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Abstract
Purpose To investigate the effects of 60 min daily, short-term (STHA) and medium-term (MTHA) isothermic heat acclima-
tion (HA) on the physiological and perceptual responses to exercise heat stress.
Methods Sixteen, ultra-endurance runners (female = 3) visited the laboratory on 13 occasions. A 45 min sub-maximal (40% 
Wmax) cycling heat stress test (HST) was completed in the heat (40 °C, 50% relative humidity) on the first  (HSTPRE), seventh 
 (HSTSTHA) and thirteenth  (HSTMTHA) visit. Participants completed 5 consecutive days of a 60 min isothermic HA protocol 
(target Tre 38.5 °C) between  HSTPRE and  HSTSTHA and 5 more between  HSTSTHA and  HSTMTHA. Heart rate (HR), rectal 
(Tre), skin (Tsk) and mean body temperature (Tbody), perceived exertion (RPE), thermal comfort (TC) and sensation (TS) were 
recorded every 5 min. During HSTs, cortisol was measured pre and post and expired air was collected at 15, 30 and 45 min.
Results At rest, Tre and Tbody were lower in  HSTSTHA and  HSTMTHA compared to  HSTPRE, but resting HR was not different 
between trials. Mean exercising Tre, Tsk, Tbody, and HR were lower in both  HSTSTHA and  HSTMTHA compared to  HSTPRE. 
There were no differences between  HSTSTHA and  HSTMTHA. Perceptual measurements were lowered by HA and further 
reduced during  HSTMTHA.
Conclusion A 60 min a day isothermic STHA was successful at reducing physiological and perceptual strain experienced 
when exercising in the heat; however, MTHA offered a more complete adaptation.

Keywords Heat strain · Acclimatisation · Endurance performance · Taper · Thermoregulation

Abbreviations
HA  Heat acclimation
HR  Heart rate
HST  Heat stress test
LPS  Lipopolysaccharide
MTHA  Medium-term heat acclimation
RPE  Rating of perceived exertion
STHA  Short-term heat acclimation
Tbody  Mean body temperature
TC  Thermal comfort

Tre  Rectal temperature
TS  Thermal sensation
Tsk  Skin temperature
W  Watts

Introduction

Exercising for a prolonged duration in a thermally stressful 
environment places the body under greater physiological and 
perceptual strain than when exercising in temperate condi-
tions (Galloway and Maughan 1997; Tucker et al. 2004). 
The greater strain often results in reduced aerobic exercise 
performance (Ely et al. 2008) and may even result in serious 
heat illness, such as endotoxemia, heat exhaustion and heat 
stroke (Wendt et al. 2007). Heat acclimation (HA) has been 
proposed as one of the most effective interventions to be 
incorporated into an athlete’s training programme to reduce 
physiological strain and improve exercise performance in 
hot environmental conditions (Tyler et al. 2016). Currently, 
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the optimal HA protocol is still unknown despite a large 
body of research manipulating the intensity and duration of 
exercise, the frequency of HA exposures, and the type of HA 
used (Tyler et al. 2016).

Repeated exposure to thermal stress can induce benefi-
cial adaptations that include a reduced body temperature, 
increases in sweating sensitivity and rate, improved car-
diovascular stability, lower perceptual strain, and improved 
exercise economy (Tyler et al. 2016). Up to 80% of adap-
tations occur in the first 4–7 days of exposure (short-term 
heat acclimation (STHA)); however, the magnitude of adap-
tation appears to be greater when medium-term (MTHA; 
7–14 days) and long-term (LTHA; > 15 days) HA protocols 
are used (Tyler et al. 2016) and not all adaptations occur 
over the same time course. For example, heart rate adapta-
tions typically occur well before improvements in perfor-
mance and the sudomotor responses are observed (Periard 
et al. 2016; Tyler et al. 2016). For heat adaptations to occur, 
heat stress must induce physiological strain of a magnitude 
above an adaptation threshold (Taylor 2014) and the mag-
nitude of the adaptation appears dependent on the extent 
and frequency of the thermal strain and impulse provided. 
It has been proposed that the threshold for adaptation may 
be the attainment and maintenance of a core temperature 
of ~ 38.5 °C because at this temperature, sudomotor and 
vasomotor thermoeffector responses are challenged and heat 
shock proteins are expressed (Fox et al. 1964; Gibson et al. 
2015a, b). It may be difficult to reach and maintain such an 
internal temperature using traditional constant work HA pro-
tocols, but a controlled isothermic HA protocol overcomes 
this issue by ensuring that the target core temperature is 
reached through exercise and then maintained using passive 
(e.g. resting) and active (e.g. exercise) heat stress.

Another potential practical benefit of isothermic HA 
protocols is that thermal adaptations may be achieved with 
shorter exercise durations and lower exercise intensities 
than fixed-intensity HA protocols (Gibson et al. 2015a) 
and, therefore, they may be appropriate during the taper-
ing phase in training (Tyler et al. 2016). Heat adaptations 
are lost at a rate of approximately ~ 2.5% per day when 
individuals are not exposed to heat and so HA should be 
undertaken as close to competition as possible to minimise 
de-acclimation (Daanen et al. 2018); however, an overly 
exerting HA protocol may compromise subsequent exercise 
performance and health due to over-activation of the hypo-
thalamic–pituitary–thyroid axis (Reeve et al. 2019) (result-
ing in increased cortisol concentrations) and/or increased 
permeability of the gut (leading to the translocation of 
endotoxins such as lipopolysaccharide (LPS) in to the blood 
stream) (Lim et al. 2009). Within the current literature, an 
isothermic HA approach has been investigated either with 
an absolute increase in core temperature (Magalhaes et al. 
2010) or the attainment of a set thermal strain (Garrett et al. 

2012; Gibson et al. 2015a). A potential limitation to using 
a set increase in core body temperature (e.g. + 1 °C) is that 
as adaptation occurs and resting core temperature lowers, 
individuals may not be reaching a sufficient thermal strain to 
elicit HA adaptations. The attainment of a set thermal strain 
(e.g. 38.5 °C) ensures that as adaptation occurs an adapta-
tion stimulus continues to be provided (Taylor 2014; Tyler 
et al. 2016). Recent isothermic HA literature has shown that 
a daily 90 min isothermic HA protocol offers an adequate 
stimulus for heat adaptation (Garrett et al. 2012; Gibson 
et al. 2015a), but such a duration may be problematic to 
integrate in to an athlete’s preparation. Shorter (30–60 min) 
constant work approaches can induce beneficial heat adapta-
tions when exercise is maintained throughout to induce the 
strain (Houmard et al. 1990) and so it seems prudent to sug-
gest that maintaining the strain for a similar duration using 
a less-intense exercise intensity, isothermic HA regimen 
would also be effective and desirable to tapering athletes. 
It is currently unknown whether such an approach provides 
enough time to induce physiological and perceptual adapta-
tions as the time spent above the thermal impulse will be 
considerably reduced and the total time exposed to the heat 
is ~ 33.3% less than in previous isothermic HA protocols 
(Garrett et al. 2012, 2014; Gibson et al. 2015a).

The primary aim of this study, therefore, was to investi-
gate whether a 60 min daily isothermic (core temperature of 
38.5 °C) HA regimen would reduce the physiological and 
perceptual strain experienced when exercising in the heat. 
The secondary aim was to investigate if there was a time-
course effect on the physiological and perceptual adaptations 
and whether MTHA was more effective than STHA. We 
hypothesised that the isothermic HA protocol would provide 
a sufficient thermal impulse to induce positive changes in 
physiological and perceptual measurements and that these 
adaptations would be more complete following MTHA than 
STHA.

Methods

Sixteen, non-heat acclimated, endurance runners (females = 3) 
participated. The mean (± SD) age, body mass, stature, 
body fat percentage and maximal work rate (Wmax) were 
36.1 ± 9.1 years, 74.2 ± 9.4 kg, 176.1 ± 5.8 cm, 10.7 ± 4.9% 
and 302 ± 76 W, respectively. Before participation, all par-
ticipants completed a health screening questionnaire and pro-
vided their fully informed, written consent to participate. The 
study was approved by the University of Roehampton’s ethical 
committee (LSC 18/228) and all procedures and protocols 
adhered to the guidelines of the World Medical Association 
(Declaration of Helsinki). Data were collected between March 
and April (Mean outside temperature ~ 6 °C) in the United 
Kingdom to avoid heat acclimatisation.
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Experimental design (Fig. 1)

Participants undertook one preliminary visit (for the assess-
ment of maximal power output) and 13 experimental vis-
its. Participants performed a 45 min sub-maximal (40% 
Wmax) heat stress test (HST) on the first  (HSTPRE), seventh 
 (HSTSTHA) and thirteenth  (HSTMTHA) experimental visit. 
Between  HSTPRE and  HSTSTHA and again between  HSTSTHA 
and  HSTMTHA, participants completed 5 consecutive days 
of isothermic heat acclimation (HA) (60 min each visit) 
during which time rectal temperature (Tre) was elevated to, 
and maintained at, ~ 38.5 °C. The environmental conditions 
were 40 °C and 50% relative humidity (rh) with no convec-
tive cooling for all sessions. Participants were instructed to 
avoid caffeine, alcohol, and strenuous exercise 24 h before 
all HSTs. HSTs and HA sessions were performed at the 
same time of day for each participant throughout the study 
to avoid the effects of circadian rhythm. Food intake was 
recorded for the 24 h prior to  HSTPRE and participants were 
instructed to replicate this before  HSTSTHA and  HSTMTHA.

Preliminary testing

Stature (Harpenden Stadiometer, Holtain Ltd, UK) and 
body mass (Seca, Birmingham, UK) were recorded before 
Wmax was determined in ambient laboratory conditions 
(21 ± 1 °C and 55 ± 4% rh) using an incremental exercise 
test to volitional exhaustion (Kuipers et al. 1985), on a cycle 
ergometer (Monark 847E, Vansbro, Sweden). During this 
test, participants initially cycled at 100 watts (W) for 5 min, 
thereafter, work was increased by 50 W every 2.5 min until 
heart rate (HR) reached 160 b  min−1, once reached, work 
was increased by 25 W every 2.5 min until exhaustion. The 

maximum work rate was calculated using the equation of 
Kuipers et al. (1985): Wmax = Wcom + ((t/150) × ΔW) [Wcom is 
the last work rate completed; t is the duration (in seconds) of 
the final, uncompleted, stage; ΔW is the final load increment 
(typically 21 W)]. Percentage of body fat (%) was measured 
using whole body air displacement plethysmography method 
(BodPod, Cosmed, Italy).

Heat stress tests (HSTs)

Upon arrival, a mid-flow urine sample was provided to 
measure urine specific gravity (USG), using a hand-held 
pen refractometer (Atago, pen refractometer, PEN-Urine 
S.G, Tokyo, Japan). All participants reported to the 
laboratory euhydrated (USG < 1.020). Following this, 
participants self-recorded nude body mass (BM) and 
self-inserted a rectal thermistor (REC-U-VL3-0, Grant 
Instruments (Cambridge) Ltd., UK) ~ 10 cm past the anal 
sphincter before affixing a HR monitor (Polar Electro Ltd., 
Kempele, Finland) to their upper torso. The rectal ther-
mistor was connected to a portable data logger (Squirrel 
2020 Series, Grant Instruments, (Cambridge) Ltd., UK). 
Skin temperature (Tsk) was recorded continuously using 
wireless Thermochron iButton skin temperature data log-
gers (DS1922L, Thermochron iButton, USA). iButtons 
were attached using transparent adhesive dressing (Tega-
derm, 3M Health Care, St Paul, MN) and waterproof tape 
(Transpore, 3M Health Care, St Paul, MN) to the sternal 
notch, forearm, thigh and calf muscle on the right side of 
the body. Mean-weighted Tsk was calculated (Ramanathan 
1964) and mean body temperature (Tbody) was estimated 
(Stolwijk and Hardy 1966). Due to methodological issues, 

Fig. 1  Experimental Schematic. Salivary cortisol (C) and venous 
blood (B) samples were collected pre- and post-HST on the first 
 (HSTPRE), seventh  (HSTSTHA) and thirteenth  (HSTMTHA) visit. 
Between  HSTPRE and  HSTSTHA and again between  HSTSTHA and 

 HSTMTHA, participants completed 5 consecutive days of 60 min iso-
thermic heat acclimation during which time rectal temperature (Tre) 
was elevated to, and maintained at ~ 38.5 °C
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Tsk, and as a result Tbody, data were collected from only 
seven participants.

Participants entered the controlled environment (40 °C, 
50% rh) and rested for 2 min before baseline measurements 
of HR, Tre, thermal sensation (TS (Young et al. 1987)), and 
thermal comfort (TC (Gagge et al. 1967)) were recorded and 
rated. Once baseline measurements were taken ,participants 
cycled at 40% of their Wmax for 45 min, during which HR, 
 Tre, ratings of perceived exertion (RPE (Borg 1982)), TS 
and TC were measured every 5 min. One min expired air 
samples were collected at 14 min, 29 min and 44 min using 
the Douglas bag method and subsequently analysed (1400 
series, Servomex, East Sussex, UK; Harvard Dry Gas Meter, 
Harvard Ltd., Kent, UK). To prevent further, uncontrolled 
per-cooling, participants drank warm (~ 37 °C) water ad libi-
tum. The water was stored in the environmental chamber and 
the volume consumed was recorded. Once final measure-
ments were recorded, participants exited the controlled envi-
ronment and self-recorded a final nude BM measurement 
after they had towel dried. Sweat losses were determined 
from trial changes in BM, subtracting the weight of urine 
produced and adding fluid consumed (ml) during the trial.

Heat acclimation (HA)

Participants initially repeated the same procedures as under-
taken in  HSTPRE. After USG and BM were measured and a 
rectal thermistor was self-inserted, iButtons were placed on 
the same four sites and a HR strap was fitted before enter-
ing the controlled environment. Once baseline Tre, HR, TS, 
and TC measurements were recorded after 2 min rest, par-
ticipants were instructed to reach a target Tre of ~ 38.5 °C 
as quickly as possible and self-selected their workload and 
cadence accordingly. Once the target Tre had been attained, 
the distance cycled, and the time taken to reach the target Tre 
were recorded, as was the time spent at or above it. Partici-
pants then sat for the remainder of the 60 min session unless 
Tre fell to 38.55 °C, at which point participants resumed 
cycling to increase Tre. During the 60 min, HR, Tre, RPE, 
TS, and TC were recorded every 5 min and on completion of 
the session, nude BM was recorded post-session to estimate 
sweat losses. Participants drank warm water ad libitum to 
prevent uncontrolled per-cooling (~ 37 °C). The water was 
stored in the environmental chamber and the volume con-
sumed was recorded. Due to methodological issues, Tsk, and 
as a result Tbody, data were collected from only six partici-
pants. The peak intra-session strain was calculated as the 
peak Tre minus the starting Tre during each HA session. Peak 
cumulative strain was then calculated as the total strain for 
the 5 (STHA) and 10 day (MTHA) HA regimens.

Salivary cortisol sample collection and analyses

Saliva samples were collected from each participant imme-
diately upon awakening on 2 of the 5 days before  HSTPRE 
(B1 and B2) to establish normal basal concentrations of cor-
tisol and then again immediately before and after each HST. 
Saliva was collected by each participant chewing an absor-
bent swab (Salivette Cortisol, Code Blue, Sarstedt, Leices-
ter, UK) then inserting it into a Salivette tube. All samples 
were centrifuged at 1000g for 2 min with the resulting saliva 
sample transferred into 2 ml Eppendorf tubes and stored in 
a freezer at  − 80 °C until analysis. Salivary cortisol levels 
were determined with a high-sensitivity (0.007 µg dL−1) 
salivary cortisol enzyme-linked immunosorbent assay (Salu-
metrics, State College, PA, USA) as per the manufacturer’s 
instructions.

Plasma lipopolysaccharide sample collection 
and analyses

Venous blood was drawn from nine participants, pre- and 
post-HST, using a butterfly cannula that drained directly into 
a sterile EDTA tube before being centrifuged at 3000 rpm 
for 10 min at 4 °C. Plasma was extracted using pyrogen-
free pipette tips into pyrogen-free microtubes (Eppendorf, 
Hamburg, Germany) before being frozen at  − 80 °C. Plasma 
concentrations of LPS were analysed using a high-sensi-
tivity (0.04 EU ml−1) chromogenic limulus amoebocyte 
lysate end-point assay kit (Hycult Biotechnology b.v., Uden, 
Netherlands). Plasma samples were thawed and brought to 
room temperature before being diluted by 1000 times with 
endotoxin-free water. Fifty microliters of each sample were 
then transferred into the wells of pyrogen-free microplate in 
duplicates, followed by 50 µL of bacterial endotoxin (LAL) 
reagent. Optical density of the reaction was read with a 
microplate reader (Thermo Scientific Multiskan EX) at a 
wavelength of 405 nm.

Statistical analyses

Data were analysed using SPSS (version 26, SPSS Inc.). 
One-way and two-way repeated measures ANOVAs were 
performed to determine differences between time points and 
trials in  HSTPRE,  HSTSTHA, and  HSTMTHA, and in the first, 
middle, and final HA session (HA1, HA5 and HA10). Where 
the assumption of sphericity had been violated, the degrees 
of freedom were corrected using the Greenhouse–Geisser 
estimate. Where significant outcomes were present, post hoc 
tests with Bonferroni corrections were performed. The alpha 
level was P ≤ 0.05. Cohen’s d effect sizes were calculated for 
post-preload data and interpreted as follows: small effect: 
d = 0.2 to < 0.5; medium effect: 0.5 to < 0.8; large effect: 
d ≥ 0.8 (Cohen 1988). Data are presented as mean ± SD.
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Results

Heat acclimation

There was a main effect for trial of distance (P = 0.025) but 
not duration (P = 0.108) cycled before the attainment of the 
target Tre (38.5 °C). The distance was similar between HA1 
(18 ± 4 km) and HA5 (21 ± 4 km; P = 0.240), but greater in 
HA10 (23 ± 5 km) compared to HA1 (P = 0.018) and HA5 
(P = 0.026). It took longer to reach the target Tre in HA10 
(41.6 ± 6.4 min) than in HA1 (35.7 ± 6.1 min), but this was 
not statistically significant. The duration was also similar 
between HA1 and HA5 (36.9 ± 6.8 min) and between HA5 
and HA10. Despite differences in the distance cycled, the 
thermal impulse to 38.5 °C was not different between HA1 
(0.032 ± 0.006 °C min−1), HA5 (0.033 ± 0.006 °C min−1), 
and HA10 (0.036 ± 0.007  °C  min−1) (Main effect for 
trial: P = 0.200). The peak cumulative thermal strain and 
impulse provided by the STHA and MTHA interventions 
were 9.85 ± 1.35  °C and 0.033 ± 0.0042 °C min−1 and 
20.52 ± 2.26 °C and 0.034 ± 0.004 °C min−1, respectively. 
There were no changes in the classic physiological or per-
ceptual markers of heat adaptation measured before or dur-
ing HA1, HA5, and HA10 (Table 1).

Heat stress test–physiological data (Table 2)

There was a main effect for trial for resting Tre (P < 0.001) 
and Tbody (P < 0.001) with both lower in  HSTSTHA 
(P < 0.001, d = 1.2; P < 0.006, d = 1.6) and  HSTMTHA (both 
P < 0.001, d = 1.3 and 1.6, respectively) than  HSTPRE, 
whereas no difference in resting Tsk was measured between 
HSTs (P = 0.243, d = 0.3–0.7). Resting HR was similar 
between  HSTPRE and both  HSTSTHA (P = 0.244, d = 0.6) 
and  HSTMTHA (P = 0.113, d = 0.7), despite a significant 
main effect (P = 0.042). There were no differences in rest-
ing Tre, Tbody, or HR between  HSTSTHA and  HSTMTHA (all 
P > 0.99, d < 0.2).

The thermoregulatory and cardiovascular strain expe-
rienced was lower during (main effects: P < 0.007) and 
at the end (main effects: P < 0.005) of the HSTs per-
formed following HA (Figs. 2 and 3). Mean Tre, Tsk and 
Tbody were higher during  HSTPRE compared to  HSTSTHA 
(P = 0.002, d = 1.1; P = 0.026, d = 1.3; P = 0.007, d = 1.5, 
respectively) and  HSTMTHA (P < 0.001, d = 1.4; P = 0.034, 
d = 1.3; P = 0.005, d = 1.5, respectively), but were similar 
in  HSTSTHA and  HSTMTHA (P = 0.223, d = 0.6; P > 0.99, 
d = 0.1; P = 0.692, d = 0.5, respectively). The rise in 
Tre over the exercise bout was similar in all three HSTs 
(P = 0.292). Tre was lower at all time-points in  HSTMTHA 
compared to  HSTPRE (P < 0.05) and for the first 40 min 

in  HSTSTHA compared to  HSTPRE (all P < 0.05). Tre was 
similar in  HSTSTHA and  HSTMTHA at each time point (all 
P > 0.05) (Fig. 2). Mean HR was higher in  HSTPRE than 
 HSTSTHA (P = 0.004, d = 0.8) and  HSTMTHA (P = 0.004, 
d = 1.1) but was similar between  HSTSTHA and  HSTMTHA 
(P = 0.074, d = 0.6). HR was higher in  HSTSTHA than 
 HSTMTHA at 10 (P = 0.034), 15 (P = 0.018), and 20 min 
(P = 0.035) during the HST (Fig. 3).

After 45 min of exercise, Tre was not different between 
 HSTPRE compared to  HSTSTHA (P = 0.081, d = 0.7) but 
was lower in  HSTMTHA compared to  HSTPRE (P < 0.001, 
d = 1.1), there were no differences between  HSTSTHA and 
 HSTMTHA (P = 0.488, d = 0.4). Tsk and Tbody was lower in 
both  HSTSTHA (P = 0.044, d = 1.2; P = 0.048, d = 1.3) and 
 HSTMTHA (P = 0.018, d = 1.0; P = 0.008, d = 1.6) compared 
to  HSTPRE but no differences were seen between  HSTSTHA 
and  HSTMTHA (all P > 0.99, d = 0.41, d = 0.3). Final HR 
was higher in  HSTPRE than  HSTSTHA (P = 0.012, d = 0.6) 
and  HSTMTHA (P = 0.003, d = 1.0) but no differences were 
observed between  HSTSTHA and  HSTMTHA (P = 0.065, 
d = 0.7). Sweat rate was similar in  HSTPRE and  HSTSTHA 
(P > 0.99), but higher during  HSTMTHA than  HSTPRE 
(P < 0.001, d = 1.0) and  HSTSTHA (P < 0.001, d = 0.8). 
Fluid consumption was similar in all trials (main effect: 
P = 0.827) and so the percentage dehydration differed (main 

Table 1  Physiological and perceptual data on the first (HA1), fifth 
(HA5) and tenth (HA10) heat acclimation session

Data are presented as mean ± SD
n = 16 for all data except for skin and mean body temperature (n = 6). 
Mean data are for the 60  min session except for RPE which is the 
mean of the time spent exercising only

HA1 HA5 HA10

Temperature
 Resting Tre (°C) 36.92 ± 0.36 36.83 ± 0.34 36.71 ± 0.36
 End Tre (°C) 38.84 ± 0.27 38.80 ± 0.25 38.85 ± 0.30
 Mean Tsk (°C) 36.37 ± 0.33 36.37 ± 0.50 35.70 ± 0.58
 Tbody (°C) 37.58 ± 0.83 37.59 ± 0.88 37.41 ± 1.05
 Total ROR (°C.h−1) 1.92 ± 0.34 1.97 ± 0.36 2.14 ± 0.44

Heart rate
 Resting HR  (b.min−1) 75 ± 16 73 ± 13 72 ± 15
 Mean HR  (b.min−1) 135 ± 13 133 ± 13 136 ± 9

Sweat loss/fluid
 Sweat loss  (L.h−1) 1.39 ± 0.41 1.75 ± 0.81 1.76 ± 0.56
 Fluid consumption (L) 0.79 ± 0.20 1.01 ± 0.47 1.05 ± 0.49
 Dehydration (%) 0.19 ± 0.62 0.28 ± 0.85 0.34 ± 0.86

Perceptual measurements
 Resting TC 1.1 ± 0.3 1.3 ± 0.4 1.1 ± 0.3
 Mean TC 2.2 ± 0.5 2.0 ± 0.4 1.9 ± 0.4
 Resting TS 4.6 ± 0.6 4.3 ± 0.9 4.3 ± 0.7
 Mean TS 5.7 ± 0.6 5.6 ± 0.6 5.5 ± 0.5
 Mean RPE 13 ± 2 13 ± 2 13 ± 2
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effect: P < 0.001), being greater in  HSTMTHA compared to 
both  HSTSTHA (P < 0.001, d = 1.1) and  HSTMTHA (P < 0.001, 
d = 0.8). V ̇O2 and respiratory exchange ratio (RER) 

were similar between trials (main effect trial: P = 0.094; 
P = 0.089) and did not change over time (P = 0.515, 
P = 0.116).

Fig. 2  Rectal temperature (Tre) on each time point during  HSTPRE,  HSTSTHA, and  HSTMTHA. There were main effects of trial (P < 0.001) and 
time (P < 0.001) for Tre, *Significant (P < 0.05) difference between  HSTPRE and both  HSTSTHA and  HSTMTHA. Data mean ± SD

Fig. 3  Heart rate during  HSTPRE,  HSTSTHA, and  HSTMTHA. There 
were main effects of trial (P < 0.001) and time (P < 0.001) for HR. 
†Significant (P < 0.05) difference between  HSTPRE and  HSTSTHA. 

*Significant (P < 0.05) difference between  HSTPRE and  HSTMTHA. 
#Significant (P < 0.05) difference between  HSTMTHA and  HSTSTHA. 
Data mean ± SD
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Baseline cortisol concentrations and the concentrations 
prior to all HSTs were similar among the trials (P = 0.11). 
The coefficient of variation between B1 and B2 was 
15 ± 6%. The within trial increase was different between 
trials (P < 0.001) being greater in  HSTPRE (0.53 ± 0.40 µg 
 dL−1; + 339 ± 284%) compared to  HSTSTHA (0.08 ± 0.29 µg 
 dL−1, P < 0.001, d = 1.1; + 90 ± 183%) and  HSTMTHA 
(0.04 ± 0.35 µg  dL−1, P = 0.003, d = 1.1; + 93 ± 181%). 
There were no differences in the within trial change in cor-
tisol between  HSTSTHA and  HSTMTHA (P > 0.99, d = 0.2). 
There was a large degree of variation in the percentage 
change within trials in  HSTPRE ( – 37 to + 730%),  HSTSTHA 
( – 62 to 550%), and  HSTMTHA ( – 63 to 580%); however, 
the number of participants who had an increase in cortisol 
concentration in their post-sample compared to their pre-
sample was higher in  HSTPRE (10/12) than  HSTSTHA (6/12) 
and  HSTMTHA (6/12).

Plasma LPS levels were similar between trials before 
 (HSTPRE: 1.46 ± 0.57 EU  ml−1;  HSTSTHA: 1.49 ± 0.54 EU 
 ml−1;  HSTMTHA: 1.52 ± 1.36 EU  ml−1, P = 0.926) and 
after 45 min of exercise  (HSTPRE: 2.00 ± 1.65 EU  ml−1; 
 HSTSTHA: 1.74 ± 0.85 EU  ml−1;  HSTMTHA: 1.72 ± 0.82 
EU  ml−1, P = 0.869). Within HSTs, the mean change was 
similar (P = 0.420)—0.54 ± 1.17 EU  ml−1, 0.25 ± 1.01 EU 
 ml−1 and 0.05 ± 0.38 EU  ml−1, for  HSTPRE,  HSTSTHA and 
 HSTMTHA, respectively. Similar to the cortisol response, 
there was a large degree of variation in the percentage 
change within trials in  HSTPRE (+ 50 – 218%),  HSTSTHA 
(+ 49 – 213%), and  HSTMTHA (+ 29 – 402%), but unlike 
cortisol, LPS concentrations increased in all participants 
in all trials.

Table 2  Physiological and 
perceptual responses to the heat 
stress tests (Mean ± SD)

n = 16 for all data except for skin and mean body temperature (n = 7)
a Different (P < 0.05) from  HSTPRE
b Different (P < 0.05) from  HSTSTHA

HSTPRE HSTSTHA HSTMTHA

Resting
 Tre (°C) 37.09 ± 0.23 36.70 ± 0.27a 36.69 ± 0.24a

 Tsk (°C) 35.52 ± 0.48 35.39 ± 0.38 34.84 ± 1.24
 Tbody (°C) 36.76 ± 0.15 36.32 ± 0.14a 36.28 ± 0.18a

 HR (b  min−1) 84 ± 12 77 ± 12 76 ± 10
 TC 1.3 ± 0.4 1.3 ± 0.4 1.1 ± 0.3
 TS 5.3 ± 0.4 4.4 ± 0.8a 4.3 ± 0.7a

Mean
 Tre (°C) 37.97 ± 0.30 37.60 ± 0.28a 37.45 ± 0.21a

 Tsk (°C) 37.21 ± 0.1 36.68 ± 0.1a 36.87 ± 0.5a

 Tbody (°C) 37.81 ± 0.74 37.25 ± 0.66a 37.34 ± 0.67a

 HR (b  min−1) 153 ± 11 142 ± 12a 134 ± 17a

 V̇O2 2.2 ± 0.8 2.1 ± 0.7 1.7 ± 0.8
 RER 0.84 ± 0.1 0.84 ± 0.1 0.74 ± 0.1
 RPE 14 ± 0.6 13 ± 0.5 12 ± 0.5ab

 TC 2.6 ± 0.7 2.1 ± 0.9a 1.9 ± 0.8ab

 TS 6.2 ± 0.6 5.7 ± 0.8a 5.4 ± 0.7ab

End
 Tre (°C) 38.94 ± 0.51 38.55 ± 0.57 38.35 ± 0.39a

 Tsk (°C) 38.11 ± 0.3 37.26 ± 0.5a 37.51 ± 0.5a

 Tbody (°C) 38.83 ± 0.42 38.08 ± 0.44a 38.19 ± 0.35a

 HR (b  min−1) 170 ± 13 162 ± 13a 149 ± 21a

 RPE 16 ± 3 14 ± 3a 12 ± 3a

 TC 3.7 ± 0.6 2.9 ± 1.3a 2.3 ± 1.1a

 TS 6.8 ± 0.5 6.2 ± 0.8a 5.8 ± 0.9ab

 Change Tre (°C) 1.85 ± 0.57 1.84 ± 0.65 1.66 ± 0.50
 Sweat Rate (L  h−1) 0.94 ± 0.16 1.06 ± 0.23 1.40 ± 0.30*b

 Fluid Consumed (L  h−1) 0.74 ± 0.15 0.70 ±  0.17 0.71 ±  0.25
 Dehydration (%)  − 1.70 ±  0.30  − 1.79 ±  0.43  − 2.15 ±  0.39*b
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Heat stress test–perceptual measurements

There were main effects of trial and time for TS, TC, and 
RPE (all P < 0.002), with all increasing progressively 
throughout the HST (all P < 0.001), there was an interac-
tion effect for TC and RPE (all P < 0.006) but not for TS 

(P = 0.248). Data are reported in Table 2. Resting TC was 
unaffected by HA (P = 0.487) but resting TS was differ-
ent between trials (P < 0.001) being lower in  HSTSTHA 
(P = 0.014) and  HSTMTHA (P = 0.002). All the reduction had 
occurred within 5 days of HA with no differences between 
 HSTSTHA and  HSTMTHA (P > 0.99). During exercise, mean 

Fig. 4  a Thermal sensation and b thermal comfort were recorded 
before exercise and every 5 min intervals during  HSTPRE,  HSTSTHA, 
and  HSTMTHA. †Significant (P < 0.05) difference between  HSTPRE 

and  HSTSTHA. *Significant (P < 0.05) difference between  HSTPRE and 
 HSTMTHA. #Significant (P < 0.05) difference between  HSTMTHA and 
 HSTSTHA. Data mean ± SD
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TS, TC, and RPE were different between trials (P < 0.001). 
TS and TC were both higher in  HSTPRE than  HSTSTHA 
(P < 0.001, P = 0.037) and  HSTMTHA (P < 0.002, P < 0.001). 
Both were further reduced from  HSTSTHA to  HSTMTHA (TS: 
P = 0.031; TC: P = 0.030) (Fig. 4). Mean RPE was not dif-
ferent between  HSTPRE and  HSTSTHA (P = 0.456), but was 
lower in  HSTMTHA compared to  HSTPRE (P = 0.006) and 
 HSTSTHA (P = 0.015). At the end of exercise, TS, TC, and 
RPE were all lower after  HSTSTHA (P < 0.001, P = 0.039, 
P = 0.037) and  HSTMTHA (all P < 0.001) compared to 
 HSTPRE. Thermal sensations were rated lower at the end of 
 HSTMTHA than  HSTSTHA (P = 0.046; d = 0.56) but neither 
TC (P = 0.083; d = 0.52) nor RPE (P = 0.120; d = 0.13) were 
rated differently between  HSTSTHA and  HSTMTHA.

Discussion

The present study investigated whether a daily 60 min iso-
thermic HA protocol provided a sufficient thermal impulse 
to induce the physiological and perceptual adaptations and 
whether there was a time-course response when comparing 
STHA and MTHA. The main findings of the present study 
are (1) an isothermic STHA protocol provides a sufficient 
cumulative thermal strain (9.85 ± 1.35 °C) to effectively 
lower physiological and perceptual strain and (2) MTHA 
induces further beneficial heat adaptations but only to 
sweat losses, final thermoregulatory strain, and perceptions 
of exertion, thermal strain and comfort, despite providing 
double the cumulative thermal strain (20.52 ± 2.26 °C).

Physiological adaptations

The isothermic HA protocol was successful at lowering 
resting Tre ( − 0.38 ± 0.26 °C) and HR (8 ± 16  b.min−1) after 
5 days of heat exposure. A further 5 days of heat acclima-
tion (MTHA) did not elicit any further resting adaptations 
in Tre ( − 0.02 ± 0.31 °C from STHA) or HR (0 ± 9  b.min−1 
from STHA). Both these responses are in accordance 
with previous findings that reported that these adaptations 
occurred at a rapid rate and were not further enhanced after 
longer exposure periods (Tyler et al. 2016). A lower rest-
ing Tre is an important indicator of a successful HA proto-
col, because it can delay the attainment of high-core body 
temperatures often reported to limit exercise capacity in 
the heat (Gonzalez-Alonso et al. 1999; Tucker et al. 2004). 
Our observed reductions are greater than mean changes 
reported in a recent meta-analysis (STHA:  − 0.17 ± 0.12 °C; 
MTHA:  − 0.17 ± 0.1  °C) (Tyler et  al. 2016) and those 
reported in previous 5 day isothermic-controlled stud-
ies (Garrett et al. 2012, 2014; Neal et al. 2016). The more 
substantial reductions in physiological markers of heat 
acclimation may be due to the lower training status of our 

participants compared to those presented in the literature, 
where comparably smaller reductions in resting Tre were 
observed in more highly trained (mean peak power output 
of 375 ± 31 W) individuals (Garrett et al. 2012, 2014; Neal 
et al. 2016). This is likely because highly trained individu-
als have already developed some thermal adaptations from 
their long-term training history (e.g. a greater evaporative 
heat loss capacity and a decrease in resting core tempera-
ture) (Cheung and McLellan. 1998) which would limit the 
potential for a HA protocol to induce further adaptations.

The reduction in resting Tre coupled with similar 
 (HSTPRE: 1.85 ± 0.57 °C,  HSTSTHA: 1.84 ± 0.65 °C) and 
lower (1.66 ± 0.50  °C) delta changes in Tre after 5 and 
10 days of HA, respectively, resulted in reduced thermal 
strain throughout  HSTSTHA and  HSTMTHA compared to 
 HSTPRE. HA has been shown to reduce the oxygen cost of 
exercise in the heat (Lorenzo et al. 2010); however, this 
is not always reported when using cycling as the mode of 
exercise, where the utilisation of the upper body muscles 
are minimal. This might explain why V ̇O2 and RER were 
not altered following either STHA or MTHA in the pre-
sent study. Due to the lack of change in efficiency, it seems 
reasonable to assume that the reduced thermal strain was 
due to an increase in heat loss mechanisms, as sweat rate 
increased after 10 days of HA, facilitating a greater heat 
loss through evaporative cooling. Our data support previ-
ous findings, that found sudomotor responses took longer to 
occur than other adaptations (Tyler et al. 2016). While local 
methods to access sweat rates were not used in the current 
study, whole body sweat rates were increased following 10 
(MTHA) but not 5 (STHA) days of heat exposure. Previous 
results have found that HA increases sweat rate, as a result 
of an earlier onset of sweating at a lower core temperature 
and a more pronounced sudomotor thermosensitivity (Buono 
et al. 2018).

It is well known that cardiovascular strain can limit pro-
longed exercise performed under heat stress (Périard et al. 
2011) and a reduced cardiovascular strain is a classic marker 
of an effective HA regimen (Tyler et al. 2016). In the present 
study, resting HR was unaffected by HA; however, the mean 
exercising and end of exercise HR was reduced following 
STHA. There was no additional benefit of a longer exposure 
period (MTHA) on resting and end of exercise HR; however, 
longer exposure time lowered HR response at certain time 
points during exercise. Adaptations in HR occur rapidly and 
are often complete within 7 days (Périard et al. 2015; Tyler 
et al. 2016) and data from the present study support this. 
With physiological measurements including stroke volume, 
skin blood flow and plasma volume not measured in the cur-
rent study, identifying the factor that influenced this response 
can only be speculated. It has been previously suggested that 
the improved cardiovascular stability from HA is achieved 
through an increase in plasma volume, better maintained 
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fluid balance, and enhanced sweating and skin blood flow 
responses (Périard et al. 2015, 2016; Tyler et al. 2016).

Cortisol is often used as a marker of physical and psy-
chological strain and, as observed elsewhere (e.g. Silva 
et al. (2019)), cortisol concentrations increased following 
an initial bout of exercise in the heat  (HSTPRE). Following 
HA, we observed an attenuated increase—data which are in 
contrast to Costello et al. (2018) and Garrett et al. (2009) but 
in agreement with Watkins et al. (2008) who reported reduc-
tions in the session increase in cortisol after 7 days of HA. 
Costello et al. (2018) did not report statistical reductions in 
cortisol following HA but noted that there was a “trend” for 
the increase to be lower post-HA and so it appears that the 
cortisol response to exercise in the heat may be sensitive to 
heat adaptation. While cortisol may be a potential marker 
of heat adaptation, due to the variation within and between 
investigations, it is advisable to use the more established 
variables (e.g. resting core body temperature and heart rate) 
at present. In contrast to the cortisol response, neither STHA 
nor MTHA altered the LPS response to the HST. Similar 
observations have been reported previously by Guy et al. 
(2016) who also observed no effect of HA on the inflamma-
tory response to exercise. Guy et al. (2016) postulated that 
their use of non-consecutive heat exposures may have pro-
vided an inadequate strain to trigger a systemic inflamma-
tory response, but we used a more intensive HA regimen and 
saw comparable LPS responses. These limited data suggest 
that MTHA may offer some protection against endotoxemia 
in healthy individuals through the reduction of physiological 
strain and that the MTHA protocols investigated to date do 
not trigger an endotoxic response themselves.

Perceptual adaptations

Participants felt more thermally comfortable and reported 
lower thermal sensations after 5 days of HA (STHA). An 
additional 5 days of HA (MTHA) had an additional ben-
eficial effect on final thermal sensation. Both Tre and Tsk 
are key drivers of thermal perceptions, but in the present 
study, neither Tre nor Tsk continued to decline with longer 
exposure and so these observations do not explain why 
these perceptual responses continued to be improved over 
the HA regimen. An increase in perceived exertion (RPE) 
and thermal perceptions (TS, TC) have been reported to play 
a role in downregulating self-paced time trials (TT) when 
performed under heat stress to reduce the rate of heat stor-
age well before hyperthermia is present (Tucker et al. 2004). 
Although not measured, it seems reasonable to suggest that a 
lower perceived exertion and improved perceptions of ther-
mal strain and comfort would enable participants to select 
a higher exercise intensity and improve subsequent perfor-
mance. Our data suggest that the 5 day isothermic STHA 
regimen provided a sufficient thermal stimulus to improve 

perceptions of strain, but MTHA (10 days) offered further 
benefit and so is the preferred approach.

Limitations and practical recommendations

We cannot exclude the possibility that there was a train-
ing effect that may have occurred during HA as there was 
not a passive control group; however, in previous studies 
that included a control group, there was no reported train-
ing benefit in performance outcomes (Lorenzo et al. 2010). 
Additionally, the intensity and duration of exercise used in 
the present study was substantially lower than the partici-
pants were used to as all participants were about to take part 
in the Marathon des Sables, a 250 km foot-race across the 
Sahara desert.

Identifying an effective HA protocol that reduces the 
risk of overexerting an athlete so close to competition, 
while optimising thermal adaptations, is of current focus 
while athletes prepare for upcoming sporting events, includ-
ing the Olympic Games in Tokyo, 2020. We did not meas-
ure whether the isothermic STHA and MTHA regimens 
improved subsequent exercise performance or reduced heat 
illness risk, but we speculate that progressive improvements 
would have been observed as a result of the reductions in 
physiological and perceptual strain as has been reported 
previously (Lorenzo et al. 2010). We suggest using an iso-
thermal HA regimen during the taper phase of an athlete’s 
schedule and highlight that although 5 days is sufficient to 
induce meaningful beneficial adaptations to heat, 10 days is 
more effective and so should be used when possible.

Conclusion

A 5 day 60 min isothermic HA regimen provides a sufficient 
thermal stimulus to elicit beneficial adaptations to reduce 
physiological and perceptual strain during subsequent 
exercise in the heat, despite providing a lower cumulative 
thermal strain than commonly observed in the HA litera-
ture. Most of the beneficial adaptations occurred within the 
STHA time-frame; however, an additional 5 days of HA 
(MTHA) induced further thermoregulatory, sudomotor, and 
perceptual adaptations and so isothermic MTHA is preferred 
over isothermic STHA when possible.
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