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Abstract: The Internet of Vehicles (IoV) enables vehicles to share data that help vehicles perceive
the surrounding environment. However, vehicles can spread false information to other IoV nodes;
this incorrect information misleads vehicles and causes confusion in traffic, therefore, a vehicular
trust model is needed to check the trustworthiness of the message. To eliminate the spread of false
information and detect malicious nodes, we propose a double-layer blockchain trust management
(DLBTM) mechanism to objectively and accurately evaluate the trustworthiness of vehicle messages.
The double-layer blockchain consists of the vehicle blockchain and the RSU blockchain. We also
quantify the evaluation behavior of vehicles to show the trust value of the vehicle’s historical behavior.
Our DLBTM uses logistic regression to accurately compute the trust value of vehicles, and then
predict the probability of vehicles providing satisfactory service to other nodes in the next stage. The
simulation results show that our DLBTM can effectively identify malicious nodes, and over time, the
system can recognize at least 90% of malicious nodes.

Keywords: Internet of Vehicles; blockchain; trust management; logistic regression

1. Introduction

With the popularity of 5G and 6G [1] and the application of programmable V2X envi-
ronments and blockchain-based V2X (vehicle to everything) technologies [2], the IoV has
embraced rapid development. In IoV, vehicles can share their perceived information with
other nodes, including traffic safety information, weather information, road information,
etc., and obtain services from other nodes [3], thus, improving traffic safety and efficiency.

However, vehicles can be unreliable, and we need to solve the problems of how to
evaluate the reliability of the message sent by the vehicle and quantify an evaluation
measure [4] (i.e., trust value) based on the historical behavior of the vehicle before utilizing
IoV. For example, in IoV, vehicles may be controlled by attackers to spread false information
for selfish reasons, thus, leading to false environmental perception and driving decision-
making and thus, endangering the safety of drivers and causing serious traffic accidents [5].

In IoV, the basic principle behind the trust model is to ensure the reliable transmission
of data by identifying and canceling malicious vehicles and the false news generated by
them [6]. The trust management mechanism can help vehicles calculate the credibility of
received messages [7] to improve the accuracy of vehicles in decision-making. In summary,
the existing trust management mechanisms can be generally divided into centralized trust
management and distributed trust management [8]. Centralized trust management has
problems such as single points of failure, while distributed trust management has problems
such as the delayed update of trust value.
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Blockchain, as bitcoin’s core technology, is a distributed ledger [9]. Due to its decentral-
ized and immutable characteristics, blockchain can record and update vehicles’ trust values.
With blockchain, even if a small number of RSUs have storage errors or are controlled by
attackers, the consensus results of the entire network can still be protected. Therefore, some
researchers combine blockchain with trust management mechanisms to solve the above
problems of centralized and distributed trust management.

However, there are still some problems in the research of trust management mecha-
nisms based on the blockchain or single-layer blockchain. First of all, the vehicles need to
store a complete blockchain ledger or send a request to the adjacent full node for verification
every time the transaction is verified, which will undoubtedly increase the burden of the ve-
hicle and waste the vehicle’s resources. Secondly, because the number of blockchain nodes
is very large and the coverage is active and wide, it is also difficult to conduct hierarchical
management according to objective factors such as geographical location, communication
traffic, and node density. Finally, because the importance of vehicle data is not the same, the
data storage and data sharing between vehicles and RSUs is inefficient if the system does
not distinguish the importance of messages. Therefore, how to enable the system to store
and share data of different levels of importance is a problem. To solve the above problems,
we propose a trust management mechanism based on the double-layer blockchain.

The main contributions of this paper are as follows:

1. We propose a double-layer blockchain trust management system for the Internet
of Vehicles, including vehicle and RSU blockchain. Our DLBTM can selectively
store messages according to their importance and provide accurate message services
for vehicles;

2. We propose a trust evaluation method for vehicle nodes, including the message trust
value of vehicles, the evaluation trust value of vehicles, and the historical trust value
of vehicles. Then use logistic regression to update the above three trust values;

3. We use simulation experiments to prove the safety and effectiveness of DLBTM, and
show that DLBTM can effectively distinguish malicious nodes from normal nodes.

2. Related Work: A Critical Literature Review

In this section, we mainly discuss the related work of centralized trust management,
distributed trust management, a combination of blockchain and trust management, and a
combination of double-layer blockchain and trust management.

2.1. Centralized Trust Management

Mahmoud et al. [10] adopted an incentive and punishment strategy (TRIPO) to prevent
intentional packet loss attacks in rational cases and unintentional packet loss attacks
in irrational cases. TRIPO uses small payments to reward rational nodes that correctly
forward packets from other nodes. For irrational nodes, TRIPO uses a reputation system
to measure, i.e., a new monitoring technique to monitor the nodes. However, all of these
operations are centralized in the offline trusted party. Based on the malicious behavior
detection system running on vehicles and RSUs, Bißmeyer et al. [11] proposed a centralized
trust management model, which uses the malicious behavior report to establish trust
relationships and reach the goal of identifying and removing attackers in IoV. Li et al. [12]
proposed a reputable ad hoc network announcement scheme that consists of a centralized
reputation server, access point (physical wireless communication equipment), and vehicle.
The centralized reputation server’s role is to collect and aggregate feedback to generate
reputation and spread reputation. The access point acts as the communication interface
between the vehicle and the reputation server, and the vehicle broadcasts and receives
information from neighboring vehicles. The credibility of the received information is
evaluated and then reported to the reputation server.

All of the above schemes are managed by a trusted centralized server, which is
vulnerable to attacks and expensive to maintain. In addition, centralized servers suffer
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from poor horizontal scalability, a single point of failure, and increased latency when nodes
generate too many requests.

2.2. Distributed Trust Management

To solve the above problems, some researchers put forward distributed trust manage-
ment models. Huang et al. [13] proposed a distributed reputation management system
(DREAMS), in which basic reputation management tasks are performed by local authorities
(LA) in different locations. LA acts as the trusted authority and arranges the vehicle edge
computing server for local reputation display and updates. Oluoch et al. [14] also proposed
a reputation model to help vehicles in the network evaluate the reliability of other vehicles,
that is, each receiving vehicle requests other vehicles within its communication range to
give reliability to the sending vehicle, or the receiving vehicle obtains the corresponding re-
sults from the RSU. Raya et al. [15] proposed a data-centric trust management model, which
calculates the trust of each data, aggregates multiple related but possibly contradictory
data, and finally obtains the final trust value.

The above studies all use distributed trust management models, which meet the
requirements of distributed scenarios. However, these studies are not entirely distributed
because most of the above studies have one or more central servers to store or process trust
values, which goes against the main feature of distribution. Some studies also use vehicles
or RSUs to store or process trust values. However, due to the limitations of the hardware
conditions of vehicles and RSUs, security cannot be fully guaranteed. Moreover, due to the
high-speed mobility of vehicles, trust values may not be updated in time, which may lead
to serious consequences. For instance, the trust value decreases when a vehicle conducts
malicious behavior in one area. However, due to the delay in updating the trust value when
it drives into another area, the system treats the vehicle as a normal node, which may cause
serious consequences to other nodes of the system. Therefore, how to build an efficient,
secure, and fully trusted trust management model is an urgent problem to be solved.

2.3. Combination of Blockchain and Trust Management

The blockchain is decentralized, secure, anonymous, traceable, tamper-proof, etc., and
has a wide range of applications in the IoV and other fields. Yang et al. [16] proposed
a decentralized trust management model for IoV based on blockchain technology. The
receiving vehicle uses Bayesian inference to verify the results for the messages received
from adjacent vehicles. Then according to this result, the receiving vehicle generates
scores for each vehicle sending messages and uploads them to the nearby RSU, which
is responsible for calculating the variation of trust value of each vehicle according to the
scores and packaging these data into a “block”. RSUs compete to become miners using
the POW Consensus algorithm. Zhang et al. [17] proposed a trust management system for
the IoV based on blockchain, which solves the problem of calculating message credibility.
Moreover, this system can detect vehicles sending malicious messages and reduce their
credit value according to the rating mechanism. In addition, a combination of the consensus
mechanisms of PoW and PoS is used to ensure that vehicles with significant changes in
reputation can be updated to the blockchain more quickly. Kang et al. [18] proposed
a credit-based data sharing scheme, which considers the three weights of interaction
frequency, event timeliness, and trajectory similarity, adopting the three-weight subjective
logic (TWSL) model to select more reliable data sources and improve data credibility. In
addition, the alliance blockchain is utilized to establish a secure and distributed vehicle
blockchain and smart contracts are deployed on the vehicle blockchain to realize safe and
efficient data storage of RSUs and data sharing among vehicles.

The above schemes solve the security of trust management, node trustworthiness, and
other problems to a certain extent, but the consensus algorithm in [16,17] is inefficient and
wastes a lot of computing power because it does not take comprehensive consideration
when calculating message credibility. For instance, [16] only considers the distance between
two vehicles to calculate received message credibility and [17] only considers the trust value
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of vehicles and the distance between two vehicles in the process of calculating message
credibility. Therefore, the trust value calculated by this message credibility cannot reflect
the historical behavior of vehicles well and, therefore, cannot further predict the future
behavior of vehicles well. Moreover, the trust management mechanism of IoT based on
the blockchain usually adopts the architecture of a single chain, which will trigger many
transactions and encounter node hardware bottlenecks. Therefore, how to design a more
efficient trust management mechanism and a more comprehensive evaluation system of
vehicle nodes is still a challenging problem.

2.4. Combination of Double-Layer Blockchain and Trust Management

Lee et al. [19] proposed a two-layer blockchain trust management model for the
Internet of Vehicles, which is composed of the local one-day message blockchain and the
global vehicle reputation blockchain. The data in the global vehicle reputation blockchain
are generated by RSUs located in different regions, which consist of the vehicle’s reputation
score based on the vehicle’s historical behavior. Therefore, each vehicle’s reputation is
updated and permanently stored in the global vehicle reputation blockchain for further
query. In the local one-day message blockchain, vehicles and RSUs store and share local
traffic information in a short period of time. RSUs and vehicles in the same region act
as blockchain nodes. This blockchain creates a new block at a set time every day and
deletes the previously recorded blockchain data. The system model in [19] calculated the
credibility of the message by voting. However, the voting system assigns every voter the
same weight and fails to restrict the behavior of voters, which cannot resist voting attacks
such as manipulation, control, and bribery.

Kandah et al. [20] also proposed a two-layer blockchain trust management model
composed of platoon blockchain and global blockchain. The participating nodes of a
platoon blockchain are a group of vehicles with a small gap in proximity and speed. They
store the localized trust consensus (trust value of vehicles), while the global blockchain
stores the trust factors of all vehicles in the system, that is, the data in the platoon blockchain
is added to the global blockchain through mining. In the mining stage, RSU mines the
block using the trust bidding system. However, Kandah et al. [20] does not give a specific
method to evaluate the vehicle, and any vehicle can access the trust value of another vehicle
from anywhere, which will cause privacy leakage of the vehicle and other problems. The
difference between single-layer blockchain and double-layer blockchain is shown in Table 1.
The shortcomings of various trust management mechanisms are shown in Table 2.

Table 1. Difference between the single and double-layer blockchain.

Summary Description

The single blockchain and double-layer blockchain have
different participating nodes

The participating nodes of a single blockchain are vehicles and
RSUs, and the miners may be vehicles or RSUs, while the

participating nodes of a vehicle blockchain in a double-layer
blockchain are vehicles and RSUs; the RSU blockchain only has

RSU participating nodes, and the miners are RSUs.

The difference in functionality between the single blockchain
and double-layer blockchain

We separate the three tasks of data storage, message evaluation,
and trust value calculation. The vehicles in the vehicle

blockchain perform message evaluation, while the RSU of the
RSU blockchain performs data storage and trust value

calculation. The nodes in the single blockchain need to complete
the above three tasks

The length of time the single blockchain and double blockchain
store data is different

The nodes in the single blockchain need to store all historical
data. The vehicle blockchain in the double-layer blockchain is a

temporary blockchain (deleted every hour, that is, creating a
new Genesis block and deleting previously recorded blockchain
data). The RSU blockchain is a permanent blockchain that stores

important message summaries and vehicle trust values.
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Table 2. Comparison of the shortcomings of various trust management mechanisms.

Trust Management Mechanism Shortcoming

Centralized Trust Management

All data are stored and processed on a central
server, which is generally located in the cloud
and far from the vehicle, and may not meet the

latency requirements of the IoV. At the same
time, there are also the single points of failure,

concurrency problems (at the same time, a
large number of vehicles access the central

server), big data (storage and transmission of
massive data), and other problems.

Distributed Trust Management

In distributed trust management mechanisms,
the task of managing and storing data is
usually completed by vehicles or RSUs.

However, vehicles and RSUs are usually
distributed outdoors, and security measures
are not as strict as central servers. RSUs have

the possibility of failure, and security and
reliability are not fully guaranteed.

Combination of Blockchain and
Trust Management

Vehicles can query the trust data of another
vehicle anytime and anywhere, which can
cause privacy breaches of the vehicle. The

current research does not have a reasonable
plan for the collection, storage, and

management of trust data. Vehicles need to
store a complete blockchain ledger, which will
increase the storage burden on vehicle nodes.

Due to the varying importance of data
generated by vehicles, the system does not

differentiate the importance of messages and
instead stores and shares data.

Combination of Double-layer Blockchain and
Trust Management

The system model in reference [19] calculates
the credibility of messages by voting on other
vehicles but does not constrain the behavior of

voters, making it easy to launch attacks on
them. Reference [20] does not provide a
specific method for evaluating vehicle

trust values.

3. Trust Management Mechanism of Double-Layer Blockchain: System Model, Design
and Implementation

Consider a scenario where vehicle A needs to know about the traffic and business
situation on street A. Vehicle A sends a request to the nearby RSU (we assume that each
vehicle is equipped with an Onboard Unit (OBU), which uses Dedicated Short Range
Communication (DSRC) or Cellular-V2X (C-V2X) communication technology for micro-
wave communication with the RSU). Upon receiving the request, the RSU queries the
trust value of vehicle A and allows vehicle A to use the service if its trust value is above
a certain threshold. RSU queries relevant data in the RSU blockchain and returns it to
vehicle A through a secure transmission channel. Vehicle A can then fully understand the
situation of the front area according to the data returned by RSU and the data in its own
vehicle blockchain.

However, vehicles and RSUs can both become malicious nodes and act maliciously,
affecting other nodes in the system. For example, malicious RSUs may tamper with vehicle
trust values, and malicious vehicles may send false messages. To solve the problem of
malicious nodes, we propose a trust management mechanism based on the double-layer
blockchain. This mechanism is divided into three parts. Of which, the first part is the
double-layer blockchain, the second part is the system architecture, and the last part
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is the consensus mechanism. We introduce the proposed double-layer blockchain trust
management mechanism through these three parts.

3.1. System Model

In this section, we introduce the system model and participants of double-layer
blockchain trust management, as shown in Figure 1. The list of notations is shown in Table 3.

Figure 1. DLBTM system model.

Table 3. Main notations used in this paper.

Notation Description

RSUi The i-th RSU in IoV
vehiclej The j-th vehicle in IoV

P Point generator of an additive cyclic group Gq
di A private key of RSUi

QRSUi A public key of RSUi
dj A private key of vehiclej

Qvehiclej
A public key of vehiclej

M Messages sent by RSU or vehicles
msg List of each message sent by each vehicle

TypeList A two-dimensional list of messages grouped by type
EvalList Message summary list EvalList generated from TypeList
messagem

k The m-th message reported by vehiclek to the nearby RSU
VehList A list containing many vehicles

EvaluatorList List of vehicles selected for evaluated messages

3.1.1. Double Layer Blockchain

Our DLBTM model, as shown in Figure 1, consists of the vehicle blockchain and
the RSU blockchain. Specifically, the vehicle blockchain is a consortium blockchain. The
participating nodes of the vehicle blockchain are a large number of vehicles and a small
number of RSUs. When the vehicle detects an event, such as a blockage in the road ahead, it
generates a message and sends a message to the RSU to report the incident. After receiving
the message, the RSU determines whether the message is important. Important messages
refer to messages that are related to driving efficiency and safety, such as the message
reported by the vehicle to the RSU informing of traffic congestion in the front area. If the
message reported by the vehicle to the RSU is redundant data from its own sensors, we
believe that such messages are not as important.

Unimportant messages, such as data from the vehicle sensors, vehicle speed, and
vehicle direction, are stored in the vehicle blockchain. This design has two advantages.
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1. It can reduce the memory cost for RSUs. If the RSU blockchain stores these unimpor-
tant messages, it will cause a waste of storage resources;

2. It can provide fast message sharing and speed up consensus process building. By
storing these messages with no value to other regions, but value to the local region on
the vehicle blockchain can help other vehicles in the same region receive the message
faster, and help them reach a consensus more quickly.

For important messages, such as road congestion ahead, RSUs temporarily store these
important messages locally. Then, according to Algorithm 1, RSUs use TextRank [21]
algorithm to generate message digest for important messages. In summary, the main
purpose of the vehicle blockchain is to store unimportant messages generated by the
vehicle (deleted every 1 h).

The RSU blockchain is a private blockchain in which RSUs from different geograph-
ical locations participate as blockchain nodes. For example, all RSUs in a city join the
RSU blockchain as blockchain nodes. The vehicle blockchain is a consortium blockchain,
with pre-selected nodes being RSUs, which participate in consensus, and where the data
are stored by RSUs. The RSU blockchain is a private blockchain, and data are also stored
by RSUs. When vehicles and RSUs join the system, they need to register with a trusted
institution, which will manage the vehicle blockchain and RSU blockchain. The data stored
in the blockchain will naturally be managed by the trusted institution. Although RSUs have
a better storage capacity compared to vehicles, there are also limitations to RSU storage,
which can be improved by upgrading hardware facilities to RSUs.

In summary, the RSU blockchain stores the trust value of all vehicles and the summary
of important messages generated by the evaluated vehicles, which is convenient for future
vehicles to request corresponding information according to their needs and interests to
obtain services.

3.1.2. Participants in the System Model

The entire double-layer blockchain system model comprises RSU and vehicle nodes.

• RSUs: The RSUs are responsible for block generation, vehicle final trust calculation,
offering messages to vehicles that send a request, storing summaries of important
messages, and storing unimportant messages for a period of time;

• Vehicles: Responsible for message generation, message evaluation, and message requests.

3.2. System Design and Implementation

The DLBTM system architecture is shown in Figure 2. Each specific time, for example,
30 s, each RSU calculates locally whether it can become a miner. We denote the RSU that
becomes a miner of the initial RSU. First, the initial RSU runs Algorithm 1 to process im-
portant messages it has stored but has not yet written into the blockchain. After processing,
the initial RSU sends the classified summary of important messages to other RSUs. The
initial RSUs and other RSUs then run Algorithm 2 to select the vehicle that is most similar
to the message being evaluated for message evaluation. The initial RSUs and other RSUs
then send the classified summary of an important message to the selected vehicle of their
own vehicle blockchain. Vehicles use Equation (1) to calculate message credibility and then
return to the corresponding RSU. After receiving the calculation result, the corresponding
RSU uses the average value to obtain the message credibility for evaluating different vehi-
cles for the same message, and records the difference between the credibility of a message
evaluated by a vehicle and its average value. The signature is returned to the initial RSU.
After receiving all the results, the initial RSU regroups the messages, that is, sends the
messages with the same vehicle ID into a group to facilitate the calculation of the trust value
of the vehicles. The vehicle node has two identities, one as the sender of the message and
the other as the evaluator of the message. As a message sender, when other vehicle nodes
evaluate the message sender’s message, they will obtain the message sender’s message
trust value. As a message evaluator, when evaluating the message sent by other vehicle
nodes, they will obtain the message evaluator’s evaluation trust value, and the vehicle
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node has the historical trust value. Combining these three values, the initial RSU uses
logistic regression to generate the vehicle’s final trust value. The initial RSU generates the
corresponding block and sends it to other RSUs. If other RSUs recognize this block, mining
will be carried out after this block.

Figure 2. DLBTM system process.

3.2.1. System Initialization

The vehicle node and RSU node of the DLBTM system model proposed in this paper
use elliptic curve cryptography (ECC) for encryption and decryption, and the vehicle and
RSU signatures use the ECC signature algorithm.

• RSU Registration: RSUi (i = 1, . . . , N) selects an elliptic curve y2 = x3 + ax + b,
and randomly selects a point as the base point P. RSUi selects a large number di ∈ Z∗q
as the private key and generates the public key QRSUi = diP. RSUi sends public
key QRSUi to Certificate Authority (CA) for registration, and CA issues a certificate
to RSUi.

• Vehicle Registration: vehiclej (j = 1, . . . , M) selects an elliptic curve y2 = x3 +mx+ n,
and randomly selects a point as the base point P. vehiclej selects a large number
dj ∈ Z∗q as the private key and generates the public key Qvehiclej

= djP. vehiclej sends
public key Qvehiclej

and private key dj to CA for registration, and CA issues certificate
to vehiclej.

Encryption and decryption of vehicles and RSUs: Vehicles and RSUs that need to send
message M first randomly select a number k to generate ciphertext C = (kP, M + kQ) and
send it to the corresponding receiver. After receiving ciphertext C, the receiver uses private
key d to decrypt it, i.e., M = M + kQ− dkP.

3.2.2. Message Classification

RSU classifies messages periodically using Algorithm 1. First, it loops through mes-
sages stored by itself but not yet written into blocks. For each message, RSU checks the
message type for sorting. The messages are added to the same list if they are of the same
type. Then add them to the TypeList at the end of step 1. For each element in the TypeList,
the element’s messages are of the same type. In this case, the TextRank algorithm is used
to generate the message summary, and the generated message summary is added to the
EvalList and sent to other RSUs.
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Algorithm 1 Message Classification on Type

Input: msg = {msg1
i , msg2

i , . . . , msgn
i , msg1

j , msg2
j , . . . , msgn

j , . . . , msgm
k },

TypeList={TypeList1, TypeList2, . . . , TypeListn}.
Output: EvalList = {SumList1, SumList2, . . . , SumListn}.
1: Step 1: Message classification
2: for each messagem

k ∈ msg do
3: Check the type of message (there is this field in the message);
4: Then classify according to the type of messagem

k ;
5: Add messagem

k to TypeListn;
6: if msg == NULL then
7: Stop classifying message;
8: end if
9: end for

10: // TypeList is a two-dimensional list;
11: Step 2: Message summary list generation
12: for each TypeListj ∈ TypeList do
13: generate a summary of TypeListj. i.e., TextRank Algorithm.
14: add the summary to SumListi;
15: Generate EvalList = {SumList1, SumList2, . . . , SumListn};
16: end for
17: send EvalList to all other RSUs.

3.2.3. Selecting Message Evaluator

After other RSUs receive the EvalList (a classified list of important message sum-
maries), the initial RSU and other RSUs use the message evaluator selection algorithm as
shown in Algorithm 2 to select the appropriate evaluator vehicle for message evaluation.

Algorithm 2 Message Evaluator Selection

Input: EvalList = {SumList1, SumList2, . . . , SumListn}.
VehList = {Vehicle1, Vehicle2, . . . , Vehiclem}.

Output: EvaluatorList = {EvaluatorList1, EvaluatorList2, . . . , EvaluatorListn}.
1: for each Vehiclei ∈ VehList do
2: Data processing by using Simhash algorithm;
3: Calculate Hamming distance of Vehiclei and EvalList;
4: if Hamming distance (Vehiclei, EvalList) < � then
5: Add Vehiclei to EvaluatorList;
6: end if
7: end for
8: Return EvaluatorList.

First, we loop through each vehicle in the VehList. Then, we use the Simhash al-
gorithm [22] to process EvalList and the vehicle, obtaining the Hamming distance of
the vehicle and EvalList. If the Hamming distance between the two was less than the
threshold, it was considered that the two are similar and meet the evaluation conditions.
Therefore, the vehicle is then added to EvaluatorList.

3.2.4. Message Trust Value of Vehicle

After the initial RSU and other RSUs send the evaluation request to the vehicle,
the vehicle receives the message to be evaluated, and uses the following Equation (1) to
calculate the credibility of the message.

Cj,k
i = α1e−bdj,k + α2tj,k + α3

Numtype

Numall
+ α4Simj

i (1)
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Cj,k
i means that vehiclei evaluates the credibility of the messagek sent by vehiclej, of which

α1, α2, α3, α4 is the coefficient, and α1 + α2 + α3 + α4 = 1, where b is the weight coefficient
used to control the weight of dj,k in the calculation. dj,k represents the distance between the
sender’s vehiclej and the place where eventk occurred. This means the farther the distance
is, the lower the credibility of the message. tj,k represents the time used to report this
message minus the time of the first occurrence of this message, which is the freshness of the
message. Numtype

Numall
represents the proportion of the type of this message in the total evaluated

message. The higher the proportion, the higher the credibility, Simj
i refers to the similarity

between vehiclei and vehiclej. If vehiclei has recently released similar messages or vehiclei
and vehiclej have similar driving tracks, then the similarity is high.

When the vehicle has evaluated all the messages, the result is returned to the cor-
responding RSU. After the corresponding RSU receives the result, the average value of
messages sent by each evaluated vehicle is calculated, as shown in Equation (2)

AvgScoret
j =

n
∑

i=1

m
∑

k=1
ωt

i C
j,k
i

m ∗ n
(2)

where AvgScoret
j represents the message trust value of vehiclej as the message sender in

time t, ωt
i represents the trust value of vehiclei as the weight of the score, and the numerator

is the weighted sum of the scores of different vehicles on each message of vehiclej, and the
denominator represents the total number of times that other vehicles evaluate the messages
of vehiclej (i.e., m ∗ n). The result of dividing the two is AvgScoret

j , which represents the
average score of messages sent by vehiclej in time t.

3.2.5. Evaluation Trust Value of Vehicles

When the vehicle acts as a message evaluator, its behavior also needs to be constrained
and evaluated, and, therefore, its trust value as a message evaluator needs to be evaluated.

Therefore, when the corresponding RSU receives the evaluation result returned by the
vehicle, we need to compare it with results returned by different vehicles. After receiving
all the results for the same message, the corresponding RSU obtains the average score of
the same message and then records the difference between the msg of the same message
evaluated by each vehicle and the average. Finally, the sum of the value difference of each
vehicle in this evaluation stage is obtained, denoted as φ. At the same time, record the
number of times the vehicle is evaluated in this evaluation phase count and the time spent
in this evaluation phase time. Thus, the trust value of the vehicle as the message evaluator
in the evaluation stage is obtained, as shown in Equation (3).

et
i = η1

count
time

+ η2e−βφ (3)

of which, η1 and η2 are weight coefficients, and η1 + η2 = 1,
count
time

is the number of
messages evaluated by vehicles in time t, that is, the activity, φ is the sum of the differences
between the vehicle’s evaluation time t and the average. The larger the sum, the smaller the
e−βφ value, and the smaller the vehicle’s evaluation trust value. After the corresponding
RSU completes these tasks, it returns the results to the initial RSU.

3.2.6. Vehicle Final Trust Value Update

After the initial RSU receives the results returned by the other RSUs, logistic regression
is used to update the trust values of the vehicles. Specifically, we define the final trust value
of a vehicle as the probability that a vehicle provides satisfactory service to other vehicles
or RSUs [23]. The service here includes the sending and evaluating of a message. As the
sender of a message, satisfactory service refers to sharing correct, objective, and timely
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information. While as the evaluator of a message, it refers to returning objective evaluation
results to RSUs.

Specifically, in the subsequent stage, when vehiclei requests interested messages from
RSU, vehiclei may or may not be satisfied with the messages provided by vehiclej. If vehiclei
is satisfied, then vehiclej is credible with high probability. Otherwise, vehiclej is incredible
with high probability. We use qt

i,j to denote the quality of service provided by vehiclej to
vehiclei in time t. Since the message of vehiclej may not only provide services to vehiclei,
we use qt

j = qt
i,j

⋃
qt

i,j(m 6=i) to indicate the quality of service provided by vehiclej to other
vehicles and vehiclei. Three factors affect the trust value of the vehicle, namely the trust
value when the vehicle is the message sender, the trust value when the vehicle is the
message evaluator, and the historical final trust value of the vehicle (at time slot t− 1). We
use the vector γt = [γt

avgscore + γt
e + γt

history]
T to represent the above three factors, then the

final trust value is the probability of vehiclej providing satisfactory service to other vehicles
at time t. Namely

E[qt|γt, χ] = ρt =
1

1 + e−γtχ
(4)

specifically, we use the vector T = [1, 2, 3, . . . , t]T to represent the past time period.
For the parameter χ, we use the initial given value, γ = γt(t = 1, 2, . . . , t), and use
Equation (4) to compute the expectation ρt , that is, the E step of the EM algorithm. For the
expectation ρt, we use the maximum likelihood estimation parameter χ to obtain the
new parameter χnew, which is the M step of the EM algorithm. Finally, we calculate
E[qt+1|γt+1, χ] = ρt+1 = 1

1+e−γt+1χnew
and reach the final trust value of vehiclej at time t + 1,

namely ρt+1.

3.3. Consensus Mechanism

In general, we need to increase the probability of RSUs with more data and can sense
the changes in vehicle reputation value more sensitively to obtain the right to publish
blocks. Specifically, if a vehicle’s trust value changes a lot, so does the veracity of the
information the vehicle reports. Moreover, if the size of the data stored in an RSU increases
dramatically over a period of time, it will mean a lot of new events are happening in that
area. Therefore, it is important to ensure that vehicles with large trust changes and RSUs
with large data storage are updated first, which is critical to the security and timeliness of
the IoV.

3.3.1. Consensus Mechanism of Vehicle Blockchain

In the vehicle blockchain of our DLBTM system, we use Ouroboros [24] as the con-
sensus protocol of the vehicle blockchain, which is based on POW. We use the number of
non-important messages stored in RSUs as a stake to design the mining difficulty. The
greater the stake held by RSUs, the greater the probability of it becoming the leader.

We delete unimportant messages every 1 h, and divide 1 h into several periods, and
each period into multiple rounds. During each round, we generate no more than 1 block,
and every hour the RSUs in the vehicle blockchain will create the genesis block of the new
blockchain. In the vehicle blockchain, the participant in the consensus is the RSU in the
vehicle blockchain, but the vehicle does not participate in the consensus process.

Next, we will take a closer look at the selection process of the leader at a given time in
the vehicle blockchain.

In roundj, each RSU independently calculates whether it is the leader or not. Specif-
ically, each RSU uses the F(S, ε, slotj) function and its own stake ratio to calculate the
leader of roundj. The probability to be selected as the leader is expressed by the following
Equation (5):

Pm =
RSUm

n
∑

k=1
RSUk

(5)
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of which RSUm is the stake of RSUs, Pm represents the proportion of RSUm’s stake in all
RSUs of vehicle blockchain.

F in F(S, ε, slotj) is a function that can be implemented using the follow-the-satoshi
algorithm, S = (PK1, s1), (PK2, s2), . . . , (PKm, sm) is the stake distribution of all RSUs
in the vehicle blockchain, where PK1 and s1 are the public key and its stake of RSU1
respectively, ε is the random number seed in the current period, slotj is the current roundj.

The remaining rounds, as the above, are an iterative process, and each round elects its
leader independently. In addition to selecting the leader, multiple “endorsement nodes”,
the verifiers of the transaction, need to be selected. The endorsement node verifies whether
the transaction is legitimate and sends the legitimate transaction to the leader.

3.3.2. Consensus Mechanism of RSU Blockchain

We adopt the Ouroboros Praos [25] protocol as the consensus protocol of the RSU
blockchain in our proposed DLBTM system. The reasons we use Ouroboros Praos in the
RSU blockchain instead of Ouroboros, like in the vehicle blockchain are two-fold.

1. The nodes of the vehicle blockchain participating in consensus are pre-selected RSUs,
and the transactions of the vehicle blockchain are relatively less important data. Even
if attackers know the leaders in advance, bribery attacks and DDOS attacks on them
will have little impact on the stability of the DLBTM system;

2. The RSU blockchain stores important information and trust value shared by vehicles,
so the identity information of the leader needs to be hidden. The nodes involved in
mining in the RSU blockchain run verifiable random functions (VRFS) locally and
only know who is the leader when other nodes receive the block, thus, reducing the
impact of an attack on the DLBTM system.

We then elaborate on the leader selection process during a certain period in the
RSU blockchain.

In roundi of a certain period, each RSU participating in mining runs a verifiable
random function (VRF) locally. The method for RSU to judge whether it is a leader is to
determine whether the generated random number is lower than a threshold, the value
of which is related to the ratio of node stake (i.e., Equation (6)). Therefore, there may be
multiple RSUs as leaders in roundi. However, it is also possible to have no leader at all, and
the probability of becoming a leader is as follows:

Pn = φ f (RSUi) = 1− (1− f )RSUi (6)

where RSUi refers to the stake proportion of RSUi , and f is a parameter of the Ouroboros
Praos protocol. In particular, RSUi = 1, i.e., φ f (1) = f , represents the probability that
RSUi node holds all the stake and is selected as the leader. The function is not a linear
function.

3.4. Security Analysis

1. Resist malicious RSUs: Based on the Ouroboros protocol cluster, our DLBTM model
can effectively defend against malicious RSUs. RSUs are important nodes in both the
vehicle blockchain and the RSU blockchain. If normal RSUs are hacked and become
malicious RSUs, they cannot construct a false block. This is because the consensus
protocol used by the vehicle blockchain and RSU blockchain is the Ouroboros protocol
cluster, and malicious RSUs as the leader can only create a blank block, since the
transactions in the block are verified by multiple endorsement nodes and then sent
to the leader. At the same time, according to the Ouroboros protocol cluster, the
probability of becoming the leader is proportional to the proportion of the node’s
stake, and even the RSU with a relatively high proportion of the intrusion stake cannot
forge the block. If an attacker controls multiple RSUs to become malicious nodes, the
Ouroboros protocol cannot issue fake blocks as long as the malicious RSUs do not
hold more than 51% of the blockchain;
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2. Defense against false message attacks: Our DLBTM model can effectively defend
against false message attacks. In false message attacks, an attacker may invade vehicle
nodes, turning normal vehicle nodes into malicious ones. The malicious vehicle node
then sends a false message to the RSU in an attempt to influence other nodes in the
system. However, in DLBTM, other vehicle nodes will calculate the trust of false
information, and, therefore, grant the malicious node a very low message trust value,
so that when RSU updates the final trust value of the malicious node, the malicious
node will receive a very low final trust value. Therefore, when other vehicle nodes
request service later, RSU will choose the message provided by the vehicle node with
a higher trust value. Therefore, false information published by malicious nodes will
not be selected by RSUs, so the malicious nodes cannot affect other nodes in the
system. In the end, malicious nodes that continue to publish false information will be
excluded from the system;

3. Defence against false score attacks: Our DLBTM model system can effectively de-
fend against false score attacks. In IoV, malicious nodes may be selected by RSUs as
message evaluators according to their similarity, generating false scores for messages
of normal vehicle nodes, thus, affecting the whole system. However, in our DLBTM,
RSU selects multiple message evaluators when scoring the message. According to
Equation (3), RSU will record the difference between the message score evaluated by
the malicious node and the mean value, and identify the possible malicious nodes,
reducing their final trust value. In this way, malicious nodes will be excluded from
our system, and fail to undermine the system. Furthermore, the number of malicious
nodes is often limited. Therefore, those malicious nodes are usually unable to evalu-
ate the same message because RSUs select vehicles as message evaluators based on
similarity. Therefore, our DLBTM can reduce the possibility of collusion attacks;

4. Data integrity: Our DLBTM model system can effectively prevent important data
such as trust values and important message summaries of vehicles from being tam-
pered with by malicious nodes to ensure data integrity. In DLBTM, both unimportant
messages recorded in the vehicle blockchain and important message summaries and
trust values recorded in the RSU blockchain are created by the leader and then com-
pleted by endorsement nodes that add legitimate transactions to the block, which
become a consensus of all RSUs. The sequence and content of the blocks are protected
using hash chains. The hash value of each block is unique. Once any content of
any block is modified, the hash of the other blocks will be changed [26]. Therefore,
a malicious RSU node that intends to tamper with the data and modify a vehicle’s
trust value will have to modify the data in the current block and recalculate the previ-
ous block’s hash value on the chain, which is impossible in practice. Therefore, our
DLBTM can effectively protect data integrity.

4. Experiment and Analysis

To verify the validity of the proposed system model, we use IoV network simulation
platforms SUMO1.11.0, OMNET++5.7, and Veins 5.2. Specific parameters are shown in
Table 4.

4.1. Time Complexity and Space Complexity Analysis

In this section, we compare the complexity of our DLBTM with DTMS [27], a popular
blockchain-based trust management model. DTMS considers message classification and
message evaluator for trust value calculation, and the message classification algorithm of
DTMS only generates indexes for classified messages, while does not generate a message
summary. This results in wasted time and storage space during message evaluation by
vehicle nodes in subsequent phases. Therefore, DTMS has higher time complexity in terms
of message classification and message evaluator selection compared with our DLBTM.

The comparison of time complexity and space complexity between DTMS and DLBTM
message classification algorithms is shown in Table 5. We count the number of statements
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executed in the algorithm to do so. There is a ‘while’ loop and a ‘for’ loop in DTMS’s
message classification algorithm, and the number of statements executed is quadratic
to the data size, and, therefore, the time complexity is O(n2). However, the message
classification algorithm of DLBTM has only one ‘for’ loop, therefore, the time complexity
is O(n). Therefore, Algorithm 1 in DLBTM executed faster due to the computation of the
lower order. However, the temporary storage space occupied by the two algorithms during
operation is the same, and, therefore, the space complexity of both algorithms is O(n2).

Table 4. Experimental environment.

Parameters Settings

Simulation map area 2500 m × 1500 m
Number of RSUs 13

Number of vehicles 100 or 50
Vehicle speed 60 km/h

Vehicle communication distance 300 m
RSU communication distance 600 m

Vehicle transmit power 10 mW
RSU transmit power 30 mW

Mac protocol IEEE802.11p

Table 5. Algorithm 1 analysis.

Model Time Complexity Space Complexity

DTMS O(n2) O(n2)
DLBTM O(n) O(n2)

The comparison of the time complexity and space complexity of the DTMS and DLBTM
message evaluator selection algorithms is shown in Table 6. There are two ‘for’ loops in
DTMS’s message evaluator algorithm selection. The number of statements executed in the
loop is quadratic with the increase in data size, so the time complexity is O(n2). However,
DLBTM’s message evaluator algorithm proposed in this paper, namely, Algorithm 2, has
an O(n) time complexity. This means that the computational complexity required to
execute the algorithm in DLBTM is lower than in DTMS. However, the temporary storage
space used by the two algorithms during operation is the same, and, therefore, the space
complexity of DTMS and DLBTM is both O(n).

Table 6. Algorithm 2 analysis.

Model Time Complexity Space Complexity

DTMS O(n2) O(n)
DLBTM O(n) O(n)

4.2. Simulation Results and Performance Evaluation

We design a virtual traffic environment using Veins and simulate traffic scenes within
2 km of Hangzhou Dianzi University. Figure 3a shows the situation of roads and streets
near Hangzhou Dianzi University, and Figure 3b shows the simulation map drawn by
sumo and OMNET++ based on Figure 3a. The black vehicle icons on the simulated map in
Figure 3b represent vehicle nodes, the yellow diamond icons represent RSUs, and the large
black circles represent the communication range of RSUs. There are 100 or 50 vehicles on
this simulated map, which report messages to nearby RSUs at regular intervals, and then
proceed with the process in Figure 2. We set the initial value of the final trust value of
the vehicle to 0.5, which means that the newly registered vehicle has a 50% probability
of providing satisfactory service to other vehicles, which is easy to formulate using the
sigmoid function in logistic regression. We set the system to conduct trust management by
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RSU every 30 s, and the entire simulation time 160 s, with vehicle nodes reporting messages
to RSU at any moment.

(a)

(b)

Figure 3. (a) Road map near Hangzhou Dianzi University. (b) Scene simulation map was drawn with
OMNET++ and SUMO.

Figures 4 and 5 show the changes in the final trust value caused by malicious behavior
by a vehicle node with different probabilities over time when the total number of vehicles
during the simulation period is 50 or 100. It can be seen that as a normal node, the final trust
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value of the vehicle (that is, the probability of providing a satisfactory service) approaches 1.
This means that the normal node actively reports the perceived events to the RSU, and the
system assigns them a higher trust value based on their positive history behavior since their
reported events are accurate and effective. Therefore, the system is more probable to believe
the information reported by this vehicle node will be very satisfactory to other vehicle
nodes in the next period. Specifically, suppose the vehicle node has a 30% probability
of malicious behavior. In that case, the final trust value of it fluctuates between 0 and
0.5, which is quite different from the final trust value of the normal node and is easy to
discriminate. If the vehicle node has a 60% probability of malicious behavior, and the final
trust value of the vehicle is close to 0, this indicates that the probability of providing a
satisfactory service is close to 0. If there is a 90% probability that the vehicle node will
commit malicious behaviors, the final trust value of the vehicle node approaches 0 infinitely,
indicating that it is difficult to provide satisfactory services to other nodes in the future. It
can be seen that the reliability of our DLBTM has been fully verified. Regardless of whether
malicious nodes act maliciously with high probability or low probability, or whether traffic
is congested or unblocked, our proposed DLBTM model can identify malicious nodes well.
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Figure 4. The final trust value of malicious behavior made by nodes with different probabilities (he
total number of vehicles is 50).
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Figure 5. The final trust value of malicious behavior made by nodes with different probabilities (the
total number of vehicles is 100).

Figure 6a–c shows the changes in the proportion of malicious nodes identified by
our DLBTM when the total number of vehicles is 50, that malicious nodes of the vehicle
commit malicious behavior with different probabilities, and that there are malicious nodes
with different proportions in the system. It can be clearly seen from Figure 6a, that our
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DLBTM recognizes more than 80% of malicious nodes in the second stage around 60 s
when malicious nodes perform malicious behaviors with a probability of 30%, and the
recognition rate is above 90% as time goes by. As shown in Figure 6b, when malicious
nodes commit malicious behaviors with a probability of 60%, at about 30 s in the first stage,
the proportion of malicious nodes identified by the proposed system model is above 80%,
and the recognition rate reaches 100% over time. As shown in Figure 6c, when malicious
nodes commit malicious behaviors with a 90% probability, the proportion of malicious
nodes identified by the proposed system model is above 90% at about 30 s of the first stage,
and the recognition rate reaches 100% with time.
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Figure 6. Identification rate of malicious nodes with different proportions (vehicles: 50). (a) A
30% probability of malicious behavior, (b) a 60% probability of malicious behavior, and (c) a 90%
probability of malicious behavior.

Figure 7a–c shows the changes in the proportion of malicious nodes identified by
our DLBTM when the total number of vehicles is 100, malicious nodes of the vehicle
commit malicious behavior with different probabilities, and there are malicious nodes
with different proportions in the system. It can be clearly seen from Figure 7a, that our
DLBTM recognizes more than 90% of malicious nodes in the second stage around 60 s
when malicious nodes perform malicious behaviors with a probability of 30%, and the
recognition rate approaches 100% as time goes by. As shown in Figure 7b, when malicious
nodes commit malicious behaviors with a probability of 60%, at about 30 s in the first stage,
the proportion of malicious nodes identified by the proposed system model is above 95%,
and the recognition rate reaches 100% over time. As shown in Figure 7c, when malicious
nodes commit malicious behaviors with a 90% probability, the proportion of malicious
nodes identified by the proposed system model is above 95% at about 30 s of the first stage,
and the recognition rate reaches 100% with time.

The comparison between Figures 6 and 7 shows the effect of changes in the probability
of malicious behavior and the number of vehicles. When the probability of malicious
behavior among nodes in the system is 30% and the total number of vehicles is 50, our
DLBTM system identifies malicious nodes at a rate of over 92% over time. When the total
number of vehicles is 100, our DLBTM system identifies malicious nodes at a rate of over
97% over time. When the probability of malicious behavior among nodes in the system
is 60% and the total number of vehicles is 50, our DLBTM system’s recognition rate of
malicious nodes reaches 100% over time. When the total number of vehicles is 100, our
DLBTM system’s recognition rate of malicious nodes reaches 100% over time. When the
probability of malicious behavior among nodes in the system is 90% and the total number
of vehicles is 50, our DLBTM system’s recognition rate of malicious nodes reaches 100%
over time. When the total number of vehicles is 100, our DLBTM system’s recognition rate
of malicious nodes reaches 100% over time. In short, when the probability of malicious
behavior is constant, the increase or decrease in the number of vehicles has little impact on
the proportion of DLBTM systems identifying malicious nodes.
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Figure 7. Identification rate of malicious nodes with different proportions (vehicles: 100). (a) A
30% probability of malicious behavior, (b) a 60% probability of malicious behavior, and (c) a 90%
probability of malicious behavior.

In summary, regardless of whether the proportion of malicious nodes in the system
is 10%, 20%, 30%, or the total number of vehicles is 50 or 100, our DLBTM can accurately
identify the proportion of malicious nodes with a probability more than 90%.

We compared our DLBTM with the BTCPS model [28], MWSL method [13], and TSL
method [29]. We consider the impact of the probability Pr of malicious behavior by a
malicious vehicle. When Pr = 30%, Pr = 50%, and Pr = 80%, we observe the change in
the final trust value of a malicious vehicle. As shown in Figure 8, when Pr = 30%, both
DLBTM and BTCPS can reduce the trust value of the vehicle, but BTCPS does not reduce
the trust value as quickly as DLBTM, which means it cannot quickly identify malicious
nodes. When Pr = 50%, both DLBTM and BTCPS can reduce the trust value of the vehicle,
but DLBTM recognizes malicious nodes significantly faster than BTCPS. When Pr = 80%,
all four methods can reduce the trust value of the vehicle, but DLBTM is significantly faster
than the other three methods in identifying malicious nodes.
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Figure 8. The change in the final trust value of a malicious vehicle over time. (a) The probability of
malicious behavior is 30%, (b) the probability of malicious behavior is 50%, and (c) the probability of
malicious behavior is 80%.

In the trust management mechanism of the IoV based on a single blockchain, vehicle
nodes in the system generate a large number of transactions, and vehicle nodes process and
store a large amount of transaction information. Therefore, vehicle nodes may encounter
hardware bottlenecks. However, in a double-layer blockchain, due to the stronger storage
and computing power of RSUs compared to vehicles, we store data on RSUs, reducing
the burden on vehicles. At the same time, our algorithm uses message summarization to
reduce the storage space of RSU data, effectively improving the effectiveness of data storage
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and sharing between vehicles and RSUs, thereby indirectly improving the throughput of
the system.

5. Conclusions

In this paper, we propose a double-layer blockchain-based trust management mecha-
nism DLBTM to solve the malicious attacks targeted on the communication among vehicles
and RSUs in IoV. Using the double-layer blockchain, we can reduce the burden of vehi-
cles in IoV, realize hierarchical management of nodes in IoV, protect vehicular privacy,
implement hierarchical data storage and sharing, and realize effective trust evaluation and
management of vehicle nodes. Remarkably, our message classification on type algorithm
and message evaluator selection algorithm has lower time complexity compared with simi-
lar algorithms, and simulation experiments show that our trust management mechanism
can effectively identify malicious nodes. Therefore, our DLBTM is effective and feasible in
complex IoV environments. For future research, we will introduce an incentive mechanism
into our model to promote cooperative behavior.
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