
International Journal of Bio-Inspired Computation

A modified bats echolocation-based algorithm for solving
constrained optimisation problems

Nafrizuan Mat Yahya*
Faculty of Manufacturing Engineering,
Universiti Malaysia Pahang,
Pahang, Malaysia
Email: nafrizuanmy@ump.edu.my
*Corresponding author

M. Osman Tokhi
Department of Automatic Control and Systems Engineering,
University of Sheffield,
Sheffield, UK
Email: o.tokhi@sheffield.ac.uk

Abstract: A modified adaptive bats sonar algorithm (MABSA) is presented that utilises the concept of echolocation of a
colony of bats to find prey. The proposed algorithm is applied to solve the constrained optimisation problems coupled with
penalty function method as constraint handling technique. The performance of the algorithm is verified through rigorous tests
with four constrained optimisation benchmark test functions. The acquired results show that the proposed algorithm performs
better to find optimum solution in terms of accuracy and convergence speed. The statistical results of MABSA to solve all the test
functions also has been compared with the results from several existing algorithms taken from literature on similar test
functions. The comparative study has shown that MABSA outperforms other establish algorithms, and thus, it can be an
efficient alternative method in the solving constrained optimisation problems.

Keywords: modified adaptive bats sonar algorithm; MABSA; bats echolocation; constrained optimisation problems.

Reference to this paper should be made as follows: Yahya, N.M. and Tokhi, M.O. (2017) ‘A modified bats
echolocation-based algorithm for solving constrained optimisation problems’, Int. J. Bio-Inspired Computation, Vol. 10, No. 1,
pp.12–23.

Biographical notes: Nafrizuan Mat Yahya received his PhD in Automatic Control and Systems Engineering at the University
of Sheffield, UK. He is a Senior Lecturer at Faculty of Manufacturing Engineering, Universiti Malaysia Pahang,
Malaysia. His research interests include intelligent control system optimisation, intelligent manufacturing automation and
ergonomic for industrial application.

M. Osman Tokhi received his PhD in Electrical Engineering at the Heriot-Watt University, UK. He is a Reader at Department
of Automatic Control and Systems Engineering, University of Sheffield, UK. He has extensive research and modelling
experience in the area of control and systems including noise and vibration control, intelligent/adaptive control, high-
performance and soft-computing modelling and control of dynamic systems and assistive robotics.

1 Introduction
Constrained optimisation problems normally come with
lack of explicit mathematical formulation but have discrete
definition domains, mixed of continuous and discrete design
variables and also strong nonlinear objective functions with
multiple complex constraints (Garg, 2014). However, due to
computational drawbacks and the requirement of substantial
gradient information traditional numerical programming
strategies are incapable to solve constrained optimisation
problems consistently (Sadollah et al., 2013). The

alternative prospect to attain constrained optimisation
problems is by metaheuristic methods (Hsieh, 2014).

Among most popular metaheuristic methods are swarm
intelligence algorithms. These algorithms are inspired from
the collective behaviour of swarms through complex
interaction between individuals and its neighbourhood with
nature (Hsieh, 2014). The most remarkable parts in any
swarm intelligence algorithms are that the algorithm has
advantages of memory, diverse multi-characters capability,
rapid solution improvement mechanism and adaptable to
internal and external changes (Garg, 2014). Particle swarm
optimisation (PSO), artificial bee colony (ABC), ant colony

1

optimisation (ACO) and bat algorithm (BA) for instance are
some examples of swarm intelligence algorithms that have
already captured attention of researchers.

This paper introduces a new swarm intelligence
algorithm, the so called modified adaptive bats sonar
algorithm (MABSA) which is an improved version of the
original adaptive bats sonar algorithm (ABSA) by Yahya
et al. (2016). The algorithm is inspired from bat sonar used
in bats echolocation to find prey. In this paper, the MABSA
is proposed and applied to several constrained optimisation
benchmark test functions.

The remainder of this paper is organised as follows.
Section 2 details the constrained optimisation problems, the
penalty function method as a constraint handling technique
and several previous researches using swarm intelligence
algorithms to solve constrained optimisation problems.
Section 3 describes the bats echolocation concepts and the
proposed algorithm. Section 4 discusses computer
simulation results and finally, conclusions are drawn in
Section 5.

2 Constrained optimisation problems
2.1 Background
A constrained optimisation comprises an objective function
together with some equality and inequality constraints
subject to lower bound and upper bound of variables as:

()1 2

() ()

Optimise (), , , ...,
subject to

() 0, 1, 2, ...,
() 0, 1, 2, ...,

where
, 1, 2, ...,

=

≥ =
= =

≤ ≤ =

N

j

k

L u
ii i

F x x x x x

g x j J
h x k K

x x x i n

(1)

Here, gj(x) represents inequality constraint functions with J
inequality constraints. hk(x) represents equality constraints
functions with K equality constraints. ()L

ix represents the

lower bounds and ()U
ix the upper bounds of variable xi with

n variables, respectively.

2.2 A penalty function
In the penalty function, the original objective function F(x)
is replaced by a substituted function C(x) which considers
the original objective function F(x) with added penalty
function P(x) that introduces a tendency term to penalise
constraint violations produced by x. Therefore, considering
the constrained optimisation problem defined previously,
the substituted function is defined as follows:

2 2

1 1

() () ()
where

() () ()
= =

= +

= ⋅ + ⋅∑ ∑
J K

j k
j k

C x F x P x

P x μ g x v h x

(2)

where μ and v represent penalty coefficients which weigh
the relative importance of each gj(x) (inequality constraint)
and hk(x) (equality constraint) respectively. In this work,
values of μ and v are problem-dependant.

2.3 Previous approaches of swarm intelligence
algorithms

Various research works have been reported over the past
two decades on dealing with constrained optimisation
problems by using swarm intelligence algorithms.

The PSO has been the most favourable technique among
them. Parsopoulos and Vrahatis (2005) have proposed a
variant of PSO scheme, a unified particle swarm
optimisation (UPSO) method with a penalty function
approach. The proposed algorithm has abilities to explore
and exploit the search process without needing extra
requirements of function evaluations and also preserves
feasibility of the encountered solutions. Cagnina et al.
(2008) investigated simple constrained particle swarm
optimiser (SiC-PSO) coupled with a constrained-handling
technique. The algorithm is faster, more reliable and
efficient after combining local best (lbest) and global best
(gbest) models to update the velocity as well as adding
gbest to the best position of the particles and to its
neighbourhood.

Another popular swarm intelligence algorithm used is
the ABC algorithm. For instance, Garg (2014) introduced a
penalty function guided ABC algorithm to solve several
structural engineering design problems. Earlier, Karaboga
and Basturk (2007) adopted Deb’s rule for the selection of
mechanism to deal with constraints of the ABC algorithm to
solve a set of constrained numerical optimisation problems.
The rest of the techniques shall be categorised under swarm
intelligence algorithms such as, BA (Yang and Hossein,
2012) which is based on the level and loudness of the pulse
emitted in bats echolocation and a bacterial gene
recombination algorithm (BGRA) that was inspired from
virus resistance process in real bacteria (Hsieh, 2014).

Up to this time, there is no evidence of a developed
algorithm based on the principles of bat sonar used in
echolocation to tackle constrained optimisation problems.
So, it is believed that the algorithm proposed in this paper
will be the first as well as bring in the well-known
advantages of swarm intelligence characteristics to solve
specific problems.

3 The proposed algorithm
3.1 Bats echolocation in brief
Bats habitually live in large colonies around 700 to 1,000
individuals under sharing roosts (Altringham et al., 1996).
There are two sets of acoustic communication used by a
colony of bats. These are echolocation calls for foraging and
positioning purposes and social calls for socialising or
communicating between bats (Altringham et al., 1996). A
colony of bats is able to create worthy communication and

2

sharing information about roost site or foraging area among
one another.

Echolocation is the ability of bat to produce sound with
echoes beyond the frequency range of human hearing and
use for general orientation and finding prey (Altringham
et al., 1996). With echolocation, a bat emits ultrasonic
pulses through mouth or nose in short bursts. The sound
reflects back as echoes bump into an object in the bat’s
path. The bat is able to recognise the object and its distance
by calculating the time of reflection of the modulated
echoes (Altringham et al., 1996).

The echolocation process of bats that leads to catching
the prey comprises of three phase; search phase, approach
phase and terminal phase (Altringham et al., 1996). When
the bats begin to chase for prey in the search phase, they
emit the pulse at low rate at around a frequency of 10 Hz
(Altringham et al., 1996). When the bat senses and gets
closer to the prey in the approach phase, the pulses have to
get shorter to avoid overlap (Altringham et al., 1996). This
is because the time between the pulse and echo is dwindled
(Altringham et al., 1996). Now, pulse emission rate gets
progressively increased up to 200 per second as the bat
keeps updating the location of the prey (Altringham et al.,
1996). The pulse emission rate increases because the bats
need to emit more signals to trace the prey precisely as the
angular position of the prey changes more swiftly due to the
closer distance between a bat and the object. In the terminal
phase, the frequency of emitted pulses upswings to more
than 200 Hz and the pulse emission rate becomes faster at
only fraction of millisecond long just before the prey is
seized (Altringham et al., 1996).

According to Altringham et al. (1996), a colony of bats
also includes the concept of reciprocal altruism of food
sharing during echolocation process. This social behaviour
of bats group is based on animals returning favours to their
mutual benefit. The reciprocal altruism behaviour growth in
individual survivorship such that the fitness of the recipient
is elevated to a non-recipient (Altringham et al., 1996).

3.2 Modified adaptive bats sonar algorithm
ABSA was introduced by Yahya et al. (2016) to solve
unconstrained single objective optimisation problems. But,
to deal with constrained single objective optimisation
problems, a crucial problem on how to incorporate the
inequality constraints as well as equality constraints with
the objective function must be tackled appropriately. ABSA
does not function well on this kind of problems as it is
based on a direct approach. A direct approach is often
difficult to find the solution in feasible regions enclosed by
constraints.

A new algorithm named the MABSA is proposed here
by redefining as well as reformulating some elements in
ABSA to compensate for this problem. The MABSA will be
able to generate a potential solution that satisfy all
constraints. The purpose of MABSA is to solve constrained
optimisation problems.

The MABSA is formulated after modifying three
searching procedures of the original ABSA and adding a

new component to it. The three procedures are the ways to
setting up the beam length (L), determining starting angle
(θm) and angle between beams (θi) and also calculating end
point position (posi). On the other hand, the bounce back
strategy is a new component that has been included in the
MABSA, which was not considered in ABSA formerly.
This section will elaborate solely of these three elements.
The other components of MABSA will not be further
discussed here as they are similar to the ABSA as presented
in Yahya et al. (2016).

In the MABSA, the new L is setup as:

10%
⎛ ⎞= ×⎜ ⎟×⎝ ⎠

sizeSSL Rand
Bats

(3)

where the solution range (SSSize) is the value between the
upper search space (SSMax) limit and the lower search space
(SSMin) limit. Every dimension (Dim) has its specific or
known as Dim constraints. The solution range is divided
into micron scale, such as 10% of the overall population of
bats in the search space. The percentage is marked as
possible search space size of each bat to emit sound without
colliding with one another. The random value of L is offered
to make real variation of beam lengths of each number of
beams (NBeam) at every Dim (but stay within the Dim
constraints) at every iteration. This fixation pushes every bat
at each dimension to search for larger perimeter each time
with the opportunity to diversify the search tactic during
iterations and thus may find the global best solution that
may be near to them.

Each NBeam with L is emitted from specific angle
location. In the ABSA, the θm and θi are determined
randomly in every iteration. So all bats will emit the NBeam
from a set of similar angle location in each iteration. To add
another randomisation character inside MABSA, θm and θi
will be determined in random and separately for every bat at
every iteration. So at each iteration, every bat will emit the
NBeam from a different set of angle location. Therefore, this
randomisation will also add on to diversify the searching
process in MABSA.

In the MABSA, the way to calculate the posi is
redefined. The posi for each transmitted beam in MABSA is
calculated as:

[]()cos (1)
where

1, ..., ;
is

is beam’s

= × + × + −

=

ω
i SP m

SP

pos pos L θ i θ

i NBeam
NBeam number of beams
pos starting position

α β

(4)

In the above equation, there are two random variables and
one constant. The first random variable is called position
adaptability factor (α). The value for α is chosen randomly
within the range between 0 and 1. This factor is included to
make sure that every bat is able to adapt to the new posSP
faster as derived from the previous posSP, posLB, posRB and
posGB. This factor has the same characteristic as random
walk method. The second random variable is collision

3

avoidance factor (β). The value for β is also chosen
randomly within the range between 0 and 1. The factor is
essential to avoid the beams from overlapping or
incidentally colliding with other bats’ beam as every bat
produces a number of beams from new posSP
simultaneously.

The only constant in this equation is beam-tuning
constant (ω) which is equal to 2. This constant can also be
considered as acceleration constant. The function of this
constant is to strengthen β so that ω will divert the angle of
transmitted beam to a new angle in the designated search
space. The value 2 is selected because it will give a good
balance. If a very high value is selected, it will destroy the
influence of the beam angle such that the orientation of new
bat position will be catastrophic. A smaller value, on the
other hand, will not make any significant change to the
angle of transmitted beam.

The MABSA is also equipped with bounce back
strategy. This will confirm that every posi achieved by each
bat during the iterations is worth considering as possible
optimum posGB for the algorithm. When each beam is
transmitted from every bat, it will be verified to ensure that
the posi of the transmitted beam does not fall beyond SSMax
or below SSMin. If the posi reaches outside SSSize, the
transmitted beam will be diverted automatically to new
location inside the labelled SSSize using one of the following
equations:

, 1, ...,= − =i Maxpos SS τ i N (5a)

, 1, ...,= + =i Maxpos SS τ i N (5b)

These equations contain bounce back repositioning factor
(τ) where the value is 0 < τ < 1. This factor is to help the
bats to relocate a beam transmission to a new beams’ end
point from the maximum or minimum search space. This
factor will avoid overwriting other bats’ beam end points.
The bounce back repositioning factor is the fastest
contingency action of bats to swing to newly transmitted
beam’s end point after hitting the designated search space
boundaries. This strategy helps to significantly reduce the
time spent in considering the previous factors (which are:
position adaptability factor, collision avoidance factor or
beam-tuning constant) as normal bats do. Algorithm 1
represents the pseudo code of MABSA.

Algorithm 1:

1: Objective function F(x), x = (x1, …, xd)T
2: Initialise: Bats, MaxIter, Dim, SSSize, NBeamMAX and

NBeamMIN
3: for n ← 1 to Bats do
4: for d ← 1 to Dim do
5: Generate random posSP
6: Evaluate FSP value for F(posSP)
7: end for
8: end for

9: Assign the most optimum value as FGB and its position as
posGB

10: while t ≤ MaxIter do
11: Define NBeam to transmit by using BNI
12: for n ← 1 to Bats do
13: for N ← 1 to NBeam do
14: for d ← 1 to Dim do
15: Set L and limit μ (equation 3)
16: end for
17: end for
18: Generate random θm and θ
19: Transmit NBeam starting from posSP
20: for N ← 1 to NBeam do
21: for d ← 1 to Dim do
22: Determine posi for each transmitted beam

(Equation 4)
23: Verify posi for each transmitted beam within

SSSize
24: if posi ≤ SSMax then
25: Update posi (Equation 5a)
26: end if
27: if posi ≤ SSMin then
28: Update posi (Equation 5b)
29: end if
30: end for
31: Evaluate Fi value for F(posi)
32: Assign the optimum value of Fi as FLB and its

position as posLB
33: if FLB ≤ FSP then
34: Assign FLB as FRB and posLB as posRB
35: else
36: Assign FSP as FRB and posSP as posRB
37: end if
38: end for
39: end for
40: Select the optimum value among FRB as current FGB

and its posRB as current posGB
41: if current FGB ≤ previous FGB then
42: Update current FGB as new FGB and current posGB

as new posGB
43: else
44: Retain previous FGB and posGB
45: end if
46: for n ← 1 to Bats do
47: Determine new posSP
48: Evaluate new FSP value for F(posSP)
49: end for
50: end while
51: Declare FGB as optimum fitness evaluated and posGB as

its optimum value(s)

4

4 Computer simulation and discussion
In order to show the superiority of MABSA in solving
constrained optimisation problems, four constrained
benchmark test functions from CEC 2006 by Liang et al.
(2006) were examined and tested. The results are compared
against other established algorithms based on results
recorded in the specific literature (no re-simulation
exercises using the established algorithms were conducted).

The algorithms are; changing range genetic algorithm
(CRGA) (Amirjanov, 2006), self-adaptive penalty
function (SAPF) (Tessema and Yen, 2006), cultured
differential evolution (CULDE) (Becerra and Coello,
2006), simple multimembered evolution strategy (SMES)
(Mezura-Montes and Coello, 2005), adaptive segregational
constraint handling evolutionary algorithm (ASCHEA)
(Hamida and Schoenauer, 2002), particle swarm
optimisation with differential evolution (PSO-DE) (Liu
et al., 2007), stochastic ranking (SR) (Runarsson and Yao,
2000), differential evolution with level comparison (DELC)
(Wang and Li, 2010), differential evolution with dynamic
stochastic selection (DEDS) (Zhang et al., 2008), hybrid
evolutionary algorithm and adaptive constraint handling
technique (HEA-ACT) (Wang et al., 2009), improved

stochastic ranking (ISR) (Runarsson and Yao, 2005), α
constrained with nonlinear simplex method with mutation
(α simplex) (Takahama and Sakai, 2005), Nelder-Mead
simplex method and particle swarm optimisation (NM-PSO)
(Zahara and Kao, 2009), artificial bee colony 2 (ABC2)
(Karaboga and Basturk, 2007) and mine blast algorithm
(MBA) (Sadollah et al., 2013).

The quality of obtained optimisation results is compared
in terms of statistical results (better best, mean, median and
worst solution found), the robustness of the MABSA (the
standard deviation values) and the number of function
evaluations (NFEs).

The results of the best solution obtained from MABSA
for constrained optimisation benchmark test functions are
summarised in Table 1. The MABSA was capable of
finding the best solution (minimum value) better than the
optimum value suggested from CEC 2006 for all
constrained benchmark test functions. The time to converge
to the best solution was recorded under 22 seconds for all
four test functions, and this shows that the algorithm is able
to reach to the best solution faster than ordinary methods.
So it is worth mentioning that MABSA is very effective and
efficient to solve constrained optimisation problems.

Table 1 Results of the best solution obtained from MABSA for constrained benchmark test functions

Items Test function 1 Test function 2 Test function 3 Test function 4

Run no. 23 2 21 5
No. of bats 1,000 700 1,000 700
NFEs 3,200 2,100 3,600 2,000
Time to converge (seconds) 9.7244 20.9769 14.2320 0.3656
Iteration to converge 31 89 34 3
F(x) –30,994.6595 –7,091.3568 662.4557 0.7500
Optimum value of F(x) –30,665.5390 –6,961.8139 680.6301 0.7500

Figure 1 Comparison of NFEs used by considered algorithms for all constrained benchmark problems (see online version for colours)

5

In terms of NFEs, MABSA showed good potential to be
popular algorithm in future as it converges fast to the
optimum solution. For instance, by considering the NFEs
from the best solution obtained in all constrained
benchmark test functions tested, MABSA started to settle
down to the optimum solution after approximately 2,000 to
4,000 NFEs.

Figure 1 compares the average NFEs used by all
algorithms to solve four constrained benchmark test
functions. When comparing the average NFEs used by
MABSA on all constrained benchmark test functions with

other established algorithms, the value between 70,000 and
100,000 is reasonable and more productive. The small value
of NFEs will force the algorithm to settle down earlier as
possible without a chance to explore more but may end up
with the algorithm trapped in local optimum such as in
CRGA, NM-PSO or DELC. On the other hand, if too many
NFEs are used such as in ASCHEA or even SAPF, the
algorithm may waste the time to find good solution but the
solution which was already encountered earlier than the last
set of NFEs is examined.

Figure 2 Bar plot of statistical results obtained using different algorithms for test function 1

Table 2 Comparison of statistical results obtained using different algorithms for test function 1

Method Worst Median Mean Best Std. dev. NFEs

CRGA –30,660.3130 –30,665.2520 –30,664.3980 –30,665.5200 1.6000 54,400
SAPF –30,656.4710 –30,663.9210 –30,659.2210 –30,665.4010 2.0430 500,000
CULDE –30,665.5387 n/a –30,665.5387 –30,665.5387 0.0000 100,100
SMES –30,665.5390 –30,665.5390 –30,665.5390 –30,665.5390 0.0000 240,000
ASCHEA n/a –30,665.5000 –30,665.5000 –30,665.5000 n/a 1500,000
PSO-DE –30,665.5387 –30,665.5387 –30,665.5387 –30,665.5387 8.3000e–10 70,100
SR –30,665.5390 –30,665.5390 –30,665.5390 –30,665.5390 2.0000e–05 350,000
DELC –30,665.5390 –30,665.5390 –30,665.5390 –30,665.5390 1.0000e–11 50,000
DEDS –30,665.5390 n/a –30,665.5390 –30,665.5390 2.7000e–11 350,000
HEA-ACT –30,665.5390 –30,665.5390 –30,665.5390 –30,665.5390 7.4000e–12 200,000
ISR –30,665.5390 –30,665.5390 –30,665.5390 –30,665.5390 1.1000e–11 192,000
α-simplex –30,665.5387 –30,665.5387 –30,665.5387 –30,665.5387 4.2000e–11 305,343
NM-PSO –30,665.5390 n/a –30,665.5390 –30,665.5390 1.4000e–05 19,658
ABC2 –30,665.5390 n/a –30,665.5390 –30,665.5390 0.0000 240,000
MBA –30,665.3300 n/a –30,665.5182 –30,665.5386 5.0800e–02 41,750
MABSA –30,700.2654 –30,793.4331 –30,829.8768 –30,994.6595 110.3421 82,090

Note: ‘n/a’ means not available.

6

Figure 3 Bar plot of statistical results obtained using different algorithms for test function 2

Table 3 Comparison of statistical results obtained using different algorithms for test function 2

Method Worst Median Mean Best Std. dev. NFEs

CRGA –6,077.1230 –6,867.4610 –6,740.2880 –6,956.2510 270.0000 3,700
SAPF –6,943.3040 –6,953.8230 –6,953.0610 –6,961.0460 5.8760 500,000
CULDE –6,961.8139 n/a –6,961.8139 –6,961.8139 0.0000 100,100
SMES –6,952.4820 –6,961.8140 –6,961.2840 –6,961.8140 1.8500 240,000
ASCHEA n/a –6,961.8100 –6,961.8100 –6,961.8100 n/a 1,500,000
PSO-DE –6,961.8139 –6,961.8139 –6,961.8139 –6,961.8139 2.3000e–09 140,100
SR –6,350.2620 –6,961.8140 –6,875.9400 –6,961.8140 160.0000 350,000
DELC –6,961.8140 –6,961.8140 –6,961.8140 –6,961.8140 7.3000e–10 20,000
DEDS –6,961.8140 n/a –6,961.8140 –6,961.8140 0.0000 350,000
HEA-ACT –6,961.8140 –6,961.8140 –6,961.8140 –6,961.8140 4.6000e–12 200,000
ISR –6,961.8140 –6,961.8140 –6,961.8140 –6,961.8140 1.9000e–12 168,800
α-simplex –6,961.8139 –6,961.8139 –6,961.8139 –6,961.8139 1.3000e–10 293,367
ABC2 –6,961.8050 n/a –6,961.8130 –6,961.8140 2.0000e–03 240,000
MBA –6,961.8139 n/a –6,961.8139 –6,961.8139 0.0000 2,835
MABSA –6,973.2374 –7,047.2779 –7,043.7395 –7,091.3568 34.227384 91,530

Note: n/a’ means not available.

4.1 Test function 1
For test function 1, there are 15 different algorithms from
literature that have been chosen to compare with MABSA.
These include CRGA, SAPF, CULDE, SMES, ASCHEA,
PSO-DE, SR, DELC, DEDS, HEA-ACT, ISR, α simplex,
NM-PSO, ABC2 and MBA. Table 2 shows a comparison
between MABSA and other algorithms in terms of
statistical results obtained for solving test function 1.

Overall, MABSA lead other algorithms to all criteria
(worst, median, mean and best value) which demonstrate
the quality of algorithm to achieve the optimum solution for
test function 1. This statement was strengthened by the bar
plot pictured in Figure 2 where MABSA was significantly

better to achieve the optimum solution as compared to
optimum value compiled in CEC 2006 or other algorithms.
Indeed, the worst result from the MABSA; –30,700.2654 is
still a better result than the optimum value or the best result
from other established algorithms. However, MABSA is
less robust to solve the problem as shown by the higher
value of standard deviation when compared to other listed
algorithms.

4.2 Test function 2
In test function 2, the performance of MABSA was also
compared with the 14 established algorithms. The
algorithms are CRGA, SAPF, CULDE, SMES, ASCHEA,

7

PSO-DE, SR, DELC, DEDS, HEA-ACT, ISR, α simplex,
ABC2 and MBA. The statistical results obtained by all
algorithms including MABSA are shown in Table 3 while
the worst, median, mean and best results for each
considered algorithm is shown in Figure 3.

The outstanding performance of MABSA to solve the
test function 2 can be seen in both table and bar plot. The
fitness function value achieved by MABSA for every
statistical criterion was the optimum as compared to other

14 established algorithms as well as the optimum value
from CEC 2006. In addition to that, the MABSA method
was the only algorithm passing the –7,000.0000 value in
median, mean and best which was not achievable by other
algorithms. Nevertheless, the higher standard deviation
value achieved by MABSA shows that the algorithm was
less robust to solve the test function 2 compared to other
algorithms. However, the level of robustness for MABSA to
solve this problem was better than the previous problem.

Table 4 Comparison of statistical results obtained using different algorithms for test function 3

Method Worst Median Mean Best Std. dev. NFEs

CRGA 682.9650 681.2040 681.3470 680.7260 5.7000e–01 50,000

SAPF 682.0810 681.2350 681.2460 680.7730 3.2200e–01 500,000

CULDE 680.6301 n/a 680.6301 680.6301 0.0000 100,100

SMES 680.7190 680.6420 680.6430 680.6320 1.5500e–02 240,000

ASCHEA n/a 680.6350 680.6410 680.6300 n/a 1,500,000

PSO-DE 680.6301 680.6301 680.6301 680.6301 4.6000e–13 140,100

SR 680.7630 680.6410 680.6560 680.6300 3.4000e–02 350,000

DELC 680.6300 680.6300 680.6300 680.6300 3.2000e–12 80,000

DEDS 680.6300 n/a 680.6300 680.6300 2.5000e–13 350,000

HEA-ACT 680.6300 680.6300 680.6300 680.6300 5.8000e–13 200,000

ISR 680.6300 680.6300 680.6300 680.6300 3.2000e–13 271,200

α simplex 680.6301 680.6301 680.6301 680.6301 2.9000e–10 323,427

ABC2 680.6530 n/a 680.6400 680.6340 4.0000e–03 240,000

MBA 680.7882 n/a 680.6620 680.6322 3.3000e–02 71,750

MABSA 678.7398 672.6514 671.4536 662.4557 4.6726 88,303

Note: ‘n/a’ means not available.

Figure 4 Bar plot of statistical results obtained using different algorithms for test function 3

8

4.3 Test function 3
In test function 3, the statistical results between MABSA
and 14 other algorithms that are taken from the literature are
compared. The algorithms are CRGA, SAPF, CULDE,
MES, ASCHEA, PSO-DE, SR, DELC, DEDS, HEA-ACT,
ISR, α simplex, ABC2 and MBA. A comparison of
statistical results obtained by all algorithms is provided in
Table 4. Figure 4 shows a bar plot of worst, median, mean
and best solution of all algorithms with a benchmark of the
optimum value from CEC 2006.

The performance of MABSA was exceptional when
compared to other established algorithms to find the

optimum fitness function value for test function 3. The
MABSA was the sole algorithm that recorded the minimum
solution under 680.0000 for all statistical criteria with the
best solution 662.4557 which was far better than the
optimum value from CEC 2006. For this test function 3,
MABSA was well thought-out to be more robust when
compared to the performances in case of test function 1 or
test function 2. Despite the fact that the standard deviation
for MABSA was still larger than 1.0000, the value was
acceptable to compromise with the range of worst, median,
mean and best solution found which was better amongst
considered algorithms.

Table 5 Comparison of statistical results obtained using different algorithms for test function 4

Method Worst Median Mean Best Std. dev. NFEs

CRGA 0.7570 0.7510 0.7520 0.7500 2.5000e–03 3,000
SAPF 0.7570 0.7500 0.7510 0.7490 2.0000e–03 500,000
CULDE 0.7965 n/a 0.7580 0.7499 1.7138e–02 100,100
SMES 0.7500 0.7500 0.7500 0.7500 1.5200e–04 240,000
ASCHEA n/a 0.7500 0.7500 0.7500 n/a 1,500,000
PSO-DE 0.7500 0.7499 0.7499 0.7499 2.5000e–07 70,100
SR 0.7500 0.7500 0.7500 0.7500 8.0000e–05 350,000
DELC 0.7500 0.7500 0.7500 0.7500 0.0000 50,000
DEDS 0.7499 n/a 0.7499 0.7499 0.0000 350,000
HEA-ACT 0.7500 0.7500 0.7500 0.7500 3.4000e–16 200,000
ISR 0.7500 0.7500 0.7500 0.7500 1.1000e–16 137,200
α simplex 0.7499 0.7499 0.7499 0.7499 4.9000e–16 308,125
ABC2 0.7500 n/a 0.7500 0.7500 0.0000 240,000
MBA 0.7500 n/a 0.7500 0.7500 3.2900e–06 6,405
MABSA 0.7500 0.7500 0.7500 0.7500 0.0000 89,724

Note: ‘n/a’ means not available.

Figure 5 Bar plot of statistical results obtained using different algorithms for test function 4

9

4.4 Test function 4
A set of 14 established algorithms is compared with
MABSA in terms of the statistical results obtained for test
function 4. These included CRGA, SAPF, CULDE, SMES,
ASCHEA, PSO-DE, SR, DELC, DEDS, HEA-ACT, ISR, α
simplex, ABC2 and MBA. Table 5 shows the comparison
results, while the bar plot of worst, median, mean and best
solution acquired from all the algorithms with the optimum
value from CEC 2006 is shown in Figure 5.

For test function 4, MABSA successfully achieved
results which have the same performance or better than
other considered algorithms for all criteria. Indeed, the
median, mean and best solution values achieved by
MABSA method managed to achieve better than the CEC
2006 benchmark value; 0.7500. The MABSA recorded
0.7500, 0.7500 and 0.7500 for median, mean and best
criteria respectively. According to the results, MABSA is
also considered to be more robust to solve the test
function 4 as its standard deviation value recorded was
0.000000. The robustness ability of MABSA to solve the
problem was at par with other considered algorithms and
better than CGRA, SAPF, CULDE and SMES.

Table 6 Rank of algorithms for test functions

Algorithm MAE Ranking

MABSA –66.1095 1
DEDS –6.9250e–5 2
DELC –4.4250e–5 3
HEA-ACT –4.4250e–5 4
ISR –4.4250e–5 4
α simplex 5.8500e–5 6
PSO-DE 7.4750e–5 7
ABC2 1.2058e–3 8
CULDE 2.0820e–3 9
MBA 5.737e–3 10
ASCHEA 0.0135 11
SMES 0.1357 12
SAPF 3.9220 13
SR 21.4750 14
CRGA 55.8464 15

4.5 Overall comparison of all considered algorithms
The mean absolute errors (MAEs) of all algorithms are
computed to rank all considered algorithms. MAE is a
statistical criterion that indicates how far the results are
from the actual values as:

1=
−

= ∑
i

i iz
m h

MAE
z

(6)

where

mi mean of optimum achieved results

hi global optimum value

z number of test functions.

All considered algorithms for test functions are ranked in
Table 6 based on their corresponding MAE’s. The table
shows that MABSA is at the highest ranking from 15
considered algorithms.

5 Conclusions
A MABSA has been proposed for solving constrained
optimisation problems. The MABSA has been formulated
as an improved version of ABSA developed by Yahya et al.
(2016). In addition to redefining ABSA parameters, a new
strategy, namely the bounce back strategy as a mechanism
to control the transmitted beam to fall only within the
designated search space, has been incorporated into
MABSA.

The MABSA has achieved competitive results on four
constrained optimisation benchmark test functions adopted
from CEC 2006 at a relatively better optimum solution
value with a low computational cost. From the comparative
study, MABSA has shown its ability to handle various
constrained optimisation, and its outstanding performance is
much better, in terms of statistical metrics, than the
established set of algorithms selected from the literature.

The future works will be focus on the application of
MABSA to real optimisation problems.

References
Altringham, J.D., Hammond, L. and McOwat, T. (1996) Bats:

Biology and Behaviour, The Oxford University Press, Oxford,
UK.

Amirjanov, A. (2006) ‘The development of a changing range
genetic algorithm’, Computer Methods in Applied Mechanics
and Engineering, Vol. 195, No. 19, pp.2495–2508.

Becerra, R.L. and Coello, C.A.C. (2006) ‘Cultured differential
evolution for constrained optimization’, Computer Methods in
Applied Mechanics and Engineering, Vol. 195, No. 33,
pp.4303–4322.

Cagnina, L.C., Esquivel, S.C. and Coello, C.A.C. (2008) ‘Solving
engineering optimization problems with the simple
constrained particle swarm optimizer’, Informatica, Vol. 32,
No. 3, pp.319–326.

Garg, H. (2014) ‘Solving structural engineering design
optimization problems using an artificial bee colony
algorithm’, Journal of Industrial and Management
Optimization, Vol. 10, No. 3, pp.777–794.

Hamida, S.B. and Schoenauer, M. (2002) ‘ASCHEA: new results
using adaptive segregational constraint handling’,
Proceedings of the 2002 Congress on Evolutionary
Computation (CEC’02), Honolulu, USA, Vol. 1, pp.884–889.

10

Hsieh, T-J. (2014) ‘A bacterial gene recombination algorithm
for solving constrained optimization problems’, Applied
Mathematics and Computation, Vol. 231, No. 1, pp.187–204.

Karaboga, D. and Basturk, B. (2007) ‘Artificial bee colony (ABC)
optimization algorithm for solving constrained optimization
problems’, Foundations of Fuzzy Logic and Soft Computing,
Lecture Notes in Computer Science, pp.789–798, Springer.

Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M.,
Suganthan, P.N., Coello, C.A.C. and Deb, K. (2006) Problem
Definitions and Evaluation Criteria for the CEC 2006 Special
Session on Constrained Real-Parameter Optimization,
Technical Report of School of EEE, Nanyang Technological
University, Singapore.

Liu, H., Cai, Z. and Wang, Y. (2010) ‘Hybridizing particle swarm
optimization with differential evolution for constrained
numerical and engineering optimization’, Applied Soft
Computing, Vol. 10, No. 2, pp.629–640.

Mezura-Montes, E. and Coello, C.A.C. (2005) ‘A simple
multimembered evolution strategy to solve constrained
optimization problems’, IEEE Transactions on Evolutionary
Computation, Vol. 9, No. 1, pp.1–17.

Parsopoulos, K.E. and Vrahatis, M.N. (2005) ‘Unified particle
swarm optimization for solving constrained engineering
optimization problems’, Advances in Natural Computation,
Lecture Notes in Computer Science 3612, pp.582–591,
Springer.

Runarsson, T.P. and Yao, X. (2000) ‘Stochastic ranking for
constrained evolutionary optimization’, IEEE Transactions on
Evolutionary Computation, Vol. 4, No. 3, pp.284–294.

Runarsson, T.P. and Yao, X. (2005) ‘Search biases in constrained
evolutionary optimization’, IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews,
Vol. 35, No. 2, pp.33–243.

Sadollah, A., Bahreininejad, A., Eskandar, H. and Hamdi, M.
(2013) ‘Mine blast algorithm: a new population based
algorithm for solving constrained engineering optimization
problems’, Applied Soft Computing, Vol. 13, No. 5,
pp.2592–2612.

Takahama, T. and Sakai, S. (2005) ‘Constrained optimization by
applying the α constrained method to the nonlinear simplex
method with mutations’, IEEE Transactions on Evolutionary
Computation, Vol. 9, No. 5, pp.437–451.

Tessema, B. and Yen, G.G. (2006) ‘A self adaptive penalty
function based algorithm for constrained optimization’,
Proceedings of the 2006 IEEE Congress on Evolutionary
Computation (CEC’06), Vancouver, Canada, pp.246–253.

Wang, L. and Li, L-P. (2010) ‘An effective differential evolution
with level comparison for constrained engineering design’,
Structural and Multidisciplinary Optimization, Vol. 41, No. 6,
pp.947–963.

Wang, Y., Cai, Z., Zhou, Y. and Fan, Z (2009) ‘Constrained
optimization based on hybrid evolutionary algorithm and
adaptive constraint-handling technique’, Structural and
Multidisciplinary Optimization, Vol. 37, No. 4, pp.395–413.

Yahya, N.M., Tokhi, M.O. and Kasdirin, H.A. (2016) ‘A new
bats echolocation-based algorithm for single objective
optimisation’, Evolutionary Intelligence, Vol. 9, No. 1,
pp.1–20.

Yang, X-S. and Hossein, G.A. (2012) ‘Bat algorithm: a novel
approach for global engineering optimization’, Engineering
Computations, Vol. 29, No. 5, pp.464–483.

Zahara, E. and Kao, Y-T. (2009) ‘Hybrid Nelder-Mead simplex
search and particle swarm optimization for constrained
engineering design problems’, Expert Systems with
Applications, Vol. 36, No. 2, pp.3880–3886.

Zhang, M., Luo, W. and Wang, X. (2008) ‘Differential evolution
with dynamic stochastic selection for constrained
optimization’, Information Sciences, Vol. 178, No. 15,
pp.3043–3074.

Appendix
Constrained problem 1
Minimise:

3
1 5 13() 5.3578547 0.8356891 37.293239

40,729.141
= + +
+

f x x x x x

subject to:

1 2 5 1 4

3 5

() 85.334407 0.0056858 0.0006262
0.0022053 92 0

= + +
− − ≤

g x x x x x
x x

2 2 5

1 4 3 5

() 85.334407 0.0056858
0.0006262 0.0022053 0

= − −
− − ≤

g x x x
x x x x

3 2 5 1 2
2
3

() 80.51249 0.0071317 0.0029955
0.0021813 100 0

= + +
+ − ≤

g x x x x x
x

4 2 5
3

1 2 3

() 80.51249 0.0071317
0.0029955 0.0021813 90 0

= − −
− − + ≤

g x x x
x x x

5 3 5

1 3 3 4

() 9.300961 0.0047026
0.0012547 0.0019085 25 0

= +
+ + − ≤

g x x x
x x x x

6 3 5

1 3 3 4

() 9.300961 0.0047026
0.0012547 0.0019085 20 0

= − −
− − + ≤

g x x x
x x x x

where

1

2

78.0 102.0
33.0 45.0
27.0 45.0, 3, 4, 5

≤ ≤
≤ ≤
≤ ≤ =i

x
x
x i

Constrained problem 2
Minimise:

() ()3 3
1 2() 10 20= − + −f x x x

subject to:

() ()2 2
1 1 2() 5 5 100 0= − − − − + ≤g x x x

() ()2 2
2 1 2() 6 5 82.85 0= − + − − ≤g x x x

where

1

2

13.0 100.00
0.0 100.0

≤ ≤
≤ ≤

x
x

11

Constrained problem 3
Minimise:

() ()
()

2 2 4
1 2 3

2 6 2 4
4 5 76

6 7 6 7

() 10 5 12

3 11 10 7
4 10 8

= − + − +

+ − + + +
− − −

f x x x x

x x x x
x x x x

subject to:
2 4 2

1 3 51 2 4() 127 2 3 4 5 0= − − − − − ≥g x x x x x x

2
2 1 2 4 53() 282 7 3 10 0= − − − − − ≥g x x x x x x

2 2
3 1 72 6() 196 23 2 6 8 0= − − − + ≥g x x x x x

2 2 2
4 1 2 6 71 2 3() 4 3 2 5 11 0= − − + − − + ≥g x x x x x x x x

where

10.0 10.0, 1, 2, 3, 4, 5, 6, 7− ≤ ≤ =ix i

Constrained problem 4
Minimise:

()22
21() 1= + −f x x x

subject to:
2

2 1() 0= − =h x x x

where

1.0 1.0, 1, 2− ≤ ≤ =ix i

View publication statsView publication stats

12

https://www.researchgate.net/publication/313393695

