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Abstract—The instantaneous balance of electrical supply and
demand on the power grid is indicated by the power grid
frequency, making it a pivotal variable for power system controls.
Accurate frequency forecasting could enable new faster means of
frequency management that enhance power system stability. A
hybrid vector-output Long Short-Term Memory (LSTM) neural
network has been studied using microsynchrophasor data to
predict trajectories. The objective of this research is to evaluate
the effectiveness of very short time horizon frequency prediction
using this method. The proposed model has been trained with
over and under-frequency operational limit excursion events as
well as normal condition state, with the goal of minimising
prediction errors. Training and testing have been conducted using
390,000 datapoints covering 65 frequency events obtained from
a distribution grid connected solar farm in England. The results
demonstrate this method can provide useful grid frequency
projections and shed light on underlying behaviour.

Index Terms—Electrical grid frequency, power system stability,
time series forecasting, long short term memory.

I. INTRODUCTION

Transmission and Distribution system operators face a sig-
nificant challenge in maintaining the stability and control of
the nominal grid frequency (50/60 Hz). Asynchronous Renew-
able Energy Generation (REG) and power electronics-based
loads are becoming more prevalent in many electrical power
systems, while centralised synchronous power generators and
rotating electrical machinery are declining. One significant
disadvantage of REG, such as utility-scale solar photovoltaic
(PV) installations with their grid following inverters, is their
inability to contribute to system inertia since they are not
synchronous sources of generation [1].

Grid stability can be measured by several factors, including
frequency stability, voltage stability, and angular stability; all
of which are important to ensuring the resilience and reliability
of the power grid to perturbations. This is especially important
during periods of high penetration of asynchronous renewable
energy generation and low demand, which can result in low

levels of system inertia and grid instability [2]. If there are
insufficient levels of inertia in a power system and they
are not properly managed, it can result in interruptions to
power supply or a degradation of power quality. This can
ultimately impact the grid’s reliability and, in severe cases,
cause brownouts or even blackouts [3].

Grid frequency is highly dynamic and it requires close
monitoring. It is essential to maintain the system frequency
within both the statutory and operational limits of a given
grid; in the UK, these limits are 49.5-50.5Hz and 49.8-
50.2Hz respectively. The National Grid Energy System Op-
erator (NGESO) has identified frequency management as a
top challenge. [4].

Presently, system operators rely on Supervisory Control And
Data Acquisition (SCADA) systems to collect and monitor
frequency data. However, these systems usually provide rela-
tively coarse data from a limited number of nodes and this
is inadequate for addressing rising challenges of electrical
networks undergoing rapid transformation [5].

The microsynchrophasor measurement unit (µPMU) was
created specifically for distribution grids and it overcomes
some of the limitations associated with conventional Phasor
Measurement Units (PMU) and legacy SCADA systems [6].
The µPMU complies with the IEEE C37.118.2-2011 standard
and it features a Total Vector Error (TVE) of ±0.01% and
an angular accuracy of ±0.003o, which is significantly better
than the 1.0% TVE common to conventional PMUs found on
transmission systems [6].

The µPMU is capable of collecting vast amounts of highly
accurate voltage and current phasor data, making it ideal for
monitoring network event behaviour. However, due to the
diverse range of distribution network events, it can be chal-
lenging to categorise different frequency events [7]. Without
prior knowledge of categorised and encoded grid behaviour,
converting µPMU measurements into actionable information
during real-life scenarios remains a significant challenge.

Several machine learning (ML) techniques have been em-
ployed in literature to predict power grid frequency [8]. In [9],979-8-3503-9678-2/23/.00 ©2023 IEEE



weighted-nearest neighbour method was used to forecast
power grid frequency with one-second resolution data, pre-
dicting one hour ahead. However, this method is constrained
by data availability. Djukanovic et. al. used artificial neural
networks (ANNs) to forecast short-term dynamic frequency in
the New England power system, with inputs obtained through
a series of calculations based on initial facility data. [10].
Zhang et al. proposed a LSTM encoder-decoder model to
predict dynamic sequence in frequency, achieving an Root
Mean Square Error (RMSE) of 0.0205 for 0.01sec input
sequence [11]. In another study, a convolutional long short-
term memory (ConvLSTM) network was used for frequency
prediction using simulated data, taking four different input
parameters into account (voltage phase angle, generator elec-
tromagnetic power, active load power, and generator rotor
speed) [12]

In this paper, high-resolution µPMU frequency data from
a utility-scale solar PV site has been gathered and a hybrid
vector output LSTM model employed for multi-step univariate
frequency forecasting. The results demonstrate precise fore-
casting of near-future frequency data trajectories and enhance
our fundamental understanding of power grid frequency be-
haviour.

The rest of the paper is organised as follows. Section II
describes the methods and material used for developing the
algorithm. Section III presents the details of the data and
discussion of the result followed by Section IV containing
the conclusion drawn.

II. METHODS & MATERIALS

The research had two stages: the first stage was gathering
a significant amount of µPMU frequency data and the second
stage focused on utilising deep neural network-based tech-
niques to forecast the frequency up to one second ahead. A
framework of the proposed steps of this work is shown in Fig.
1.

Fig. 1: Flow diagram of the proposed architecture.

A. Data Collection and Processing

Neuville Grid Data (NGD) was responsible for collecting
the µPMU data, using their Grid Data Unit (GDU) [13]. The
GDU is a patented apparatus that integrates a µPMU, Power
Quality Monitor (PQM), Global Positioning System (GPS)
based timing for sub-100 nanosecond time synchronisation,
data-buffering memory, edge computing, and secure bidirec-
tional 3G/4G cellular data telemetry. The µPMU and PQM
digital signal processing (DSP) instruments receive analogue
signals from instrument transformers, enabling the device to
determine both current and voltage phasors twice per AC cycle
(100Hz in Britain) for all three phases and provide an accurate
estimation of frequency [14], [15].

B. Hybrid Vector Output Long Short Term Memory

In this research, a hybrid vector output LSTM neural
netowrk was proposed for power grid frequency prediction.
It incorporates feedback connections, making it suitable for
processing data sequences and time-series prediction. The
model comprises of three LSTM layers followed by two dense
layers. Two dropout layers have also been included to enhance
the training process as illustrated in Fig. 2.

Fig. 2: The employed LSTM architecture of this study.

The LSTM input frequency data underwent pre-processing
normalisation due to a higher mean frequency of 49.96 Hz



compared to a lower standard deviation of 0.058 Hz. The input
frequencies (F ) were normalised to a range from 0 to 1 using
min-max normalisation (Fnorm), as shown in Eq. (1). This
normalisation pre-processing is necessary to ensure that the
input data is on a consistent scale highlighting the frequency
changes to improve the effectiveness of the LSTM model.

Fnorm = (F − Fmin)/(Fmax − Fmin) (1)

The working principle of the LSTM layers is shown in
Eq. (2) to (7) [16], where input is xt, Wf ,Wi,WC , and WO

refers to the input weight, and the g refers to the activation
function. The bf , bi, bC and bO are the biases. The t and t−1
denote the current and previous time stamps. The x and h
represent the input and output, and C represents the cell status.

f(t) = g(Wf · [ht−1, xt] + bf ) (2)

i(t) = g(Wi · [ht−1, xt] + bi) (3)

C̃(t) = tanh(Wc · [ht−1, xt] + bc) (4)

C(t) = ft ∗ Ct−1 + it ∗ C̃t (5)

Ot = g(WO · [ht−1, xt] + bO) (6)

h(t) = Ot ∗ tanh(Ct) (7)

Three different functions have been used for the activation
function g within the LSTM layers using Eq. (8) to (10):

relu(R) : R(x) = max(0, x) (8)

linear(L) : L(x) = mx+ c (9)

tanh(T ) : T (x) = (ex − e−x)/(ex + e−x) (10)

LSTM also involves several key parameters such as the
number of neurons, the number of iterations in the hidden
layer, and the learning rate. These hyper-parameters are typi-
cally determined experimentally to optimise the model’s fitting
ability, training effectiveness, and convergence performance.

C. Performance Evaluation

In this study, the accuracy of the LSTM model’s frequency
prediction was evaluated by calculating the RMSE between the
predicted frequency values and the actual frequency values.
The RMSE is a commonly used metric to measure the error
between predicted and actual values and it is calculated using
Eq. (11), where j is the sample index, N is the total number
of samples, f(xj) is the predicted value of the jth sample and
yj is the actual value of the jth sample:

RMSE =

√√√√ 1

N

N∑
j=1

(f(xj)− yj)2 (11)

The RMSE provides a quantitative measure of the accuracy
of the model’s predictions, with a lower RMSE indicating
better accuracy. By comparing the RMSE values for different
LSTM architectures and parameter settings, the study was able
to identify an optimal configuration for frequency prediction.

III. RESULT ANALYSIS AND DISCUSSION

The experimental results were analysed to evaluate the per-
formance of the proposed LSTM frequency prediction model.
The analysis involved comparing the predicted frequency
values with the actual frequency values obtained from the
µPMU data. The RMSE performance metric was applied to
quantify the accuracy of the model predictions. The discussion
has included an analysis of the impact of the window size,
activation function, number of neurons, iterations, and learning
rate on the model’s accuracy. Overall, the experimental results
have provided valuable insights into the effectiveness of the
proposed LSTM frequency prediction model.

A. Data Details

For this study, over a 20-day period from March 27 thru
April 15, 2023, UK power grid frequency data was obtained
from a GDU equipped 8MW solar site in Norfolk, England,
that is connected to the UKPN distribution network at 33kV.
The GDU’s µPMU is providing IEEE C37.118.2-2011 com-
pliant frequency estimations twice per AC cycle (100Hz on a
50Hz electrical system) resulting in a time resolution of 10ms
and 6,000 data points per minute.

Over the 20-day period, 65 over or under frequency events
were identified that exceeded the operational limits of 49.8Hz
- 50.2Hz (also referred to as “pre-fault frequency”). A set of
65 one-minute-long event windows were therefore selected as
the LSTM training and testing data for a total of 390,000 data
points [4].

B. Comparison and Performance Measures

The dataset was split into three parts for training, validation,
and testing, with 2/3, 1/6, and 1/6 of the data applied
respectively. Two window sizes (10 and 100 consecutive 10ms
data points) were used to train the model and evaluate its
performance for two different time horizons (H) of prediction
(H10 = 0.1sec and H100 = 1.0sec respectively). The H10 and
H100 prediction results for the different activation functions
R, L, and T (see Eq. (8), (9), (10) respectively) are shown in
Fig. 3. The training RMSE and validation RMSE for H10 are
shown in Fig. 3a and 3b, respectively, while Fig. 3c and 3d
show the same information for H100. The x-axis represents
the number of epochs, and the y-axis represents the RMSE
score obtained at the end of each epoch. The results show that
for all cases, the tanh (T) activation function performed better
than the other two methods, but in the case of H100, the linear
(L) function performed comparatively better than T in epoch



10. In both validation phases, the RMSE starts from 0.1 and
ends with a value of less than 0.05 for the T function.

Fig. 3: The RMSE score graph for H10 and H100 for different
activation functions.

Table I presents the detailed scores obtained in training and
validation for each epoch. It is evident from the table that all
the activation functions performed competitively during the
validation phase. In the last epoch, L obtained RMSE scores
of 0.025 and 0.016 for H10 and H100, respectively, whereas T
obtained RMSE scores of 0.025 and 0.038 for H10 and H100,
respectively. However, the average validation RMSE scores for
R were 0.133 and 0.208, for L, were 0.052 and 0.142, and for
T were 0.043 and 0.093 for H10 and H100, respectively. This
indicates that the scores for L gradually improved, whereas
T remained stable for both training and validation cases. The
RMSE scores obtained during testing are listed in Table II.
These results are similar to the validation results obtained for
the final epochs.

Fig. 4a and 4b chart the actual vs predicted frequency of
the test dataset for two different time horizons, demonstrating
how the prediction varies with the window size. In the case
of R, H10 performs well, whereas for H100 window fails to
predict the frequency. Fig. 4c and 4d illustrate that both the
H10 and H100 windows are able to predict the frequency,
but the shorter time frame ahead H10 is, as expected, more
accurate than the H100 for the L method, as the frequency
deviates from the actual. On the other hand, the results of
T for both the time horizons are quite close to the actual.
However, T slightly overestimated the predicted frequency for
both time horizons.

(a) Output of R for H10 (b) Output of R for H100

(c) Output of L for H10 (d) Output of L for H100

(e) Output of T for H10 (f) Output of T for H100

Fig. 4: The output comparison of actual (blue line) vs predicted
(red line) frequency over the H10 and H100 horizon between
different activation functions.

The proposed model has been trialed against different over-
frequency and under-frequency events that exceeded the opera-
tional limits (49.8Hz - 50.2Hz) [4]. The model performed well
on the 7 non-consecutive days of test data from the same site.
The resulting RMSE values between 0.02 - 0.03 indicate the
model is able to accurately predict the frequency behaviour of
the system 0.1sec and 1.0sec ahead. The results of this analysis
demonstrates the significant impact of different activation
functions and windowing techniques on the accuracy of the
model. This study represents a preliminary investigation into
selecting optimal parameters for Neuville’s high-resolution (1
data sample per 10 ms) data streams.

The proposed hybrid vector output LSTM model was found
to effectively predict the frequency behaviour from the solar
site data. Furthermore, this approach can be applied to any
power system variables, provided there is sufficient data to
train the algorithm.

IV. CONCLUSION AND FUTURE WORK

Ensuring grid stability by accurately monitoring and predict-
ing frequency behaviour is crucial to consistent grid operations
and avoiding power outages. In this paper, a hybrid vector
output LSTM model was used to predict short time ahead



TABLE I: The full training and validation RMSE score for each epoch of different time horizons.

Training Results
relu (R) linear (L) tanh (T)

Traning RMSE Validation RMSE Traning RMSE Validation RMSE Traning RMSE Validation RMSE
H10 H100 H10 H100 H10 H100 H10 H100 H10 H100 H10 H100
0.285 0.356 0.143 0.248 0.212 0.313 0.070 0.167 0.187 0.299 0.100 0.109
0.207 0.285 0.055 0.186 0.140 0.193 0.046 0.090 0.095 0.129 0.078 0.069
0.146 0.243 0.029 0.132 0.114 0.139 0.025 0.053 0.074 0.090 0.049 0.063
0.124 0.213 0.042 0.152 0.100 0.139 0.031 0.018 0.059 0.067 0.049 0.029
0.114 0.214 0.027 0.124 0.088 0.127 0.026 0.052 0.059 0.067 0.047 0.037
0.103 0.187 0.027 0.103 0.085 0.111 0.023 0.058 0.051 0.063 0.046 0.022
0.098 0.170 0.037 0.124 0.078 0.109 0.014 0.022 0.048 0.059 0.028 0.019
0.097 0.150 0.045 0.081 0.073 0.103 0.027 0.028 0.046 0.056 0.023 0.019
0.090 0.138 0.028 0.098 0.071 0.097 0.015 0.018 0.046 0.052 0.029 0.028
0.087 0.131 0.029 0.087 0.069 0.091 0.025 0.016 0.043 0.053 0.025 0.038

TABLE II: Testing RMSE for horizon-10 and 100 of the three
different activation functions.

Testing RMSE
H10 H100

relu (R) 0.0284 0.0892
linear (L) 0.0156 0.0184
tanh (T) 0.0207 0.0161

horizons of 0.1sec, and 1.0sec. Further, this model was tested
with a longer window of 10.0sec, where the T activation
function outperformed among others, achieving RMSE values
of (H1000 R) 0.025, (H1000 L) 0.024, and (H1000 T) 0.016
respectively.

The study demonstrates the potential of deep learning mod-
els, specifically LSTM-based models, for power grid frequency
behaviour prediction, with the importance of selecting appro-
priate activation functions for optimal results. Further research
can explore the model’s performance on longer time horizons,
different sites, different synchronous grids, and other power
system variables by combining multiple input features and
modifying the model architecture with more training data for
better prediction accuracy and investigating their applicability
for power system monitoring and control.
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