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Abstract

Helicopters are extensively employed as versatile assets for military, transportation,

rescue and many other utilities. A healthy and functional Helicopter Main Gearbox

(MGB) is critical to ascertain the helicopter’s system reliability and flight airworthiness,

i.e. the suitability for safe flight. Therefore, it is of great importance to monitor the

health status of the MGB. Currently, Health and Usage Monitoring System (HUMS), has

been deployed on all medium and large size civil helicopters to perform MGB health

status monitoring in United Kingdom. Nevertheless, HUMS has shown insensitivities

and a lack of accuracy to detect planetary bearings-related defects, resulting in

unfortunate accidents. Therefore, the successful diagnosis of planetary bearing defects in

MGB could contribute profoundly to enhance sensitivity of HUMS against such defect

type, thus improving helicopter flight safety, and reducing the overall maintenance costs.

This research aims at investigating the diagnosis of planetary bearing faults inside MGB

using advanced signal processing techniques, providing diagnostic information that is

more accurate and indicative against incipient planetary bearing faults. To fulfil the

requirements, experimental work was undertaken on a commercial helicopter MGB to

acquire invaluable vibration data. The MGB was operated under various load, speed and

fault severities conditions. Diagnosis of the seeded planetary bearing faults was then

successfully performed by evaluating and implementing various frequency domain

processing techniques. Finally, further evaluation was conducted using another MGB

dataset collected from a CH-46E Aft gearbox.

The results of this study have shown that applying various frequency domain signal

processing techniques can effectively detect incipient planetary bearing faults. The main

contributions of this research include acquiring data from a full scale helicopter main

gearbox, proposing and evaluating a non-deterministic weak signature analysis scheme

for MGB planetary bearings fault detection, and demonstrating using MGB carrier

induced sidebands as a novel spectral feature for planetary bearing diagnosis.
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1

Chapter 1

Introduction

This chapter starts with providing the background of this study in Section 1.1, followed

by the research aims and objectives described in Section 1.2. The structure of this thesis

is outlined in Section 1.3.

1.1 Background

Modern helicopters are extensively employed for various civil and military tasks, due to

their versatility and applicability. They are distinctively different from other types of

aircraft, because of their special flying mechanisms and regimes, i.e. the special

conditions under which the helicopter flies, as well as the capabilities of performing

unique manoeuvres, including direct take-off and landing, hovering, flying backwards

and sideways. The helicopter’s transmission system is specially designed to achieve

these functionalities. It transfers the power from engines to the rotor systems to generate

the lift for take-off and to other accessory systems for flight control. The MGB is a key

component in the transmission system as its primary purpose is to reduce the high output

speed from engines to optimum rotational speed, thus providing adequate torque to drive

the main rotors [1]. The ratio between the speed from engine and the speed from rotor

shaft defines the reduction ratio. For more sophisticated MGB designs, the outstandingly

high reduction ratio is achieved through the use of multi-stage epicycle speed reduction

modules. An example of MGB two-stage epicycle modules is demonstrated in Figure

1.1. In this example, the ring gear at the bottom is fixed to the MGB housing. Input

speed is firstly reduced through the 1st epicyclic planetary gears, and then further

reduced by the epicyclic train comprised of 1st sun gear and 2nd planetary gears. The 2nd

carrier plate which connects the 2nd sun gear provides the output speed and torque to the
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Figure 1.1: Two-stage epicyclic modules [2]

main rotor. The detailed discussion of two-stage epicyclic modules in MGB will be

given in Chapter 3 when introducing the MGB adopted in this study.

The speed reduction ratio of the module illustrated in Figure 1.1 can reach 87 : 1,

calculated with the output speed from engine to rotor. The requirements of achieving this

ratio and the sophisticated structure of speed reduction modules determine that the

rotating components such as planetary gears and bearings are under consistent

mechanical stresses. Therefore, they are susceptible to cracks, material losses and

bearing defects associated key failure modes that can lead to MGB failure, such as small

corrosion pits induced cracks, small machining defects induced cracks, sub-surface

cracks, gears/bearings spalling, wear due to variations of loads, fracture/deformation

under overload and seizure of roller bearing [3]. In the unfortunate event of MGB

failure, the helicopter could suffer a rapid loss of power, losing control of flight and

eventually crash onto the ground, which endangers flight crew’s lives and leads to

immeasurable losses [4–6]. Therefore, it is absolutely crucial to monitor the status and

conditions of critical helicopter transmission components, to avoid unexpected
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helicopter unavailability, increase the flight operation safety and schedule proactive

maintenance plans accordingly.

The investigation to develop such a helicopter monitoring system can be traced back to

as early as 1982, when the Helicopter Airworthiness Review Panel (HARP) established

the need for helicopter condition monitoring improvement [7]. The process was

motivated and accelerated by a tragic North Sea accident in 1986 that took 45 lives. The

cause of the accident was reported to be collision between de-synchronised rotors, due to

a catastrophic failure in forward transmission [8]. Since then, the health and usage

monitoring system, HUMS, came into being. In 1990, United Kingdom Civil Aviation

Authority (UK CAA) made it mandatory to install Flight Data Recording (FDR) unit on

medium and large civil helicopters to monitor aircraft flight status. In 1999, CAA made

it mandatory for all heavy rotor-craft registered in the UK to install HUMS. Till this date,

many types of HUMS designed by difference companies or organisations are on service,

including HUMS from Eurocopter, GE Aviation, Goodrich and Honeywell [9].

HUMS provides two interconnected functionalities, namely health monitoring and usage

monitoring. The focus of this research is HUMS helicopter health monitoring, achieved

through employing Vibration Health Monitoring (VHM). The basis of VHM is to utilise

the vibration data recorded during specific flight regimes to produce Condition Indicators

(Condition Indicators (CIs)) by signal processing, which takes place either in on-board

Signal Processing Unit (SPU) or at the helicopter ground base station. CIs are statistical

parameters which represent the characteristics of the acquired vibration. Through

long-term consistent monitoring, a baseline or healthy condition can be established.

Deviations to the established healthy condition observed in CIs progressions or breaches

to pre-determined CIs threshold usually can be correlated to helicopter system defects.

Recommended in Civil Aviation Authority (CAA) issued file CAP 753 [10], vibration

data are sensitive to flight regimes, for this reason, it may be desirable to focus data

acquisition to particular operating conditions or phases of flight. This also allows the

vibration data to be analysed and compared under a similar regime to establish whether a

deviation exists from normal condition over time [2].

The deployment of HUMS has brought evident benefits. In [7,9,11] the authors all agree
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Figure 1.2: MGB planetary gear/bearing [2]

that HUMS’ improvements mainly focus on, but not limited to, increasing the aircraft

safety and availability, supporting maintenance decision-making, and reducing overall

cost. However, concerns exist over the efficacy and validation of HUMS. In 1994, K.F.

Fraser expressed uncertainty on using HUMS to monitor multiple drive path components

such as epicyclic gears and bearings, whose transmission paths vary continuously.

What’s more, the helicopter accidents related to MGB malfunctioning happened in

recent years have shown that HUMS was insensitive to MGB failure associated with

planetary bearings. Some notable accidents are G-REDL (accidents registration number,

same hereafter) accident in 2009 [2], G-REDW accident in 2012 [5], and LN-OJF

accident in 2016 [6]. In all these accidents, HUMS was either unable to produce

meaningful warnings or only able to sense anomalies seconds before completely lost of

aircraft control.

Several issues have been identified from reviewing aforementioned accident reports and

the discussions with experts from EASA. Firstly, vast majorities of the CIs and analysis

are developed and performed with a focus on gear-associated mechanisms, which

explains the insensitivities to bearing faults. Such as described in the G-REDL helicopter

accident report [2] that only gear associated CIs had pre-set thresholds. The reports also

make the recommendation to EASA to research methods for improving the detection of

component degradation in helicopter epicyclic planet gear bearings (Safety

Recommendation 2011-041). What’s more, vibration data is highly modulated by the

constant varying transmission paths, due to the sophisticated epicyclic modules. The

signal modulation also comes from the unique structure of planetary bearing shown in
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Figure 1.2, where the bearing is encircled by the gear, making the gear’s inner race also

the outer race of the bearing. Therefore, the signals associated with bearings are

modulated by the gears during planetary movement. This in turn affects CIs’ capabilities

of distinguishing two different signals that have similar overall statistical features,

making the diagnosis of planetary bearing faults exceedingly challenging. It is

noteworthy that the fault originated from the outer race area of the planetary gear/bearing

set was the root cause of G-REDL and LN-OJF accidents [2, 6]. Therefore, the planetary

bearing outer race fault is of particular interest in this study.

Apart from the CIs and fault mechanism, another detrimental aspect is that MGB’s

operation produces overwhelming noises, which mask the fault-related signatures and

hinder HUMS’ effectiveness. It is generally recognised that, frequency domain based

signal processing techniques offer powerful filtering capabilities to cope with

overwhelming noises and interferences, however, no detailed frequency analysis that is

capable of de-noising, demodulation and feature extractions has seen incorporated into

development of CIs [12–14], which is also agreed and recommended investigating on

from the EASA expert opinions.

1.2 Aims and Objectives

Planetary bearing faults lead to MGB failure, which could result in catastrophic

helicopter accidents. Therefore, it is essential to identify possible incipient fault prior to

its propagation, thereby improving the overall airworthiness of the aircraft, preventing

secondary damage to the other transmission components, and reducing the maintenance

cost. Although HUMS has been widely implemented, accidents reports and expert

opinions have indicated the needs to investigate on improving its effectiveness against

planetary bearing outer race faults, as described in Section 1.1. Therefore, the primary

goal of the work presented in this thesis is to study the existing signal processing

techniques that offer de-noising, demodulation and signature extraction capabilities to

diagnose planetary bearing faults. To fulfil this goal, in addition to studying the

state-of-art frequency domain signal processing techniques for bearing fault diagnosis, it

is also desirable to undertake experiments of seeded incipient planetary bearing outer
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race faults. The experiments contribute profoundly to develop the knowledge on

diagnosis of incipient planetary bearing fault under relatively low speed and light load

operational conditions, comparing with the research published in [3], which was

conducted under severe bearing cracks and extreme loading conditions of MGB. The

objectives of this study are elaborated below.

• Investigating the frequency domain signal processing techniques that offer

de-noising, gear/bearing signal separation, signal demodulation, and fault-feature

extraction. Discuss in detail the theory and evaluate the effectiveness of applying

these techniques to planetary bearing diagnosis.

• Undertaking seeded defect tests on real helicopter MGB to collect experimental

vibration data. Different test conditions should be carried out in terms of MGB

operating speed, load coupled with 2nd epicyclic sun gear, and the severities of

outer race defects.

• Applying the selected signal process techniques for planetary bearing fault

diagnosis, and validating their effectiveness for the seeded fault. Developing

frequency domain signal processing routines that are optimal in diagnosis of

incipient planetary bearing faults.

• Conducting comparative studies using helicopter MGB data from a CH-46E

helicopter aft MGB.

1.3 Thesis Outline

The rest of the thesis is organised as follows.

Chapter 2 presents the basis of vibration health monitoring, commonly applied CIs, as

well as the literature review of the state-of-the art frequency domain based signal

processing techniques that benefit bearing fault diagnosis. Chapter 3 describes the details

of seeded planetary bearing fault experiment undertaken in SA330 Super Puma MGB. In

this Chapter, the experiment rig setup is firstly presented. The seeded defects and the

setup of data acquisition are described, followed by the reporting of test conditions and

procedures. In the experiment, invaluable vibration data has been recorded from various
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test conditions, for post-processing. Chapter 4 details the diagnosis work for the data

collected from seeded planetary bearing fault experiment. This chapter will discuss the

diagnosis of seeded planetary bearing fault, using the vibration data collected under four

different test conditions. Chapter 5 investigates a comparative study using the vibration

data collected on a CH-46E helicopter aft gearbox, further validating the results

concluded from Chapter 4. Finally, in Chapter 6, the presented work from Chapter 2 to

Chapter 5 are summarised. Discussions over the future work that extends this research

will also be given in this Chapter.
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Chapter 2

Literature Review

2.1 Introduction

This chapter presents a comprehensive literature review on the basis of vibration-based

condition monitoring, fundamentals of applying vibration for condition monitoring in

HUMS, and details on frequency based signal processing techniques that meet the

requirements listed in Chapter 1.

2.2 Vibration-based Condition Monitoring

The rotating machineries have far-reaching applications all over the world and across

various industrial sectors. With the ongoing acceleration of technological advancements,

the design of the rotating machineries is becoming increasingly complex [15], with

lighter and possibly faster rotors, more sophisticated power transmission structures,

hence tighter tolerances to mechanical defects. Due to the constant operation under

mechanical stresses and/or varying loads in the real environment, rotating machineries

are subject to components deterioration and mechanical failure. Therefore, maintenance

for a rotating machine is key to ascertain the machine’s reliability and maximise the

availability, thereby reduce overall cost.

It has been stated in [16] that the first form of maintenance was simple “Breakdown”

maintenance, meaning keeping the machine running until failure, only at which point the

maintenance would take place. This form of maintenance was incompetent to take

actions before failure occurs, thus it was also called “Unplanned” maintenance. An

improvement strategy named “Time-based” maintenance or Planned Maintenance

(Planned Maintenance (PM)), is to schedule the maintenance based on a recursive time
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interval, which partially addresses the issues with breakdown maintenance. However,

PM has the limitation of being unaware of the machineries’ status and conducting

maintenance regardless of their health status, which inherently increases maintenance

cost. Modern sensory technology has facilitated a more efficient maintenance strategy,

namely condition-based maintenance (Condition Based Maintenance (CBM)). CBM is a

preventive maintenance strategy that provides the access of condition or health status

information through the employment of sensors, therefore supporting the development of

proactive maintenance schedule at the optimal time. Based on the condition-monitoring

information, CBM improves the reliability of engineering system [17].

Condition monitoring (Condition Monitoring (CM)) is an essential part of CBM. By

installing various sensors and employing a data recording scheme for a certain time

period, the baseline or general conditions of the rotating machinery can be established by

data processing. CM enables the fault diagnosis possibilities by comparing the

established baseline conditions and the subsequent conditions with the progression of

time. Deviations of subsequent conditions to baseline or healthy conditions may indicate

the existence of potential defects in the rotating system, which could be confirmed with

the combination of other system usage information and/or inspections. This is also the

basic concept of utilising CIs, which represent a certain condition, to monitor the

progression of helicopter’s transmission and identify early signs of defects.

There are great numbers of methods that promote the implementation of CM. In [18],

it is detailed that vibration, oil analysis, performance analysis and thermography are all

widely applied for CM. However, it is also pointed out that, if the monitoring purpose

is to be mindful of the internal information from the external monitoring methods while

the machines are rotating, two main analysis methods are vibration analysis and lubricant

oil analysis. Although lubricant oil analysis could be a decent technique to monitor the

overall health conditions of the MGB, it has many limitations to be adopted for planetary

bearing fault diagnosis. Firstly, oil analysis cannot reveal the fault locations or fault types

inside the MGB; secondly, oil analysis cannot be performed in real-time, the gearbox must

be shut down before the inspection; and lastly, if there is no material loss when the defects

are propagating, oil analysis will be ineffective. Due to these limitations, oil analysis is
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not a competent candidate to diagnose MGB planetary bearing fault, whereas vibration

analysis is a suitable candidate. The reasons are discussed in the following paragraphs.

Vibration is a physical phenomenon that presents in operational rotating machineries

regardless of their health conditions. Vibration can be induced by various sources in

rotating machineries, including rotating shafts, meshing gear-teeth, rolling bearing

elements, rotating electric field, fluid flows, combustion events, structural resonance and

torsional vibration, i.e. angular rotations induced vibration [18–20]. Because of its

ubiquity in all parts of the machine, vibration is highly applicable as the source for

investigating the operational conditions and status of rotating machinery.

Besides its inherent applicability, vibration analysis becoming the most prevalent

methods for condition monitoring is also owing to its three advantages over other

methods. First of all, vibration reacts almost instantly to any differences induced to the

rotating system, either because of the change of operating conditions, environmental

aspects or faults. This is in contrary to slow reactive method like thermography, brings

benefits of faster faults indication. Secondly, the fast development of modern sensory

technology has indubitably promoted the implementation of vibration-based CM. As of

now, there are massive amounts of accelerometers available on the market, satisfying

different requirements such as dynamic range, flat frequency responses bandwidth,

sensitivities, temperature ranges, mount type, enclosure size, materials and number of

measuring axes. The widely approved Integrated Electronic Piezoelectric (IEPE)

accelerometer standard has also contributed to the increasing popularity of vibration

analysis. IEPE accelerometers are piezoelectric accelerometers packed with built-in

charge or voltage amplifier that transforms the high impedance signal from the

piezoelectric material to a low impedance voltage signal. Last but most importantly, as

stated in [18], vibration data has enabled many powerful frequency domain based signal

processing techniques to be applicable, which facilitate the diagnosis of rotating

machinery faults.

As already stated in previous paragraph, the sources of vibration in a running rotating

machine are mostly associated with components relative movements, contacts or meshing

with each other. These activities are highly likely to be phase-locked with the shafts which
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the components are attached to, that is, the speed of the meshing or rotating components

are linearly related to the shaft speed. Therefore, the vibration signal obtained from one

single accelerometer are usually the mixture of many vibrations induced by repetitive

rotating activities. This is specifically true in a MGB, where dozens of gears are meshing

together alongside the bearing rolling and shafts rotating simultaneously, to achieve power

transmission, as showcased in Figure 1.1 in Chapter 1.1. Therefore, when examining the

time-domain information of the acquired vibration signal, the vibrational information that

associated with specific rotating component will inevitably be obscured by other vibration

activities and/or noises. The use of frequency analysis allows the detailed examinations

on the vibration event that are associated with repetitive rotating, and extracts the hidden

information associated with the repetitiveness.

The foundation stone of frequency domain analysis is the Fourier Transform (FT). FT is a

method of signal decomposition, which converts the signal from time domain to frequency

domain. This leads to the original signal as a function of time, to become a complex-

valued function of frequency. The most common equation of FT for a continuous signal

is given in Equation 2.1:

X( f ) =
∞∫
−∞

x(t)× e− j2π f tdt (2.1)

where X( f ) denotes the frequency contents transformed from a function of time x(t), and

t is the continuous time. f is usually expressed in unit of Hz, which represents “cycles per

seconds”. This is very intuitively related to the rotating speed of shaft, gears and bearings

in a rotating machine.

Due to that the continuous waveforms sensed by accelerometers are analogue, they must

be digitalised to discrete sequences in order to be stored for digital analysis. According

to the Nyquist Theorem, which is also known as the sampling theorem, to acquire a

meaningful reproduction of the analogue signal, the number of samples that are

digitalised per second should be at least twice the highest frequency contained in the

analogue signal. The number of samples per second is called the sampling rate or
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sampling frequency. Considering the discrete time signal, Equation 2.1 is modified to its

discrete version, called Fourier Transform (DTFT):

Xk =
N−1

∑
n=0

x[n]× e
−

j2π

N
kn
, k = 0, 1, ..., N-1 (2.2)

where x[n] is the sampled discrete set of real numbers for all integer n. Xk is the

corresponding Fourier Sequences of size N. It can be derived from Equation 2.2, that the

computational complexity is O(N2), where O means the steps performed for

computation. O(N2) reflects that there are N outputs, and each requires a sum of N

terms. The most adopted fast computational Fast Fourier Transform (FFT) algorithm

proposed by Cooley and Tukey in 1965 [21] managed to reduce the operations required

to O(N logN) [22], which enormously increased the estimation speed of DTFT for

discrete time series. This opens up the possibilities of using modern computer and more

complex processing techniques for signal post analysis.

An example of the effectiveness of frequency signal analysis is given in Figure 2.1, where

the comparison between two simulated signals is presented. In Figure 2.1(a), a simple

10 Hz sinusoidal wave is plotted. As stated already, Hz is the unit describing the number

of repetitive revolutions occur in 1 seconds, in this case the sinusoidal wave occurs 10

times continuously. In Figure 2.1(b), the same signal is mixed with a simulated random

noise which has overwhelming amplitude comparing to the sinusoidal wave, therefore it

is evident that the pure repetitiveness pattern in the sinusoidal wave has been massively

covered, and the original periodic characteristic in time domain is barely observable.

In contrast, both the original pure 10 Hz sinusoidal wave and the noisy signal are

processed with FFT using MATLAB signal processing toolbox. The results of their

frequency sequences are plotted as amplitude frequency spectrum. Figure 2.2(a) is the

original signal’s frequency spectrum, where the 10 Hz is distinctly shown. Figure 2.2(b)

on the other hand, despite the pollution from the added noise, the 10 Hz frequency is still

evident. This unique feature enables various frequency filters to be developed, that are

capable of filtering unwanted frequency contents, while reserving the most of the
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frequency of interests. It is worth noting that the frequency amplitude of the signal in

Figure 2.2(b) is larger than that in Figure 2.2(a). This increase in amplitude is induced by

the added random noise, whose energy is constantly distributed in frequency domain.

Frequency spectrum analysis is also capable of extracting the fault related frequencies,

for example, deviations of frequency components in faulty gears (tooth missing or

cracking) to the normal periodic meshing spectrum; rollers of bearing periodic

contacting the outer race cracks while rotating and many other scenarios.

(a) Simulated 10 Hz signal

(b) Simulated 10 Hz signal with random noise

Figure 2.1: Comparison between raw and noisy time waveforms
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(a) Frequency amplitude spectrum of 10 Hz signal

(b) Frequency amplitude spectrum of 10 Hz signal with added noise

Figure 2.2: Amplitude spectrum of raw and noisy time waveforms

2.3 Vibration Health Monitoring Employed in HUMS

2.3.1 Introduction

The importance of CBM and CM using vibration analysis explained in Section 2.2 has

been taken upon and elevated to a momentous consideration in this study, that is, the flight

safety and aircraft airworthiness. It is therefore particularly important to firstly develop
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Figure 2.3: HUMS schematic diagram

the knowledge of how Vibration Health Monitoring (VHM) is implemented currently in

HUMS. The main resources for this part of the review are research report from EASA [3],

CAA issued papers [10,23,24], studies of HUMS [7,23,25,26], and also information from

the helicopter accident reports [2, 4, 6, 8].

As stated in Chapter 1.1, the history of HUMS can be traced back to 80s, and the

development of HUMS was unfortunately accelerated by a tragic offshore helicopter

crash that caused 45 casualties [7]. In [3], an overview of current VHM implementation

was presented, summarising that organisations including UK CAA, the US National

Aeronautics and Space Administration (NASA), Federal Aviation Administration (FAA)

have conducted various surveys to evaluating the effectiveness of HUMS and the method

of applying vibration analysis based monitoring programme for drivetrain system health

monitoring [27–30].

Figure 2.3 depicts the general process of the working principles of HUMS. By

employing multiple sensors and system performance trackers, various kinds of data is

either processed for cockpit display or stored to be processed in detail at the ground base

station, where the CIs trends are inspected. Within HUMS’s working process shown in

Figure 2.3, VHM acts as a key technology in collecting vibration data from critical

rotary parts and performing the detailed analysis. An example of the VHM in real

HUMS was reported in the research published by JW. Bristow [31], where a system
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Figure 2.4: Drive train monitoring of EuroHUMS [2]

overview was illustrated, highlighting the functionality included in HUMS of “gearbox

vibration analysis”.

In the following paragraphs, the principles of accelerometer locations, recording scheme

are discussed. Firstly, in terms of the accelerometers locations, Figure 2.4 has shown that

18 accelerometers have been employed across the main rotating parts on the drivetrain,

including input shafts from engine (purple and cyan); 1st and 2nd planetary modules (red);

right and left output shafts (green and yellow, respectively); and tail gear and shaft systems

(dark orange). MGB epicyclic modules are also labelled red in Figure 2.4.

The standard document CAP 753 [10] also listed the instructions on sensory installation,

suggesting “the location of sensors and the method of installation have a significant

effect on monitoring performance. The design selected should be investigated to confirm

that the processed vibration signal-to-noise ratio is acceptable and that it is capable of

discriminating the features required to identify potential incipient defects from

monitoring”.

The data recording scheme has been instructed that “at least the data set for all components
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should be automatically obtained on each flight of greater than 30 minutes in stabilised

conditions without the need for in-flight pilot action”, which is sensible to establish a long-

term monitoring. The main signal processing in HUMS is reflected on the procedures of

producing CIs, which is reviewed in the next Section.

2.3.2 Condition Indicators Reported in Literature

HUMS is employed to collect all kinds of sensory information, which is then processed

and combined to reflect health state of the monitored key components. Condition

indicators (CI) are statistical indicators produced from processing HUMS sensory

information to assist machinery fault identification. Since Steward proposed useful

indicators such as FM0 and FM4 in 1977 [32], CIs have been developed rapidly,

although most of CIs aim for gear fault detection. Numerous researches have been

conducted on this topic. In [20, 33–38], procedures and calculations of common CIs are

summarised, tests and validations with experimental data are reported. Various CIs were

evaluated and compared in terms of availability, fault response and false positives in

study [39]. Specifically, the oil cooler bearing CIs are tested and compared in [40] .

Generally, three types of data are used to generate CIs, namely raw data, residual data

and difference data. Raw data is referred to unprocessed vibration data, while residual

data is produced by removing drive shaft frequency, gear mesh frequencies as well as

their 1st and 2nd harmonics from time synchronised raw data. A difference data is

generated by further removing 1st sidebands from residual signals. Global CIs generated

from raw data such as RMS value, PP (Peak-to-peak), kurtosis are great for general

health indication, but not so effective on incipient defects monitoring. To overcome

disadvantages of global CIs, more complicated CIs are developed using residual and

difference data. The concept of kurtosis, with certain modifications, is applied

extensively in developing these complicated CIs, such as FM0, FM4, NA4, NB4 and so

on, due to its capability of describing how flat or peaky the data is. Traditionally

recognised CIs are listed but not limited in Table 2.1 ( [41]).

Time Synchronous Averaging and Order Tracking
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Table 2.1: Vibration condition indicators

Shaft CIs

Asynchronous/ Synchronous Shaft Order 1, 2, 3
Synchronous Averaged RMS

Synchronous Averaged Peak to Peak
Synchronous Averaged Kurtosis

Gears CIs

Residual Kurtosis FM4 & FM4∗

Residual RMS Energy Ratio
Sideband Modulation M6A & M6A∗

Narrowband Crest Factor M8A & M8A∗

Gear Distributed Fault NA4 & NA4∗

G2-1 NA4 Reset
Residual Peak to Peak Amplitude Modulation

Energy Operator Phase Modulation
Sideband Index Instantaneous Frequency

Sideband Level Factor NB4 & B4∗

FM0 NP4

Bearings CIs

Envelope Energy
Peak Pick

Synchronous Averaged Peak to Peak
Frequency Band Energy

Time Synchronous Averaging (TSA) plays an important role and is extensively applied

to calculate various CIs. TSA is described in [42] as an essential algorithmic tool for

determining condition of rotating machinery. TSA has been established as a very effective

way on extracting repetitive signatures even with large noise for a long time [43, 44].

In practice, TSA is achieved by dividing raw data into segments, where all segments

are extracted correspondingly to a specific time record length, whose reciprocal is the

gear mesh frequency of interest, i.e. these segments are time synchronised. These data

segments may have different data points because of rotational speed fluctuation, thus they

are interpolated to contain same integer numbers of data points, and then averaged to

produce TSA signal. The TSA process is modelled in equation below [45]:

y(t) =
1
N
·

N−1

∑
n=0

x(t +nT ) (2.3)
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Equation 2.3 describes the filtering process of TSA, which can be modelled as the

convolution of raw signal x(t) with N delta functions displaced by integer multiples of

time T . Through this process, only the selected frequencies and their corresponding

harmonics are retained, while the other frequencies associated components are

suppressed. McFadden in [43] described the effect of TSA in frequency domain as a

“comb filter ”, the higher the value of N is, the better the noise-rejection effect will be.

The comb effect of TSA process frequency selectivity is demonstrated in Figure 2.5,

where the frequency is converted from Hz to orders, i.e. integer multiplies to the

fundamental frequency 1/T . The Figure demonstrates the TSA process of retaining 8

orders of the fundamental frequency, while suppressing the other frequencies in the

spectrum.

Figure 2.5: TSA filter effect of retaining 8 orders of the fundamental frequency [43]

Order tracking is usually discussed in parallel with TSA simply because that order

tracking can be seen as one step of the TSA process. As mentioned before, a successful

TSA requires one to know the accurate rotating phase-time information, and guarantee

the minimum speed fluctuation. Order tracking is thus used to smooth out the speed

fluctuation. As speed fluctuation could also bring in ripples or “smear effect” in

frequency domain, hindering fault identification, order tracking is also commonly used

independently purely for the purpose of data pre-processing to increase data

signal-to-noise ratio. Order tracking is usually achieved by interpolation, which is used

to resample data in angular domain, making sure that for every revolution of the shaft,
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same integer number of data points are captured regardless of the rotating speed

fluctuation. In [46, 47] the effect of order tracking and a very complex computational

method for calculating order tracking was presented. Idehara et al. presented and

compared different order tracking procedures in [48]. However, in practice, performing

order tracking is simpler and approachable. A pseudo code for performing TSA and

order tracking with the help of tachometer signal was proposed in [42]:

1. Calculate the Zero Cross Time (ZCT), which is the time when the tachometer

readings changed from 1 to 0.

2. For the shaft of interest, interpolate current ZCTi and ZCTi−1 based on gear ratio.

3. Calculate time intervals dZCTi, from the difference of ZCTi and ZCTi−1.

4. Calculate the resample times, dZCT
N , where N corresponds to the largest number of

data points among the time records dZCTi so that minimum speed is guaranteed to

avoid data loss.

5. Interpolate data based on information gathered above (Order tracking finished at

this step).

6. Accumulate resampled time domain data for M repetitions.

7. Average the accumulated data by M.

When that tachometer signal is not available, demodulating vibration data (acceleration)

and utilising speed-related frequency components or their higher harmonics to estimate

instantaneous rotating speed could be a possible solution. In [42, 49] and [50], such

method was discussed. Summarising these papers, algorithmic steps for estimating

instantaneous rotating speed using vibration signal are:

1. Examine high resolution amplitude spectrum of the vibration signal, select the

frequency components that related to shaft speed of interest. Noted that in some

occasions 2nd or 3rd harmonics may have higher signal-to-noise ratio (SNR) than

the fundamental frequency components [42].

2. Bandpass the selected frequency components with appropriate bandwidth. The rule

of thumb for selecting bandpass bandwidth is that: the band should be adjusted so

as to keep the meshing frequency only, and to remove all parasite frequencies [49].
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3. Demodulate the bandpass filtered signal. A convenient method is applying Hilbert

Transform, so that the bandpass filtered signal is transformed to analytic signal.

Unwrapped instantaneous phase ω of the bandpass filtered signal can be extracted

from its analytic transformation.

4. Calculate instantaneous speed (represented by frequency fspeed) using equation:

fspeed = ω/(2π).

It should be noted that this method cannot guarantee an accurate speed estimation if the

speed fluctuation is large. In [49], Bonnardot stated that the maximum speed fluctuation

is decided by:

δ f max =
f

1+2mTmax
, (2.4)

where f is the minimum average shaft speed, m is the order of selected harmonic, and

Tmax is the number of teeth of driven wheel.

The drawbacks of TSA and order tracking method are mentioned in [51]. TSA is highly

dependent on the prior knowledge of the time period of interest T , which is commonly

gathered from phase marker or tachometer that is synchronised to drive shaft. If the

knowledge of accurate rotating shaft phase-time map is unknown, Randall

citeRandall2011 stated that even 0.1% of speed fluctuation will cause jitter of typically

1K data points. Another problem of applying TSA that being talked a lot, especially in

the area of bearing defect diagnosis, is that the TSA comb filter can only bandpass one

set of frequency component and its harmonics. It could be a tedious job to apply TSA for

separating nondeterministic (i.e. random) bearing signal, and deterministic (i.e. periodic)

gear signal. The reason that bearing signal is not considered to be pure periodic is due to

the randomness induced by the inherent slip of the rollers.

Demonstration of CIs

Some popular CIs shown in literature are introduced hereforth.

Root Mean Square (RMS) has been widely applied as an overall indicator for condition
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monitoring. It represents the effective value of the signal within a certain time period.

Given a set of n discrete signal x1,x2, ...,xn, the corresponding RMS of this signal is:

xRMS =

√
1
n
(x2

1 + x2
2 + · · ·+ x2

n) (2.5)

The downside of RMS is that, it is insensitive to incipient faults whose amplitude is not

enough to emerge through the averaging process of RMS. RMS is also applied as a

prerequisite for other CIs, such as:

CF =
SPP

SRMS
, (2.6)

where CF is short for crest factor, SPP is peak-to-peak (PP) signal and SRMS is root-mean-

square signal. From the definition we can gather that the idea of CF is evaluating the

weighing of PP value against total rms value of the signal. CF has the similar problems

as RMS, that is, if the noise or interferences are overwhelming and determining the peak

amplitude, the fault associated signals will not be detected.

The zero-order figure of merit (FM0), can be calculated by:

FM0 =
SPP

N
∑

i=1
A(i)

, (2.7)

where A(i) is the ith mesh frequency harmonics. Compared with CF , FM0 focuses on

the energy spread on tested gears’ harmonics. As suggested from the definition, FM0 is

designed to detect gear-associated faults.

Energy ratio (ER) is given by:

ER =
σ(d)
σ(r)

, (2.8)

where r and d represent residual data and difference data respectively. The idea of ER



2.3. Vibration Health Monitoring Employed in HUMS 23

is that as crack propagates, signal energy is transferred from regular meshing signals to

wider signal band. Hence ER could be utilised as an indicator for severe wear. However,

in the early development stage of the bearing fault, due to its negligible signal energy, not

much information will be passed on to wider signal spectrum.

Kurtosis is defined as:

Kurtosis =
N ·

N
∑

i=1
(Si− S̄)4[

N
∑

i=1
(Si− S̄)2

]2 , (2.9)

where N is the number of data points, Si is the ith point of data S. S̄ is the mean of the data

set. Kurtosis is hence described as fourth centralised moments, normalised by the square

of variance. Similarly, with difference signal d rather than raw data S, we can calculate

FM4:

FM4 =

N ·
N
∑

i=1
(di− d̄)4[

N
∑

i=1
(di− d̄)2

]2 (2.10)

The difference signal of gearbox in a good condition is assumed to be primarily

Gaussian distributed [52]. Therefore when defect occurs, large peaks are likely to

emerge in difference signals. However, FM4 and kurtosis are all reported to only

effectively detect damage on limited number of gear teeth [35]. As the defects propagate,

series of large peaks are generated and the overall waveform becomes flat. FM4 and

kurtosis hence decrease, providing obscure information.

NA4 is developed to address the aforementioned issues of kurtosis and FM4. It is defined

as:

NA4 =

N ·
N
∑

i=1
(ri− r̄)4[

1
M
·

M
∑
j=1

(
N
∑

i=1
(ri− r̄)2)

]2 , (2.11)
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where r is residual data, M is the total number of data sets that are used for variance

averaging in denominator. By averaging variances of different sets of data within the

same data records, the value of NA4 can increase when multiple cracks occur. A very

intuitive diagram of generating CIs is provided in [38] and illustrated in Figure 2.6, which

represents the general procedures of the CIs described above.

The efficacy of CIs on different types of defects and CIs’ issues have been discussed in

large numbers of researches. Zakrajsek et al. compared FM0, FM4, NA4 and many

others using experimental gear pitting fatigue crack data, reaching a conclusion that FM4

and other kurtosis concept based CIs all lost sensitivity to defects when they

propagated [33]. Antolick [39] reported that FM4 was not effective to be adopted as a

consistent diagnosis indicator. NA4 was effective but data burdensome. Sideband index,

which is defined as the average amplitude of the sidebands of the fundamental gear mesh

frequency, was effective at spiral gear sets fault detection. In [38], the authors conducted

research using gearbox vibration data, and stated that neither kurtosis nor skewness

followed fault trends, other CIs such as NA4 and FM4 showed 60% false positives.

Additionally, CIs that specifically target bearing defects draw much less attention. In

G-REDL accident investigation report [2], it is stated that no online bearing CIs were

designed and installed on-board of the helicopter. In [40], the effectiveness of bearing

energy and bearing shock pulse energy were tested and compared as bearing CIs.

Spectral analysis was performed on bearing defect diagnosis using vibration data

collected from a helicopter by Keller and Grabill in [53]. The issues with these

researches are that, they were conducted on simple gear or bearing systems, whose

mechanical faults were much easier to detect; and researches did not discuss the

condition where gears and bearings are sharing same races, resulting in more complex

vibration recordings. To investigate the diagnosis of helicopter planetary bearing faults,

frequency domain based analysis should take place to deal with the complex structure.

The frequency domain based analysis techniques are reviewed in the next section.
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Figure 2.6: CIs generating process, [38]

2.4 Frequency Domain Based Signal Processing for Bearing

Diagnosis

In Section 2.2 and 2.3, the basis of applying vibration analysis for condition monitoring,

signal processing (production of CIs) and also the powerful utility of frequency analysis

have been summarised. To fulfil the requirements stated in Section 1.2, and to fully utilise

the potentials of frequency domain based signal processing, various signal processing

techniques for bearing diagnosis are reviewed.
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2.4.1 Bearing Fault Frequencies

The fundamentals of applying frequency domain analysis to diagnose incipient bearing

fault are using FFT to extract the fault induced repetitive signals and present them in

spectrum. The fault repetitive signals are caused by the contact between rollers and cracks

while the bearing is spinning. There are four frequencies of particular interest, which are

associated with four types of bearing fault. Using the Figure 2.7 below as a demonstration:

Figure 2.7: Demonstration of simple bearing [54]

where the parameters are representing:

Bd : Ball diameter

β : Contact angle of the ball on the race

Pd : Bearing Pitch diameter

The equations below are given for calculating the frequency components that are

associated with four types of bearing faults, namely Fundamental Train Frequency

(FTF), Ball-spin Frequency (BSF), Ball Pass Frequency of Outer Race (BPFO), Ball
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Pass Frequency of Inner Race (BPFI) [54, 55]:

FT F =
1
2

fr

(
1− Pd

Bd

)
(2.12)

BSF =
1
2

Pd

Bd
fr

[
1−
(

Bd

Pd
cosβ

)2
]

(2.13)

BPFO =
n
2

fr

(
1− Bd

Pd
cosβ

)
(2.14)

BPFI =
n
2

fr

(
1+

Bd

Pd
cosβ

)
(2.15)

where fr represents the bearing rotating speed, and n is the number of rollers.

Equation 2.14 is extensively applied in later Chapters where the planetary bearing outer

race diagnosis is performed.

2.4.2 Cepstrum Editing

Although in [45], the author stated that the process of TSA and order tracking is vital,

without which most of the separation job cannot be done, it is not usually guaranteed

that the tachometer signal is available. In addition, the repetitive procedure for TSA is

tedious in terms of separating bearing signals. Therefore, Cepstrum editing, which does

not require order tracking is drawing more and more attention [56]. The first concept of

Cepstrum was invented in 1960s initially for speech analysis [57]. It was described as

“power spectrum of the logarithm of the power spectrum ”. The calculation of complex

Cepstrum is usually defined as [58]:

Cepstrum = F−1[ln(X( f ))], (2.16)

where F−1 is the inverse fast Fourier transform (IFFT ) operator, and X( f ) represents

Fourier transform of time domain data x(t). So that:

X( f ) = F [x(t)] = A( f ) · e jφ( f ) (2.17)

ln[X( f )] = ln[A( f )]+ jφ( f ) (2.18)
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This is the concept of complex Cepstrum. If the phase φ( f ) is set to be zero, then C

becomes the so-called “real Cepstrum”. The frequently used terms quefrency and lifter

are specifically developed in Cepstrum domain, corresponding to frequency and filter in

frequency domain respectively, reflecting the inverse relationship of these two domains.

R.B. Randall [56] did a thorough research on Cepstrum history and development.

Cepstrum analysis transforms signal in time domain firstly to frequency domain, then to

“quefrency” domain. Editing components in quefrency domain, for instance, eliminating

certain quefrency components, will suppress all corresponding frequency components

including harmonics and sidebands in frequency domain. While phase φ( f ) can be

conveniently set to zero to generate the real Cepstrum, it cannot be inversed back to time

domain directly after being edited due to the loss of phase information. In [56, 58–61],

researches all concluded that for bearing fault diagnosis, it is usually unnecessary to use

complex Cepstrum, since the editing on complex Cepstrum cannot be observed directly

in time domain, and the edited complex signal phase may have distortions. Thus a

modified real Cepstrum editing method is advocated, which reserves the phase

information from FFT , and then combines phase information with edited real Cepstrum.

Therefore, the edited real Cepstrum can be inversed back to time domain for

post-analysis.

In Randall’s research [58], the effect of Cepstrum editing being able to suppress

unwanted sidebands was discussed. It is well demonstrated in Figure 2.8 that Cepstrum

editing, unlike TSA, does not completely remove discrete gear mesh frequencies through

repetitive averaging, but suppresses the interferences of periodic sidebands. In [62], the

authors set the entire quefrency zone to 0 except for quefrency at the very beginning.

They explained that the bearing damage related components, which are not strictly

periodic, will not present any strong peaks in the absolute value of the Cepstrum and will

not be affected by the liftering. In practice, this is equivalent to the operation of:

xedited(t) = F−1{ FFT (x)
|FFT (x)|

} (2.19)

This method is very efficient computation-wise. An exponential window based Cepstrum
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Figure 2.8: Demonstration of cepstrum editing [58]

editing method was proposed in [58], which essentially is liftering Cepstrum with an

exponential window with the form of e−σ ·t , where σ is a time constant. The idea is to

smoothly suppress low frequency components and pass high frequency components and

resonances which could be fault related.

2.4.3 Self-adaptive Noise Cancellation and Discrete Random

Separation

It is generally recognised that the vibration signals acquired from a complex mechanical

system, which contains shafts, gears, bearings and so on, are overall stationary. The

frequency spectrum of such signal is usually a mixture of discrete frequency components

excited by periodic gear meshes and shaft rotating, continuous frequency components

related to mostly random noises, and nondeterministic bearing signals [18, 45, 63].
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In [64], it is stated that the task of decomposing discrete and continuous spectrum is

actually not easy to solve in practice. The most widely adopted ideas to separate these

two types of signals are utilising their different statistical properties. Wold’s theorem

provides theoretical support for realising the separation idea [65]. The theorem states

that for any stationary process X(n), the representation exists:

X(n) = p(n)+ r(n), (2.20)

where p(n) and r(n) represent a deterministic process and a nondeterministic zero mean

process respectively. In addition, p(n) and r(n) are not correlated. Deterministic signal

p(n) could be perfectly predicted from its past value, while nondeterministic signal r(n)

cannot. Wold’s theorem basically guarantees that decomposing vibration signal into

periodic and random signals is always possible, and the decomposition results of p(n)

and r(n) are unique. It is also stated that the correlation time of a signal is positively

proportional to its periodicity, e.g. a pure periodic signal has infinite correlation time

which means it can be predicted theoretically from any arbitrary past values without

prediction error. In contrast, nondeterministic signal cannot be perfectly predicted after a

certain amount of time, when its current value lost correlation with its past values.

Because of the natural slip existed in bearing while rolling, the correlation time of

bearing defect related signal is theoretically shorter than that of a periodic gear mesh

signals. Thus, they can be separated using adaptive filters that adaptively predict and

filter periodic signals.

Adaptive noise cancellation (ANC) is a process that requires two inputs, namely a

targeted signal and a reference signal (usually noise signal captured separately). ANC

utilises adaptive algorithms, most prevalently Least Mean Square (LMS) and its

varieties, to adaptively filter targeted signal until eventually the output and the reference

signal has the least prediction error. If a noise signal is used as a reference, the final

output of ANC should then be subtracted from targeted input signal to acquire noise-free

results. However, in practice it is not always guaranteed that a reference noise signal is

available. Information from a signal accelerometer is not sufficient to support the
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application of ANC. In [66], Ho and Randall demonstrated the technique of using the

targeted signal itself with a carefully selected delay as a reference signal, for bearing

defect diagnosis. This technique is named Self-adaptive Noise Cancellation (SANC).

The time delay in the reference signal is carefully selected, so that at that time point, the

periodic signal has not lost its correlation with past values, but the bearing signals which

has more random features due to rollers and slips are not correlated. Therefore, in the

target signal, since only periodic part can be perfectly predicted, the output will resemble

the deterministic part gradually, leaving the filtered error to be random signals consist of

bearing and Gaussian noise. In [59, 64, 67–69] and many other articles, the concept of

SANC has been discussed extensively. The schematic diagram of SANC is demonstrated

in Figure 2.9.

Figure 2.9: Schematic diagram of SANC [67]

The adaptive filter’s coefficients are adaptively updated with the reference of output error

e(n). For the mostly adopted LMS method, the adaptive rule is defined as:

hn+1
i = hn

i +µ× e(n)× x(n−∆ − i) (2.21)

e(n) = X(n)− X̄(n), (2.22)

where µ is the forgetting factor which determines the adaptation step, ∆ is time delay. hi

with i from 1 to N represents the total filter coefficients with length N. X̄ is the filtering

output. In [64], a very thorough guidance was given on how to choose the factor ∆ and

N, while the recommendation on µ was directed to classic articles [70, 71].

Discrete-random separation (DRS) is a simplified algorithm compared with SANC.
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SANC’s processing results highly depend on the proper selection of µ , ∆ and N

introduced above, which need to be treated carefully in practice. In [72], J. Antoni and

R.B. Randall introduced DRS as an adequate substitute for SANC, which provides much

faster computation for the same or slightly compromised filtering results, with a trade-off

of longer filter length. However, DRS does not require any adaptation process, while

utilising FFT contributes to a significant reduction in processing time. With the same

core idea of correlation difference, DRS constructs the filter with the help of frequency

response function (FRF). This is achieved by blocking original data into several

windowed segments to prevent frequency leakage, and then calculating FRF of each

block with its corresponding delayed signal which should have exact same length. This

result is averaged to produce a normalised indicator, with value ideally from 0 to 1,

where 0 stands for random frequency components which are unstable due to the delay

and averages, while 1 represents stable frequency components. A filter thus can be

developed and applied back on time series signals. The process is defined as:

H( f ) =
E[Gb( f )×G∗a( f )]
E[Ga( f )×G∗a( f )]

, (2.23)

where E[·] is expectation operator. Ga and G∗a are conjugate pairs of current windowed

segment’s FFT , and Gb is its delayed signal’s FFT . This method has been extensively

discussed in [18, 45]. Multiple articles have claimed successes on applying DRS for

bearing and gear signal separation, the reported successes of applying SANC or DRS

can be found in [67, 69, 73–75] and [76].

2.4.4 High Order Spectral Analysis and Bicoherence

The notion of frequency decomposition can be traced back to hundreds of years ago [77].

Fourier Transform analysis, especially the extensively applied FFT algorithm, has really

simplified the process of detecting the existences of periodic defects that occur within

rotating machineries.

Power spectrum is a powerful tool for estimating signal power distribution in frequency

domain. However, as explained in [78–80] and [81], it is generally recognised that power
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spectrum, as a second order statistics, cannot provide sufficient phase information such

that a non-linear correlation among frequency harmonics cannot be detected. For

instance, in a complicated frequency power spectrum, frequencies and harmonics that

represent existences of potential defects can be easily masked by noises, gear meshes or

sidebands induced by amplitude modulation. In these circumstances, Quadratic Phase

Coupling (QPC), an indicator that describes non-linear phase interactions between two

harmonic components can be helpful. QPC is a phenomenon that the sum of the phases

at frequency f 1 (φ1) and frequency f 2 (φ2), is the phase at frequency

f 1+ f 2 (i.e.φ1+ φ2). As described in article written by Halim et al. [80], it can be an

indicator of non-linearity in the vibration signal, and reflects the emergence of fault.

High order spectra analysis, specifically bispectrum and bicoherence, is especially good

at detecting QPC, compared with normal second order analysis, i.e. power spectrum

analysis. The superiority of bicoherence in detecting QPC was demonstrated in [78].

The concept of high order spectral is explained as follows [78]. The rth moment µr of a

real-valued signal x(t), is defined as:

µr = E[xr(t)], (2.24)

where E[·] denotes the expectation operator. From the Equation (2.24), it is obvious that

when r = 1 and r = 2, µ1 and µ2 simple are the mean (1st order moment) and power

or variance (2nd order moment) of signal x(t). Following the same pattern, µ3 is known

as skewness which is commonly used to measure data asymmetry (if the signal is pure

Gaussian, µ3 =0). And a more well-known normalised 4th order moment µ4/µ2
2 , is called

kurtosis, which has been introduced in Section 2.3.2.

With these concepts introduced, the 2nd order moment function R2 (commonly referred to

as autocorrelation function) and its relationship with power spectrum S2( f ) can then be
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defined as:

R2 = E[x(t)× x(t− τ)] (2.25)

S2( f ) = lim
T→∞

1
T

E[XT ( f )XT ( f )∗], (2.26)

where τ represents a time delay, XT denotes the FFT of signal x(t) over a time T .

Therefore, R2 and S2( f ) can be connected via Fourier Transform. Similarly, the

bispectrum as a decomposition of 3rd order statistics R3, is defined as:

S3( f1, f2) = lim
T→∞

1
T

E[XT ( f1)XT ( f2)XT ( f1 + f2)
∗] (2.27)

Therefore, the bispectrum of signal x(t) is really an evaluation of the relationship between

two frequency components f1 and f2 that both exist within meaningful frequency range

of x(t). In practice, it is the normalised version of bispectrum that is adopted generally,

which is named bicoherence. This is because bispectrum estimation is not completely

variance independent from power spectral properties of a signal [78]. The normalisation

of bispectrum produces bicoherence, which is a set of values ranging from 0 to 1, with 1

representing the existence of very strong QPC. The simplified definition of bicoherence

is given [80]:

bic2 =
|E[X( f1)X( f2)X( f1 + f2)

∗]|2

E[|X( f1)X( f2)|2]E[|X( f1 + f2)|2]
(2.28)

Similar to the periodicity property of FFT , bicoherence and bispectrum also have a

symmetric property in the entire [ f1, f2] frequency plane. The researches of [82–84] have

shown that it is sufficient to only calculate bicoherence in the first quadrant where both

f1 and f2 are positive, and satisfy the conditions that: f1 > f2 > 0, f1 + f2 < fs
2 . This

range defines a non-redundant area for bicoherence, which is named “the principle

domain”. Bicoherence has been reported to be applied in machine fault diagnosis

in [85–87].
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2.4.5 Envelope Analysis

Envelope analysis has been established as a benchmark technique for bearing fault

diagnosis. It excels at revealing repetitive information hidden in signals’ envelope,

mitigating the effect of speed fluctuation, amplitude modulation, and additive

noise [18, 45]. Weak repetitive signals generated by bearing rolling are modulated and

amplified by the structural resonance from the bearing cages, while the gear signals are

not highly affected by such effect [3]. Therefore, envelope analysis benefits considerably

from band-passing vibration signal in a certain high frequency band, where the

frequency resonances associated with planetary bearings are dominant [88]. The

envelope of band-passed high resonance signal is then obtained by performing Hilbert

transform (HT). By examining the envelope spectrum of the band-passed signal, the

diagnostic information of faulty bearing signals can be extracted for defect identification.

It is because of the use of spectrum analysis, envelope analysis is also commonly

referred as envelope spectrum analysis. The effect of envelope analysis conquering

speed fluctuations and modulations are described in [18]. In Figure 2.10, it was

demonstrated that even with speed fluctuations, envelope spectrum can still reveal

repetitive spikes signatures in frequency domain. It can bee seen that with added random

noises, the time domain signal retains the similar waveforms, while showing severe

changes in spectrum. The envelope analysis performed in Figure 2.10 mitigated the

interferences, and preserves the frequency components in envelope spectrum.

Most prevailing method nowadays to obtain envelope of bandpass signal is Hilbert

Transform (HT), which is a four-step executional-wise process [89]:

1. Conduct n-points FFT on time series x(n), acquiring X( f )

2. Create a vector H of n points , whose elements are 1 for n = 1,
n
2
+ 1, 2 for n =

2 · · · n
2

and 0 for the rest of H

3. Calculate X( f )×H

4. Inverse FFT of the sequence calculated in step 3 and returns the first n elements

The result of HT gives out an analytic signal, i.e. complex signal has no negative

frequencies. The absolute values of HT signals form the envelope of original signal.
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Figure 2.10: Benefits of envelope spectrum [18]

In [90] the process of envelope analysis involving bandpass and HT was discussed,

reinforcing the feasibilities of using envelope analysis on the diagnosis of complex

gearbox systems.

2.4.6 Spectral Kurtosis and Kurtogram

As described before, the essence of envelope analysis is selecting an optimal

demodulating centre frequency and bandwidth. In practice, this was used to be a

mechanical problem, rather than a mathematical decision. In [88], a process of

determining resonances frequencies was demonstrated. In Figure 2.11, it was shown that

the resonance was selected in the range of [11000 Hz, 13000 Hz], so that the centre was

12000 Hz.

In [45], it is stated that there was a recommendation on using a hammer tap testing to

find out bearing housing resonances before the actual bearing tests, which was

inconvenient. This problem now can be solved mathematically with the help of a

statistical tool called Spectral Kurtosis (SK). Kurtosis, which has been introduced in

section 2.3.2, is not effective as a local defect indicator, simply because when dealing

with signals that have complicated frequency information, the value of Kurtosis is not

responsive to small impulses excited by a local bearing defect. However, the Kurtosis

value of signal buried in certain frequency band can make a difference. The technique of
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Figure 2.11: Vibration spectrum from bearing life test in literature [88]

extracting Kurtosis value in different frequency band is SK. SK was first devised by

Dwyer in [91] for detection of “randomly occurring signals ” [92]. The initial definitions

were vague and cumbersome. J. Antoni gave a detailed study of SK in [93, 94], which

not only provided a more simplified and clarified definition of SK, but also demonstrated

the potential applications of SK on bearing defect diagnosis. In [45], the concept of SK

was recapitulated, and developed into a more decision-making friendly tool called

Kurtogram. SK and Kurtogram are discussed consecutively below.

Firstly, SK of a time-domain signal x(t) is produced from Short-time Fourier Transform

(STFT), X(t, f ), which is a local Fourier transform at time t with a sliding window moving

across the entire signal record. Therefore, the spectral kurtosis is defined as [45]:

K( f ) =
E{|X(t, f )|4}
E{|X(t, f )2|}2 −2, (2.29)

where E[·] is the expectation operator, therefore E{|X(t, f )|2} is considered as the power
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spectral density (PSD) of the signal at time t. It is very interesting that Antoni also gave

out a physical interpretation of K( f ). When X(t, f ) is seen as a function of t, X(t, f ) is

actually the complex envelope of signal x(t) bandpass filtered around frequency f .

Therefore, K( f ) can be interpreted as the kurtosis of averaged complex envelope of

signal x(t) at time t, with a short-time window corresponding to certain narrowband

filtering activity around frequency fcentre. Noted that fcentre is not reflected in the

definition equation of SK. The physical interpretation is demonstrated in Figure 2.12.

Figure 2.12: Calculation of SK from STFT [45]

In Figure 2.12 (a), a time signal with series of short-time impulses is windowed and

transformed into time-frequency domain using STFT. In time-frequency domain, the

frequency components X(t, f ) are further averaged along time t, and then kurtosis values

of averaged X(t, f ) are calculated to get SK in Figure 2.12 (c).

As stated above, fcentre is not reflected in SK definition Equation (2.29). Therefore, the

whole process of determining the frequency band which contains most impulsive

signatures is still tedious. J. Antoni thus proposed a way to calculate SK not only as

function of t and f , but also as function of frequency bin ∆ f . So that the value of SK in

different centre frequency and bandpass bandwidth can be reflected in a colour map.
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Since Kurtogram is able to provide suggestions on possible bandpass centre frequency as

well as bandwidth, application of envelope analysis is much more simplified. However,

it is noticed that the indication of Kurtogram is not absolutely correct, especially in our

cases where multiple gear mesh frequencies and harmonics exist. Thus the final

parameters of fcentre and ∆ f for envelope analysis demodulation sometime needs to be

chosen wisely and tested with data. Regardless, the application of Kurtogram, especially

fast computation algorithm of Kurtogram developed by the same researcher [95], is very

useful and always worth trying. Applications of Kurtogram on bearing fault detection

using vibration signals have been reported in [96, 97].

2.4.7 Iterative Envelope Cancellation

The effectiveness of envelope analysis is heavily dependent on the selection of the optimal

structural resonances, as discussed in previous section. If the optimal demodulation band

is unable to be discovered, it could be tedious to manually select and test every possible

resonance in frequency domain.

One solution for this issue is to use a very efficient and fast-calculative algorithm,

namely the Iterative Envelope Cancellation (IEC). This algorithm was proposed recently

by Ming et al. [98], which utilised iterative envelope calculations to suppress gear mesh

signals in frequency domain. Their research specifically studied the effect of Hilbert

transform on discrete gear mesh signals and random bearing signals. Mathematical

deduction was elaborated in their study, concluding that through iteratively calculating

signal squared envelope using Hilbert transform and subtracting DC components, the

discrete frequency components suffer larger attenuation in amplitude, compared with

that of bearing-related components. The reasons are that bearing-related signals can be

modelled as a train of high frequency transient impulses, while gear meshes are periodic

cumulations. Square envelope of the signal potentially introduces cross-terms between

these two types of signals, weakening the pattern of periodic cumulations. The

schematic diagram of iterative envelope cancellation is demonstrated in Figure 2.13.

In Figure 2.13, the stop point of the iteration is determined by control factor η , which is

defined as [98]:
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η =
|2×〈Envk−1,Envk〉|

〈Envk−1,Envk−1〉+ 〈Envk,Envk〉
, (2.30)

where k represents current iteration index, 〈·〉 represents inner product operator. η

described the extent of difference between current k iteration calculated signal envelope

with k− 1 iteration envelope. For instance, η = 1 means the two envelopes are exactly

the same, hence more iterations of calculation are redundant. Based on processing

experiences, stop factor η0 should be wisely chosen between 0.8 up to 0.95 for distinct

gear mesh suppression and subsequent envelope spectrum analysis.

Figure 2.13: Schematic diagram of iterative envelope cancellation

Iterative envelope cancellation solves the problem of traditional envelope analysis by

evading the selection of optimal frequency band. Instead, the application of sub-optimal

frequency band is remedied by iterative calculations and high-pass the input signal at a

relatively high frequency where resonance spikes are more concentrated, which only

requires rough knowledge from observing frequency spectrum of input signal. There has

been reported success in using this method for planetary bearing fault diagnosis [99].
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2.5 Summary

In this Chapter, firstly the fundamentals of vibration-based CM and vibration frequency

analysis are investigated, followed by the introduction of VHM employed in HUMS,

where the commonly used CIs are also discussed. Next, the frequency domain processing

techniques that are relevant to the aims identified in Section 1.2 have been reviewed.

Some of the techniques may not be originally developed for vibration data processing,

such as Cepstrum analysis. However, these techniques have been applied in studies and

proven to be effective in certain use cases. The introduced signal processing techniques

are summarised in Table 2.2, in terms of their category, effectiveness (High, Medium and

Low), Computation (Fast, Medium and Slow) and their dependencies to work. The most

prominent analysis techniques, however, are Cepstrum editing, SANC, Discrete Random

Separation (DRS), Envelope analysis, Kurtogram and IEC.

In conclusion, although VHM has seen widely application in HUMS, its processing is

still focusing on gears, and the techniques employed are mostly time domain based

statistics (such as RMS, energy, kurtosis) which can result in inaccurate and misleading

outcome. Frequency analysis as demonstrated in Figure 2.2(b), is a competent candidate

for more detailed signal analysis that can achieve de-noising, gear/bearing signal

separation and extract the most relevant frequency band for envelope analysis. For the

reviewed signal processing techniques, although successes are found in bearing

diagnosis, not many of them have been applied in diagnosis for planetary bearing in

MGB, which is a challenging task. To further validate these frequency analysis

techniques, experiments should be undertaken on real helicopter MGB with seeded

planetary bearing outer race defects. The experiments are described thoroughly in

Chapter 3.
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Table 2.2: Summary of reviewed signal processing techniques

Processing

technique
Effectiveness Computation Dependencies References

TSA

Order

Tracking

High Medium
Tachometer;

Interpolation
[42–51]

Cepstrum

Editing
Medium Fast Knowledge of system [45, 56–60, 62]

SANC High Slow Parameters selection [59, 64, 66–71]

DRS Medium Fast
TSA/ Order tracking;

Induced error

[18, 45, 72]

[67, 69, 73–76]

Bicoherence Slow Low Stationary signal [77–87]

Envelope

Analysis
Highly Fast Locate resonances [18, 88–90, 107]

SK Medium Medium Susceptible to noise [45, 91–97]

IEC Medium Fast Parameters selection [98, 99]
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Chapter 3

Seeded Defect Tests Performed on Planetary Bearings in SA330

Helicopter MGB

3.1 Introduction

In Chapter 2, it is summarised that validating the reviewed frequency domain signal

processing techniques on MGB planetary bearing fault diagnosis is required. To fulfil

this requirement, it is essential to gather valuable experimental data from operational

helicopter MGB. For this reason, a Category A Super Puma SA330 helicopter MGB was

adopted. Category A with respect to helicopters means a multi-engine helicopter

designed with engine and system isolation features, and is capable of maintaining

adequate performance for continued safe flight or safe rejected take-off in the event of

engine failure [108]. A test rig that was capable of driving this MGB was designed and

assembled by a Cranfield University team, lead by Prof. David Mba. The rig consists of

a high speed direct current (DC) drive motor to provide adequate initial drive speed;

speed-increasing gearboxes for multi-stage speed acceleration and drive MGB; an

absorption dynamometer adopted as adjustable load on top of the 2nd epicyclic output

shafts; and a lubrication system to circulate lubricant in MGB during tests.

In the following sections, the setup of the test rig will be described first. The rest sections

present information of performing the seeded tests, including data acquisition, sensory

information and test procedures.
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3.2 The MGB Test Rig Setup

3.2.1 Introduction of the SA330 MGB

In Chapter 1.1, Figure 1.1 demonstrates the common structure of two-stage epicycle

modules in MGB. In this study, the adopted SA330 MGB has the similar structure. The

external appearance of SA330 MGB is shown in Figure 3.1.

Figure 3.1: SA330 MGB without loading

The details of gearbox are listed in Table 3.1.

Table 3.1: Gearbox details of SA330 MGB adopted

Description Values

Model Description 330 ARG

Assembly Number 32 600000

Serial Number ACF 35 36

Manufacturing Date 03/02

Input Drive Speed 22841 rpm

Output Drive Speed 265 rpm

Maximum Continuous Power 1300 kW

Temperature Limit 340 °C
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The internal structure of MGB is presented in the Figure 3.2. It patently demonstrates the

complete speed reduction process, which starts from the high engine speed and ends at the

aft reduction gear system. Notably, the output 265 rpm to the main rotor system, which is

coupled with the 2nd epicyclic carrier plate, is derived from the Forward reduction, bevel

gear reduction and finally the two-stage epicyclic reduction systems. The relationships

between reduction gears and the fundamentals of planetary speed reduction system are

elaborated in the following paragraphs.

Figure 3.2: SA330 MGB internal structure [109]

Before introducing the complex planetary speed reduction system, firstly a simple two-

gear speed reduction system is discussed. As shown in Figure 3.3, two gears are meshing

together, where G1 on the left is labelled as the drive gear and has a total teeth number of

N1 = 20. G2 is the gear driven by G1 that has a teeth number of N2 = 30. Since the two

gears are coupled together, the number of teeth that are meshed in a certain period should

be the same for both of the gears. Considering the angular velocity of G1,G2 is ω1 and

ω2 respectively, the below relationship is true:
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N1×ω1 =−N2×ω2 (3.1)

ω2 =−
N1×ω1

N2
(3.2)

Therefore, based on the Equation 3.2, it is conclusive that given N2 is larger than N1, the

angular speed ω2 will be a smaller value than ω1. In this case, ω2 will be 2/3 of ω1,

calculated with the given N1, N2 value. The minus symbol is indicating that G1, G2 are

spinning in different directions.

Figure 3.3: A simple two-gear reduction system

With the fundamental of gear speed reduction explained, the planetary speed reduction

system will be discussed here. A demonstration of planetary speed reduction system is

illustrated in Figure 3.4. Most commonly, a planetary speed reduction system consists of

a ring gear, planetary gears, a sun gear and a carrier gear. The system works in a way

resembles the planetary system, that the planetary gears orbit around the sun gear in the

centre, with the ring gear acts as a boundary. The carrier gear is usually connected to

planetary gears, providing a reduced speed output when the sun gear is the driving gear.

There are numerous ways of operating this system, such as fixed ring gear, fixed carrier

gears and fixed sun gear. In our study, the epicyclic module internal casing is considered

to be a fixed ring gear, therefore only the speed ratio of this mode is relevant. However,

in order to calculate the speed ratio, it is often convenient to assume the condition where
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the carrier gear is fixed and planetary gears are idle for simplifying the deduction of speed

ratio equations.

Figure 3.4: Demonstration of planetary gear train [110]

The deduction of equations to calculate the speed ratio in a planetary reduction system is

explained here [111]. When the carrier is fixed and planetary gear is idle, the speed ratio

is only relevant between the sun gear and ring gear. Using Ns, Nr to denote the number of

sun gear teeth and the number of ring gear teeth respectively, and ωs, ωr as corresponding

angular speed, combining the Equation 3.1, the speed ratio R is:

R =
ωs

ωr
=−Nr

Ns

=
ωs−ωc

ωr−ωc
(3.3)

Equation 3.3 is true if considering the angular velocity as a relative speed to the carrier

speed ωc. Equation 3.3 is also fundamental for estimating the condition, where in our

case, speed of ring gear ωr = 0, thus:

ωs−ωc

−ωc
=−Nr

Ns
, so that

ωs

ωc
= 1+

Nr

Ns
(3.4)

Equation 3.4 is used in the rest of the thesis for calculating the speed reduction ratio in

SA330 MGB. Given the pinion (drive gear), wheel (driven gear) pairs information from

drive shafts and planetary gears teeth information, the speed ratios from all MGB parts in

Figure 3.2 are listed in Table 3.2.
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Table 3.2: MGB speed reduction ratios

Parts name Pinion teeth Wheel teeth Speed ratio

First parallel shaft from engines 23 66 2.87:1

Second parallel shaft to bevel stage 35 57 1.63:1

Bevel stage to 1st epicyclic module 22 45 2.05:1

Module name Sun gear Ring gear Planet gear Speed ratio

1st Epicyclic 62 130 34 3.10:1

2nd Epicyclic 68 130 31 2.91:1

The overall speed reduction rate is easily calculated from combining the individual

reduction rate shown in Table 3.2. By simply multiply the rate, the speed reduction from

engines to main rotors is calculated to be Roverall = 86.51 : 1. That is to say, if the input

speed generated from the engine is 22841 rpm, then the output speed provided to the

main rotor will be reduced to approximately 265 rpm. This result is agreed with the

information shown in Figure 3.2. To illustrate the ratios, the schematic diagram of the

test rig is shown in Figure 3.5, which showcases how the components are connected in a

systematic view.

Figure 3.5: Schematic diagram of the test rig
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3.2.2 Inside the Epicyclic Module

Figure 3.6 demonstrates the whereabout of 1st and 2nd epicyclic modules. Specifications

of planetary bearings for both modules are documented in Table 3.3. Figure 3.7(a)

demonstrates 2nd epicyclic planetary bearings, which are driven by 2nd epicyclic sun

gear and ring gear shown in Figure 3.7(b). Bearing outer race defects were seeded on

one of the planetary bearings in Figure 3.7(a).

Figure 3.6: Demonstration of MGB epicyclic modules [109]

Table 3.3: Number of planetary bearings and their corresponding rollers

Planetary bearings Number of rollers

1st Epicyclic module 8 17

2nd Epicyclic module 9 13

3.2.3 Other System Components

Helicopter MGB employed in this study comprises a forward module that connects the DC

drive motor, a bevel stage reduction module, two aft modules to drive accessory systems

and a two-stage epicyclic module. Planetary carrier at 2nd epicyclic module is responsible

for driving the dynamometer. The internal configuration of MGB system is demonstrated
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(a) 2nd Planetary gears/ bearings (b) 2nd Epicyclic module ring and sun gears

Figure 3.7: MGB 2nd epicyclic module

in Figure 3.2. Working principle of MGB is described here: high input speed is generated

from engines (DC motors in this study) to forward module. Input speed is reduced at

parallel shafts and intermediate shaft, and the rotational direction of the speed is altered

to vertical by spiral bevel gear. Rotation speed is further reduced through 1st and 2nd

epicyclic modules, which contain of 8 and 9 planetary gears respectively. Main rotor

output speed is synchronised with 2nd epicyclic carrier plate. Aft module output is used

to drive other accessory systems and tail rotors.

Figure 3.8 demonstrates the test rig in assembled and read-to-go state. The test rig consists

of a SA330 MGB, a speed-increasing gearbox, a DC motor and a dynamometer. The DC

motor is able to generate 3000 rpm speed. The speed-increasing gearbox connected with

DC motor can significantly boost the speed up to 17842 rpm to drive one of the MGB’s

input shaft. The absorption dynamometer was installed on top of the 2nd epicyclic module,

creating desired loading for MGB.

In this study, as the emphasis was on monitoring epicyclic stages of the MGB, two aft

module outputs were left idle. The rig was adjusted to allow only one high speed input

to be effective as shown in Figure 3.9, which limited the input power of the rig to 350

kW. This value was further scaled-down to approximately 293 kW, by the output speed

limitation of the speed-increasing gearbox.

As the information for MGB has been stated in Table 3.1, the rating of the other

components including the DC electric motor, the speed-increasing gearbox, and the
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Figure 3.8: Demonstration of MGB test rig

Figure 3.9: Demonstration of single input shaft

dynamometer will be given in the following paragraphs.

DC Electric Motor

The driving speed and force for the MGB is produced by DC electric motor, namely the

Sicmemotori (P/N: NP225 KS5 PVA/B3) shown in Figure 3.10. The motor is a tandem

drive DC motor, which has a combined maximum speed of 3000 rpm. The operating

specifications of the motor are summarised in Table 3.4
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Figure 3.10: Schematic diagram of the test rig

Table 3.4: Specifications of DC electric motor [109]

Description Value

Maximum Output Power 750 (kW) at Tandem Drive

Maximum Rotational Speed 3000 rpm

Max Continuous Torque 1193 Nm at max speed

Type of Cooling Forced Ventilation

Speed Increasing Gearbox

The speed-increasing gearbox from Compact Orbital Gears Limited (P/N: F5030) was

employed to accelerate the speed from DC motor before coupling and driving the MGB.

Figure 3.11 shows the ratings of the speed-increase gearbox. The operating specifications

are summarised in Table 3.5

Table 3.5: Specifications of speed-increase gearbox [109]

Description Value

Speed ratio 5.947:1

Maximum Input Rotational Speed 3000 rpm

Maximum Output Rotational Speed 17842 rpm

Dynamometer

Lastly, to simulate the loading of MGB, the dynamometer, a Wichita AquaMakks clutch



3.2. The MGB Test Rig Setup 53

(a) Speed increasing gearbox front-view [109] (b) Ratings of the gearbox

Figure 3.11: Speed increasing gearbox

and brake system (P/N: 7-325AM-B-1300) was selected. It was installed on top of the

MGB 2nd epicyclic carrier plate. Figure 3.12 illustrated the installation of dynamometer.

The dynamometer is capable of absorbing the power generated by the MGB operated at

17842 rpm input speed [109].

Figure 3.12: Dynamometer installed on top of MGB
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The transmission train diagram of the MGB is depicted in Figure 3.13, where the number

of gear teeth for each module is indicated. The gear ratio information and transmission

paths are used to for determining the sensitive sensor axis, and the calculation of the

significant frequency components.

Figure 3.13: MGB transmission schematic diagram

3.3 Description of Seeded Bearing Defect Tests

3.3.1 Planetary Bearing Components and Seeded Bearing Outer

Race Defects

After the components and assembly of the test rig are introduced in Section 3.2, creating

and seeding planetary bearing outer race defects will be discussed in this section. To

insert incipient defects on outer race of 2nd epicyclic planetary bearing, a 2nd epicyclic

planetary bearing was disassembled as shown in Figure 3.14. The dissembled bearing has

two layers of inner race and outer race, two sets of rollers and cages. There are 13 rollers

for 2nd planetary bearings, and 17 rollers for 1st planetary bearings. The geometry details

of 2nd planetary bearings are listed in Table 3.6.

Based on the information presented in Table 3.6, the outer race fault related frequency

component, namely the BPFO, which is caused by bearing roller periodically hitting the
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Table 3.6: Geometry details of 2nd planetary bearings

Description Values

Number of rollers 13

Pitch diameter [Pd] 63.65 [mm]

Roller diameter [Bd] 12.5 [mm]

Contact angle [β ] ≈ 0◦

cracks while spinning, can be calculated using the Equation 2.14. With the speed of

bearing spinning fr adopted as a variable, the calculation is given in Equation 3.6, which

will be extensively applied in Chapter 4 when discussing the diagnosis of seeded faults.

BPFO =
n
2

fr

(
1− Bd

Pd
cosβ

)
(3.5)

= 5.2235× fr (3.6)

To insert defects of various sizes, EASA suggested that considering the double-race

Figure 3.14: The components of 2nd planetary bearing

bearing design, it was essential to have the minor defect covers no larger than half of the

selected outer race layer length, while major defect should cover the full race length.

This recommendation has made this study distinctly different from the research reported
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in [3], where the minor fault and major fault had 10 mm and 30 mm width respectively,

with the length covered one layer of the race. Therefore, the diagnosis of the seeded

incipient defects in this work is more challenging. With this consideration in mind, the

outer race cracks were created using mechanical tools. Dimensions of minor and major

defects are recorded in Table 3.7. Pictures of minor and major defects are demonstrated

in Figure 3.15. Faulty bearings were located at 2nd epicyclic module, which has been

shown in Figure 3.6, between 1st and 2nd carrier plates.

Table 3.7: Dimensions of seeded bearing defects

Coonditions Length [mm] Width [mm] Depth [mm]

Minor Defect 5 3 1.5

Major Defect 8 6 2.5
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(a) Minor Defect

(b) Major Defect

Figure 3.15: Demonstration of seeded defects
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3.3.2 Data Acquisition System Setup

In this section, the setup of the data acquisition system for the experiments will be

discussed, including the sensors’ installation, the adopted sensors, and the adopted data

cards.

The rules of selecting sensors are platform and mission specific according to [30].

Generally, requirements of sensor installation are that: firstly, sensors should be installed

as close as practical to the components they are intended to monitor [112]; secondly,

sensors should be small enough so that the mechanical structures of monitored

components are not affected. Cost of adding accelerometers in certain locations must not

outweigh the benefits [113].

Referring to established accelerometers’ installation in HUMS, emphases are on

monitoring gears, bearings and shafts. Usually, a planetary speed reduction gearbox

contains one or more layers of epicyclic modules. SA 330 helicopter MGB adopted in

this study has 2 epicyclic modules, and thus the positioning of the accelerometers

matters. In [114], it was stated that both 1st and 2nd epicyclic modules were monitored,

before an update of system which reassigned one sensor to 1st epicyclic module only,

and another sensor at left aft module. This was then proven to have rendered all HUMS

data and made analysis invalid. It is thus conclusive that accelerometers should be

attached close to components which sensors are intended to monitor. Moreover, in [9],

specific guidance has been given as sensors should be placed on critical drivetrain

components and other components of high interest. Sensors mounted should have clear

energy transmission paths from the specific components being monitored. Lastly, the

sensor should be oriented such that the sensitive axis is aligned with the predominant

axis of vibration.

In [11], an informative introduction showcasing the accelerometers installed in HUMS

system was provided. The presented HUMS system utilised accelerometers and index

sensors to continuously monitor rotor system and drivetrain. Accelerometers were

mounted on the input and output of each major drivetrain assembly. In HUMS fact

sheet [26] provided by Honeywell, it is clearly stated that 7 accelerometers have been
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installed at engine-gearbox systems, including 2 at main gearbox input, 2 at engine

turbines, 2 at engine accessory gearbox and 1 at main gearbox quill as shown in Figure

3.16.

Figure 3.16: Demonstration of Honeywell HUMS [26]

Figure 3.17: Demonstration of accelerometer locations on OH-58A MGB [27]

In [27], it is stated that 7 accelerometers were installed to monitor MGB, illustrated in

Figure 3.17. Although the featured MGB was relatively an old type, the selection of
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sensor locations suggested that covering possible planetary area is important for MGB

health monitoring.

Combining all the knowledge aforementioned, 4 accelerometers were selected to be

installed for this study, including 2 triaxial and 2 uniaxial sensors. No accelerometers

were installed to monitor aft module since aft modules were left completely idle. The

exact locations of 4 accelerometers were documented in Table 3.8. Pictures illustrating

such arrangements are shown in Figure 3.18.

(a) Sensor installation side view (b) Sensor installation front view

Figure 3.18: Demonstration of accelerometers locations on SA330 MGB

Table 3.8: Installation locations of accelerometers

Sensor No. Sensor Type Location

1 Triaxial Middle of 1st and 2nd epicyclic case

2 Triaxial High speed input module

3 Uniaxial Middle of 1st and 2nd epicyclic case

4 Uniaxial Middle of 1st and 2nd epicyclic case

Originally, sensors with high sensitivities 100mV/g were considered to be employed.

However, the study in [3] shows that such choice potentially could sacrifice the
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measuring range. It was reported that the vibration collected from MGB can reach up to

500 g. Since the upper measuring limit for such sensors is 5V, the maximum monitoring

range will be ±(5V ÷ 100mV/g) = ±50 g. This value was proven to be far too small,

that the sensors would be saturated. Thus, uniaxial accelerometer PCB 352C03 and

triaxial accelerometer PCB 356A43 were selected (Table 3.9). Both of the

accelerometers have 10 mV/g sensitivity, 500 g measuring range, and were stud-mounted

onto the MGB external case. Vibration data recording was controlled by a computer

connected to the main monitor throughout the experiments. Detailed data recording

information are summarised in Table 3.10.

Table 3.9: Selected accelerometers

Axis Model Sensitivity Dynamic Range Resolution

Uniaxial PCB 352C03 10 mV/g ±500 g pk 0.0005 g rms

Triaxial PCB 356A43 10 mV/g ±500 g pk 0.0008 g rms

Table 3.10: Data acquisition information

Data Type Data Card Software
Sampling

Frequency

Recording

Length

Spectrum

Resolution

Vibration NI 9234 LabVIEW 25.6 kHz
20

seconds

1 Hz
Recording Length

In Table 3.10, the recording length was chosen to be 20 seconds. This was considered

sufficient for the diagnosis, because of the high speed of the rotating bearings. For

instance, the speed of the planetary bearings under 14000 rpm condition is 11.35 Hz.

This means the planetary bearing rotates roughly 220 repetitions in 20 seconds, which is

sufficient to diagnose the defects.

3.3.3 Test Conditions and Procedures

The experiment undertaken on the MGB rig consisted of four parts, namely:

1. Test rig commissioning. Run the rig under various load conditions from 100 kW to

275 kW, and input speed from 10,000 rpm to 17,842 rpm input speed conditions,
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to ensure full functionality of all aspects of the test rig and emergency lubrication

system.

2. Seeded bearing defects tests. Operate the MGB with seeded bearings defects at 2nd

epicyclic module planetary bearing outer race, under various input speed and load

levels. Vibration data should be recorded for post analysis and fault diagnosis.

3. Full lubrication tests and thermal mapping. Run the test rig under a variety of

increasing speed and load conditions to ascertain the thermal equilibrium of various

measured parts within the gearbox, and determine the rate to thermal growth for

components.

4. Combined dry and mist lubrication tests. Test the performance of mist lubrication

method as an emergency lubrication method under no lubrication condition.

As the thermal mapping and mist lubricant test are beyond the scope of this thesis, only the

commissioning and the planetary bearing seeded defect test are discussed in this thesis.

The commissioning test was undertaken firstly to validate the setup of the test rig and the

data acquisition system. Vibration data were recorded under 150 kW load condition. For

the purpose of system validation, no fault was seeded at this point. The commissioning

was performed by technicians from Cranfield University.

It was discovered from the commissioning that data collected under 9000 rpm input speed

condition had severe data jitters and some traces of data-clipping. The problematic data

was collected by sensor at forward module near input shaft. The result was illustrated in

Figure 3.19. The two marked peaks at 0.7s and 7.5s occurred right after a sudden data

jitter, and the lower part of the data were clipped at approximately -45 g. This observation

suggested that, the input shaft connection should be double-checked and sensors with

lower sensitivity should be adopted to avoid sensors saturation.

After changing the accelerometers to the ones listed in Table 3.9 to accommodate 500 g

measuring range, another series of commissioning tests were undertaken. MGB was

operated under 1000 rpm, 3000 rpm and 6000 rpm input speed conditions and a

minimum load for commissioning purposes. After running the MGB under 6000 rpm for

an extended period, a burning smell was sensed and test rig was shut down immediately



3.3. Description of Seeded Bearing Defect Tests 63

according to emergency protocol. Later inspection discovered that MGB was abnormally

warm, while the shaft connection MGB assembly and the speed-increasing gearbox

shown in Figure 3.20 were extremely hot. The shaft was then disassembled from the

speed increasing gearbox for inspection.

In Figure 3.21(a), the damaged gears are shown. It was estimated that the temperature

of the shaft gear was risen up to nearly 300°C. Figure 3.21(b) suggests that the ring gear

became fragile, which was broken when being disassembled. After investigation, it was

concluded that the MGB fault was contributed by possible misalignment (Figure 3.19) and

manufacturing issues of the gears. Lessons learnt from the discoveries are summarised

below.

1. It is recommended to perform multiple commissioning tests to fully evaluate the

system robustness, this is exceedingly important, especially for validating all

aspects and functionalities of helicopter MGB system.

2. The vibration level of a real helicopter MGB can easily rise up to approximately

500 g, which is incomparable by simple bearing system. The level of vibration

also aggravates and facilitates the propagation of the incipient faults. On the other

hand, the excessive level of vibration contributed by the gear meshes dramatically

increases the difficulties of diagnosing incipient planetary bearing faults.

3. A single fault could result in rapid over heating while MGB is in operation, which

strengthens the value of diagnosing the MGB defects in its incipient states

With aforementioned in mind, extra cautions were taken when operating the MGB for the

planetary bearing seeded fault tests. The relationship of Torque T (Nm), Power P (W)

and rotational speed ω (rad/s) is defined in the equation below:

P = T ×ω (3.7)

Given that the power P is a constant value during MGB operation, lower speed ω results

in an increased torque T . Therefore, safety margins have been added to avoid too much

torque being applied to key components.
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Figure 3.19: Anomaly found in commissioning test

Figure 3.20: Speed increasing gearbox, after disassembling shaft

(a) Faulty shaft gear (b) Faulty shaft gear and ring gear

Figure 3.21: Faulty gears identified in commissioning test
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Having the information in mind, the first condition of seeded defect test was selected to

be conducted under 14000 rpm and 100 kW load condition, which according to [3], was

the power profile when helicopter remains idle on the ground before take-off. This test

condition also enables the investigation on the feasibilities of diagnosing incipient

planetary bearing faults without demanding the data from helicopter flying regimes.

While the high speed DC motor has a maximum operating speed of 17842 rpm, the other

speed condition was selected to be 16000 rpm, with a safety margin considered.

To comply with safety protocols, operations on MGB rig were all conducted from an

isolated control room, shown in Figure 3.22. The main monitor in the control room

simultaneously updated information of MGB such as input drive speed, DC motor

power, temperature of MGB and so on. Emergency stop button was located at control

panel, which can be used to shut down the entire system.

Figure 3.22: Control room

Tests under healthy conditions were undertaken first, followed by tests under minor fault

and major fault conditions. Between tests of different health conditions, MGB was

stripped for at least 3 days to allow the planetary bearings to be replaced. For each test,

in between of different speed and load conditions, quick checks on vibration data were

performed. The test conditions are summarised in Table 3.11. The 10000 rpm condition

test was conducted as a third commissioning, while the extra 16,000 rpm, 220 kW load

test was carried out only under major fault condition, for the purpose of acquiring data
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near rig operational limitations.

Table 3.11: Seeded bearing defect tests conditions

Speed (rpm) Health Condition Load Condition (kW) Test Notes

10,000 Healthy 80 For commissioning

14,000

Healthy

Minor Fault

Major Fault

100, 180

100, 180

100,180

–

–

–

16,000

Healthy

Minor Fault

Major Fault

100, 180

100, 180

100, 180, 220

–

–

For only major Fault

3.4 Summary

In this Chapter, the experiments undertaken to acquire vibration data from helicopter

MGB, operated under various conditions are described. In Section 3.2, the external and

internal structure of the MGB is described and illustrated. The fundamentals of the

planetary speed reduction system and the equations for determining the speed reduction

ratios are explained. Specifically, the reduction ratios in the adopted SA330 MGB are

calculated with the information of sun and ring gear teeth given in Table3.2. The

components of the test rigs are introduced, and a schematic view is drawn in Figure 3.5

showing how the rig components were assembled. The seeded bearing defects are

described, the size of the seeded defects were decided to be incipient, that the integrity of

the planetary bearing was not compromised, making the diagnosis increasingly

challenging and rewarding. The description of data acquisition system setup is given

afterwards, followed by the explanation of test conditions and procedures.

Considerations were given for determining experiments conditions to investigate the

feasibility of diagnosing incipient planetary bearing fault in a more relaxed helicopter

regime, i.e. ground idle before take-off, further increasing the diagnosis difficulties. A

possible imbalance or material issue was encountered during commissioning of the test

rig, which lead to an emergency shut down. Key points have been summarised in

Section 3.3.3, providing valuable information that can be adopted to other researches
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conducted on helicopter MGB. Experimental vibration data has been successfully

captured at various test conditions using MGB test rig. To recapitulate, vibration data

was collected from eight data channels (two triaxial and two uniaxial sensors).

Summarised in Table 3.11, data under three conditions including healthy, minor fault and

major fault, two speed conditions including 14,000 rpm and 16,000 rpm and various load

conditions were collected for the analysis. The diagnosis work using the collected data

will be discussed in detail in Chapter 4.
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Chapter 4

Planetary Bearing Fault Diagnosis on SA330 MGB

4.1 Introduction

In Chapter 3, the details of the planetary bearing seeded defect tests undertaken on a

SA330 MGB have been presented. In this Chapter, the diagnoses of the seeded defects,

including minor defect and major defect, are performed using the collected experiment

data.

4.2 Methodology

Over the last two decades, significant researches have been conducted in the study of

bearing fault diagnosis. Many of the researches have reported prominent achievements,

notably the below techniques: in [66, 69], Ho and Randall implemented self-adaptive

noise cancellation (SANC) technique to separate deterministic gear mesh signals and

non-deterministic bearing signals. Such technique was further evaluated extensively

in [64, 67, 73]. Envelope analysis has been established as a benchmark technique to

extract the diagnostic information hidden in high frequency resonances [18, 88, 107].

Antoni and Randall developed Kurtogram based on the concept of SK, and proposed

using Kurtogram as a frequency resonance detector in conjunction with envelope

analysis [94]. The other techniques that were reviewed in Chapter 2 all have gained

success for their own utilities. Implementing the aforementioned techniques has

undoubtedly achieved successes on diagnosing bearing fault, but most of these

investigations were carried out on simulated data or experimental data taken from

bearings in a relatively simple system or test rig. An actual operational helicopter MGB

is a very sophisticated mechanical system, containing multiple speed reduction modules

and planetary stages. Therefore, vibration data collected from helicopter MGB reflects
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complex mechanics of interactions between gears and bearings in MGB that can hardly

be simulated. Diagnosis of planetary bearing defects in an operating MGB is eminently

challenging, the reasons are summarised below, including but not limited to [115]:

1. Epicyclic modules of MGB can achieve a large reduction rate of approximately

86:1 (calculated based on test rig MGB). Such functionality is achieved by a

sophisticated multi-stage epicyclic speed reduction structure, which are formed by

many planetary gears and bearings. This structure further complicates signal

transmission paths for accelerometers, hence vibration data collected are highly

modulated, which potentially masks fault related signatures.

2. Decided by the structure of planetary gear/ bearing set, gears and bearings share

same races, resulting in overwhelming gear meshes signal masking planetary

bearing signals that are inherently weak. Thus, faulty signatures excited by

contacts between defects and rollers/ cages are difficult to be extracted.

3. An operating helicopter MGB, especially in high-speed mode, generates extremely

large noise from the gear meshes and shaft rotations. Signal-to-noise ratio is not

idea for direct clear diagnosis under such harsh circumstances.

4. Traditional HUMS CIs are generated based on statistical characteristics of

vibration data, however, the information that these statistical features convey can

be misleading. For example, kurtosis can be used to describe if the collected

vibration data contains more peaks than a normal distributed data. Thus, an

increase in kurtosis usually indicates the development of defects. However,

kurtosis will lose its validity once the initial defects propagate into more

distributed or severed defects, when the value of kurtosis starts to decrease.

To investigate on diagnosis of planetary bearing outer race defects, using the vibration

data collected from the experiments in Chapter 3, below steps were followed to validate

the effectiveness of the frequency domain processing techniques aforementioned.

1. Perform a data quality check to make sure that no obvious data breakage has

occurred during acquisition.
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2. Perform FFT analysis and bicoherence analysis, investigating the feasibilities of

applying high-order frequency analysis for planetary bearing fault diagnosis.

3. Based on the primary results from previous steps, investigate the necessities and

effectiveness of gear/bearing signal separation techniques on removing the

interfering gear meshes.

4. Evaluate the effectiveness of envelope analysis and IEC to identify the

fault-associated frequencies defined in Equation 2.14. Additionally, analysis such

as SK, and manual structural resonance extraction are to be performed to acquire

optimal centre frequency and bandwidth for envelope analysis and IEC.

5. Establish a routine that is optimal for helicopter planetary bearing diagnosis.

4.3 Data Quality Overview

As discussed in previous Section, firstly the raw waveform of the vibration data was

checked prior to detailed signal processing. In Table 3.8, it has been described that four

accelerometers were employed, where two were triaxial and the other two were uniaxial.

For triaxial accelerometers, X, Y, Z was used to denote the directions of their sensitive

axes. X axis was in the tangential direction to the MGB case, Y axis was in the radial

direction to the MGB case and Z axis was in the vertical direction. Based on the axis

feature, the vibration waveforms recorded under 14000 rpm, 100 kW condition are

plotted, showing the 6 channels of data from triaxial accelerometers, namely forward

module X, Y, Z axes (sensor 2 in Table 3.8) and epicyclic module X, Y, Z axes (sensor 1

from Table 3.8) in Figure 4.1 to Figure 4.6. The data from uniaxial accelerometer (sensor

3 from Table 3.8) is plotted in Figure 4.7. Basic information is observed that:

1. From the observation of epicyclic module data (plotted from Figure 4.1 to Figure

4.3), the vibration data recorded in X channel has the smallest amplitude, which was

less than 80 g, whereas the data from Y and Z channels are relatively similar. This

observation indicated that, when the planetary bearings were rolling with the carrier

and passed by the accelerometers at epicyclic module, the radial and tangential

directions have had the most impact from the epicyclic planetary bearings.

2. From the observation of the forward module data (plotted from Figure 4.4 to
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Figure 4.1: Triaxial accelerometers 1 recording from epicyclic module, X-axis

Figure 4.6), the data in Y channel has the largest amplitude of nearly 500 g.

However, the transmission paths from the 2nd planetary faulty bearings to the

forward module are not straightforward, i.e. the signal associated with bearing

defects had to pass through the rotating two-stage epicyclic modules before

received by Forward Module accelerometers. Therefore, the data from forward

modules were primarily recorded to monitor the status of the coupling gears from

the speed-increasing gearbox, and were not optimal for planetary bearing

diagnosis.
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Figure 4.2: Triaxial accelerometers 1 recording from epicyclic module, Y-axis

Figure 4.3: Triaxial accelerometers 1 recording from epicyclic module, Z-axis
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Figure 4.4: Triaxial accelerometers 2 recording from forward module, X-axis

Figure 4.5: Triaxial accelerometers 2 recording from forward module, Y-axis
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Figure 4.6: Triaxial accelerometers 2 recording from forward module, Z-axis

Figure 4.7: Uniaxial accelerometers 3 recording from epicyclic module
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Table 4.1: Diagnostic parameters of 14000 rpm, 100 kW condition

Conditions Load Speed Fsampling BPFO ωc1 ωc2

Healthy

Minor Fault

Major Fault

100 kW

100 kW

100 kW

14034 rpm

14088 rpm

14120 rpm

25600 Hz

25600 Hz

25600 Hz

N/A

59.67 Hz

59.81 Hz

7.90 Hz

7.93 Hz

7.95 Hz

2.71 Hz

2.72 Hz

2.73 Hz

4.4 Investigation on Vibration Data Analysis

4.4.1 Diagnosis on Vibration Data Collected at 14000 rpm, 100 kW

Condition

Following the steps described in Section 4.2, the data collected from the speed condition

14000 rpm, load condition 100 kW was firstly examined. Using pre-determined

parameters from Table 3.2, and the Equation 3.6 to calculate BPFO, the relevant

diagnostic information is presented in Table 4.1, where ωc1 is the frequency of 1st

epicyclic planetary carrier rotation speed (476.3 rpm), and ωc2 is the frequency of 2nd

epicyclic planetary carrier rotation speed (163.8 rpm). To investigative results in

frequency domain, the unit of speed is converted from rpm to Hertz.

As stated in Section 4.2, after checking the data quality, the candidates for signal

processing are shortlisted to data collected from channels including epicyclic uniaxial

channel 1, and epicyclic triaxial channel Y, and Z. It was decided that the focus should

be on the channel that maintained a straightforward transmission path, and the vibration

should be received by the sensitive axis of the accelerometers. Therefore, based on the

transmission schematic diagram shown in Figure 3.13, the data from channel epicyclic

triaxial Y (radial axis) was selected for the bearing fault diagnosis, while the other

channels were only used to provide supplementary information when necessary.

Figure 4.8 shows the amplitude spectrum created using data from epicyclic channel Y,

demonstrating the evident link between frequency components to physical gearbox

rotating mechanism. A number of dominant frequency components are marked in the

Figure 4.8 to support this observation. It can be deduced that these frequencies are all
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Figure 4.8: Frequency spectrum of healthy condition under 14000 rpm and 100 kW load

related to overwhelming gear meshes or the modulated frequencies induced by the 1st

and 2nd planetary carrier plates. The explanations for these frequency components are

detailed in below.

1. Frequency 5378.44 Hz: this frequency is the gear mesh frequency of the forward

module. High input speed 14034 rpm generated from the DC motor was not reduced

at this point. Gear mesh frequency is calculated by multiplying the gear spinning

speed with its number of teeth. Therefore, the Gear Mesh Frequency (GMF) is

calculated as:

GMFF =
14034

60
×23 = 5379.7 Hz (4.1)

where 23 is the number of pinion teeth in forward module (Figure 3.2).

2. Frequency 2852.19 Hz: this frequency can be related to the gear mesh frequencies

in the aft module. The speed can be deduced from the input speed of 14034 rpm

combining the teeth information of forward and aft Module. The calculation is

presented in below:
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Figure 4.9: Zoomed spectrum of healthy condition under 14000 rpm and 100 kW load

GMFA =
GMFF

23
× 23

66
×35 = 2852.87 Hz (4.2)

where the 23/66 pair is the speed ratio of forward module, and 35 is the number of

pinion teeth in aft module.

3. Frequency 1100.8 Hz: this is caused by the gear meshes at bevel stage. Referring to

the speed ratio and gear teeth information in Section 3 Table 3.2, the rotating speed

at bevel gear is:

GMFB =
GMFA

35
× 35

57
×22 = 1101.1 Hz (4.3)

where the 35/57 pair is the speed reduction ratio from the aft reduction gears; 22 is

the number of pinion teeth in bevel gear.

4. Frequency 2022.28 HZ: this frequency can be correlated with the gear mesh

frequency from the 1st planetary gears. In order to fully investigate on this

frequency component, the frequency spectrum in Figure 4.8 is zoomed to a

narrower range of [1800 Hz, 2300 Hz], and shown in Figure 4.9.

It has been revealed that, 2022.28 Hz and 2046.72 Hz have a difference equal to

that between 2061.03 Hz and 2085.47 Hz, which is exactly 24.44 Hz. However,
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the difference between the two frequencies in the middle, namely 2046.72 Hz and

2061.03 Hz, is 14.31 Hz. Therefore, these four frequencies are not harmonics of a

certain frequency, which usually should have identical intervals. The explanation

for this phenomenon is that, they are sidebands induced by amplitude modulation

from the planetary movement of the carrier plate. Since the planetary gears were

self-spinning while orbiting the sun gears, carried by the carrier rotating in a slower

speed, the self-spinning speed of the gears will be modulated by the carrier speed

when received by the transducers. It is therefore conclusive that a centre frequency

2053.88 Hz (the average of 2046 Hz and 2061 Hz) is missing in Figure 4.9, due to

the amplitude modulation.

To prove this conclusion through calculations, firstly the planetary gear mesh

frequency is obtained. There are two methods of calculating this frequency

component: using the carrier speed times ring gear teeth number, or using

planetary gear self-spinning speed times the number of its gear teeth. For

simplicity, using the already given 1st carrier speed ωc1 in Table 4.1, we have the

1st planetary gear mesh frequency:

GMFP1 = ωc1×130 = 7.90×130 = 1027.2 Hz (4.4)

It is obvious that frequency 2054 Hz is 2× of the 1st planetary gear mesh

frequency, and the rest frequencies in Figure 4.9 are the sidebands modulated by

either 1× or 2× the 7.9 Hz carrier speed. This conclusion suggests that, in a

complex MGB, it is common that the frequencies are modulated severely, and

cannot be observed directly. But modulation sidebands are helpful for identifying

the missing frequencies.

5. Frequency 8213.41 Hz: this frequency is the total gear mesh frequency from the 1st

planetary gears. From the Table 3.1, there were eight 1st planetary gears/bearings,

therefore the total meshes are:

GMFTotal = GMFP1×8 = 8217.6 Hz (4.5)

From the aforementioned observations and calculations, the links between the primary
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rotating components in MGB and the frequency spectrum are established. Additionally,

it is conclusive that the even though the accelerometers were placed at 2nd epicyclic

module, the spectrum is still dominated by the overwhelming gear meshes from 1st

epicyclic module. This finding has inevitably increased the difficulties of diagnosing the

fault, which was seeded at 2nd epicyclic module.

Figure 4.10: Zoomed spectrum of the data, 14000 rpm, 100 kW, healthy

Figure 4.11: Zoomed spectrum of the data, 14000 rpm, 100 kW, minor fault
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Figure 4.12: Zoomed spectrum of the data, 14000 rpm, 100 kW, major fault

In Figure 4.10, 4.11 and Figure 4.12, the frequency spectra for healthy, minor fault, and

major fault are zoomed to [20 Hz, 100 Hz], to discuss the fault-related frequency

patterns. In these three graphs, the locations of five relevant frequencies have been

highlighted using vertical dashed lines. Due to the slight differences in operational

speeds, the frequencies may have a small deviation to the dashed lines. These

highlighted frequencies from lowest to the highest are:

1. 24.44 Hz, which is resulted from effect of the nine 2nd planetary gears passing the

accelerometers. The calculation is given:

ωc2×9 = 2.71×9 = 24.39 Hz (4.6)

The 48.87 Hz is the 2nd harmonics of this frequency.

2. 43.40 Hz, which is induced from the 1st planetary sun gear speed, modulated by the

2nd planetary carriers. The calculation is:

(
GMFB

22
× 22

45
−ωc2

)
×2 = 43.51 Hz (4.7)

3. 57.21 Hz and 62.72 Hz in minor fault conditions shown in Figure 4.11, as
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introduced earlier in this section, are sidebands caused by the faulty planetary

bearing driven and modulated by the 2nd planetary carrier plates. The calculations

are:

BPFO+ωc2 = 62.39 Hz (4.8)

BPFO−ωc2 = 56.95 Hz (4.9)

Noted that the deviations between calculated values and actual values in the

spectrum are caused by the bearing roller slips, and the small variation in MGB

operational speed.

4. 60.05 Hz in major fault condition, found in Figure 4.12, is the BPFO calculated in

Table 4.1.

It is observed from Figure 4.10, 4.11 and Figure 4.12 that, the frequencies that are not

associated with bearing outer race faults, i.e. 24.44 Hz, 43.40 Hz and 48.87 Hz are present

in all three conditions. However, the fault related sidebands and BPFO can only be seen

in Figure 4.11 and Figure 4.12. Thus, it is conclusive that the primary goal of this study

is to further investigate the effectiveness of the frequency domain processing techniques

to extract the fault related frequencies, so that BPFO in Figure 4.11 can also be observed,

without the interferences from other dominant gear mesh frequencies.

Following the processing steps in Section 4.2, the applicability of high-order frequency

analysis, namely the bicoherence method, was firstly investigated. The bicoherence was

calculated following the equation:

bic2( f1, f2) =
|X( f1)X( f2)X∗( f1 + f2)|2

|X( f1)X( f2)|2|X∗( f1 + f2)|2
(4.10)

where X denotes the frequency components, and X∗ is the conjugate pair of the

component. Since in previous analysis, the details and validations of frequency related

calculations have been given, the calculations of frequency components will be

simplified in the rest of the Chapter. The diagonal slice of the calculated bicoherence

matrix were selected, and shown from Figure 4.13 to Figure 4.15 for healthy, minor fault
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and major fault conditions respectively. The relationship of a specific frequency

component f and its 2nd harmonics 2× f are revealed in this diagonal bicoherence plot.

Conclusions can be drawn that the gear meshing frequencies and their harmonics have

phase correlations. In all three conditions, bicoherence values at 24.22 Hz (9×2.73 Hz),

49.22 Hz (2× 24.22 Hz), 234.4 Hz (14000 rpm input speed) and 468 Hz (2× input

speed) are eminently distinct. In minor fault and major fault condition, these values have

several Hertz offsets caused by speed fluctuation. There are no distinct bicoherence

indications of the BPFO in all three conditions. This indicates that, bicoherence is a

method of detecting phase correlations between frequency components and their

harmonics, and it is insensitive to bearing-related signals, which are not completely

deterministic. Additionally, performing bicoherence analysis is very computational

heavy, resulting in a compromised frequency resolution in order to improve the

efficiency. This also contributed to the unsuccessfulness of detecting incipient BPFO

components. Therefore, bicoherence is not ideal for the purpose of this study.

Figure 4.13: Bicoherence of healthy condition, 14000 rpm, 100 kW

The bicoherence results have shown the necessity of removing deterministic gear related

frequencies. Additionally, as shown in Figure 4.11 and Figure 4.12, same conclusions

can be drawn that dominant gear mesh frequencies should be removed to extract the

bearing related nondeterministic signals. Randall’s study [45] suggested that applying
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Figure 4.14: Bicoherence of minor fault condition, 14000 rpm, 100 kW

Figure 4.15: Bicoherence of major fault condition, 14000 rpm, 100 kW

gear and bearing signal separation using SANC technique will improve signal-to-noise

ratio eminently. SANC was thus applied to process the data. The parameters of the

SANC filters are critical. As explained in Chapter 2, SANC works well when the delay

signal is properly selected so that the deterministic gear signals remain correlated while

nondeterministic bearing signals are not. Based on the recommendation from [45], the
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delay has been selected with the consideration of at least 20 times the period of the

frequency band, where the demodulation is likely to take place. As in our study, the

demodulation frequency can be up to 10k Hz with a bandwidth of 400 Hz, a good

estimation of the delay, denoted as d, can thus be given as:

d =
1

400
×20×25600 = 1280 (4.11)

The delay d was used to develop the SANC filter, whose effects are shown in Figure 4.16

and Figure 4.17. The two figures both show that the deterministic frequencies in raw

data are suppressed across the entire frequency domain, notably the 2030.77 Hz,

2864.15 Hz, 5376.49 Hz, 8592.34 Hz in minor condition, and correspondingly

2034.45 Hz, 2869.33 Hz, 3051.68 Hz, 5410.77 Hz, 8607.79 Hz in major condition,

which are all related to gear mesh frequencies as explained earlier in this section. This

result indicates that SANC is very powerful in preserving most nondeterministic signals

that are associated with bearings, and it is applicable to planetary gear/bearing signal

separation with proper delay selected.

After the separation, Kurtogram was performed to determine optimal bandpass frequency

bandwidth and centre frequency for envelope analysis, where latter is used as a bearing

fault identifier. The result of the produced Kurtogram is given in Figure 4.18 using minor

fault data. The MATLAB code was provided by the inventor of Kurtogram algorithm, Dr.

J. Antoni. It was discovered that applying SANC in 14000 rpm, 100 kW condition was

not successful.

In Figure 4.18(a), the most impulsive frequency band detected by Kurtogram in the SANC

filtered signal is centred in 150 Hz, with a bandwidth of 100 Hz. This is to say that

Kurtogram has detected that the most impulsive frequency components are hidden in the

frequency range of [100 Hz, 200 Hz], which is apparently inaccurate from Figure 4.16,

showing no resonances in this frequency range. Although, the spectral kurtosis has been

detected to be slightly higher than that shown in the Kurtogram of original signal in Figure

4.18(b), similarly, the correct resonance frequency was not detected.
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(a) Before separation

(b) After separation

Figure 4.16: Demonstration of SANC separation, 14000 rpm, 100 kW minor fault condition
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(a) Before separation

(b) After separation

Figure 4.17: Demonstration of SANC separation, 14000 rpm, 100 kW major fault condition
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(a) Kurtogram of SANC processed data

(b) Kurtogram of original data

Figure 4.18: Demonstration of Kurtogram results, 14000 rpm, minor fault condition
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Therefore, it is necessary to perform a manual investigation on the possible high

frequency resonances, where the bearing signals were amplified in envelope by the

structural resonance during the tests. Also, the gear mesh related frequency resonances

must be avoided to mitigate the influences from gears. From what has been demonstrated

in Figure 4.16, similarly to Figure 2.11, resonance above 10000 Hz is a prominent

candidate, as it has no strong correlations with the other gear mesh frequencies, and it is

not induced by the accelerometers’ self-resonance frequency (above 30 kHz, see

Appendix A). The frequency amplitude spectral of data from minor and major fault

conditions are produced after the SANC separation, shown in Figure 4.19 and Figure

4.20.

In Figure 4.19 and Figure 4.20, it is demonstrated that the resonances have been

identified with central frequency. The same analysis has been conducted for healthy

condition to extract the bearing associated resonances for comparisons. The selected

centre frequencies and the bandwidth for demodulation are listed in the Table 4.2.

Table 4.2: Centre frequency and bandwidth for envelope analysis, 14000 rpm, 100 kW

Conditions Centre Frequency [Hz] Bandwidth [Hz]

Healthy

Minor Fault

Major Fault

10754.7

10798.5

10819.1

1000

1000

1000

With the centre frequencies and bandwidth for demodulation selected, the envelope

spectra for health, minor fault and major fault condition are produced in Figure 4.21. It

has been presented that, for healthy condition, the 2.68 Hz drive frequency from the 2nd

epicyclic carrier is distinct, as well as the 24 Hz modulation frequency from the nine

planetary gears. However, the fault frequency BPFO around 60 Hz cannot be found. The

same is true for the fault related sidebands.

For minor fault condition, the BPFO has been evidently revealed in Figure 4.22,

comparing with the FFT analysis result shown in Figure 4.11, where no BPFO can be

found. This result indicates that envelope analysis is effective in extracting the hidden

bearing signatures preserved in the waveform.
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Figure 4.19: Resonance frequency, 14000 rpm, minor fault condition

Figure 4.20: Resonance frequency, 14000 rpm, major fault condition
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Figure 4.21: Envelope spectrum of 14000 rpm, 100 kW, healthy condition

Figure 4.22: Envelope spectrum of 14000 rpm, 100 kW, minor fault condition

For major fault condition, the BPFO is not distinctly shown in Figure 4.23. The sideband

of 62.9 Hz is resulted from 2.7 Hz planetary carrier plate modulation as previously

explained. It is also evident that, the frequencies in integer multiplies of 2.7 Hz are much

more intensely spread across the spectrum, due to the seeded major defect. Comparing

with the FFT analysis result shown in Figure 4.12, this outcome is reduced in
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Figure 4.23: Envelope spectrum of 14000 rpm, 100 kW, major fault condition

effectiveness of identifying the fault associated signatures. This is likely to be caused by

the wide demodulation bandwidth selected, hence allowing more gear-related

frequencies to remain unfiltered. To further investigate on producing results that are

more accurate, the bandwidth has been modified to 300 Hz to mitigate the interferences

from gear signal, and the results are presented in Figure 4.24. It is evident that, in Figure

4.24(b), the BPFO and corresponding 62 Hz sideband are more obvious comparing with

those shown in Figure 4.24(a). This concludes that, for major fault condition, it could be

beneficial to select a narrower filtering bandwidth for clearer fault frequency

identification.

With the processing routine of utilising signal separation combined with carefully select

demodulation centre frequency and bandwidth, the results shown in Figure 4.22 and

Figure 4.24(b) have successfully extracted the faulty bearing associated frequencies,

including BPFO and sidebands, for both minor fault and major fault conditions. To

further enhance the fault related frequencies, the squared envelope analysis was

performed for each condition, with a new centre frequency and bandwidth listed in Table

4.3. Using a squared envelope spectrum rather than amplitude spectrum has been

recommended in many researches [3, 18, 45, 59], typically for bearing fault diagnosis.
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(a) Envelope spectrum with 1000 Hz bandwidth

(b) Envelope spectrum with 300 Hz bandwidth

Figure 4.24: Demonstration of the effect of demodulation bandwidth
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Table 4.3: Modified parameters envelope analysis, 14000 rpm, 100 kW

Conditions Centre Frequency [Hz] Bandwidth [Hz] Delay d

Healthy

Minor Fault

Major Fault

10754.7

10797.8

10819.1

300

300

300

850

850

850

Additionally, in order to reduce the noise, a smaller delay, which is 850 has been

implemented. The smaller delay is also determined by choosing a narrower bandwidth,

which affects the calculation in Equation 4.11.

Figure 4.25: Squared envelope spectrum of 14000 rpm, 100 kW healthy data using updated
filtering parameters

It can be concluded from the squared envelope spectra shown from Figure 4.25 to Figure

4.27 that, no evidence of BPFO is found in healthy condition, whereas in minor fault

condition shown in Figure 4.26, a prominent increase in the BPFO is discovered

comparing with the result prior processing in Figure 4.11. The BPFO is also evident in

major fault condition shown in Figure 4.27. This discovery supports that the incipient

planetary bearing outer race defects can be identified in the operational condition similar

to helicopter being idle on the ground, using advanced frequency domain signal

processing techniques.
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Figure 4.26: Squared envelope spectrum of 14000 rpm, 100 kW minor fault data using updated
filtering parameters

Figure 4.27: Squared envelope spectrum of 14000 rpm, 100 kW major fault data using updated
filtering parameters

However, as demonstrated, this routine involves optimisations steps to be effective. It

requires one to have certain prior knowledge, such as the selection of centre frequency

and bandwidth. Thus, a more automatic and computationally efficient algorithm, namely
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the IEC, was applied and validated.

As explained in Chapter 2, IEC essentially computes the envelope iteratively until the

certain threshold 0 6 η 6 1 is satisfied. To investigate IEC’s effectiveness, firstly

performed was the IEC using a recommended η = 0.85, without gear/bearing signal

separations on faulty data, collected under 14000 rpm, 100 kW condition. It can be

observed from the Figure 4.28 that, the IEC processing without signal separation for

minor fault condition has achieved comparable outcome in Figure 4.28(a), where the

BPFO and sidebands are observed directly. However, in major fault condition in Figure

4.28(b), the fault related frequencies cannot be observed other than the 57 Hz sideband.

To improve the capability of IEC, the separation results from SANC are high-passed at

8500 Hz to reduce the effect of overwhelming gear meshes slower than 8500 Hz, then

adopted as input for IEC. With a more generous η = 0.7 selected to allow less suppression

on bearing signals, the results are produced in Figure 4.29.

It is revealed in Figure 4.29 that, the results are improved both in minor and major fault

conditions, where the BPFO and the fault related sidebands are distinctly shown,

comparing with the results in Figure 4.24. This concludes that IEC is applicable as an

alternative technique to the traditional envelope analysis. Additionally, the inherent

iterative process does not demand the selection of optimal centre frequency and

bandwidth for demodulation. As discussed above, with a high-pass filter that remove the

frequency contents below the highest gear mesh frequencies will result in similar

diagnostic results as shown in Figure 4.27.

4.4.2 Diagnosis on Vibration Data Collected at 14000 rpm, 180 kW

Condition

From this section onwards, the diagnosis of vibration data collected under 14000 rpm,

and 180 kW condition is presented. Since it has already been explained in detail in the

processing of 100 kW condition, the gear mesh frequency components in amplitude

spectrum will not be elaborated. Similar diagnosis steps are performed based on the

conclusions from 100 kW condition. Two routines are performed:
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(a) IEC on minor fault, η = 0.85

(b) IEC on major fault, η = 0.85

Figure 4.28: Direct IEC squared envelope spectrum on 14000 rpm, 100 kW data



4.4. Investigation on Vibration Data Analysis 97

(a) IEC on minor fault with SANC, η = 0.7

(b) IEC on major fault with SANC, η = 0.7

Figure 4.29: Demonstration of the IEC squared envelope spectrum after signal separation
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1. Perform signal separation technique, then investigate on high-passed IEC analysis

to make use of its fast computation.

2. Perform signal separation technique, then select optimal demodulation centre

frequency and its bandwidth for squared envelope analysis.

The relevant diagnostic information for 14000 rpm, 180 kW condition is summarised in

Table 4.4.

Table 4.4: Diagnostic parameters of 14000 rpm, 180 kW condition

Conditions Load Speed Fsampling BPFO ωc1 ωc2

Healthy

Minor Fault

Major Fault

180 kW

180 kW

180 kW

14034 rpm

14088 rpm

16110 rpm

25600 Hz

25600 Hz

25600 Hz

N/A

59.67 Hz

59.77 Hz

7.90 Hz

7.93 Hz

7.95 Hz

2.71 Hz

2.72 Hz

2.73 Hz

Firstly, the zoomed amplitude spectra are plotted in Figure 4.30, Figure 4.31 and

Figure 4.32. It is noticeable that there are no BPFO or sidebands found in healthy

condition. In minor fault condition, the fault related sidebands, namely 57 Hz and

62.7 Hz are obvious.

Figure 4.30: Zoomed amplitude spectrum, 14000 rpm, 180 kW, healthy condition

Similarly, as discussed in 14000 rpm, 100 kW condition, the fast bandpassed IEC was
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Figure 4.31: Zoomed amplitude spectrum, 14000 rpm, 180 kW, minor fault condition

Figure 4.32: Zoomed amplitude spectrum, 14000 rpm, 180 kW, major fault condition

performed after the SANC analysis, with a 8500 Hz high-pass filter and η = 0.7 applied.

However, the results are not successful. The major fault processed with IEC after SANC

is presented in Figure 4.33 for discussion.

It is evidently shown in Figure 4.33 that, although the frequency at 63.59 Hz could indicate
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Figure 4.33: Unsuccessful IEC analysis on 14000 rpm, 180 kW major fault data

the existence of fault related sideband frequency, there lacks support to identify BPFO.

Therefore, IEC has failed in diagnosing 14000 rpm, 180 kW condition. The envelope

analysis which looks into the exact frequency demodulation will be performed to diagnose

this condition.

The amplitude spectra are zoomed to the range of [9000 Hz, 12800 Hz] for the localising

the resonances. The resonances in three conditions are shown from Figure 4.34 to Figure

4.36. The resonances centre frequencies and the bandwidths are selected following

similar procedures in 100 kW condition, and are recorded in Table 4.5. It is noted that

the demodulation bandwidth for 180 kW condition has been selected to be 200 Hz,

narrower that the 300 Hz in 100 kW condition. This is based on the consideration that

under higher load condition, the inherently overwhelming gear mesh frequencies were

more amplified, hence a more rigid demodulation to mitigate the interferences are

beneficial to enhance the overall diagnosis.

With the centre frequency and bandwidth determined, the squared envelope analysis was

performed. The results are shown in Figure 4.37, Figure 4.38 and Figure 4.39. It is

conclusive that, similar to 100 kW condition, the BPFO is identified in minor fault

condition shown in Figure 4.38, while no evidence of BPFO is shown in healthy
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Figure 4.34: Resonance frequencies, 14000 rpm, 180 kW, healthy

Figure 4.35: Resonance frequencies, 14000 rpm, 180 kW, minor fault

condition. Additionally, fault related sideband 63.45 Hz has also been found in Figure

4.38, supporting the diagnosis conclusion.

In major fault condition result shown in Figure 4.39, the fault related sideband 57.40 Hz

is quite distinct, however, the BPFO is barely visible. This is related to the interferences
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Figure 4.36: Resonance frequencies, 14000 rpm, 180 kW, major fault

Table 4.5: Centre frequency and bandwidth for envelope analysis, 14000 rpm, 180 kW

Conditions Centre Frequency [Hz] Bandwidth [Hz]

Healthy

Minor Fault

Major Fault

10599

10798.8

10810.3

200

200

200

from the reinforced gear mesh frequencies and the 1st and 2nd carrier plates amplitude

modulations. To specifically investigate on the major fault diagnosis case, the Cepstrum

analysis is applied to suppress the gear mesh frequencies. The introduction of Cepstrum

analysis has been stated in Section 2.4.2.

Considering the capability of Cepstrum editing in terms of suppressing the fundamental

and harmonics frequencies, in this study, a short-pass lifter was applied on major fault

data. Short-pass indicates that the purpose of Cepstrum editing in this case was to

reserve only the higher frequency resonances, which are more transient. The editing

should take place before SANC separation, as recommended in [62, 116]. Based on the

requirements of enhancing the frequencies below 65 Hz, a short-pass lifter was designed

that, all quefrencies above 1/65 second is removed. This process is showcased in Figure
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Figure 4.37: Squared envelope spectrum, 14000 rpm, 180 kW, healthy condition

Figure 4.38: Squared envelope spectrum, 14000 rpm, 180 kW, minor fault condition

4.40.

After the Cepstrum editing was performed in Figure 4.40, the similar processing steps

were performed. The processing result is demonstrated in Figure 4.41, which is produced

with Cepstrum, SANC and squared bandpassed envelope analysis. It has been revealed in
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Figure 4.39: Squared envelope spectrum, 14000 rpm, 180 kW, major fault condition

Figure 4.40: Cepstrum editing on major fault condition of 14000 rpm, 180 kW

Figure 4.41 that, the BPFO as well as the fault related sidebands have been successfully

extracted, and the diagnosis for this condition is conclusive.
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Figure 4.41: Optimised diagnosis on major fault condition of 14000 rpm, 180 kW
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4.4.3 Diagnosis on Vibration Data Collected at 16000 rpm, 100 kW

Condition

Table 4.6: Diagnostic parameters of 16000 rpm, 100 kW condition

Conditions Load Speed Fsampling BPFO ωc1 ωc2

Healthy

Minor Fault

Major Fault

100 kW

100 kW

100 kW

16038 rpm

16074 rpm

16110 rpm

25600 Hz

25600 Hz

25600 Hz

N/A

68.08 Hz

68.24 Hz

9.03 Hz

9.05 Hz

9.07 Hz

3.10 Hz

3.11 Hz

3.12 Hz

The diagnostic parameters of 16000 rpm, 100 kW condition are presented in Table 4.6.

The FFT spectrum for each health condition is plotted for inspection in Figure 4.42,

Figure 4.43 and Figure 4.44, respectively.

Figure 4.42: Zoomed amplitude spectrum, 16000 rpm, 100 kW healthy condition

It has clearly demonstrated that in healthy condition, there is no sign of BPFO or any

sidebands shown in the spectrum in Figure 4.42. The 1st and 2nd epicyclic carrier

induced frequencies, namely the 27.9 Hz and 49.7 Hz can be found in both healthy and

faulty conditions spectrum, showing persistent modulation effects from the carrier gears.

In Figure 4.43, the fault related sideband frequency 65.2 Hz (BPFO−ωc2) has been

identified, while the BPFO and sidebands can be seen directly in major fault in Figure
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Figure 4.43: Zoomed amplitude spectrum, 16000 rpm, 100 kW minor fault condition

Figure 4.44: Zoomed amplitude spectrum, 16000 rpm, 100 kW major fault condition

4.44, indicating that the major fault has severe and more obvious impact on the spectrum

of the vibration data.

It is worth-noticing that, in Figure 4.44, the 49.86 Hz frequency component has been

modulated by the drive frequency ωc2. As explained in detail in Section 4.4.1, the



4.4. Investigation on Vibration Data Analysis 108

frequency 49.86 Hz is a result from the 1st sun gear modulated by 2nd carrier gear speed.

The modulations shown in the spectrum hence are the result of the increased impact

from the major fault at 2nd epicyclic module.

To reduce the interferences from the deterministic gear mesh frequencies, the SANC

processing has been conducted, following similar procedures explained in 14000 rpm

condition. The demodulation centre frequencies and corresponding bandwidths are then

determined in Table 4.7.

Table 4.7: Centre frequency and bandwidth for envelope analysis, 16000 rpm, 100 kW

Conditions Centre Frequency [Hz] Bandwidth [Hz]

Healthy

Minor Fault

Major Fault

9783

9801

9826

200

200

200

Figure 4.45: Squared envelope spectrum, 16000 rpm, 100 kW, healthy condition

The squared envelope spectrum of the bandpassed signal is plotted for each health

conditions in Figure 4.45, Figure 4.46 and Figure 4.47. It can be concluded that, the

major fault condition shows the most prominent diagnosis results, where the BPFO and

fault associated frequency sidebands, namely 62.3 Hz, 71.7 Hz have been clearly
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Figure 4.46: Squared envelope spectrum, 16000 rpm, 100 kW, minor fault condition

Figure 4.47: Squared envelope spectrum, 16000 rpm, 100 kW, major fault condition

extracted. In minor fault condition shown in Figure 4.46, while the BPFO has a low

energy, the sideband frequency 65.38 Hz has dramatically increased. The outcomes of

squared envelope analysis have conclude that the diagnosis of the planetary bearing fault

is successful, using vibration data collected under 16000 rpm, 100 kW condition.
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4.4.4 Diagnosis on Vibration Data Collected at 16000 rpm, 180 kW

Condition

Table 4.8: Diagnostic parameters of 16000 rpm, 180 kW condition

Conditions Load Speed Fsampling BPFO ωc1 ωc2

Healthy

Minor Fault

Major Fault

100 kW

180 kW

180 kW

16044 rpm

16074 rpm

16110 rpm

25600 Hz

25600 Hz

25600 Hz

N/A

68.08 Hz

68.24 Hz

9.03 Hz

9.05 Hz

9.07 Hz

3.10 Hz

3.11 Hz

3.12 Hz

The diagnostic parameters of 16000 rpm, 180 kW condition are presented in Table 4.8.

Similar to 100 kW condition under 16000 rpm speed, the FFT spectrum for each health

condition does not give a clear fault-related indication.

The spectrum for each health condition is plotted in Figure 4.48 to Figure 4.50. It is

shown that the amplitude modulation associated with the 1st epicyclic carrier speed at

72.25 Hz and 2nd epicyclic carrier speed at 27.9 Hz are obvious in all three spectra.

Notably, the 72.25 Hz is quite close to the sidebands frequency, which can be calculated

as BPFO+ωc2 = 71.3 Hz. This frequency can be observed in Figure 4.50 major fault

spectrum, increasing the difficulty in diagnosing faults with sidebands. In terms of the

BPFO, no clear indication can be found in healthy or the major fault condition. Only in

minor fault condition, the BPFO can be observed directly in spectrum, shown in Figure

4.49. The rest of the diagnosis is performed aiming to extract the BPFO in faulty

conditions.

Following similar steps defined in 100 kW condition, the resonance frequencies that

amplified the bearing signals are selected and reported in Table 4.9. Using these

parameters, the squared envelope spectrum of the bandpassed signal is plotted for each

health conditions in Figure 4.51, Figure 4.52 and Figure 4.53.

It is evidently shown in Figure 4.51 to Figure 4.53 that, after the bandpass filtering, BPFO

remains unseen in Figure 4.51, but has been successfully extracted in both minor and

major fault conditions shown in Figure 4.52 and Figure 4.53, respectively. Additionally,

the sidebands are more revealing comparing with unprocessed raw FFT spectrum. At this
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Figure 4.48: Zoomed amplitude spectrum, 16000 rpm, 180 kW healthy condition

Figure 4.49: Zoomed amplitude spectrum, 16000 rpm, 180 kW minor fault condition

point, no further techniques are required to be employed to further enhance the BPFO, as

the results in Figure 4.52 and Figure 4.53 have indicated a conclusive successful diagnosis

for the planetary bearing outer race defects under this condition.
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Figure 4.50: Zoomed amplitude spectrum, 16000 rpm, 180 kW major fault condition

Table 4.9: Centre frequency and bandwidth for envelope analysis, 16000 rpm, 180 kW

Conditions Centre Frequency [Hz] Bandwidth [Hz]

Healthy

Minor Fault

Major Fault

9793

9802

9824

200

200

200
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Figure 4.51: Squared envelope spectrum, 16000 rpm, 180 kW healthy condition

Figure 4.52: Squared envelope spectrum, 16000 rpm, 180 kW minor fault condition
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Figure 4.53: Squared envelope spectrum, 16000 rpm, 180 kW major fault condition
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4.5 Conclusions

In this Chapter, diagnosis of MGB planetary bearing outer race fault has been

investigated. By employing frequency domain based signal analysis techniques, the fault

associated frequency components have been successfully extracted. Processing results

using data from four conditions, namely 14000 rpm input speed with 100 kW / 180 kW

load, and 16000 rpm input speed with 100 kW / 180 kW load, are presented. Detailed

frequency inspection has been performed on the 14000 rpm, 100 kW condition, which

simulates a relatively relaxed condition for helicopters to stay on ground before

taking-off. Explanations to the primary frequencies are given. The diagnosis results for

each condition are summarised in below:

1. For 14000 rpm, 100 kW condition, it has been demonstrated that the dominant

frequencies are related to gear meshes, 1st epicyclic and 2nd epicyclic module

modulations. Additionally, it was discovered that the bicoherence method excels at

identifying theses primary frequencies, but fails in diagnosing BPFO. To mitigate

the detrimental effect from the gear meshes, SANC has been applied. The effect of

SANC has been demonstrated, showing that SANC is effective in eliminating the

gear mesh frequencies, given proper delay selected. Kurtogram, which is an

algorithm to scan the most impulsive frequency bands hidden in the entire

spectrum, did not indicate the accurate centre frequency or bandwidth in this case,

concluding that the complex spectrum of MGB movement has a negative impact

on the capabilities of Kurtogram, which is in line with the reported conclusion

in [117]. The incipient size of the seeded defect has also added difficulties in

employing Kurtogram. In order to enable the envelope analysis, manual inspection

of frequency resonances and bandwidth were conducted, and optimal results have

been acquired in Figure 4.26 and Figure 4.27. Another fast computational

algorithm IEC has also been tested and achieved comparable results, shown in

Figure 4.29, with a high-pass filter applied.

2. For 14000 rpm, 180 kW condition, similar analysis procedures were performed,

and achieved optimal diagnosis result for minor fault condition, shown in Figure

4.38. Cepstrum editing has been applied to further improve the result for major



4.5. Conclusions 116

fault condition diagnosis. Optimised result has been obtained by using a Cepstrum

lifter, shown in Figure 4.41.

3. For 16000 rpm, 100 kW condition, it has been observed that the SANC and squared

envelope analysis have achieved optimal result in major fault condition in Figure

4.47, which clearly demonstrates the fault associated sidebands and BPFO. For

minor condition, the sidebands have shown abnormal increases that are associated

with seeded faults, supporting the diagnosis results.

4. For 16000 rpm, 180 kW condition, it has been discovered that applying the

squared envelope analysis have been adequate enough to diagnose the faults in

both minor and major conditions. Due to the high speed and load, the separation of

deterministic gear signals and nondeterministic bearing signals brings limited

benefits.

The diagnosis demonstrated for all conditions have concluded that, it is successful,

although very challenging, to diagnose incipient planetary bearing outer race defects

with frequency domain analysis techniques. The MGB was operated under relatively

slow speed and light load conditions, indicating that the diagnosis is feasible to be

performed in a non-extreme helicopter flying conditions. Based on the results

summarised in the list, generic methods are proposed for the diagnosis of the helicopter

main gearbox planetary bearing faults:

1. For 14000 rpm, 100 kW condition, due to that the speed and load adopted were not

significant, the fault-associated signals were inherently weak. Therefore, it is

proposed to apply adaptive algorithms to filter out the strong gear meshes.

Additionally, by utilising Kurtogram in combination with detailed inspections on

high frequency resonances, envelop analysis should then be applied to extract the

fault frequencies.

2. For 14000 rpm, 180 kW condition, similarly, due to the higher load condition,

sidebands were more obvious in spectrum, therefore incorporating the Cepstrum

editing can be beneficial to the processing routine.

3. For 16000 rpm, 100 kW condition, with higher speed condition, the signal energy of

the fault frequency components increased. Therefore, by applying signal separation
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and envelope analysis, the fault frequencies can be extracted. What’s more, the

sidebands induced by the amplitude modulation of the 2nd epicyclic module carrier

have shown to be effective in detecting the planetary bearing faults.

4. For 16000 rpm, 180 kW condition, based on the results, the envelope analysis is

applicable to successfully diagnosis the inserted fault.

To intuitively recapitulate the processing routine, it is depicted in Figure 4.54 in below.

In the next Chapter, a further evaluation analysis study is presented, demonstrating the

diagnosis process applied on a CH-46E helicopter aft gearbox, with seeded planetary

bearing inner race defects.

Figure 4.54: Schematic diagram of signal processing procedures



118

Chapter 5

Planetary Bearing Fault Diagnosis on A CH-46E Helicopter Aft

Gearbox

5.1 Introduction

In Chapter 4, successful diagnosis has been demonstrated for identifying seeded incipient

planetary bearing outer race defects, under four different conditions. In this Chapter,

a comparative study is performed, where the data was collected from a faulty CH-46E

helicopter aft gearbox, showcasing the processing routine’s capabilities in detecting a

different type of the planetary bearing fault, namely the inner race fault, in a different

gearbox.

5.2 Description of the Data Acquisition

The vibration data was collected from series of seeded defect tests in a CH-46E aft

gearbox, conducted by Westland Helicopter Limited. The collected vibration data was

digitalised by Naval Research and Development Centre (NRAD) in 1993 [118]. Based

on the information reported in [119], eight conditions were tested, including seven

seeded defect conditions and a no-defect condition. Only one type of defect was

introduced per test condition. These test conditions are listed as follows:

1. No defect

2. Planetary gear bore / bearing inner race corrosion

3. Spiral bevel input pinion spalling

4. Helical input pinion chipping

5. Collector gear cracking

6. Quill shaft cracking
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7. Input pinion bearing corrosion

8. Helical idler gear cracking

Specifically for this Chapter, data collected from the condition “Planetary gear bore /

bearing inner race corrosion” was analysed. Eight Endevco 7259A accelerometers were

installed on the test-rig, an optical tachometer was also fitted near scavenge pump drive.

All data was recorded on individual channels via an analogue tape recorder, and

digitalised at a sampling frequency of 103116.08 Hz. The two most relevant

accelerometers were installed near epicyclic module, where the fault was seeded. In the

rest of the Chapter, the vibration data acquired from the two channels will be referred to

as A5 and A6 data, named after the marker of the two accelerometers in the test

report [118]. The transmission schematic diagram is illustrated in Figure 5.1. The

number of teeth is shown for each gears.

Figure 5.1: Transmission schematic diagram of CH-46E aft gearbox

Table 5.1 details all relevant frequency components associated with the test rig. The

planetary bearing inner race defect frequency BPFI and outer race defect frequency BPFO

are calculated according to the bearings’ geometry structure and rotating speed, utilising

the Equation 2.14 and Equation 2.15 specified in Chapter 2. Similarly, the observed defect

frequencies could have slight deviations from the calculated values, due to the randomness

induced by the slip of bearing rolling elements.



5.3. CH-46E helicopter aft planetary bearing fault diagnosis 120

Table 5.1: Diagnostic information for CH-46E aft gearbox

MGB input shaft speed 324.6 Hz

MGB output shaft speed 4.4 Hz

Sampling frequency 103116.1 Hz

Data recording length 21.9 s

Tachometer shaft speed 114.4 Hz

Bearing outer race defect FORD 68.4 Hz

Bearing inner race defect frequency FIRD 101.7 Hz

Unfortunately, since this experiment was conducted decades ago, it was not possible to

track the seeded defect sizes and conditions. Introduced in Chapter 2 and summarised in

Chapter 4, frequency-based analysis techniques are essential for extracting

defect-induced repetitive signal patterns in frequency domain, therefore providing more

indications of defects that cannot be discovered in the time domain. Specifically for

bearing fault diagnosis, demodulating structural-related high frequency resonances

where bearing signals are amplified is effective in mitigating amplitude modulations,

speed fluctuations and the gear meshes [18]. To enhance such processing approach,

techniques can be applied to separate non-deterministic bearing signals from

deterministic gear signals [64, 72, 73]. To benefit from envelope demodulation, the

Kurtogram was developed to identify the frequency band that contains the most

impulsive signals associated with structural resonances [93–95]. In the event that

Kurtogram cannot given accurate indications, it is required to inspect the spectrum and

select the resonances along with the bandwidth, as shown in Chapter 4 results.

5.3 CH-46E helicopter aft planetary bearing fault diagnosis

The schematic diagram for signal processing is depicted in Figure 4.54, summarising

from Chapter 4. The strategy adopted to diagnose CH-46 helicopter planetary bearing

fault was firstly extracting faulty bearing related signals from the originally acquired

vibration data using SANC or DRS, followed by applying iterative envelope cancellation

technique. Cepstrum editing was employed as an optional step before SANC or DRS,
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Figure 5.2: Amplitude spectrum of raw vibration data
(a), (c): Amplitude spectrum of A5 data and zoomed spectrum of A5 data
(b), (d): Amplitude spectrum of A6 data and zoomed spectrum of A6 data

where there were requirements to suppress excessive frequency sidebands that cannot be

eliminated by separation techniques. This step has been utilised in diagnosing

14000 rpm, 180 kW condition for optimal results. Kurtogram combined with envelope

analysis were implemented for comparison with IEC. Basic inspection of the raw

vibration data spectrum was first conducted for raw A5 and A6 data, as shown in Figure

5.2.

From Figure 5.2, it is observed that very limited information can be found in bandwidth

higher than approximately 10 kHz. It is inferred that frequency contents higher than

10 kHz were pre-filtered during the acquisition process. From zoomed spectrum, no

existence of inner race or outer race defect frequency can be observed. Discrete frequency

spikes that are related to gear meshes and shaft rotations are dominant in Figure 5.2(c) and

5.2(d).

DRS and SANC were then applied to provide comparative separation results for iterative
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envelope cancellation. To determine the best delays for both techniques, a range of time

delays from 100 to 300 periods of 10 kHz were considered, according to the

recommendations from Randall and Antoni [45] . In Figure 5.3, the separation using

DRS for A5 data is demonstrated. The delay was selected to be 1400 data points, filter

length was chosen to allow 2000 times of averages to mitigate potential speed

fluctuations. It is clearly shown that large discrete frequency components in Figure

5.3(a) have been effectively eliminated in Figure 5.3(b).

Similar steps were taken to process A6 data, then the separated signals from A5 and A6

were processed with IEC. For A5 signal, to control the optimal output with least

interferences, a 5 kHz high-pass filter was applied to further reduce low frequency gear

meshes. A stop factor η was selected at 0.85. The output of iterative envelope

cancellation was squared envelope spectrum, which was zoomed into 0-300 Hz range for

defect frequency identification.

Figure 5.4 clearly demonstrates the existence of the 70.28 Hz outer race defect frequency

and the 101.02 Hz inner race defect frequency. The presence of 13.18 Hz, which is 3 times

the planetary carrier shaft speed (4.4 Hz), is associated with the planetary gear rotation

speed, i.e. 4.4×117/39 = 13.2 Hz, where 117 is the number of ring gear tooth and 39 is

the number of planet gear tooth. The frequency at 105.4 Hz was noted as a modulation

sideband that resulted from 4.4 Hz drive shaft frequency. To further suppress unwanted

frequency components, Cepstrum editing was attempted to A5 data. The real Cepstrum

of A5 data is shown in Figure 5.5.

In Figure 5.5, it is evident that the 0.23 quefrency which corresponds to 4.4 Hz is

dominant. In order to retain the characteristics of low quefrency contents and suppress

high quefrency contents, a short-pass lifter was applied for all quefrency components

below 1/114.2 Hz. The pass region is marked in Figure 5.5. This step was performed

according to the diagnosis for 14000 rpm, 180 kW condition.

Figure 5.6 shows the squared envelope spectrum after incorporating short-passed

Cepstrum editing. The inner race defect frequency of BPFI at 101.02 Hz is more distinct

compared with that shown in Figure 5.4, while the outer race defect frequency BPFO at
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(a) Amplitude spectrum of A5 data before DRS separation

(b) Amplitude spectrum of A5 data after DRS separation

Figure 5.3: Demonstration of DRS separation effect for A5 data, delay = 1400

70.28 Hz has been suppressed. However, the 65.9 Hz component which is a 4.4 Hz

sideband of BPFO can still be observed. The other interference sidebands have been

largely suppressed.

Comparatively, the results using Cepstrum editing, SANC and IEC are shown in Figure
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Figure 5.4: Squared envelope spectrum with DRS and iterative envelope cancellation, A5 data

Figure 5.5: Real Cepstrum of A5 data

5.7. In Figure5.7(a), it is demonstrated that, using SANC with IEC can reveal inner race

defect frequency at 101.2 Hz. However, only 4.4 Hz sideband of outer race defect

frequency can be observed at 74.67 Hz. In Figure 5.7(b), the result suggests that
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Figure 5.6: Squared envelope spectrum of A5 data, processed using Cepstrum editing, DRS and
IEC

combining Cepstrum editing and SANC can achieve suppression of 101.02 Hz BPFI

component, but revealing 70.27 Hz BPFO.

The signal processing for A6 data followed similar procedures. Cepstrum editing, DRS

separation and iterative envelope cancellation techniques were applied to A6 data. The

results are shown in Figure 5.8.

In Figure 5.8(a), the diagnosis result is conclusive. The 101.02 Hz BPFI was clearly

evident, as well as the ‘4.4 Hz drive shaft speed, while the BPFO is still masked.

Practically at this point, applying Cepstrum editing could be redundant since the

sidebands around BPFI are not dominant, but for the investigation of BPFO, Cepstrum

editing is performed in Figure 5.8(b). Result proves that Cepstrum editing may render

some losses for inner race defect bearing signal, whereas the 70.3 Hz BPFO is revealed.

Comparatively, squared envelope spectrum results produced using SANC as separation

technique is demonstrated in Figure 5.9. Applying SANC without Cepstrum for A6 data

can reveal the fault-related sideband 105.4 Hz, but no direct indication of fault frequency

can be observed for both BPFO and BPFI. Moreover, applying Cepstrum editing in Figure
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5.9(b) tends to severely eliminate residual bearing signal under this circumstance.

Kurtogram combined with envelope spectrum analysis were implemented as a comparison

to the optimal results demonstrated in Figure 5.4 and Figure 5.8. DRS filtered A5 and A6

data were adopted as inputs for Kurtogram.

Kurtogram indication for A5 data and corresponding squared envelope spectrum are

shown in Figure 5.10. It is indicated that the optimal bandpass centre frequency is

12889.5 Hz with a bandwidth of 25779.02 Hz. The demodulated squared envelope

spectrum in Figure 5.11 contains distinct indication of FIRD near 101 Hz and FORD near

70 Hz, however, the sidebands and harmonics are excessive compared with result shown

in Figure 5.4 using iterative envelope cancellation techniques. Similarly, processing

result using Kurtogram for A6 data is shown in Figure 5.12, where fault frequencies can

be identified, but the spectrum is also contaminated by excessive frequency sidebands

and harmonics.



5.3. CH-46E helicopter aft planetary bearing fault diagnosis 127

(a) Squared envelope spectrum of A5 data, processed using SANC and IEC

(b) Squared envelope spectrum of A5 data, processed using Cepstrum editing, SANC and IEC

Figure 5.7: Squared envelope spectrum of A5 data processed using SANC, IEC and Cepstrum
editing techniques
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(a) Squared envelope spectrum of A6 data, processed using DRS and IEC

(b) Squared envelope spectrum of A6 data, processed using Cepstrum editing, DRS and IEC

Figure 5.8: Squared envelope spectrum of A6 data processed using DRS, IEC and Cepstrum
editing techniques
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(a) Squared envelope spectrum of A6 data, processed using SANC and IEC

(b) Squared envelope spectrum of A6 data, processed using Cepstrum editing, SANC and IEC

Figure 5.9: Squared envelope spectrum of A6 data processed using SANC, IEC and Cepstrum
editing techniques
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Figure 5.10: Kurtogram of A5 data after DRS filteriing

Figure 5.11: Squared envelope spectrum based on the indication from Figure 5.10
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Figure 5.12: Squared envelope spectrum of DRS filtered A6 data
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5.4 Conclusion

In this Chapter, the CH-46E helicopter planetary bearing inner race defect and outer race

defect were successfully diagnosed for both A5 and A6 channel by implementing

frequency domain analysis techniques including DRS, SANC, Cepstrum editing, IEC

and Kurtogram combined with envelope analysis. Decisive indications of fault-related

frequency components can be directly observed in squared envelope spectrum shown in

Figure 5.4 and Figure 5.8. Processing techniques were evaluated in terms of their

efficacy and effectiveness. Regarding the CH-46E helicopter dataset, due to the high data

sampling frequency (103116.08 Hz) and large data size, SANC was less efficient,

attributed to its adaptive process. Meanwhile, the DRS technique has performed

considerably well in combination with the iterative envelope cancellation technique,

which is capable of suppressing residual gear mesh and frequency sidebands. Cepstrum

editing can be adopted as an additional technique to deal with frequency sidebands, but it

could also potentially hinder the extraction of the weak bearing signals, e.g. A6 data in

this case. Kurtogram has given reliable diagnosis results, comparing with the analysis in

Chapter 4, due to less complicated gearbox structure, and significantly higher sampling

rate.

The successful extraction of frequency domain diagnostic information has produced

intuitive indications for CH-46E helicopter planetary bearing defects. The frequency

domain analysis routine for helicopter planetary bearing fault diagnosis is thus

established and validated with the successful diagnosis shown in both Chapter 4 and this

Chapter.
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Chapter 6

Conclusions and Future Work

6.1 Summary of the Thesis

In summary, the study reported in this thesis established and evaluated the diagnosis of

helicopter incipient planetary bearing fault, using frequency domain signal processing

techniques. Experiments under various test conditions were undertaken on a SA330

helicopter MGB to facilitate the diagnosis study. The results have shown that it is

prominent and beneficial to incorporate frequency domain analysis routine to enhance

the helicopter condition monitoring system, HUMS.

In Chapter 1, the background of this study was described, summarising that while MGB

is critical to ascertain the helicopter’s airworthiness and flight safety, HUMS has not

always been accurate and sensitive to the planetary bearing faults. This is due to the

complex structure of the planetary speed reduction system, resulted in varying signal

transmission paths; and also the unique structure of planetary gears sharing race with

planetary bearings, hence overwhelming the bearing signals. In Chapter 2, literature

review was conducted to investigate in possible solutions to resolve these issues. Firstly

the fundamentals of vibration-based condition monitoring was presented, introducing

that the most prevailing vibration processing techniques are enabled with frequency

based analysis. The introduction of VHM employed in HUMS was then reviewed, where

the commonly used CIs were also discussed, summarising that most of the CIs are

designed for deterministic gear signals. Additionally, CIs’ performance are subject to the

severities and propagations of the fault, resulting in inaccuracy and insensitivities to

incipient bearing faults. Therefore, the frequency domain processing techniques that

specifically target and inspect the bearing fault related frequencies were reviewed.
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In Chapter 3, the experimental work was described. A deep understanding was developed

to the fundamentals of the planetary speed reduction system. The work principles for

such system and the analysis to determine the speed reduction ratios were explained,

which were essential for conducting the diagnosis work in Chapter 4. The setup of the

test rig, data acquisitions and test conditions were described in detail. The lowest test

speed conditions were selected to be 14000 rpm, based on the considerations of simulating

the relaxed helicopter operational condition, which was idle on the ground before take-

off. Another speed was selected to be 16000 rpm, with a slight safety margin applied to

the maximum rig speed 17842 rpm. The seeded bearing defects were created with the

incipient sizes recommended by EASA, making the diagnosis increasingly challenging

compared with previous study in [3]. It was also reported in Chapter 3, that an emergency

shutdown of the MGB test rig has occurred, lead by an imbalance or material issue at the

speed-increase gearbox connection assembly gears. After rectifying the issues, seeded

bearing fault tests were carried out and invaluable vibration data has been successfully

captured at various test conditions using this MGB test rig.

In Chapter 4, diagnosis of MGB planetary bearing outer race fault using frequency

domain signal analysis techniques was investigated. Processing results using data from

four conditions, namely 14000 rpm input speed with 100 kW / 180 kW load, and 16000

rpm input speed with 100 kW / 180 kW load, were presented. Detailed analysis has been

performed, the dominant frequency components were explained, showing a complex and

gear mesh dominant spectrum characteristics. The processing routine that comprised of

steps including gear/bearing separation, interference suppression, signal demodulation

and fault frequency extraction was performed and evaluated. In Chapter 5, a comparative

study was conducted on diagnosis of a CH-46E helicopter Aft gearbox with seeded

bearing outer and inner race defects. The diagnosis results further support the prominent

conclusion from Chapter 4. Summarising the analysis from Chapter 4 and Chapter 5, the

conclusions have been drawn:

1. The diagnosis routine was successful in identifying the seeded planetary bearing

outer race defect, in 14000 rpm 100/180 kW and 16000 rpm 100/180 kW

conditions. Observations can be made that higher speed and higher load conditions
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were easier to diagnose. No signal separation was needed for 16000 rpm, 180 kW

load whereas the other conditions did require this step to be performed.

2. In terms of the effectiveness of the applied processing techniques, the conclusions

are drawn as the following. For suppressing gear mesh frequencies, Cepstrum

analysis is not mandated, but does have enhanced the diagnosis under very low

speed condition, e.g. 14000 rpm,180 kW. The effect of Cepstrum analysis was also

evaluated in combination with DRS in the comparative study, where the CH-46E

Aft gearbox data was utilised. Due to its computational efficiency, DRS excels at

processing data collected under stable speed conditions with large data size, either

resulted from excessive sampling rate or long recording time. Whereas SANC, as

has prominently shown in Chapter 4, provides better separation results when the

data size was not an issue.

3. Kurtogram has shown situational applications, whose successes can be found when

the data contains significant diagnostic information, due to either severe defect

sizes, extreme speed/load conditions or simple machinery structures. Kurtogram

was not very successful when dealing with the experimental data collected in this

study, because of the incipient seeded defect sizes and low speed/load condition.

4. Similar to DRS, IEC offers quite the efficiency in computation, which is beneficial

for industrial application, but it suffers from the negative effects aforementioned.

Both Kurtogram and IEC can be effective when MGB was operated under heavy

load condition with severe fault sizes, showing descend application in addressing

epicyclic carrier modulation and gear mesh masking bearing signals as reported

in [120].

5. Envelope analysis is overall the key technique to extract the bearing-associated

information, and then perform the inspection in frequency spectrum. The squared

envelope has been proven to be effective with appropriate centre frequency and

bandwidth selected.

The successful diagnosis of the planetary bearing defects using frequency domain signal

processing techniques has produced intuitive indications for the fault existence and

types. The analysis provides immense benefits if appropriately incorporated into current

HUMS signal analysis procedure, enhancing its capabilities of detecting planetary
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bearings associated defect in early stages.

6.2 Contributions of This Study

The major contribution of this study are listed below.

1. Collecting invaluable experimental data. Not many studies have been published

using data collected from real helicopter MGB. Additionally, the MGB was

operated under slow speed, light load conditions with incipient defect sizes,

making the diagnosis increasingly challenging. The collected data has already

been supplied to other researchers to enable their studies [121].

2. Investigating, evaluating of the applicability of various frequency domain signal

analysis techniques as well as proposing using frequency sidebands induced by the

carrier of epicyclic module as novel indicators for planetary bearing faults. These

contribute to the knowledge of diagnosing incipient helicopter planetary bearing

faults in challenging conditions as mentioned above.

3. Establishing and validating the diagnosis routine, consisting of suppressing and

eliminating dominant gear mesh frequencies, determining optimal centre frequency

and associated bandwidth for demodulation, squared envelope spectrum analysis.

A further evaluation study on diagnosis of CH-46E helicopter geearbox supports

these conclusions.

6.3 Future Work

The recommendations for the continuation of this research in future are summarised as

follows:

1. With the diagnosis concluded to be successful, planetary bearing CIs can be

effectively developed and validated as the next step, providing more accurate and

sensitive indications to planetary bearing faults.

2. It is highly beneficial and desirable to develop an automatic analyser incorporating

the established processing routine, so that the diagnosing process can be both

efficient and industrial applicable.
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3. It has been reported in literature facilitated by this study that, it can be beneficial to

investigate on applying cyclostationary analysis to optimise the selection of centre

frequency and bandwidth for envelope analysis. Although successes have been

reported in [121] using helicopter data collected under severe fault conditions,

further validations are required using the experimental data collected under

incipient defect and light load conditions within this study.

4. In this study, the speed of the rig was maintained in a relatively stable condition. It

is desirable to conduct subsequent tests under varying speed conditions, and

investigate on the effectiveness of including signal processing techniques to

address diagnosis of planetary bearing fault under varying operational speed.



138

Appendix A

Accelerometers specification sheet

Figure A.1: Specification sheet of PCB 356A43
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Figure A.2: Specification sheet of PCB 352C03

Model Number

356A43 TRIAXIAL ICP® ACCELEROMETER Revision: E

ECN #: 48672

Performance ENGLISH SI
Sensitivity(± 10 %) 10 mV/g 1.02 mV/(m/s²)
Measurement Range ± 500 g pk ± 4905 m/s² pk
Frequency Range(+/-5 %) 0.7 to 7000 Hz 0.7 to 7000 Hz
Frequency Range(+/-10 %) 0.4 to 10,000 Hz 0.4 to 10,000 Hz
Resonant Frequency ≥ 30 kHz ≥ 30 kHz
Broadband Resolution(1 to 10,000 Hz) 0.0008 g rms .008 m/s² rms [1]
Non-Linearity ≤ 1 % ≤ 1 % [2]
Transverse Sensitivity ≤ 6 % ≤ 6 %
TEDS Compliant(Per IEEE 1451.4) Yes Yes
Environmental
Overload Limit(Shock) ± 5000 g pk ± 49,050 m/s² pk
Temperature Range(Operating) -65 to 250 °F -54 to 121 °C
Temperature Response See Graph See Graph [1]
Base Strain Sensitivity .001 g/µε .01 (m/s²)/µε [1]
Electrical
Excitation Voltage 20 to 30 VDC 20 to 30 VDC
Constant Current Excitation 2 to 20 mA 2 to 20 mA
Output Impedance ≤ 200 Ohm ≤ 200 Ohm
Output Bias Voltage 8 to 12 VDC 8 to 12 VDC
Discharge Time Constant 0.8 to 2.4 sec 0.8 to 2.4 sec
Settling Time(within 10% of bias) ≤ 5 sec ≤ 5 sec
Spectral Noise(1 Hz) 300 µg/√Hz 2943 (µm/sec2)/√Hz [1]
Spectral Noise(10 Hz) 50 µg/√Hz 491 (µm/sec2)/√Hz [1]
Spectral Noise(100 Hz) 35 µg/√Hz 343 (µm/sec2)/√Hz [1]
Spectral Noise(1 kHz) 8 µg/√Hz 79 (µm/sec2)/√Hz [1]
Physical
Sensing Element Ceramic Ceramic
Sensing Geometry Shear Shear
Housing Material Titanium Titanium
Sealing Hermetic Hermetic
Size (Height x Length x Width) 0.40 in x 0.75 in x 0.40 in 10.2 mm x 19.1 mm x 10.2 mm
Weight 0.15 oz 4.2 gm [1]
Electrical Connector 1/4-28 4-Pin 1/4-28 4-Pin
Electrical Connection Position Side Side
Mounting Adhesive Adhesive

[3]

All specifications are at room temperature unless otherwise specified.
In the interest of constant product improvement, we reserve the right to change specifications without notice.

ICP® is a registered trademark of PCB Group, Inc. 

OPTIONAL VERSIONS
Optional versions have identical specifications and accessories as listed for the standard model 

except where noted below. More than one option may be used.

HT - High temperature, extends normal operation temperatures
Sensitivity(+/-10 %) 10 mV/g 1.02 mV/(m/s²)
Frequency Range(+/-5 %) 1.6 to 7000 Hz 1.6 to 7000 Hz
Frequency Range(+/-10 %) 1.1 to 10,000 Hz 1.1 to 10,000 Hz
Temperature Range(Operating) -65 to 325 °F -54 to 163 °C
Output Bias Voltage 8 to 16 VDC 8 to 16 VDC
Discharge Time Constant .3 to .9 sec .3 to .9 sec

J - Ground Isolated
Electrical Isolation(Base) ≥ 108 Ohm ≥ 108 Ohm
Size - Height x Length x Width 0.47 in x .0.78 in x 0.47 in 11.8 mm x 19.8 mm x 11.8 mm

NOTES:
[1] Typical.
[2] Zero-based, least-squares, straight line method.
[3] See PCB Declaration of Conformance PS023 for details.

SUPPLIED ACCESSORIES: 
Model 080A109 Petro Wax (1)
Model 080A90 Quick Bonding Gel (1)
Model ACS-1T NIST traceable triaxial amplitude response, 10 Hz to upper 5% frequency. (1)

Entered: LK Engineer: RB Sales: ADS Approved: BAM Spec Number:

Date: 9/12/2018 Date: 9/12/2018 Date: 9/12/2018 Date: 9/12/2018 62798 

3425 Walden Avenue, Depew, NY 14043

Phone: 716-684-0001
Fax: 716-684-0987
E-Mail: info@pcb.com
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