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Introduction

The forward kinematics of parallel manipulator: Find the
rigid-body displacement undergone by the platform given the
lengths of the six legs.

Well known to be a hard problem. Much work on this in the past.

Most past work on numerical methods concerns finding all
solutions and uses general numerical techniques.



Introduction

Standard numerical methods do not take account of the geometry
of the group of rigid-body displacements.

Notice the result we require is a rigid displacement.

Here we present a practical, fast numerical algorithm that finds a
single solution given the solution at a nearby position. Method
respects the structure of the group of rigid displacements.



Some Notation I

Use 4 × 4 (homogeneous) representation of the group SE (3).

M =

(

R t

0 1

)

where R is a 3 × 3 rotation matrix and t a translation vector.

Point p = (x , y , z)T extended to a 4-D vector p̃ = (x , y , z , 1)T

so that action on points written,

p̃′ = Mp̃ =

(

R t

0 1

)(

p

1

)

=

(

Rp + t

1

)



Notation II

Lie algebra elements can be thought of as ’small’ displacements,
here errors.
Called twists and given by,

S =

(

d

dt
M(t)

)

M(t)−1 =

(

Ω v

0 0

)

,

where v is the linear velocity of the origin and Ω is a 3 × 3
anti-symmetric matrix corresponding to the angular velocity of the
motion, that is,

Ωp = ω × p

for any p.



Notation III

Twists also written as 6-D vectors,

S =

(

Ω v

0 0

)

, s =

(

ω

v

)

Elements of the dual space to the Lie algebra are called wrenches
and written,

W =

(

τ

F

)

where F is a force and τ is a moment.

power = WT s = τ · ω + F · v.



The Gough-Stewart Platform

The General
Gough-Stewart
Platform

The square of the length of the i -leg is
given by,

l2i =
(

ãi − Mb̃i

)T (

ãi − Mb̃i

)

i = 1, . . . , 6

Here, ai are the centres of the passive
joint on the base and bi are the centres
of the joint on the platform in the
home position, that is the position
where M = Id . The rigid displacement
we seek is M here.



Jacobian I

We will need the Jacobian of the manipulator later. To find it we
take the derivatives of the leg-lengths,

dl2
i

dt

∣

∣

∣

∣

t=0

= 2li l̇i = −2
(

ãi − b̃i

)T
S b̃i .

The matrix S here is the Lie algebra element of the motion,
S = (Ṁ)M−1. Notice that now we are assuming that bi are the
point in the current position.



Jacobian II

Rearranging using the cyclic property of the scalar triple product,
gives,

l̇i =
1

li

(

b̃i − ãi

)T
S b̃i =

1

li

(

(ai × bi )
T , (bi − ai)

T
)

(

ω

v

)

The Jacobian J, is the matrix satisfying,







l̇1
...

l̇6






= J

(

ω

v

)

So the rows of this Jacobian are the wrenches,

WT
i =

1

li

(

(ai × bi )
T , (bi − ai)

T
)

, i = 1, . . . , 6



A Geometric Newton-Raphson Method

Let,

Li =
(

ãi − Mb̃i

)T (

ãi − Mb̃i

)

− l2i , i = 1, . . . , 6

and consider the vector function,

F(M) =
(

L1,L2,L3,L4,L5,L6

)T

Given the six leg-lengths l1, . . . , l6 we seek the rigid transformation
M which satisfies F(M) = 0.



The Error Screw

The main idea of this work is to represent the error as a screw.
More precisely, if M(i) is the i -th approximation to the solution,
then the next approximation will be given by,

M(i+1) = eS(i)
M(i)

where S (i) is the i -th error screw. This recurrence relation forms
half of our numerical method. Notice that the result M(i+1) is
always a rigid displacement.



Finding the Error Screw I

Consider the Taylor series approximation for the function F(etSM)
about the root M,

F(etSM) ≈ F(M) + t
d

dt
F(etSM)t=0

Since M is a root of F, F(M) = 0. To compute the derivative of F

we can look at the component functions and as in the previous
section,

dLi

dt

∣

∣

∣

∣

t=0

= −2
(

ãi −Mb̃i

)T
SMb̃i = 2

(

(ai × b′

i)
T , (b′

i − ai )
T

)

(

ω

v

)

where b′

i
is the position of the point bi at the solution.



Finding the Error Screw II

The Taylor expansion can now be written,

F(etSM) ≈ K (M)st,

where the matrix K (M) = 2 diag(l1, l2, . . . , l6)J(M), with J(M)
the Jacobian of the platform.

The error screw s, is found by solving the above equation with
t = 1, so s = −K−1(M)F(eSM).

As usual with the Newton-Raphson method, we don’t know the
value of the inverse Jacobian at the solution M so we approximate
it by K−1(M(i)). This justifies our use of the following recurrence
relation for s,

s(i) = −K−1(M(i))F(M(i))



Termination condition

A sensible choice for the condition for iteration to terminate is that
the quantity |F(M(i))|2 be smaller than some predetermined
threshold. Notice that this quantity is the sum of the squares of
the errors, L2

1 + · · · + L2
6.

In practical situations the threshold value should be determined by
the accuracy to which the leg-lengths can be measured.



The Algorithm - Inputs

Inputs:
Home position of passive joints a1, . . . , a6, b1 . . . ,b6,

Current position and orientation M(0),
Desired leg-lengths, l1, . . . , l6,
Accuracy threshold, δ.



The Algorithm - Outputs

Outputs:
Position and orientation for desired leg-lengths, M.



The Algorithm - Method

Method:

Compute F(M(0)),

Compute |F(M(0))|2,

While δ > |F(M(i))|2 Repeat:

Evaluate the Jacobian K (M(i)),
Compute the error screw,

s(i) = −K−1(M(i))F(M(i)),
Update the position and orientation estimate,

M(i+1) = eS(i)
M(i),

Compute F(M(i+1)),

Compute |F(M(i+1))|2,

Output M = M(i+1).



Notes on Implementation

◮ Error screw s, computed using standard linear algebra
libraries.
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Notes on Implementation

◮ Error screw s, computed using standard linear algebra
libraries.Will fail near singularites — these exceptions should
be caught.

◮ Quaternions or matrices? Need to multiply group elements, so
probably quaternions are simpler.

◮ The exponential of a screw S can be computed using a degree
3 polynomial in the 4 × 4 matrix S , similar to the Rodrigues
formula for rotations, similar relations can be found for
quaternions.



Example

Initial and final pose of the Gough-Stewart Platform for Example

Initial leg-lengths,

l1 = 3.1736, l2 = 3.1736, l3 = 3.1736, l4 = 3.1736, l5 = 3.1736, l6 = 3.1736

Desired final leg-lengths,

l1 = 5.7568, l2 = 6.6353, l3 = 7.3836, l4 = 7.1991, l5 = 5.5535, l6 = 6.2567



Results

Algorithm implemented in Mathematica, no attention to efficiency.
After 5 iterations, using the identity as the initial value M(0), result
is,

M =









0.4329 0.6250 −0.6495 −1.0514
−0.7500 0.6495 0.1250 1.6250

0.5000 0.4331 0.7500 2.7500
0 0 0 1









Leg-length errors, (difference between the desired and computed
leg-lengths) are,

∆l1 = −3.5 × 10−9, ∆l2 = −8.8 × 10−9, ∆l3 = −2.9 × 10−9,

∆l4 = 5.6 × 10−10, ∆l5 = 1.2 × 10−8, ∆l6 = 1.8 × 10−9

This computation took 0.01s running on a 2GHz Pentium 4
processor with 496MB of RAM.



Another Example

Can make algorithm work harder by setting the desired leg-lengths
closer to a singularity. In this case close to where base and
platform are coplanar In this case the algorithm took 7 iterations
to achieve the same accuracy.

Plot of error in leg 1 against iteration number.

Shows quadratic improvement in error expected of the
Newton-Raphson method. Plots of the errors in the other
leg-lengths very similar.
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◮ Algorithm fast and quite robust.
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Conclusions

◮ Algorithm fast and quite robust.

◮ Could use Cayley map rather than exponential to map errors
to the group.

◮ For some platforms, e.g. 6-3 platform, symbolic inversion of
the Jacobian possible.

◮ Main message — use geometrical numerical methods.


