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Abstract 
The correlation structure of financial assets is a key input with regard to portfolio and risk 
management. In this paper, we propose a non-parametric estimation method for the time-varying 
copula parameter. This is achieved in two steps: first, displaying the marginal distributions of 
financial asset returns by applying the empirical distribution function; second, by implementing 
the local likelihood method to estimate the copula parameters. The method for obtaining the 
optimal bandwidth through a maximum pseudo likelihood function and a statistical test on 
whether the copula parameter is time-varying are also introduced. A simulation study is 
conducted to show that our method is superior to its contender. Finally, we verify the proposed 
estimation methodology and time-varying statistical test by analysing the dynamic linkages 
between the Shanghai, Shenzhen and Hong Kong stock markets. 
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1. Introduction 

Correlations between financial assets play a key role in portfolio and risk management. 

Understanding the time-varying nature of correlations allows for improved asset allocation, 

market timing and hedging decision-making. Further, following recent market volatility, the 

ability to model any time-variation within correlation has become increasingly important. 

Furthermore, the dependence structure between financial variables is often both non-linear and 

non-normal. As such, Li (2000) and Embrechts et al (2002) pointed out the limitations of using 

Pearson’s linear correlation coefficient as a measure of the dependence and raised the issue of 

using a copula to describe non-linear relationships between financial assets.  

A copula is a function that links marginal distributions of random variables to form a 

joint distribution. In other words, the joint distribution function can be written in terms of a 

copula and the marginal distribution functions. Thus, the copula contains all information on the 

dependence structure of random variables while the marginal distribution functions contain all 

information of the margins. That is, the copula provides a relatively straightforward way of 

modeling often non-linear and non-normal joint distributions that might otherwise only be 

examined through simulation approaches. This paper, therefore, seeks to present an advanced 

estimation method for the time-varying copula parameter. This method can be achieved in two 

steps: first, displaying the marginal distributions of the financial asset returns by applying the 

Empirical Distribution Function (EDF); second, implementing the local likelihood method to 

estimate the copula parameters. The method for obtaining the optimal bandwidth through 

maximum pseudo likelihood function and a statistical test on whether the copula parameter is 

time-varying are also introduced.  
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Parameter estimation is a primary task in the study of the copula. Joe (1997) discussed a 

computational method for the estimation of the copula parameters that acts as an alternative to 

the Maximum Likelihood (ML) estimation approach. This estimation approach is referred to as 

the method of Inference Functions for Margins (IFM) which displays the margins of dependent 

random variables by probability integral transformation functions. However, Chen and Fan 

(2006b) noted that the dependence parameters could be affected by a possibly misspecified 

marginal distribution of the standardised innovations. Thus, they suggested using the Canonical 

Maximum Likelihood (CML) estimation approach, where the margins are specified by the 

empirical distribution function. Kim et al., (2007) compared the ML and IFM methods with the 

semi-parametric method proposed by Genest et al., (1995). Similar to Chen and Fan (2006a), 

they found that ML and IFM methods are non-robust against misspecification of the marginal 

distributions and the semi-parametric method, where the margins are estimated non-

parametrically by their empirical distributions, performs better than the ML and IFM methods. 

To avoid such misspecification in this paper, we also specify the margins non-

parametrically by the empirical distribution function. Thereby, reducing the deviation caused by 

any misspecification of the marginal distribution. To improve the computational efficiency we 

use a two-step estimation method: first, displaying the marginal distributions by applying the 

empirical distribution function, then implementing the local likelihood method in parameter 

estimation, where the dependence structure is modelled by a deterministic function of time.  

Capturing the time varying nature of the copula parameters has received increased 

attention in the last decade, not least because it has become increasingly recognised that the 

dependence structure of financial assets is time-varying. Patton (2006a,b) assumed that current 

dependence is reliant on previous dependence and the historical average differences of the 
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cumulative probabilities of the two series (see, also Patton, 2009). Other studies for the 

estimation of time-varying copulas include Rodriguez (2007), who proposed a time-varying 

mixture copula where the weight of each copula and their marginal distributions follow a two 

stage switching process. Jondeau and Rockinger (2006) assumed that the dependence is a 

function of historical realisations and a deterministic function of time. 

Further work, modeling the copula parameter, directly or indirectly, as a function of time 

includes Bartram et al (2007) and Ane et al (2008). However, due to the uncertainty and 

complexity of the correlation structure between financial assets, there is a high degree of 

subjectivity in assuming the nature of the evolution function of the time-varying copula 

parameters. Thus, in this paper, instead of assuming the time-varying copula parameter 𝛼 follows 

a specific evolution function, we estimate 𝛼  non-parametrically as an unknown function of time 

𝛼(𝑡) by the local likelihood method, thereby reducing the bias caused by any misspecification.  

This paper is closely related to the work of Hafner and Reznikova (2010), but differs in a 

variety of ways: First, we apply the CML method where the margins are captured by the 

empirical distribution function, while Hafner and Reznikova (2010) specify the margins by 

parametric GARCH-type processes. As noted above the CML method offers an advantage as a 

consistent estimator of the true cumulative distribution function. Although both approaches apply 

the local likelihood method for copula parameter, second, we obtain the optimal bandwidth 

through a maximum pseudo likelihood function which is computationally convenient. A further 

statistical test on whether the copula parameter is time-varying is also introduced here. Finally, 

we use two simulation studies to show that our method is not only feasible but also superior to 

other benchmark methods in the literature. 
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 In order to further verify the proposed estimation methodology and the time-varying 

hypothesis test, we investigate the dynamic linkages between Shanghai, Shenzhen and Hong 

Kong stock markets. We find that market integration between mainland China and regional 

developed markets, such as Hong Kong, has significantly increased since the reform of non-

tradable shares in 2005. While the financial crisis hit the Hong Kong market badly and caused a 

decrease in correlation between mainland China and the Hong Kong stock market, it did not have 

a huge impact on the dependence structure between stock markets in mainland China. Finally, 

we find the correlation for Shanghai/Hong Kong and Shenzhen/Hong Kong significantly 

increased in early 2009, when the Chinese stock market started its bear market. This finding is 

consistent with Longin and Solnik (2001), which suggests that stock markets are more correlated 

in bear markets. The increased market integration suggests that there will be less portfolio 

diversification opportunities. However, at the end of our sample period, Shenzhen/Hong Kong 

became less dependent after 2010, while this is not observed for Shanghai/Hong Kong.  

 

2. Estimating the time-varying copula parameter 

Assume the return series of financial assets 𝐴 and 𝐵 have a joint distribution function given by 

𝐻(𝑟!, 𝑟!). The cumulative distribution functions for 𝑟! and 𝑟! are defined as 𝐹!(𝑟𝐴) and 𝐹!(𝑟𝐵) 

respectively. By Sklar’s Theorem, there exists a copula function 𝐶! that links the two marginal 

distributions (Nelsen, 1998): 

𝐶! 𝑢!,𝑣! = 𝐶! 𝐹! 𝑟!! ,𝐹!(𝑟!!) = 𝐻(𝑟!! , 𝑟!!)                                      (1) 

where 𝑢!,𝑣! are marginal distributions and 𝑢, 𝑣 ∈ [0,1]. In the following section, we will use a 

two-step method for parameter estimation of the time-varying copula. In step 1, we display the 

marginal distribution by the empirical transformation function. Chen and Fan (2006b) found that 
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if incorrect cumulative distribution functions are used for marginal distributions of, say, {𝑥!} and 

{𝑦!}, large deviations might occur in the estimation process. They suggested using the empirical 

measure for finite samples as the empirical distribution function is a consistent estimator of the 

overall distribution function. Therefore, we employ the empirical distribution function of {𝑥!} 

and {𝑦!} as an estimator of their overall distribution function and let: 

𝑢! = 𝐹! 𝑥! = !
!

𝐼(𝑥! ≤ 𝑥!)!
!!! , 𝑣! = 𝐹! 𝑦! = !

!
𝐼(𝑦! ≤ 𝑦!)!

!!!                (2) 

where 𝐼(Θ) is the indicator of event Θ, 𝐹! ∙ ,   𝐹!(∙) are the cumulative distribution functions of 𝑋 

and 𝑌. If {(𝑥! ,𝑦!)}!!!!  are the return series of financial assets 𝐴 and 𝐵 then the return series 

{(𝑟!! , 𝑟!!)}!!!!  can be transformed to {(𝑢! , 𝑣!)}!!!!  by the above function, where 𝑢! = 𝐹! 𝑟!! , 

𝑣! = 𝐹! 𝑟!! ,	  are the margins and 𝐹! ∙ ,   𝐹!(∙) are the cumulative distribution functions of the 

return series 𝑟! and 𝑟!. 

 In step 2, we estimate the time-varying copula parameter by applying the local likelihood 

estimation method. Although the copula parameter is time-varying, it can always be assumed as 

a deterministic function of time within a small time interval. Hafner and Reznikova (2010) use 

the local constant method to approximate the copula parameter. In this paper, we assume the 

copula parameter to be piecewise linear and approximate it with a local linear function. Using the 

local linear method not only simplifies the computational process, but also generates estimates 

with smaller MISEs (Minimum Integrated Squared Errors) than local constant estimates and 

overcomes the boundary effects (Fan and Gijbels, 1996).  

In the following section, we assume that the second derivative of the time varying 

parameter 𝛼! exists and is continuous. For a given time, 𝑡!, we locally approximate 𝛼! by the 

following procedure   𝛼! ≈ 𝛽! + 𝛽!(𝑡 − 𝑡!) , where 𝑡 ∈ [𝑡! − ℎ, 𝑡! + ℎ] . Therefore, the local 

pseudo likelihood function at time 𝑡! can be written as: 
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𝐿 𝛽!,𝛽!;ℎ, 𝑡! = 𝑙𝑜𝑔𝑐 𝑢! , 𝑣!;𝛽!,𝛽!!
!!! 𝐾!(𝑡 − 𝑡!)                          (3) 

where 𝑐 𝑢, 𝑣 = !!!(!,!)
!"!#

, ℎ > 0 is the smoothing parameter, and 𝐾! ∙ =
!
!
𝐾(∙/ℎ). 𝐾(∙) is a 

two-side kernel estimation function, since the estimation of 𝛼!!  is based on time interval 

[𝑡! − ℎ, 𝑡! + ℎ]. In the section below, we use the two-side Epanechnoikov kernel function in our 

estimation. The Epanechnikov kernel has a smooth estimated density function and is generally 

regarded as a good kernel function, see Fan and Gijbels (1996). The kernel function can be 

expressed as: 𝐾 𝑢 = 0.75(1− 𝑢!)𝐼!!!!!!. Thus, with a fixed smoothing parameter, ℎ, we 

maximise the likelihood function over parameters 𝛽!, 𝛽!, to find the estimated value for the 

copula parameter at time 𝑡!: 𝛼!! = 𝛽!. A further reason to use the Epanechnoikov kernel lies in 

its popularity since it is one of the most commonly used kernel functions (the two most 

commonly used kernel functions are Gauss kernel and Epanechnoikov kernel). Notwithstanding 

this, the choice of the kernel is less important in non-parametric modelling, as it has little effect 

on the final estimates. However, the choice of the smoothing parameter is crucial and therefore 

will be discussed separately in the next section. It is also worth mentioning that the above 

discussion is restricted to a one parameter copula function. If the copula function has more than 

one parameter, for example, the student 𝑡 copula or the SJC copula, the simulation process can 

be done by taking the first order Taylor approximation for both parameters. In the case of two 

copula parameters, we locally approximate the parameters by the following functions: 

𝜌! ≈ 𝛽! + 𝛽!(𝑡 − 𝑡!), 𝐷𝑜𝑓! ≈ 𝛽! + 𝛽!(𝑡 − 𝑡!), 

where 𝑡 ∈ [𝑡! − ℎ, 𝑡! + ℎ]. Then, equation (3) can be rewritten as:  

𝐿 𝛽!,𝛽!,𝛽!,𝛽!;ℎ, 𝑡! = 𝑙𝑜𝑔𝑐 𝑢! , 𝑣!;𝛽!,𝛽!,𝛽!,𝛽!!
!!! 𝐾!(𝑡 − 𝑡!)                  (4) 

The corresponding copula parameters can be estimated by maximising the above function. 
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The marginal distributions are assumed to be continuous, but without any functional form. 

Therefore, using the ECDF for margins is likely to be more consistent than methods such as 

Patton (2006a, b) and Hafner and Reznikova (2010), which requires the marginal distributions to 

be specified up to a finite number of unknown parameters, and are likely to be inconsistent even 

if just one marginal distribution is misspecified. Further, since we estimate each margin non-

parametrically, where the sample size is moderate to large, the estimates from the ECDF-LML 

(empirical cumulative distribution function – local maximum likelihood) are asymptotically 

normal.1 The above two-step ECDF-LML method is estimated level by level, plugging in 

parameters from previous levels at each step, which increases the computational speed 

considerably, but reduces its asymptotic efficiency. 

 

3. Bandwidth selection 

Bandwidth selection plays an important role in non-parametric density estimation. The optimal 

bandwidth is often obtained by minimising the Mean Integrated Square Error (MISE) (see, for 

example, Fan et al, 1998; Hafner and Reznikova, 2010). Other popular methods for bandwidth 

selection include: LSCV, MLCV and GCV.2 In this paper, the optimal bandwidth is obtained by 

the following procedure: first, we limit our bandwidth selection to a possible set {ℎ!, ℎ!,… , ℎ!}; 

second, for each ℎ! , 𝑖 = 1,2,… ,𝑚, we obtain the pseudo log-likelihood function: 

𝑙𝑜𝑔𝑐(𝑢! , 𝑣! ,𝛼 𝑡, ℎ ;ℎ = ℎ!)
!

!!!

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  The asymptotically normal property is described in Genest et al (1995), Tsukahara (2005) and Hafner and 
Reznikova (2010) for ECDF and local likelihood method separately.	  
2	  LSCV: Least-Square Cross-Validation; MLCV: Maximum Likelihood Cross-Validation; GCV: Generalised Cross-
Validation. 
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where 𝛼 𝑡, ℎ  is obtained from equation (3) by maximising the likelihood function over 

parameters 𝛽!, 𝛽!: 

𝛽!,𝛽! = argmax!!,!! 𝑙𝑜𝑔𝑐 𝑢! , 𝑣!;𝛽!,𝛽!!
!!! 𝐾!(𝑡 − 𝑡!)                         (5) 

Third, the optimal bandwidth is the one that maximise the pseudo log-likelihood function: 

ℎ!"# = 𝑎𝑟𝑔max! 𝑙𝑜𝑔𝑐(𝑢! , 𝑣! ,𝛼 𝑡, ℎ ;ℎ)!
!!!                                (6) 

 

4. Time-varying hypothesis testing 

A large amount of literature states that the dependence between financial asset returns is time-

varying, such as Longin and Solnik (1995), Engle (2002), Rodriguez (2007), Patton (2006a,b). 

However, none of these have tested the time-varying nature of the dependence structure. In this 

paper, we perform a generalised maximum pseudo-likelihood ratio test for the time-varying 

nature of the copula parameter. The theoretical background of this method is the so-called Wilks 

phenomenon introduced in Fan et al (2001). Fan et al (2001) proposed a generalised likelihood 

statistic to overcome the failure of applying a maximum likelihood ratio test on most non-

parametric test settings. Based on the local linear fitting and some sieve methods, they show that 

the genreralised likelihood test achieves the optimal minimax rate for hypothesis testing and, 

with proper choice of the smoothing parameters this likelihood test is indeed general and 

powerful for most non-parametric settings. This further supports for the use of the generalised 

likelihood method in our paper.  

 The test is based upon the following hypothesis: 

𝐻!:  𝛼! = 𝛼! = 𝑐𝑜𝑛𝑠𝑡; 𝐻!:  𝛼! ≠ 𝛼! ≠ 𝑐𝑜𝑛𝑠𝑡 

the pseudo log-likelihood function for 𝐻! is: 

𝜆 𝐻! = 𝑙𝑜𝑔𝑐(𝑢! , 𝑣! ,𝛼!;ℎ!"#)!
!!!                                          (7) 
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where ℎ!"#  is the optimal bandwidth determined by equation (5), 𝛼!  is the time-varying 

parameter under optimal bandwidth ℎ!"#. Similarly, we have the pseudo log-likelihood function 

for 𝐻!: 

𝜆 𝐻! = 𝑙𝑜𝑔𝑐(𝑢! , 𝑣! ,𝛼!)!
!!!                                               (8) 

where 

𝛼! = 𝑎𝑟𝑔max! 𝑙𝑜𝑔𝑐(𝑢! , 𝑣! ,𝛼)!
!!!                                           (9) 

The pseudo-likelihood ratio test is expressed as: 

𝜆 = 2(𝜆 𝐻! − 𝜆 𝐻! )                                                    (10) 

where the distribution of the test statistic   𝜆 is obtained through a bootstrap method, as described 

in Cai et al (2000) and Fan et al (2003). Under the null hypothesis, the bootstrap is implemented 

by computing critical values or 𝑃-values for 𝜆 as described in equation (6) as follows: 

 

Step 1: Simulate a sample of observed values {(𝑢!∗, 𝑣!∗)}!!!!  from a specified copula with given 

constant parameter 𝛼! in equation (8) 

Step 2: Estimate the time varying copula parameter by applying the ECDF-LMLE method from 

the bootstrap sample {(𝑢!∗, 𝑣!∗)}!!!!  

Step 3: Computing 𝜆∗ using equation (9) on the bootstrap sample {(𝑢!∗, 𝑣!∗)}!!!!  

Step 4: Repeat Step1 to 3 for 𝑁 = 1000 times and compute the bootstrap 𝑃-values.  

 

5. Simulation 

In this section, we implement a Monte-Carlo simulation to evaluate the performance of the 

ECDF-LML method by comparing it with a benchmark estimation method found in literature. In 

particular, we consider the method described in Patton (2006a,b) as the benchmark method for 
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the time-varying copula parameters. The aim, therefore, is to demonstrate that the method here in 

estimating time-varying copula parameters is superior to the benchmark method. Two scenarios 

are conducted to investigate the performance of ECDF-LML estimates. The first scenario 

compares the ECDF-LML estimates directly to the estimates from Patton’s method in terms of 

finite sample bias and variance, in order to demonstrate the robustness of our results. In the 

second scenario, a Monte-Carlo simulation study is carried out to compare the estimates obtained 

in the first scenario for different sample sizes in term of the generated Mean Squared Errors 

(MSEs) and Mean Absolute Relative Errors (MAREs). 

 

Scenario 1 Robustness Check 

The following example compares the ECDF-LML estimates directly to estimates generated by 

Patton’s method. The copulas that have been tested include the Gaussian, student-𝑡, and the SJC 

copula. In this section, we only report the results for the Gaussian copula as the other copulas 

delivers similar results, nevertheless, the simulation results for the other copulas are available 

upon request.  

 Following Nelson (2006), we design a three-step simulation process to generate the true 

and fitted values of the time-varying copula parameters. The true value refers to the copula 

parameter generated by Patton (2006)’s method and the fitted value is the ECDF-LML estimates. 

The three-step simulation process is described as follows:  

First, the true value is estimated though the following function as described in Patton 

(2006), with the initial value 𝜌! = 0.5, and the initial values of 𝑢! , 𝑣!  randomly generated from 

a uniform distribution[1].  

𝜌! = 𝛬(𝜔 − !
!"

𝑢!!! − 𝑣!!!!"
!!! + 𝛽𝜌!!!)                               (11) 
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where 𝛬 𝑥 = !!!!!

!!!!!
 is the logistic transformation function which limits the range of 𝜌! ∈ [−1,1]. 

Using a bootstrap method, we insert the value of 𝜌!!! from the previous step for 𝜌! and the value 

𝑢!!!, 𝑣!!!  is generated from a known bivariate distribution which is constructed by a Gaussian 

copula with parameter 𝜌!!!.3 Applying the bootstrap 𝑁 = 1000 times we obtain the true value of 

the time-varying copula parameters 𝜌! !!!
!""". We remove the first 200 estimates to avoid any 

impact from the initial value, 𝜌!  , and initial value of 𝑢! , 𝑣! , thus we have:   𝜌! !!!"#
!""" . 

In the second step, we also obtain a bootstrap sample {(𝑢!∗, 𝑣!∗)}!!!"#!""" . This sample data is 

then used to calculate the ECDF-LML estimates 𝜌! !!!"#
!""" . Finally, by repeating the previous 

steps 1000 times, we obtain 1000 estimated values for each 𝜌! !!!"#
!!!! . The fitted value is then 

calculated by taking the average of the 1000 estimated values for each 𝜌! !!!"#
!""" .  

Table 1 shows the descriptive statistic of the time-varying copula parameters. We find 

that the true value and the fitted value are very close on first quartile, mid value, average value, 

and third quartile. The purpose of doing this is to demonstrate the feasibility and robustness of 

the above proposed method.  

We also test the effect of changing sample size. Three different sample sizes are chosen. 

As the sample size increase, we would expect to see the estimator’s variance decrease. These 

results are presented in Table 2, where we list the deviations and the mean square errors for three 

different sample sizes at time point 𝑡 = 0.1𝑇, 0.25𝑇, 0.5𝑇, 0.75𝑇, 0.9𝑇, where 𝑇 is the sample 

size. The parameters in equation (11) are defined as 𝜔 = 1.6, 𝛽 = 0.8 and 𝛼 = −3.6. We find 

that at each time point   𝑡 = 0.1𝑇, 0.25𝑇, 0.5𝑇, 0.75𝑇, 0.9𝑇 , the MSE of the time-varying 

parameters are very small, and indeed decreases with the increase in sample size. For 𝑇 = 500, 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 The method for simulating dependent random variables using copula can be found in Nelson (2006). 
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the finite sample bias and MSEs of the correlation parameter 𝜌 are not discouragingly high. 

However, as 𝑇 decreased to 100, it appears that none of the parameters are well estimated.  

We also fit three pairs of parameters to the evolution function, which are 𝜔 = 1.2, 

𝛽 = 0.3  and 𝛼 = −2.6 ; 𝜔 = 1 , 𝛽 = 0.7  and 𝛼 = −2 ;   𝜔 = 0.219 , 𝛽 = 0.695  and 𝛼 = 0.627 , 

and fix the sample size 𝑇  at 1000. The obtained the deviations and MSEs at time point 

𝑡 = 0.1𝑇, 0.25𝑇, 0.5𝑇, 0.75𝑇, 0.9𝑇 are presented in Table 3. As can be seen, the values of the 

MSE are small in all cases, which indicate that the ECDF-LML estimation method is relatively 

stable. The true values and the fitted values of the time-varying parameters are further illustrated 

in Figure 1. The errors and the mean square errors are presented in Figure 2. All of these results 

suggest that our simulation method is feasible and robustness following Patton’s approach.  

Finally, we provide the hypothesis test for the time-varying copula parameters. The 

statistic should be 0.5805 if the parameter is constant over time. We use a bootstrap to repeat the 

simulation 500 times, and calculate the corresponding P value as 0.004. This suggests the 

rejection of the null hypothesis. Therefore, the correlation is time-varying. 

 

Scenario 2 Test for Superiority 

In this particular example we use a student 𝑡 copula, other copulas give similar results. We first 

consider the following two processes for the time-varying dependence parameter. 

Deterministic case: 

𝜌! = 0.5+ 0.4cos  (2𝜋𝑡/200) 

Stochastic case:  

AR(1): 𝜌! = (exp 2𝜆! − 1)/(exp 2𝜆! + 1) 

𝜆! = 0.02+ 0.97𝜆!!! + 0.1𝜀! 
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𝜀!~𝑁(0,1) 

In each process, we calculate the true value of 𝜌! , using three different sample size (𝑇 =

300, 500, 800). Using the algorithm introduced in Nelson (2006), we randomly draw a pair of 

uniform variables(𝑢! , 𝑣!) for each 𝜌! from a predefined student 𝑡 copula with a fixed degrees of 

freedom, six. Due to the extremely high complexity involved, only 300 Monte Carlo replications 

are performed. The student 𝑡 copula is defined as follows: 

𝐶!
!,! 𝑥,𝑦 = !

!! !!!!
!
!
  !!!!(!)

!∞  
!!!!(!)
!∞ {1+ !!!!!"#!!!

! !!!!
}!(!!!)/!𝑑𝑠𝑑𝑡                 (12) 

where 𝜌 is the correlation coefficient, and 𝑡!!!(𝑢) is the inverse of the standard 𝑡 distribution 

with degree of freedom  𝑣. The time-varying parameter ρ! described in Patton (2006) has the 

following expression 

Through estimation, we have { 𝑈! ,𝑉! !!!
! }!!, 𝑁 = 300 and is the number of Monte Carlo 

replications. In each Monte Carlo replication, we calculate the time varying copula parameter by 

ECDF-LML and Patton’s methods respectively.  

The time varying correlation coefficient in Patton (2006) is described as follows: 

𝜌! = Λ(𝑤 + 𝛽!𝜌!!! + 𝛽!
!
!"

Φ!!(𝑢!!!)Φ!!(𝑣!!!)!"
!!! )                           (14) 

where 𝛬 𝑥 = !!!!!

!!!!!
 is the logistic transformation function to ensure 𝜌! ∈ [−1,1]. 

The performance is evaluated by the two measures: 

The Mean Squared Error: 𝑀𝑆𝐸 = !
!

!
!

!
!!! (𝜌!! − 𝜌!!)!!

!!!  

The Mean Absolute Relative Error: 𝑀𝐴𝑅𝐸 = !
!

!
!

!
!!! (𝜌!! − 𝜌!!)/𝜌!!!

!!!  

where 𝑁 is the number of Monte Carlo replications, 𝑇 is the sample size and 𝜌!! and 𝜌!! denote 

the estimated and the true copula parameter in the 𝑛’s replication.  
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The results are summarised in Table 4. For each sample size, we define two series of true 

values for copula parameters which follow deterministic and stochastic functions respectively. 

We compare the estimated parameters by means of MSE and MARE. As can be seen, smaller 

MSEs and MAREs are observed using ECDF-LML method, reflecting its higher asymptotic 

efficiency. Furthermore, we observe decreased MSEs and MAREs with increased sample sizes 

using our method in the deterministic case, which demonstrate that the ECDF-LML method 

produces consistent estimates. However, this is not observable using Patton’s method. Indeed, 

for the copula parameters, the ECDF-LML appears to suffer slightly less under the reduced 

sample size than its competitor. Another way to compare the two approaches is through 

examining the time-series plot for the copula parameters and the boxplot for the estimated errors. 

Figure 3 plots the time-series for true parameters and the copula parameter estimates using 

ECDF-LML and Patton’s methods. We only plot the case for the sample size 𝑇 = 300. Other 

sample sizes give similar results. As can be seen, the ECDF-LML produce a set of fitted values 

that are closer to the true values than the method of Patton. Figure 4 presents the boxplots for the 

estimated errors at time 𝑡 = 10%, 25%, 50%, 75% and 90% of the total sample. Again, we only 

present the case with sample size 𝑇 = 300 as other sample sizes produce similar results. All the 

time-varying parameters are generated by student 𝑡  copula with correlations following 

deterministic and stochastic functions. The number of Monte Carlo replications is 300. In each 

case, the first figure is calculated form ECDF-LML method while the second figure is by 

Patton’s method. As can be seen, the second quartile (the median) of the estimated errors of our 

method is closer to 0 than the alternative approach. Therefore, our method produces more 

reliable estimates than Patton’s. Both figures demonstrate that the performance of the ECDF-

LML estimates are satisfactory compared to its contender. 
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6. Empirical application on three main Chinese stock markets 

Chinese stock markets exemplify many characteristics of emerging markets, which differentiates 

them from developed financial market. Furthermore, an examination of Chinese financial 

markets is worthwhile in order to understand the applicability or otherwise of established 

financial theory to China. 

In this section, we investigated the dynamic dependence between the stock index returns 

on the Shanghai, Shenzhen and Hong Kong stock markets. This will allow us to discuss how 

these markets respond to information and whether they were affected by the same information. 

Moreover, this empirical exercise is used to verify the proposed estimation and testing 

methodology. Weekly stock market indices are obtained from the Wind Database, with data 

coverage from 2003.1.3 to 2012.6.28. The indices are the Shanghai Stock Exchange Composite 

Index (SH), the Shenzhen Stock Exchange Composite Index (SZ) and the Hong Kong Hang 

Seng Index (HS). We have in total 548 observations after removing any non-matching data due 

to different trading dates. 

 

6.1. Descriptive statistics 

Table 5 displays some basic statistic information for the three return series. As can be seen, the 

average return of the Shenzhen stock market is the highest amongst the three, followed by the 

Hong Kong stock market. The stock markets in mainland china are slightly more volatile than 

the Hong Kong stock market, and have negative skewness, which indicate the existence of tail 

risk; while for Hong Kong the value is positive. Using the Jarque-Bera test we also find 

significant evidence of departure from normality.  
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6.2. Empirical analysis and results 

Due to the non-normal, notably, fat tail behavior observed for the three stock returns, we use the 

student-𝑡 copula to examine the dependence between these three major stock markets in China. 

Table 5 shows the descriptive statistics of the time-varying correlation coefficients as modelled 

by the student-𝑡 copula. We find the Shanghai and Shenzhen stock markets are highly correlated 

with 75 percent of the correlation coefficients higher than 0.84. This demonstrates a very close 

relationship between the two markets. In contrast, Shanghai and Hong Kong (SH/HS) and 

Shenzhen and Hong Kong (SZ/HS) have lower constant correlation parameters, indicating a 

weaker integration between mainland China and the regional developed market. Nonetheless, for 

the two pairs, 25 percent of the time-varying correlation coefficients are higher than 0.47, 

indicating that a high degree of dependence is often observed. The P value of the time-varying 

test suggests that the correlation coefficients are time-varying. 

The dynamic dependences between the three stock markets are presented in Figures 5, 6 

and 7 where the horizontal line is the constant copula parameter. We find that the correlation 

between these markets varies significantly over time. For the SH/SZ correlation, while these two 

markets are distinct with dual listing not allowed, there exists a consistently higher correlation 

between them, with the average correlation coefficient above 0.9. Compared to the SH/SZ pair, 

the SH/HS and SZ/HS pairs are less correlated but that correlation exhibits greater fluctuation, 

with the dynamics appearing to respond to financial events. We also find that time-varying 

correlations between SH/HS and SZ/HZ have very similar patterns. Both fluctuate at a lower 

level from 2003 to 2005 which indicates a weaker integration between stock markets in mainland 

China and the Hong Kong stock market. Moreover, evidence of significant increases in 
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correlation after 2005 is observed between these stock markets, which may point to evidence of 

financial contagion.  

As can be seen from Figures 6 and 7, there are several peaks and sharp increases during 

the sample period. There was a significant rise in correlation in 2005. This can be considered as a 

direct response to the 2005 non-tradable share (NTS) reform, which leads to an enhanced 

relation between China and regional developed markets. However, as reflected by Figure 5, the 

reform had only a very limited impact on the dependence structure between the stock markets in 

mainland China. Following this initial increase, the correlation between mainland China and 

Hong Kong continue to fluctuate at a higher level, with average correlation at about 0.6.  

The correlations for SH/HS and SZ/HS start to fall during the subprime crisis and 

fluctuate at a relatively lower level. This is perhaps surprising as much of the literature reports 

that the cross market correlation will increase significantly after a shock. This fall of correlation 

may be due to the different movements these stock markets experienced in response to the 2007 

financial crisis. As the Hong Kong stock market is regarded as one of the more mature financial 

centers and plays an important role in the regional economy, it experienced a larger response to 

the financial crisis. On the other hand, the crisis did not seem to have a huge impact on the 

Shanghai and Shenzhen stock markets. Although the Chinese economy is closely linked to the 

rest of the world, there is only limited stock trading open to foreign investors through the trading 

of B shares. This leads to a low integration between the Chinese stock markets and the world 

economy. For the financial crisis that started in July 2007, we do not observe a significant 

change in the dependence structure for SH/SZ pair, which indicates that the markets of mainland 

China were not affected in the same way as Western stock markets. This, of course, has 
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important practical implication for investors as they can reduce total risk by diversifying into 

Chinese stocks. 

 The final significant increase was observed in early 2009, when the Chinese stock market 

started its bear market. This finding is consistent with Longin and Solnik (2001), where they 

found that stock markets are more correlated in bear markets. This increased market integration 

suggests that there will be less portfolio diversification opportunities between these markets. Our 

results also suggest that the correlation at the end of the sample period is higher than the earlier 

2000s which point to the evidence of further market integration towards the end of the sample 

period. However, the difference is, Shenzhen and Hong Kong stock markets became less 

dependent after 2010 for a short period, while the correlation between Shanghai and Hong Kong 

continuously fluctuates at a higher level.  

 

7. Summary and Conclusion 

The main purpose of this paper is to propose a non-parametric method to estimate the time-

varying parameters on copula. In particular, this is achieved in two steps by first, displaying the 

marginal distributions of financial asset returns by their empirical distribution function and 

second, implementing the local likelihood method to estimate the copula parameters. The method 

for obtaining the optimal bandwidth through a maximum pseudo likelihood function and a 

statistical test on whether the copula parameter is time-varying are also introduced. Furthermore, 

we use two simulation studies to show that the proposed method is feasible and superior to its 

nature competitor. Finally, we use the proposed method to investigate the relationships between 

Shanghai, Shenzhen and Hong Kong stock markets.  
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Simulation results support our proposed estimation method, with only small MSEs 

obtained across a range of sample sizes and parameter values. With respect to the empirical 

exercise, we report that market integration between mainland China and the regionally developed 

market of Hong Kong has significantly increased since the reform of non-tradable shares in 2005. 

While the financial crisis hit the Hong Kong market badly and caused a decrease in correlation 

between mainland China and the Hong Kong stock market, it did not have a huge impact on 

stock markets in mainland China. Finally, we found the correlation for Shanghai/Hong Kong and 

Shenzhen/Hong Kong significantly increased in early 2009, when the Chinese stock market 

started its bear market. This finding is consistent with Longin and Solnik (2001), which suggests 

that stock markets are more correlated in bear markets. The increased market integration 

suggests that there will be less portfolio diversification opportunities. However, at the end of our 

sample period, SZ/HS became less dependent after 2010 for a short period, while this is not 

observed for SH/HS pair.  
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Table 1 Descriptive Statistics of the Time-varying Gaussian Copula Parameters 

Statistics Min First	  Quartile	   Mid	   Ave	   Third	  Quartile	   Max	  
True	  value	   0.0098	   0.5025	   0.5997	   0.5683	   0.6657	   0.7450	  
Fitted	  value	   0.1595	   0.5014	   0.5923	   0.5598	   0.6502	   0.7235	  
Note:	  results are based on parametric setting 𝜔 = 1.6, 𝛽 = 0.8 and 𝛼 = −3.6	  

 
Table 2 Simulation Results by Different Sample Size 

	  
t= 0.1𝑇	   𝑡 = 0.25𝑇	   𝑡 = 0.5𝑇	   𝑡 = 0.75𝑇	   𝑡 = 0.9𝑇	  

	  
Bias	   MSE	   Bias	   MSE	   Bias	   MSE	   Bias	   MSE	   Bias	   MSE	  

𝑇 = 100	   -‐0.025	   0.023	   -‐0.012	   0.053	   0.016	   0.079	   0.042	   0.047	   -‐0.007	   0.043	  
𝑇 = 300	   -‐0.002	   0.024	   -‐0.101	   0.049	   -‐0.01	   0.027	   -‐0.058	   0.047	   -‐0.001	   0.066	  
𝑇 = 500	   0.015	   0.023	   0.001	   0.05	   0.004	   0.024	   -‐0.008	   0.042	   -‐0.005	   0.046	  

Note: results are based on parametric setting 𝜔 = 1.6, 𝛽 = 0.8 and 𝛼 = −3.6 
 

Table 3 Simulation Results by Different Parameter Settings 

	  
𝜔 = 1.2, 𝛽 = 0.3 

𝛼 = −2.6	  

𝜔 = 1, 𝛽 = 0.7 

𝛼 = −2	  

𝜔 = 0.219, 𝛽 = 0.695 

𝛼 = 0.627	  

	   Bias	   MSE	   Bias	   MSE	   Bias	   MSE	  
t= 0.1𝑇	   -‐0.0257	   0.095	   -‐0.027	   0.066	   -‐0.027	   0.083	  
𝑡 = 0.25𝑇	   -‐0.028	   0.053	   -‐0.011	   0.065	   -‐0.05	   0.041	  
𝑡 = 0.5𝑇	   -‐0.012	   0.071	   0.003	   0.078	   0.044	   0.05	  
𝑡 = 0.75𝑇	   -‐0.019	   0.073	   -‐0.003	   0.079	   0.032	   0.038	  
𝑡 = 0.9𝑇	   -‐0.02	   0.089	   -‐0.023	   0.087	   -‐0.021	   0.017	  

Note: Sample size 𝑇 is fixed at 1000. 

 

 

 

 

 



23	  
	  

 

Table 4 MSE and MARE for estimated time varying student 𝒕 copula parameter 𝝆 

	  
Deterministic	  Case	   Stochastic	  Case	  
MSE	   MARE	   MSE	   MARE	  

𝑇 = 300	  
ECDF-‐LML	   0.030	   0.034	   0.029	   0.030	  
Patton	   0.051	   0.051	   0.032	   0.032	  

𝑇 = 500	  
ECDF-‐LML	   0.018	   0.010	   0.031	   0.031	  
Patton	   0.052	   0.101	   0.065	   0.124	  

𝑇 = 800	  
ECDF-‐LML	   0.016	   0.024	   0.027	   0.056	  
Patton	   0.054	   0.137	   0.049	   0.132	  

Note: For each sample size, we consider two functions for the true copula parameter: deterministic and Stochastic. 

The number of Monte Carlo replication is 300. The estimates are compared with the true copula parameter by 

means of MSE and MARE. 
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Table 5 Descriptive Statistics of the Three Stock Returns 

 
	  Mean	   	  Median	   	  Maximum	   	  Minimum	   	  Std.	  Dev.	   	  Skewness	   	  Kurtosis	  

Shanghai	   0.128	   0.000	   14.948	   -‐13.863	   3.533	   0.233	   4.951	  
Shenzhen	   0.227	   0.120	   16.817	   -‐15.343	   4.035	   -‐0.058	   4.535	  
Hang	  Seng	   0.193	   0.467	   12.433	   -‐16.319	   3.118	   -‐0.126	   5.832	  
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Table 6 Descriptive Statistics of the Correlation Coefficient as Modeled by the Student 𝒕 
Copula 

	  

  Time-‐varying	  Parameter 
Constant	  
Parameter 

TV	  Test	  

  Min	   First	  
Quartile	   Mid	   Avg	   Third	  

Quartile	   Max	   Test	  
Statistics	   P-‐value	  

SH-‐
SZ	   0.751	   0.838	   0.930	   0.905	   0.964	   0.988	   0.908	   -‐62.45	   0 

SH-‐
HS	   -‐0.116	   0.202	   0.452	   0.403	   0.600	   0.771	   0.362	   -‐25.46	   0 

SZ-‐
HS	   -‐0.153	   0.115	   0.299	   0.299	   0.476	   0.725	   0.260	   -‐30.21	   0 
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Figure 1. Time-varying Parameters from Simulated Data 
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Figure 2. Biases and Mean Square Errors of the Simulation Results 
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Figure 3. Time-series Plots for the Estimated Copula Parameters 

 

 

Note: Sample size 𝑇 = 300, and the number of Monte Carlo replication is 300. 
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Figure 4. Boxplots for the Estimated Errors  

Deterministic Case, 𝑻 = 𝟑𝟎𝟎 

 

Stochastic Case, 𝐓 = 𝟑𝟎𝟎 

 

Note: Sample size 𝑇 = 300 and the number of Monte Carlo replication is 300. 

 

 

 

 



30	  
	  

 

Figure 5. Shanghai and Shenzhen Time-Varying Correlation 
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Figure 6. Shanghai and Hong Kong Time-Varying Correlation 
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Figure 7. Shenzhen and Hong Kong Time-Varying Correlation 
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