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Abstract: A modified adaptive bats sonar algorithm (MABSA) is presented that utilises the concept of echolocation of a 
colony of bats to find prey. The proposed algorithm is applied to solve the constrained optimisation problems coupled with 
penalty function method as constraint handling technique. The performance of the algorithm is verified through rigorous tests 
with four constrained optimisation benchmark test functions. The acquired results show that the proposed algorithm performs 
better to find optimum solution in terms of accuracy and convergence speed. The statistical results of MABSA to solve all the test 
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functions. The comparative study has shown that MABSA outperforms other establish algorithms, and thus, it can be an 
efficient alternative method in the solving constrained optimisation problems. 
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1 Introduction 
Constrained optimisation problems normally come with 
lack of explicit mathematical formulation but have discrete 
definition domains, mixed of continuous and discrete design 
variables and also strong nonlinear objective functions with 
multiple complex constraints (Garg, 2014). However, due to 
computational drawbacks and the requirement of substantial 
gradient information traditional numerical programming 
strategies are incapable to solve constrained optimisation 
problems consistently (Sadollah et al., 2013). The 

alternative prospect to attain constrained optimisation 
problems is by metaheuristic methods (Hsieh, 2014). 

Among most popular metaheuristic methods are swarm 
intelligence algorithms. These algorithms are inspired from 
the collective behaviour of swarms through complex 
interaction between individuals and its neighbourhood with 
nature (Hsieh, 2014). The most remarkable parts in any 
swarm intelligence algorithms are that the algorithm has 
advantages of memory, diverse multi-characters capability, 
rapid solution improvement mechanism and adaptable to 
internal and external changes (Garg, 2014). Particle swarm 
optimisation (PSO), artificial bee colony (ABC), ant colony 
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optimisation (ACO) and bat algorithm (BA) for instance are 
some examples of swarm intelligence algorithms that have 
already captured attention of researchers. 

This paper introduces a new swarm intelligence 
algorithm, the so called modified adaptive bats sonar 
algorithm (MABSA) which is an improved version of the 
original adaptive bats sonar algorithm (ABSA) by Yahya  
et al. (2016). The algorithm is inspired from bat sonar used 
in bats echolocation to find prey. In this paper, the MABSA 
is proposed and applied to several constrained optimisation 
benchmark test functions. 

The remainder of this paper is organised as follows. 
Section 2 details the constrained optimisation problems, the 
penalty function method as a constraint handling technique 
and several previous researches using swarm intelligence 
algorithms to solve constrained optimisation problems. 
Section 3 describes the bats echolocation concepts and the 
proposed algorithm. Section 4 discusses computer 
simulation results and finally, conclusions are drawn in 
Section 5. 

2 Constrained optimisation problems 
2.1 Background 
A constrained optimisation comprises an objective function 
together with some equality and inequality constraints 
subject to lower bound and upper bound of variables as: 
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Here, gj(x) represents inequality constraint functions with J 
inequality constraints. hk(x) represents equality constraints 
functions with K equality constraints. ( )L

ix  represents the 

lower bounds and ( )U
ix  the upper bounds of variable xi with 

n variables, respectively. 

2.2 A penalty function 
In the penalty function, the original objective function F(x) 
is replaced by a substituted function C(x) which considers 
the original objective function F(x) with added penalty 
function P(x) that introduces a tendency term to penalise 
constraint violations produced by x. Therefore, considering 
the constrained optimisation problem defined previously, 
the substituted function is defined as follows: 
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where μ and v represent penalty coefficients which weigh 
the relative importance of each gj(x) (inequality constraint) 
and hk(x) (equality constraint) respectively. In this work, 
values of μ and v are problem-dependant. 

2.3 Previous approaches of swarm intelligence 
algorithms 

Various research works have been reported over the past 
two decades on dealing with constrained optimisation 
problems by using swarm intelligence algorithms. 

The PSO has been the most favourable technique among 
them. Parsopoulos and Vrahatis (2005) have proposed a 
variant of PSO scheme, a unified particle swarm 
optimisation (UPSO) method with a penalty function 
approach. The proposed algorithm has abilities to explore 
and exploit the search process without needing extra 
requirements of function evaluations and also preserves 
feasibility of the encountered solutions. Cagnina et al. 
(2008) investigated simple constrained particle swarm 
optimiser (SiC-PSO) coupled with a constrained-handling 
technique. The algorithm is faster, more reliable and 
efficient after combining local best (lbest) and global best 
(gbest) models to update the velocity as well as adding 
gbest to the best position of the particles and to its 
neighbourhood. 

Another popular swarm intelligence algorithm used is 
the ABC algorithm. For instance, Garg (2014) introduced a 
penalty function guided ABC algorithm to solve several 
structural engineering design problems. Earlier, Karaboga 
and Basturk (2007) adopted Deb’s rule for the selection of 
mechanism to deal with constraints of the ABC algorithm to 
solve a set of constrained numerical optimisation problems. 
The rest of the techniques shall be categorised under swarm 
intelligence algorithms such as, BA (Yang and Hossein, 
2012) which is based on the level and loudness of the pulse 
emitted in bats echolocation and a bacterial gene 
recombination algorithm (BGRA) that was inspired from 
virus resistance process in real bacteria (Hsieh, 2014). 

Up to this time, there is no evidence of a developed 
algorithm based on the principles of bat sonar used in 
echolocation to tackle constrained optimisation problems. 
So, it is believed that the algorithm proposed in this paper 
will be the first as well as bring in the well-known 
advantages of swarm intelligence characteristics to solve 
specific problems. 

3 The proposed algorithm 
3.1 Bats echolocation in brief 
Bats habitually live in large colonies around 700 to 1,000 
individuals under sharing roosts (Altringham et al., 1996). 
There are two sets of acoustic communication used by a 
colony of bats. These are echolocation calls for foraging and 
positioning purposes and social calls for socialising or 
communicating between bats (Altringham et al., 1996). A 
colony of bats is able to create worthy communication and 
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sharing information about roost site or foraging area among 
one another. 

Echolocation is the ability of bat to produce sound with 
echoes beyond the frequency range of human hearing and 
use for general orientation and finding prey (Altringham 
et al., 1996). With echolocation, a bat emits ultrasonic 
pulses through mouth or nose in short bursts. The sound 
reflects back as echoes bump into an object in the bat’s 
path. The bat is able to recognise the object and its distance 
by calculating the time of reflection of the modulated 
echoes (Altringham et al., 1996). 

The echolocation process of bats that leads to catching 
the prey comprises of three phase; search phase, approach 
phase and terminal phase (Altringham et al., 1996). When 
the bats begin to chase for prey in the search phase, they 
emit the pulse at low rate at around a frequency of 10 Hz 
(Altringham et al., 1996). When the bat senses and gets 
closer to the prey in the approach phase, the pulses have to 
get shorter to avoid overlap (Altringham et al., 1996). This 
is because the time between the pulse and echo is dwindled 
(Altringham et al., 1996). Now, pulse emission rate gets 
progressively increased up to 200 per second as the bat 
keeps updating the location of the prey (Altringham et al., 
1996). The pulse emission rate increases because the bats 
need to emit more signals to trace the prey precisely as the 
angular position of the prey changes more swiftly due to the 
closer distance between a bat and the object. In the terminal 
phase, the frequency of emitted pulses upswings to more 
than 200 Hz and the pulse emission rate becomes faster at 
only fraction of millisecond long just before the prey is 
seized (Altringham et al., 1996). 

According to Altringham et al. (1996), a colony of bats 
also includes the concept of reciprocal altruism of food 
sharing during echolocation process. This social behaviour 
of bats group is based on animals returning favours to their 
mutual benefit. The reciprocal altruism behaviour growth in 
individual survivorship such that the fitness of the recipient 
is elevated to a non-recipient (Altringham et al., 1996). 

3.2 Modified adaptive bats sonar algorithm 
ABSA was introduced by Yahya et al. (2016) to solve 
unconstrained single objective optimisation problems. But, 
to deal with constrained single objective optimisation 
problems, a crucial problem on how to incorporate the 
inequality constraints as well as equality constraints with 
the objective function must be tackled appropriately. ABSA 
does not function well on this kind of problems as it is 
based on a direct approach. A direct approach is often 
difficult to find the solution in feasible regions enclosed by 
constraints. 

A new algorithm named the MABSA is proposed here 
by redefining as well as reformulating some elements in 
ABSA to compensate for this problem. The MABSA will be 
able to generate a potential solution that satisfy all 
constraints. The purpose of MABSA is to solve constrained 
optimisation problems. 

The MABSA is formulated after modifying three 
searching procedures of the original ABSA and adding a 

new component to it. The three procedures are the ways to 
setting up the beam length (L), determining starting angle 
(θm) and angle between beams (θi) and also calculating end 
point position (posi). On the other hand, the bounce back 
strategy is a new component that has been included in the 
MABSA, which was not considered in ABSA formerly. 
This section will elaborate solely of these three elements. 
The other components of MABSA will not be further 
discussed here as they are similar to the ABSA as presented 
in Yahya et al. (2016). 

In the MABSA, the new L is setup as: 

10%
⎛ ⎞= ×⎜ ⎟×⎝ ⎠

sizeSSL Rand
Bats

(3)

where the solution range (SSSize) is the value between the 
upper search space (SSMax) limit and the lower search space 
(SSMin) limit. Every dimension (Dim) has its specific or 
known as Dim constraints. The solution range is divided 
into micron scale, such as 10% of the overall population of 
bats in the search space. The percentage is marked as 
possible search space size of each bat to emit sound without 
colliding with one another. The random value of L is offered 
to make real variation of beam lengths of each number of 
beams (NBeam) at every Dim (but stay within the Dim 
constraints) at every iteration. This fixation pushes every bat 
at each dimension to search for larger perimeter each time 
with the opportunity to diversify the search tactic during 
iterations and thus may find the global best solution that 
may be near to them. 

Each NBeam with L is emitted from specific angle 
location. In the ABSA, the θm and θi are determined 
randomly in every iteration. So all bats will emit the NBeam 
from a set of similar angle location in each iteration. To add 
another randomisation character inside MABSA, θm and θi 
will be determined in random and separately for every bat at 
every iteration. So at each iteration, every bat will emit the 
NBeam from a different set of angle location. Therefore, this 
randomisation will also add on to diversify the searching 
process in MABSA. 

In the MABSA, the way to calculate the posi is 
redefined. The posi for each transmitted beam in MABSA is 
calculated as: 
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In the above equation, there are two random variables and 
one constant. The first random variable is called position 
adaptability factor (α). The value for α is chosen randomly 
within the range between 0 and 1. This factor is included to 
make sure that every bat is able to adapt to the new posSP 
faster as derived from the previous posSP, posLB, posRB and 
posGB. This factor has the same characteristic as random 
walk method. The second random variable is collision 
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avoidance factor (β). The value for β is also chosen 
randomly within the range between 0 and 1. The factor is 
essential to avoid the beams from overlapping or 
incidentally colliding with other bats’ beam as every bat 
produces a number of beams from new posSP 
simultaneously. 

The only constant in this equation is beam-tuning 
constant (ω) which is equal to 2. This constant can also be 
considered as acceleration constant. The function of this 
constant is to strengthen β so that ω will divert the angle of 
transmitted beam to a new angle in the designated search 
space. The value 2 is selected because it will give a good 
balance. If a very high value is selected, it will destroy the 
influence of the beam angle such that the orientation of new 
bat position will be catastrophic. A smaller value, on the 
other hand, will not make any significant change to the 
angle of transmitted beam. 

The MABSA is also equipped with bounce back 
strategy. This will confirm that every posi achieved by each 
bat during the iterations is worth considering as possible 
optimum posGB for the algorithm. When each beam is 
transmitted from every bat, it will be verified to ensure that 
the posi of the transmitted beam does not fall beyond SSMax 
or below SSMin. If the posi reaches outside SSSize, the 
transmitted beam will be diverted automatically to new 
location inside the labelled SSSize using one of the following 
equations: 

, 1, ...,= − =i Maxpos SS τ i N (5a) 

, 1, ...,= + =i Maxpos SS τ i N (5b) 

These equations contain bounce back repositioning factor 
(τ) where the value is 0 < τ < 1. This factor is to help the 
bats to relocate a beam transmission to a new beams’ end 
point from the maximum or minimum search space. This 
factor will avoid overwriting other bats’ beam end points. 
The bounce back repositioning factor is the fastest 
contingency action of bats to swing to newly transmitted 
beam’s end point after hitting the designated search space 
boundaries. This strategy helps to significantly reduce the 
time spent in considering the previous factors (which are: 
position adaptability factor, collision avoidance factor or 
beam-tuning constant) as normal bats do. Algorithm 1 
represents the pseudo code of MABSA. 

Algorithm 1: 

1: Objective function F(x), x = (x1, …, xd)T 
2: Initialise: Bats, MaxIter, Dim, SSSize, NBeamMAX and 

NBeamMIN 
3: for n ← 1 to Bats do 
4: for d ← 1 to Dim do 
5: Generate random posSP 
6:  Evaluate FSP value for F(posSP) 
7: end for 
8: end for 

9: Assign the most optimum value as FGB and its position as 
posGB 

10: while t ≤ MaxIter do 
11: Define NBeam to transmit by using BNI 
12: for n ← 1 to Bats do 
13: for N ← 1 to NBeam do 
14: for d ← 1 to Dim do 
15: Set L and limit μ (equation 3) 
16:  end for 
17: end for 
18: Generate random θm and θ 
19: Transmit NBeam starting from posSP 
20: for N ← 1 to NBeam do 
21: for d ← 1 to Dim do 
22: Determine posi for each transmitted beam 

(Equation 4) 
23: Verify posi for each transmitted beam within 

SSSize 
24: if posi ≤ SSMax then 
25: Update posi (Equation 5a) 
26: end if 
27: if posi ≤ SSMin then 
28: Update posi (Equation 5b) 
29:  end if 
30: end for 
31: Evaluate Fi value for F(posi) 
32: Assign the optimum value of Fi as FLB and its 

position as posLB 
33: if FLB ≤ FSP then 
34: Assign FLB as FRB and posLB as posRB 
35: else 
36: Assign FSP as FRB and posSP as posRB 
37: end if 
38:  end for 
39: end for 
40: Select the optimum value among FRB as current FGB 

and its posRB as current posGB 
41: if current FGB ≤ previous FGB then 
42: Update current FGB as new FGB and current posGB 

as new posGB 
43: else 
44:  Retain previous FGB and posGB 
45: end if 
46: for n ← 1 to Bats do 
47: Determine new posSP 
48:  Evaluate new FSP value for F(posSP) 
49: end for 
50: end while 
51: Declare FGB as optimum fitness evaluated and posGB as 

its optimum value(s) 
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4 Computer simulation and discussion 
In order to show the superiority of MABSA in solving 
constrained optimisation problems, four constrained 
benchmark test functions from CEC 2006 by Liang et al. 
(2006) were examined and tested. The results are compared 
against other established algorithms based on results 
recorded in the specific literature (no re-simulation 
exercises using the established algorithms were conducted). 

The algorithms are; changing range genetic algorithm 
(CRGA) (Amirjanov, 2006), self-adaptive penalty  
function (SAPF) (Tessema and Yen, 2006), cultured 
differential evolution (CULDE) (Becerra and Coello, 
2006), simple multimembered evolution strategy (SMES) 
(Mezura-Montes and Coello, 2005), adaptive segregational 
constraint handling evolutionary algorithm (ASCHEA) 
(Hamida and Schoenauer, 2002), particle swarm 
optimisation with differential evolution (PSO-DE) (Liu 
et al., 2007), stochastic ranking (SR) (Runarsson and Yao, 
2000), differential evolution with level comparison (DELC) 
(Wang and Li, 2010), differential evolution with dynamic 
stochastic selection (DEDS) (Zhang et al., 2008), hybrid 
evolutionary algorithm and adaptive constraint handling 
technique (HEA-ACT) (Wang et al., 2009), improved 

stochastic ranking (ISR) (Runarsson and Yao, 2005), α 
constrained with nonlinear simplex method with mutation 
(α simplex) (Takahama and Sakai, 2005), Nelder-Mead
simplex method and particle swarm optimisation (NM-PSO)
(Zahara and Kao, 2009), artificial bee colony 2 (ABC2)
(Karaboga and Basturk, 2007) and mine blast algorithm
(MBA) (Sadollah et al., 2013).

The quality of obtained optimisation results is compared 
in terms of statistical results (better best, mean, median and 
worst solution found), the robustness of the MABSA (the 
standard deviation values) and the number of function 
evaluations (NFEs). 

The results of the best solution obtained from MABSA 
for constrained optimisation benchmark test functions are 
summarised in Table 1. The MABSA was capable of 
finding the best solution (minimum value) better than the 
optimum value suggested from CEC 2006 for all 
constrained benchmark test functions. The time to converge 
to the best solution was recorded under 22 seconds for all 
four test functions, and this shows that the algorithm is able 
to reach to the best solution faster than ordinary methods. 
So it is worth mentioning that MABSA is very effective and 
efficient to solve constrained optimisation problems. 

Table 1 Results of the best solution obtained from MABSA for constrained benchmark test functions 

Items Test function 1 Test function 2 Test function 3 Test function 4 

Run no. 23 2 21 5
No. of bats 1,000 700 1,000 700 
NFEs 3,200 2,100 3,600 2,000 
Time to converge (seconds) 9.7244 20.9769 14.2320 0.3656 
Iteration to converge 31 89 34 3 
F(x) –30,994.6595 –7,091.3568 662.4557 0.7500 
Optimum value of F(x) –30,665.5390 –6,961.8139 680.6301 0.7500 

Figure 1 Comparison of NFEs used by considered algorithms for all constrained benchmark problems (see online version for colours) 
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In terms of NFEs, MABSA showed good potential to be 
popular algorithm in future as it converges fast to the 
optimum solution. For instance, by considering the NFEs 
from the best solution obtained in all constrained 
benchmark test functions tested, MABSA started to settle 
down to the optimum solution after approximately 2,000 to 
4,000 NFEs. 

Figure 1 compares the average NFEs used by all 
algorithms to solve four constrained benchmark test 
functions. When comparing the average NFEs used by 
MABSA on all constrained benchmark test functions with 

other established algorithms, the value between 70,000 and 
100,000 is reasonable and more productive. The small value 
of NFEs will force the algorithm to settle down earlier as 
possible without a chance to explore more but may end up 
with the algorithm trapped in local optimum such as in 
CRGA, NM-PSO or DELC. On the other hand, if too many 
NFEs are used such as in ASCHEA or even SAPF, the 
algorithm may waste the time to find good solution but the 
solution which was already encountered earlier than the last 
set of NFEs is examined. 

Figure 2 Bar plot of statistical results obtained using different algorithms for test function 1 

Table 2 Comparison of statistical results obtained using different algorithms for test function 1 

Method Worst Median Mean Best Std. dev. NFEs

CRGA –30,660.3130 –30,665.2520 –30,664.3980 –30,665.5200 1.6000 54,400
SAPF –30,656.4710 –30,663.9210 –30,659.2210 –30,665.4010 2.0430 500,000 
CULDE –30,665.5387 n/a –30,665.5387 –30,665.5387 0.0000 100,100 
SMES –30,665.5390 –30,665.5390 –30,665.5390 –30,665.5390 0.0000 240,000 
ASCHEA n/a –30,665.5000 –30,665.5000 –30,665.5000 n/a 1500,000 
PSO-DE –30,665.5387 –30,665.5387 –30,665.5387 –30,665.5387 8.3000e–10 70,100 
SR –30,665.5390 –30,665.5390 –30,665.5390 –30,665.5390 2.0000e–05 350,000 
DELC –30,665.5390 –30,665.5390 –30,665.5390 –30,665.5390 1.0000e–11 50,000 
DEDS –30,665.5390 n/a –30,665.5390 –30,665.5390 2.7000e–11 350,000 
HEA-ACT –30,665.5390 –30,665.5390 –30,665.5390 –30,665.5390 7.4000e–12 200,000 
ISR –30,665.5390 –30,665.5390 –30,665.5390 –30,665.5390 1.1000e–11 192,000 
α-simplex –30,665.5387 –30,665.5387 –30,665.5387 –30,665.5387 4.2000e–11 305,343 
NM-PSO –30,665.5390 n/a –30,665.5390 –30,665.5390 1.4000e–05 19,658 
ABC2 –30,665.5390 n/a –30,665.5390 –30,665.5390 0.0000 240,000 
MBA –30,665.3300 n/a –30,665.5182 –30,665.5386 5.0800e–02 41,750 
MABSA –30,700.2654 –30,793.4331 –30,829.8768 –30,994.6595 110.3421 82,090 

Note: ‘n/a’ means not available. 

6



Figure 3 Bar plot of statistical results obtained using different algorithms for test function 2 

Table 3 Comparison of statistical results obtained using different algorithms for test function 2 

Method Worst Median Mean Best Std. dev. NFEs

CRGA –6,077.1230 –6,867.4610 –6,740.2880 –6,956.2510 270.0000 3,700 
SAPF –6,943.3040 –6,953.8230 –6,953.0610 –6,961.0460 5.8760 500,000 
CULDE –6,961.8139 n/a –6,961.8139 –6,961.8139 0.0000 100,100 
SMES –6,952.4820 –6,961.8140 –6,961.2840 –6,961.8140 1.8500 240,000 
ASCHEA n/a –6,961.8100 –6,961.8100 –6,961.8100 n/a 1,500,000 
PSO-DE –6,961.8139 –6,961.8139 –6,961.8139 –6,961.8139 2.3000e–09 140,100 
SR –6,350.2620 –6,961.8140 –6,875.9400 –6,961.8140 160.0000 350,000 
DELC –6,961.8140 –6,961.8140 –6,961.8140 –6,961.8140 7.3000e–10 20,000 
DEDS –6,961.8140 n/a –6,961.8140 –6,961.8140 0.0000 350,000 
HEA-ACT –6,961.8140 –6,961.8140 –6,961.8140 –6,961.8140 4.6000e–12 200,000 
ISR –6,961.8140 –6,961.8140 –6,961.8140 –6,961.8140 1.9000e–12 168,800 
α-simplex –6,961.8139 –6,961.8139 –6,961.8139 –6,961.8139 1.3000e–10 293,367 
ABC2 –6,961.8050 n/a –6,961.8130 –6,961.8140 2.0000e–03 240,000 
MBA –6,961.8139 n/a –6,961.8139 –6,961.8139 0.0000 2,835 
MABSA –6,973.2374 –7,047.2779 –7,043.7395 –7,091.3568 34.227384 91,530 

Note: n/a’ means not available. 

4.1 Test function 1 
For test function 1, there are 15 different algorithms from 
literature that have been chosen to compare with MABSA. 
These include CRGA, SAPF, CULDE, SMES, ASCHEA, 
PSO-DE, SR, DELC, DEDS, HEA-ACT, ISR, α simplex, 
NM-PSO, ABC2 and MBA. Table 2 shows a comparison 
between MABSA and other algorithms in terms of 
statistical results obtained for solving test function 1. 

Overall, MABSA lead other algorithms to all criteria 
(worst, median, mean and best value) which demonstrate 
the quality of algorithm to achieve the optimum solution for 
test function 1. This statement was strengthened by the bar 
plot pictured in Figure 2 where MABSA was significantly 

better to achieve the optimum solution as compared to 
optimum value compiled in CEC 2006 or other algorithms. 
Indeed, the worst result from the MABSA; –30,700.2654 is 
still a better result than the optimum value or the best result 
from other established algorithms. However, MABSA is 
less robust to solve the problem as shown by the higher 
value of standard deviation when compared to other listed 
algorithms. 

4.2 Test function 2 
In test function 2, the performance of MABSA was also 
compared with the 14 established algorithms. The 
algorithms are CRGA, SAPF, CULDE, SMES, ASCHEA, 
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PSO-DE, SR, DELC, DEDS, HEA-ACT, ISR, α simplex, 
ABC2 and MBA. The statistical results obtained by all 
algorithms including MABSA are shown in Table 3 while 
the worst, median, mean and best results for each 
considered algorithm is shown in Figure 3. 

The outstanding performance of MABSA to solve the 
test function 2 can be seen in both table and bar plot. The 
fitness function value achieved by MABSA for every 
statistical criterion was the optimum as compared to other 

14 established algorithms as well as the optimum value 
from CEC 2006. In addition to that, the MABSA method 
was the only algorithm passing the –7,000.0000 value in 
median, mean and best which was not achievable by other 
algorithms. Nevertheless, the higher standard deviation 
value achieved by MABSA shows that the algorithm was 
less robust to solve the test function 2 compared to other 
algorithms. However, the level of robustness for MABSA to 
solve this problem was better than the previous problem. 

Table 4 Comparison of statistical results obtained using different algorithms for test function 3 

Method Worst Median Mean Best Std. dev. NFEs

CRGA 682.9650 681.2040 681.3470 680.7260 5.7000e–01 50,000 

SAPF 682.0810 681.2350 681.2460 680.7730 3.2200e–01 500,000 

CULDE 680.6301 n/a 680.6301 680.6301 0.0000 100,100 

SMES 680.7190 680.6420 680.6430 680.6320 1.5500e–02 240,000 

ASCHEA n/a 680.6350 680.6410 680.6300 n/a 1,500,000 

PSO-DE 680.6301 680.6301 680.6301 680.6301 4.6000e–13 140,100 

SR 680.7630 680.6410 680.6560 680.6300 3.4000e–02 350,000 

DELC 680.6300 680.6300 680.6300 680.6300 3.2000e–12 80,000 

DEDS 680.6300 n/a 680.6300 680.6300 2.5000e–13 350,000 

HEA-ACT 680.6300 680.6300 680.6300 680.6300 5.8000e–13 200,000 

ISR 680.6300 680.6300 680.6300 680.6300 3.2000e–13 271,200 

α simplex 680.6301 680.6301 680.6301 680.6301 2.9000e–10 323,427 

ABC2 680.6530 n/a 680.6400 680.6340 4.0000e–03 240,000 

MBA 680.7882 n/a 680.6620 680.6322 3.3000e–02 71,750 

MABSA 678.7398 672.6514 671.4536 662.4557 4.6726 88,303 

Note: ‘n/a’ means not available. 

Figure 4 Bar plot of statistical results obtained using different algorithms for test function 3 
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4.3 Test function 3 
In test function 3, the statistical results between MABSA 
and 14 other algorithms that are taken from the literature are 
compared. The algorithms are CRGA, SAPF, CULDE, 
MES, ASCHEA, PSO-DE, SR, DELC, DEDS, HEA-ACT, 
ISR, α simplex, ABC2 and MBA. A comparison of 
statistical results obtained by all algorithms is provided in 
Table 4. Figure 4 shows a bar plot of worst, median, mean 
and best solution of all algorithms with a benchmark of the 
optimum value from CEC 2006. 

The performance of MABSA was exceptional when 
compared to other established algorithms to find the 

optimum fitness function value for test function 3. The 
MABSA was the sole algorithm that recorded the minimum 
solution under 680.0000 for all statistical criteria with the 
best solution 662.4557 which was far better than the 
optimum value from CEC 2006. For this test function 3, 
MABSA was well thought-out to be more robust when 
compared to the performances in case of test function 1 or 
test function 2. Despite the fact that the standard deviation 
for MABSA was still larger than 1.0000, the value was 
acceptable to compromise with the range of worst, median, 
mean and best solution found which was better amongst 
considered algorithms. 

Table 5 Comparison of statistical results obtained using different algorithms for test function 4 

Method Worst Median Mean Best Std. dev. NFEs

CRGA 0.7570 0.7510 0.7520 0.7500 2.5000e–03 3,000
SAPF 0.7570 0.7500 0.7510 0.7490 2.0000e–03 500,000 
CULDE 0.7965 n/a 0.7580 0.7499 1.7138e–02 100,100 
SMES 0.7500 0.7500 0.7500 0.7500 1.5200e–04 240,000 
ASCHEA n/a 0.7500 0.7500 0.7500 n/a 1,500,000 
PSO-DE 0.7500 0.7499 0.7499 0.7499 2.5000e–07 70,100 
SR 0.7500 0.7500 0.7500 0.7500 8.0000e–05 350,000 
DELC 0.7500 0.7500 0.7500 0.7500 0.0000 50,000 
DEDS 0.7499 n/a 0.7499 0.7499 0.0000 350,000 
HEA-ACT 0.7500 0.7500 0.7500 0.7500 3.4000e–16 200,000 
ISR 0.7500 0.7500 0.7500 0.7500 1.1000e–16 137,200 
α simplex 0.7499 0.7499 0.7499 0.7499 4.9000e–16 308,125 
ABC2 0.7500 n/a 0.7500 0.7500 0.0000 240,000 
MBA 0.7500 n/a 0.7500 0.7500 3.2900e–06 6,405 
MABSA 0.7500 0.7500 0.7500 0.7500 0.0000 89,724 

Note: ‘n/a’ means not available. 

Figure 5 Bar plot of statistical results obtained using different algorithms for test function 4 
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4.4 Test function 4 
A set of 14 established algorithms is compared with 
MABSA in terms of the statistical results obtained for test 
function 4. These included CRGA, SAPF, CULDE, SMES, 
ASCHEA, PSO-DE, SR, DELC, DEDS, HEA-ACT, ISR, α 
simplex, ABC2 and MBA. Table 5 shows the comparison 
results, while the bar plot of worst, median, mean and best 
solution acquired from all the algorithms with the optimum 
value from CEC 2006 is shown in Figure 5. 

For test function 4, MABSA successfully achieved 
results which have the same performance or better than 
other considered algorithms for all criteria. Indeed, the 
median, mean and best solution values achieved by 
MABSA method managed to achieve better than the CEC 
2006 benchmark value; 0.7500. The MABSA recorded 
0.7500, 0.7500 and 0.7500 for median, mean and best 
criteria respectively. According to the results, MABSA is 
also considered to be more robust to solve the test 
function 4 as its standard deviation value recorded was 
0.000000. The robustness ability of MABSA to solve the 
problem was at par with other considered algorithms and 
better than CGRA, SAPF, CULDE and SMES. 

Table 6 Rank of algorithms for test functions 

Algorithm MAE Ranking

MABSA –66.1095 1 
DEDS –6.9250e–5 2
DELC –4.4250e–5 3
HEA-ACT –4.4250e–5 4
ISR –4.4250e–5 4
α simplex 5.8500e–5 6
PSO-DE 7.4750e–5 7
ABC2 1.2058e–3 8
CULDE 2.0820e–3 9
MBA 5.737e–3 10 
ASCHEA 0.0135 11 
SMES 0.1357 12 
SAPF 3.9220 13 
SR 21.4750 14 
CRGA 55.8464 15 

4.5 Overall comparison of all considered algorithms 
The mean absolute errors (MAEs) of all algorithms are 
computed to rank all considered algorithms. MAE is a 
statistical criterion that indicates how far the results are 
from the actual values as: 

1=
−

= ∑
i

i iz
m h

MAE
z

(6)

where 

mi mean of optimum achieved results 

hi global optimum value 

z number of test functions. 

All considered algorithms for test functions are ranked in 
Table 6 based on their corresponding MAE’s. The table 
shows that MABSA is at the highest ranking from 15 
considered algorithms. 

5 Conclusions 
A MABSA has been proposed for solving constrained 
optimisation problems. The MABSA has been formulated 
as an improved version of ABSA developed by Yahya et al. 
(2016). In addition to redefining ABSA parameters, a new 
strategy, namely the bounce back strategy as a mechanism 
to control the transmitted beam to fall only within the 
designated search space, has been incorporated into 
MABSA. 

The MABSA has achieved competitive results on four 
constrained optimisation benchmark test functions adopted 
from CEC 2006 at a relatively better optimum solution 
value with a low computational cost. From the comparative 
study, MABSA has shown its ability to handle various 
constrained optimisation, and its outstanding performance is 
much better, in terms of statistical metrics, than the 
established set of algorithms selected from the literature. 

The future works will be focus on the application of 
MABSA to real optimisation problems. 

References 
Altringham, J.D., Hammond, L. and McOwat, T. (1996) Bats: 

Biology and Behaviour, The Oxford University Press, Oxford, 
UK. 

Amirjanov, A. (2006) ‘The development of a changing range 
genetic algorithm’, Computer Methods in Applied Mechanics 
and Engineering, Vol. 195, No. 19, pp.2495–2508. 

Becerra, R.L. and Coello, C.A.C. (2006) ‘Cultured differential 
evolution for constrained optimization’, Computer Methods in 
Applied Mechanics and Engineering, Vol. 195, No. 33, 
pp.4303–4322. 

Cagnina, L.C., Esquivel, S.C. and Coello, C.A.C. (2008) ‘Solving 
engineering optimization problems with the simple 
constrained particle swarm optimizer’, Informatica, Vol. 32, 
No. 3, pp.319–326. 

Garg, H. (2014) ‘Solving structural engineering design 
optimization problems using an artificial bee colony 
algorithm’, Journal of Industrial and Management 
Optimization, Vol. 10, No. 3, pp.777–794. 

Hamida, S.B. and Schoenauer, M. (2002) ‘ASCHEA: new results 
using adaptive segregational constraint handling’, 
Proceedings of the 2002 Congress on Evolutionary 
Computation (CEC’02), Honolulu, USA, Vol. 1, pp.884–889. 

10



Hsieh, T-J. (2014) ‘A bacterial gene recombination algorithm  
for solving constrained optimization problems’, Applied 
Mathematics and Computation, Vol. 231, No. 1, pp.187–204. 

Karaboga, D. and Basturk, B. (2007) ‘Artificial bee colony (ABC) 
optimization algorithm for solving constrained optimization 
problems’, Foundations of Fuzzy Logic and Soft Computing, 
Lecture Notes in Computer Science, pp.789–798, Springer. 

Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., 
Suganthan, P.N., Coello, C.A.C. and Deb, K. (2006) Problem 
Definitions and Evaluation Criteria for the CEC 2006 Special 
Session on Constrained Real-Parameter Optimization, 
Technical Report of School of EEE, Nanyang Technological 
University, Singapore. 

Liu, H., Cai, Z. and Wang, Y. (2010) ‘Hybridizing particle swarm 
optimization with differential evolution for constrained 
numerical and engineering optimization’, Applied Soft 
Computing, Vol. 10, No. 2, pp.629–640. 

Mezura-Montes, E. and Coello, C.A.C. (2005) ‘A simple 
multimembered evolution strategy to solve constrained 
optimization problems’, IEEE Transactions on Evolutionary 
Computation, Vol. 9, No. 1, pp.1–17. 

Parsopoulos, K.E. and Vrahatis, M.N. (2005) ‘Unified particle 
swarm optimization for solving constrained engineering 
optimization problems’, Advances in Natural Computation, 
Lecture Notes in Computer Science 3612, pp.582–591, 
Springer. 

Runarsson, T.P. and Yao, X. (2000) ‘Stochastic ranking for 
constrained evolutionary optimization’, IEEE Transactions on 
Evolutionary Computation, Vol. 4, No. 3, pp.284–294. 

Runarsson, T.P. and Yao, X. (2005) ‘Search biases in constrained 
evolutionary optimization’, IEEE Transactions on Systems, 
Man, and Cybernetics, Part C: Applications and Reviews, 
Vol. 35, No. 2, pp.33–243. 

Sadollah, A., Bahreininejad, A., Eskandar, H. and Hamdi, M. 
(2013) ‘Mine blast algorithm: a new population based 
algorithm for solving constrained engineering optimization 
problems’, Applied Soft Computing, Vol. 13, No. 5, 
pp.2592–2612. 

Takahama, T. and Sakai, S. (2005) ‘Constrained optimization by 
applying the α constrained method to the nonlinear simplex 
method with mutations’, IEEE Transactions on Evolutionary 
Computation, Vol. 9, No. 5, pp.437–451. 

Tessema, B. and Yen, G.G. (2006) ‘A self adaptive penalty 
function based algorithm for constrained optimization’, 
Proceedings of the 2006 IEEE Congress on Evolutionary 
Computation (CEC’06), Vancouver, Canada, pp.246–253. 

Wang, L. and Li, L-P. (2010) ‘An effective differential evolution 
with level comparison for constrained engineering design’, 
Structural and Multidisciplinary Optimization, Vol. 41, No. 6, 
pp.947–963. 

Wang, Y., Cai, Z., Zhou, Y. and Fan, Z (2009) ‘Constrained 
optimization based on hybrid evolutionary algorithm and 
adaptive constraint-handling technique’, Structural and 
Multidisciplinary Optimization, Vol. 37, No. 4, pp.395–413. 

Yahya, N.M., Tokhi, M.O. and Kasdirin, H.A. (2016) ‘A new 
bats echolocation-based algorithm for single objective 
optimisation’, Evolutionary Intelligence, Vol. 9, No. 1,  
pp.1–20. 

Yang, X-S. and Hossein, G.A. (2012) ‘Bat algorithm: a novel 
approach for global engineering optimization’, Engineering 
Computations, Vol. 29, No. 5, pp.464–483. 

Zahara, E. and Kao, Y-T. (2009) ‘Hybrid Nelder-Mead simplex 
search and particle swarm optimization for constrained 
engineering design problems’, Expert Systems with 
Applications, Vol. 36, No. 2, pp.3880–3886. 

Zhang, M., Luo, W. and Wang, X. (2008) ‘Differential evolution 
with dynamic stochastic selection for constrained 
optimization’, Information Sciences, Vol. 178, No. 15, 
pp.3043–3074. 

Appendix 
Constrained problem 1 
Minimise: 

3
1 5 13( ) 5.3578547 0.8356891 37.293239

40,729.141
= + +
+

f x x x x x
 

subject to: 

1 2 5 1 4

3 5

( ) 85.334407 0.0056858 0.0006262
0.0022053 92 0

= + +
− − ≤

g x x x x x
x x

2 2 5

1 4 3 5

( ) 85.334407 0.0056858
0.0006262 0.0022053 0

= − −
− − ≤

g x x x
x x x x

3 2 5 1 2
2
3

( ) 80.51249 0.0071317 0.0029955
0.0021813 100 0

= + +
+ − ≤

g x x x x x
x

4 2 5
3

1 2 3

( ) 80.51249 0.0071317
0.0029955 0.0021813 90 0

= − −
− − + ≤

g x x x
x x x

5 3 5

1 3 3 4

( ) 9.300961 0.0047026
0.0012547 0.0019085 25 0

= +
+ + − ≤

g x x x
x x x x

6 3 5

1 3 3 4

( ) 9.300961 0.0047026
0.0012547 0.0019085 20 0

= − −
− − + ≤

g x x x
x x x x

where 

1

2

78.0 102.0
33.0 45.0
27.0 45.0, 3, 4, 5

≤ ≤
≤ ≤
≤ ≤ =i

x
x
x i

Constrained problem 2 
Minimise: 

( ) ( )3 3
1 2( ) 10 20= − + −f x x x

subject to: 

( ) ( )2 2
1 1 2( ) 5 5 100 0= − − − − + ≤g x x x  

( ) ( )2 2
2 1 2( ) 6 5 82.85 0= − + − − ≤g x x x  

where 

1

2

13.0 100.00
0.0 100.0

≤ ≤
≤ ≤

x
x
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Constrained problem 3 
Minimise: 

( ) ( )
( )

2 2 4
1 2 3

2 6 2 4
4 5 76

6 7 6 7

( ) 10 5 12

3 11 10 7
4 10 8

= − + − +

+ − + + +
− − −

f x x x x

x x x x
x x x x

subject to: 
2 4 2

1 3 51 2 4( ) 127 2 3 4 5 0= − − − − − ≥g x x x x x x  

2
2 1 2 4 53( ) 282 7 3 10 0= − − − − − ≥g x x x x x x

2 2
3 1 72 6( ) 196 23 2 6 8 0= − − − + ≥g x x x x x

2 2 2
4 1 2 6 71 2 3( ) 4 3 2 5 11 0= − − + − − + ≥g x x x x x x x x  

where 

10.0 10.0, 1, 2, 3, 4, 5, 6, 7− ≤ ≤ =ix i

Constrained problem 4 
Minimise: 

( )22
21( ) 1= + −f x x x

subject to: 
2

2 1( ) 0= − =h x x x

where 

1.0 1.0, 1, 2− ≤ ≤ =ix i
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