signal from Arduino to indicate that the Arduino has run the 

scanner and connected the scanner with RPi and toggled it into USB drive mode. 

“getPlantarImage.cpp” fetches the image 

CvCapture *pCapturedImage = 

cvCaptureFromFile("/media/usbstick/DCIM/100MEDIA/image1.jpg");  

   frame = cvQueryFrame(pCapturedImage); 

The “getPlantarImage.cpp” extracts pressure points using optical imaging and plantar 

anthropometry these points are sent to Arduino sketch in a stream of characters each digit in a pair 

is separated by “ ’ ” and each pair in the character string is separated by “ : ”.  

8.5 Arduino_Serial_Communication.ino 

The code on Arduino side receives the string from “getPlantarImage.cpp” and convert the string 

into respective digits to represent the special domain of pressure point. It stores the x coordinate 

into xx variable and y coordinate into yy variable. The xx represents row number of perforated 

sheet while yy represents the column number of the perforated sheet e.g. if a string consists of 

4,7:3,5: 

The variable xx will contain 4 and yy will contain 7, it represents the hole on perforated sheet at 

4th row and 7th column. And similarly 3,5 represent hole on perforated sheet located at 3rd row and 

5th column 

intinput,num,xx,yy; 

intbuff[5]; 

int j=-1; 

void setup() {  

             Serial.begin(9600); 
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      pinMode(ledx, OUTPUT);  

  pinMode(ledy, OUTPUT);  

Serial.println('$');} 

intcalc() {      

intnum=0,x=0; 

       for(x;x<=j;x++) 

          num=num+(buff[x]-48)*pow(10,j-x); 

     return num; 

} 

  

void loop() {  

    if(Serial.available()>0) 

    {  input=Serial.read();  

        if(input==',') { 

            xx=calc();    // Row number of 

            j=-1; 

            Serial.print(xx); 

            Serial.println( " , "); 

            for(inti=0; i<xx; i++)  { 

            digitalWrite(ledx, HIGH); 

            delay(500); 
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            digitalWrite(ledx, LOW); 

            delay(500); 

             }    } 

        else if(input==':')  { 

            yy=calc(); 

            j=-1; 

            Serial.println(yy); 

           for(inti=0; i<yy; i++)   { 

digitalWrite(ledy, HIGH); 

            delay(500); 

            digitalWrite(ledy, LOW); 

            delay(500); 

             } } 

        else       { 

            j++; 

            buff[j]=input; 

     } 

    } } 
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8.6    PerSeNT information form 

 

Peripheral Sensory Neuropathy Tester (PerSeNT): A machine to test for loss of sensation in the 

extreme regions of the foot, Toes, heel, foot surface. 

 

Invitation 

 

You are invited to participate in a research study for the improvement and validation of a novel 

machine PerSeNT that automatically test for Peripheral Sensor Neuropathy (PSN) or a lack of 

sensation, in the foot. It has been reviewed and ethically approved by the London Southbank 

University Research Ethics Committee. 

The study is part of an inter-school research project between Applied Health and Engineering. The 

work is being sponsored by the university’s enterprise centre (contact Mr. Peter Hadfield) and is 

being conducted by Dr Sandra Dudley-McEvoy (Principal Lecturer, EED), Mr Hafeez Siddiqui 

(PhD student, EED), Dr Michelle Spruce (Fellow, Health) and Dr Steve Alty (Senior Lecturer, 

EED). 

Before you decide whether or not you wish to participate in this study, it is important for you to 

understand why the research is being done and what it will involve. Please take the time to read 

the following information carefully and discuss it with others if you wish. 

1. What is the purpose of this study? 

 

The purpose of the study is to assist the research team to improve and validate a novel LSBU 

automated system that tests for peripheral sensor neuropathy (PSN) in patients.   

London South Bank University 

 

PARTICIPANT INFORMATION SHEET: UREC No. 1438 
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Currently the accepted method is the Semmes–Weinstein Monofilament Examination (SWME) 

where a practitioner holds a patient’s foot and decides upon their foot pressure points. The 

practitioner then applies a 10g monofilament probe to the plantar surface (underside) of the foot 

to the areas he/she recognised as the pressure points, normally the toe, heel and metatarsal areas. 

Once the practitioner notes a bend in the monofilament representing (what they believe to be) a 

10g force, the patient is required to say where they can feel the probe or not. 

The proposed automated machine works without a practitioner present and replicates the visual 

pressure point detection in an automated way using optical imaging (scanner) and signal 

processing techniques.  The optical scanner of the PerSent system takes a digital image of your 

foot. Following this an automated mechanical probe of 10g will be applied to each foot.  No 

investigations apart from the automated pressure point detection and manual recognition of the 

probe will be requested. This study aims to (a) validate the pressure point imaging technique 

against a commercial system and (b) the repeatability of a mechanical probe to apply 10g or 98mN 

of pressure. 

2. Why have I been invited to participate in this study? 

We are asking healthy post-graduate students and staff to participate.  You are eligible to 

participate in this study because you are a postgraduate student or staff member at London 

South Bank University. 

3. What if I don’t want to take part in this study, or if I want to withdraw later? 

Participation in this study is voluntary. It is completely up to you whether or not you 

participate.  

If you wish to withdraw from the study once it has started, you can do so at any time and at 

any stage without having to give a reason. At your test you will be given a code that matches 

your foot image, probe recognition, sex, age, and ethnicity information. This will be used to 

remove your data. We will not have details of names or addresses. 

4. What does this study involve? 
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If you agree to participate in this study, you will be asked to sign the Participant Consent 

Form. 

This study will be conducted for 30 mins over 3 days. You will only be required for one of 

those 30 minutes’ sessions. 

Once you have signed the consent for you will be asked to do the following.  

 

a) You will be provided with a demonstration prior to the test. 

b) You will be asked to place your right foot first on the scanner in front of you. You will be 

verbally guided (ONLY) to place your foot in the correct position. You do not need to 

apply any pressure. You can be seated or standing this is up to you. 

c) The scanner will then take an optical image of your foot and a digital scanned foot image 

will be presented on the screen in front of you. 

d) Once the scan is completed a pressure map of your foot is automatically produced again 

on the screen in front of you. 

e) Once the test is completed the machine will return to its initial position. 

f) Following this, the mechanical probe will start. This will apply 98mN (10g) of pressure to 

5 places on your foot using the info found in (d). You will be asked to press a button to 

declare whether you have felt the probe or not.  Nothing else will be asked of you. 

a) Once your right foot is completed you will be asked to do the same again for your left foot 

b) Following this you will be asked to stand with both feet on the commercial plate and a 

pressure point scan will be conducted. 

c) You will be provided with your results and asked to comment on your experience. 

 

5. How is this study being paid for? 
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The study is being sponsored by LSBU.  No money is paid directly to individual researchers. 

6. Are there risks to me in taking part in this study? 

 

There are no visible risks to the study and you will not be asked to do anything except present 

a bare foot onto the PerSeNT box and commercial pressure plate.  

7. Will taking part in this study cost me anything, and will I be paid? 

Participation in this study will not cost you anything.  A voucher for a soft beverage will be 

provided and which will be issued upon completion of your visit. 

8. What will happen to my scanned image after they have been used? 

The anonymised digitally scanned images of feet will be stored until the completion of the 

study (1 year). You will be provided with a code once you start the test.  This will match your 

data as explained in 3 above.  No names will be taken. 

9. How will my confidentiality be protected? 

All testing will be anonymous.  No names or addresses will be taken. You will be asked for 

your age, ethnicity and sex prior to starting the test. Only Dr Sandra Dudley-McEvoy, Dr 

Michelle Spruce and Mr Hafeez Siddiqui will know whether or not you are participating in 

this study. Only the researchers named above will have access to those details and results 

will be held securely at LSBU. Please be aware names or addresses will not be taken. 

10. What happens with the results? 

 

If you give us your permission by signing the consent document, we plan to discuss/publish 

the results at peer reviewed IEEE journals and to provide evidence for future research grants. 

In any publication, information will be provided in such a way that you cannot be identified. 

Published results of the study will be provided to you, if you wish. 

11. What should I do if I want to discuss this study further before I decide? 

 

When you have read this information, the researchers Dr Sandra Dudley-McEvoy 
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(dudleyms@lsbu.ac.uk, 020 7815 7124) and Mr Hafeez Siddiqui (siddiqh3@lsbu.ac.uk) will 

discuss it with you and any queries you may have. If you would like to know more at any 

stage, please do not hesitate to contact them. 

Finally, if you remain unhappy and wish to complain formally, you can contact the Chair of 

the University Research Ethics Committee. Details can be obtained from the university 

website: https://my.lsbu.ac.uk/page/research-degrees-ethics 

 

Thank you for taking the time to consider this study. 

If you wish to take part in it, please sign the attached consent form. 

This information sheet is for you to keep. 

 

  

mailto:dudleyms@lsbu.ac.uk
mailto:siddiqh3@lsbu.ac.uk
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8.7    Participant Consent Form 

 

Department of Engineering and Design 

London South Bank University  

 

Study Title: PerSeNT 

Participant Consent Form: UREC No. 1438 

 

 

Research Team: Dr. Sandra Dudley-McEvoy (Principle Investigator): dudleyms@lsbu.ac.uk Tel. 

ext:7124 

Dr. Michelle Spruce (Principle Practice Investigator): (michelle.spruce@btinternet.com) 

Mr. Hafeez Siddiqui (PhD Student) siddiqh3@lsbu.ac.uk: Tel. ext:7545 

Research Ethics Committee: (ethics@lsbu.ac.uk ) 

 

Please circle Y or N 

(a) I have read the attached information sheet on the research in which I have been asked and 

agree to participate and have been given a copy to keep. I have had the opportunity to 

discuss the details and ask questions about this information      

 (Y/N) 

(b) The Researcher has explained the nature and purpose of the research and I believe that I 

understand what is being proposed         

 (Y/N) 

(c) I understand that my personal involvement and my particular data from this study will 

remain strictly confidential. Only researchers involved in the study will have access. 

(Y/N) 

(d) I consent that scanned digital images using an optical scanner will be taken of my feet and 

mailto:dudleyms@lsbu.ac.uk
mailto:siddiqh3@lsbu.ac.uk
https://mail.lsbu.ac.uk/owa/redir.aspx?C=NYeUumJpK0S0qaYVWOj5IdMBAvB3G9AIAMNhTHdFnSI8jqkuVTcByZuwqXsMl_kTdZsPxFdEWHI.&URL=mailto%3aethics%40lsbu.ac.uk
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securely stored at LSBU.         

 (Y/N) 

(e) I understand that I am free to withdraw from the study at any time without giving a reason. 

 (Y/N) 

(f) I consent that a mechanical probe will be brushed against my foot. 

(Y/N) 

(g)  I understand that the images will be anonymised, only sex, age and ethnicity will be 

recorded. 

 (Y/N) 

 

If you have any questions, please ask. 

 

I consent taking part in this study 

Participants name (Block Capitals)   ____________________________________ 

 

Participants name (Signature)           ____________________________________ 

 

Witness Name (Block Capitals)        ____________________________________ 

 

Signature of Witness:                        ____________________________________ 

 

Date:                                                    ____________________________________ 
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