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Abstract—Gait disorder diagnosis and rehabilitation is one
area where human perception and observation are highly inte-
grated. Predominantly, gait evaluation, comprises technological
devices for gait analysis such as, dedicated force sensors, cameras,
and wearable sensor based solutions, however they are limited by
insufficient gait parameter recognition, post processing, installa-
tion costs, mobility, and skin irritation issues. Thus, the proposed
study concentrates on the creation of a widely deployable, non-
contact and non-intrusive gait recognition method from impulse
radio ultra wideband (IR-UWB) sensing phenomenon, where
a standalone IR-UWB system can detect gait problems with
less human intervention. A 3D human motion model for gait
identification from IR-UWB has been proposed with embracing
spherical trigonometry and vector algebra to determine knee
angles. Subsequently, normal and abnormal walking subjects
were involved in this study. Abnormal gait subjects belong to
the spastic gait category only. The prototype has been tested in
both the anechoic and multipath environments. The outcomes
have been corroborated with a simultaneously deployed Kinect
Xbox sensor and supported by statistical graphical approach
Bland and Altman (B&A) analysis.

Index Terms—Gait, Impulse Radio Ultra Wideband (IR-UWB),
3D Gait Identification, Kinect Xbox Sensor, Bland and Altman
Plot.

I. INTRODUCTION

GAIT or human locomotion is a bipedal, sinusoidal,
forward propulsive movement of the human body where,

upper and lower limbs coordinate simultaneously. This is a
complex translatory motion including the brain, spinal cord,
peripheral nerves, muscles, bones and joints [1]. Physically,
each and every bone of the human skeleton participates in
the process but, empirically the bones of the pelvis and lower
limb are considered to realise this repetitive motion. There
has been a growing interest to better characterise gait or
detect abnormalities when people are unable to walk in a
normal way, particularly among practitioners, physiotherapists,
biomedical engineers, neurologists and rehabilitation societies.
Abnormalities occur because of injuries to the legs or feet,
arthritis, infections in the soft tissue of the legs, broken
bones in feet and legs, birth defects, infections in the inner
ear, cerebral palsy, stroke, tendonitis, neuropathy, conversion
disorder or other psychological disorders and shin splints [2].
These directly affect the flexion and extension, abduction and
adduction, internal and external rotation of legs, hip joint, knee
joint, ankle, toes, hindfoot, and forefoot [1]. Abnormal gait is
categorised as one of five types based on the symptoms or
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appearance of an individual’s walk; spastic gait, scissors gait,
steppage gait, waddling gait, and propulsive gait [2].

Traditionally, there are two ways employed to assess gait:
qualitative and quantitative. Patients (or, subjects) are re-
quested to walk to measure retrospective gait events and are
observed under clinical conditions by doctors or experts in
qualitative gait assessment, whereas, a number of techno-
logical devices are employed for objective measurement to
estimate gait parameters in a quantitative gait assessment. The
devices can be broadly classified into three categories; non-
wearable sensors (NWS), wearable sensors (WS), and hybrid
systems (HS) [3]. NWS systems include image processing,
employing fixed sensors placed on the ground surrounded
by cameras for data collection. Ugbolue et. al., proposed an
augmented video based portable system (AVPS) for clinical
gait analysis where the gait data are collected using a light
indicator and video cameras to extract the kinematic event
and tibia inclination angle [4]. Pfister et. al., captured 3D
gait characteristics in the sagittal plane through a Kinect
sensor. They analysed hip and knee angular displacement
during flexion and extension of muscles, and the work was
validated through the Vicon Nexus model [5]. Corazza et.
al., developed another form of NWS system, a markerless
motion capture (MMC) system where ten joint centers and
the body shape are learned through linear regression (LR) to
recognise gait kinematic and human body morphology [6].
Force platforms are also well known for gait assessment in
controlled laboratory and observation settings. Lim et. al.,
prototyped a force platform to measure step phases through
ground reaction forces (GRF) acquired from sensors employed
for inspecting lower limb exoskeleton [7]. Impulse radio ultra-
wide band (IR-UWB) pulsed Doppler radar is also in NWS
category utilised by researchers because of it’s high bandwidth
and precise performance in describing human motion [8], [9].
Koo et al. proposed UWB based system to differentiate human
gait from vital signs by analysing spectograms. This explored
range and time-frequency analysis associated with human
locomotion [10]. Seifert et al. implemented IR-UWB micro-
Doppler (µ-D) signature model to analyse gait using time-
frequency variation obtained from wavelet transform (WT).
Subsequently, coefficients are fed into a classification method
to recognise abnormal gait patterns for rehabilitation and
assisted living purposes [11]. Mokhtari et al. prototyped a
UWB model to identify gait signatures of different person’s
employing region of interest (ROI) approach. Further, back-
scattered energies are measured from the ROI and used as
features to categorise different persons using support vector
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machine (SVM), random forest (RF), logistic regression (LR),
k-nearest neighbour (kNN) and neural network (NN) models
[12]. Potluri et. al. measured the significant gait parameters
using wearable plantar pressure and inertial sensors to in-
vestigate differences between normal and abnormal walking
patterns identified by a long short-term memory (LSTM)
model to predict the risk of fall [13]. Similar research by
Gao et. al. employed inertial sensors to obtain abnormal gait
pattern step information, including hemiplegic, tiptoe, and
cross-threshold gait. The step features were employed in a
hybrid model of LSTM and convolutional neural network
(CNN) to classify abnormal gait [14]. Ren et al. modelled
a system to extract µ-D features from UWB radar for gait
stride identification employing short time state-space method
(STSSM) [15]. In addition, Orovic et al. proposed a human gait
classification method which relies on motion signatures from
arm and leg movements obtained through a continuous wave
(CW) radar signal [16]. Widely used WSs are force sensors
(FS), accelerometers, gyroscope, extensometers, goniometers,
electromyography, and active markers etc. placed at the hips,
feet, etc. to assess gait characteristic [17]. Bruening and Ridge
reviewed existing algorithms related to gait events, velocity,
and acceleration of foot/heel strike, toe off. The data are
collected through foot and sacrum markers initially to make
ground truth information and the simulation repeated to obtain
said gait parameters. The work claims that the existing study
carried out by Ghoussayni et. al. [18] to measure sagittal
velocity is reliable for clinical gait application while a single
algorithm is not sufficient to measure all gait events [19].
Greene et. al., developed an adaptive algorithm to measure
initial contact (IC) and terminal contact (TC) timing of the
foot via gyroscopes. Additionally, it calculates angular veloc-
ity, stride length, swing time, stance time, step times from
human gait. The study includes force measurement plates
and an optical motion capture system to compare obtained
results with the proposed algorithm [20]. Bugane et. al.,
prototyped an accelerometer based gait characterisation model
to measure single and double support interval from gait event.
Also, it determines spatial and temporal parameters such as,
stride length and duration, cadence, and speed. Popular gait
analysis methods, stereophotogrametry and dynamometry are
employed for validation [21]. Industry is working in parallel to
academic research towards the creation of robust and efficient
gait analysis tools. CONTEMPLAS produced a professional
motion analysis software TEMPLO for clinical gait analysis
[22]. This is a hybrid approach for gait measurement solution
that uses both NWS and WS systems for diagnosis. Tekscan
makes pressure mapping, force measurement, and tactile sen-
sors for clinical gait assessment [23]. They primarily focus
on force platforms, but use additional instruments such as,
video scan and electromyography (EMG) analysis to construct
a hybrid tools for gait characterisation.

The NWSs (such as, force platform, pressure plate, GRF
sensor, etc.) for gait analysis are parameter specific e.g., a force
platform only delivers step duration and step length which
are not sufficient to detect abnormal gait. The clinical setup
needs several devices to take decisions on gait patterns which
increases time, space, and cost complexity. Subsequently,

cameras such as, laser range scanners, infrared sensor camera,
time of flight (ToF) camera are also a type of NWSs for
gait characterisation but consume huge effort to differenti-
ate between foreground (patient or object) and background
(stationary backdrop) before any calculation of significant
biomechanical parameters. The WSs such as, active markers,
force sensors, magnetometers, etc. measure gait parameters
more precisely compared to NWSs as they measures biome-
chanical parameters of gait trajectory in 3D which describes
walk are better than the parameters obtained from NWS.
Although, the patients do feel uncomfortable when several
markers are placed on the body during examination. The
field needs alteration methods preferably NWS without camera
integration which would be adequate to measure human gait
in non-contact and non-invasive manner providing precise
decisions in gait characterisation. One potential technology is
UWB Doppler radar which had been employed in continuous
mode and operated in frequency modulation. But, the CW
UWB radar does not provide propagation delay information
for each pulse to measure frequency shift which restricts it
only to calculate rate of change of range. A handful of UWB
Doppler based gait identification works are accomplished
using impulse radio but focus on spectogram and µ-D which
can provide the frequency of lower movement and walking
speed respectively. However, the prospects of IR-UWB has not
been fully explored which could provide 3D gait quantification
and have advantages such as, mobility, ease of installation,
remote access, cost efficiency over typical NWS and WS.

A. Contribution

This study develops an IR-UWB pulsed Doppler radar based
prototype for quantitative human gait analysis demonstrating a
non-contact and non-intrusive 3D human motion model. The
initial model previously proposed by the authors in [24] is
now augmented and improved to determine further significant
gait parameters. The contributions this work are: (i) The radar
pulse energy flow has been transformed into a wave vector
using spherical trigonometry and vector algebra to capture
the back scattered pulses from human motion in 3D. Here,
anatomical planes such as, frontal, sagittal, and transverse
plane are elucidated by motion width, range, and height of
movement respectively to represent the unit vectors. (ii) The
study has created a mathematical model to express the right
and left knee angles as cosine angles that can be computed by
the product of the Euclidean magnitudes of the two vectors
formed, through motion width, range, and height. (iii) The
real data collection process has been extended involving a
greater number of human participants (twenty four hitherto)
following ethical approval guidance. The developed prototype
has been tested in both an anechoic chamber and multi-path
environment employing real data for normal and abnormal
walking to distinguish walking patterns. (iv) Simultaneously,
the Kinect Xbox One sensor has been chosen to corroborate
the obtained results from the proposed IR-UWB prototype,
where the Kinect’s skeleton joints have been symbolised as
vectors and projected as one vector onto another to derive the
right and left knee angles. (v) The Blant and Altman (B&A)
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plot has been considered to compare the two fold experimental
results obtained from both IR-UWB and Kinect to establish an
agreement between them. The proposed IR-UWB is found to
be superior or equivalent to Kinect in both the environments
from this research study.

The remaining sections of the article are organised as
follows; a description of the laboratory set-up, UWB data
acquisition, proposed methodology, Kinect sensor and data
interpretation procedure, B&A analysis is discussed in Section
II, experimental results have been demonstrated in Section III.
Section IV concludes the paper and provides future research
directions.

II. METHODS

The knee angle has a compelling effect on gait and is the
angle between the straight line joining the lateral malleolus
fibula head and a straight line joining the lateral femoral
epicondyle great trochanter. The knee angle is a pivotal param-
eter for gait biomechanics and it shows significant variation
during abnormal walking. The participants involved in this
study have the common problem of spasticity for the muscles
around the knee during leg swing, but also display a lower
level of spasticity around the ankle and hip joints. Thus, the
proposed prototype described here focuses on the knee angle
(right and left) calculation of human gait during flexion and
the extension of the leg muscles. A flow chart of this work
is provided in Figure 1. The work is divided into seven parts;
laboratory setup, participant recruitment and their subjective
data collection, data processing, proposed spherical trigono-
metric approach and its vectorisation for determining knee
angles, Kinect Xbox sensor calibration and its vectorisation for
determining knee angles, and the result comparison through a
B&A plot to justify the potentiality of the proposed work.
Each of these aforementioned tasks have been detailed in the
following sections.

A. Laboratory Set-up

A Time Domain PulsON P410 monostatic radar module
(P410 MRM) have been used to collect all the physiological
UWB sensing phenomenon reported here and published in
[24], [25], [26], [27], [28], are shown in Figure 2a. The device
is a monostatic pulsed Doppler radio transceiver which utilises
TW-TOF omni-directional range measurement techniques as a
hybrid ranging radio and a radar sensor device for nonintrusive
human gait measurement. The device has been configured
before data collection and the same configuration has been
maintained for both of the chosen (tested) environments. The
PulsON P410 module generates Gaussian pulses and transmits
first order derivative of the Gaussian pulse providing high
power efficiency by delivering extremely low power spec-
tral density (PSD) to mitigate the influence of surrounding
multipath environments. In addition, the nanosecond duration
Gaussian pulses have low duty cycle resulting in a high pulse
repetition rate (PRR) of 10 MHz enabling improved detection
of human movement of transmitting the radio frequency (RF)
range of a lower frequency limit 3.1 GHz to an upper fre-
quency limit 5.3 GHz, with the centre frequency at 4.3 GHz,
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Fig. 1: The flow of processing UWB data and extracting gait
information.

and a bandwidth of 2.2 GHz (where the fractional bandwidth
of P410 device is 51.16%) addresses to FCC restrictions [29]
for power. Transmission power to the antenna port is specified
as -12.64 dBm for safe RF transmission [29]. The scan time
window for this experiment is 87.84 nanoseconds (ns) long,
but the first 5 ns of the radar signal is neglected in order to
negate noise and direct path interference between transmitter
and receiver antenna, thus the signal during the first 5 ns is
filtered from subsequent analysis. The scan interval is set to
25000 µs. The received reflected pulsed signals are sampled
in 61 picosecond steps, which results in a sampling frequency
fs = 16.39 GHz, with a Pulse Repetition Interval (PRI) of
approximately 100 ns.

B. Data Acquisition

Twenty four human participants were involved in this data
collection process. Initially, gender and anatomical information
(height, length of the limbs) have been recorded for each
individual, as shown in Figure 2d. The recorded information
from all twenty four subjects is tabulated in Table I, where
length of leg, length of thigh, and length of shank have
been denoted by LoL, LoT, and LoS respectively. Full ethical
approval (Reference Number: Eng 01Dec2017) was gained
from London South Bank University, where the research
code of practice and ethical guidelines are governed by the
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university ethics panel (UEP). All procedures performed in
this study were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. Both anechoic chamber and
multi-path/normal (laboratory) environments have been used
for the data collection. These two environments are shown in
Figure 2b and 2c.

TABLE I: Subjective data of twenty four individuals.

No Gender Height (m) LoL (m) LoT (m) LoS (m)
1 Female 1.58 0.85 0.43 0.42
2 Female 1.54 0.83 0.42 0.41
3 Female 1.64 0.88 0.45 0.43
4 Female 1.73 0.93 0.47 0.46
5 Female 1.62 0.87 0.44 0.43
6 Female 1.71 0.91 0.46 0.45
7 Female 1.69 0.91 0.46 0.44
8 Male 1.67 0.88 0.45 0.43
9 Male 1.76 0.91 0.46 0.45
10 Male 1.71 0.88 0.45 0.43
11 Male 1.72 0.88 0.45 0.43
12 Male 1.64 0.84 0.42 0.42
13 Male 1.78 0.92 0.47 0.45
14 Male 1.79 0.92 0.46 0.46
15 Male 1.78 0.92 0.47 0.45
16 Male 1.78 1.00 0.52 0.48
17 Male 1.75 1.02 0.52 0.50
18 Male 1.72 1.00 0.51 0.49
19 Female 1.55 0.95 0.50 0.45
20 Female 1.53 0.94 0.50 0.44
21 Male 1.76 1.03 0.54 0.49
22 Male 1.78 1.01 0.53 0.48
23 Female 1.65 0.97 0.50 0.47
24 Female 1.58 0.95 0.49 0.46

C. Azimuth and Elevation Angles

To assist in the differentiation of separate body areas,
azimuth and elevation angles are considered. This is fur-
ther explained in the Experimental section. Figure 3a shows
the elevation and azimuth angle at a particular time, where
∆OAB, ∆OAB′, ∆OCB, and ∆OCB′ are drawn from
the received pulsed radar signal. Here, O is considered as
the radar receiver, which is fixed at a point of height OP
from the ground. Therefore, BC and CB′ represent the height
of a moving object from the radar line of sight (LOS) OA.
The moving body section is elevated from the radar LOS
at an angle θ and below the LOS at an angle θ′. Here,
∆OAB ∼= ∆OAB′ and ∆OCB ∼= ∆OCB′, therefore the
height BC and CB′ can be determined from the trigonometric
relationships. Only the calculation of BC from ∆OAB is
explained. Let, the angle between BC and OB be α. The
travelled distances are OA, OB, and OB′ in propagation
delays t1, t2 and t′2 by the pulses, where t1 > t2, t1 > t′2 and
OA > OB, OA > OB′. Therefore, the change of distance
is (OA − OB) = ∆d, the change of time is (t1 − t2) = ∆t,
and speed of light or pulse is c. Therefore, pulse can travel
the distance in ∆t is BC = ∆t × c. From the trigonometric

ratio in right triangle ∆OCB,

cosα =
BC

OB
⇒ BC = OB × cosα

⇒ α = cos−1
[

∆t× c
OB

] (1)

Therefore, if the height of a moving object at a particular
time is h then,

h = OB × cosα (2)

This calculation has the same outcome when t1 < t2, t1 <
t′2 and OA < OB, OA < OB′.

Figure 3a displays the calculation for the azimuth angle to
determine the position or orientation of moving limbs toward
the radar. The spherical system measures the azimuth angle
in a counter clockwise direction from the exact north of the
receiver end denoted by φ. Let, the moving limb be deviated
at an angle φ, where the travelled distances are XY and XW
in propagation delay t1, t2. Thus, the change of distance is
(XY −XW ) = Y Z at the time interval (t1 − t2) = ∆t. The
object is deviated from the exact north of the receiver. Now,
Y Z is approximately equivalent to the arc YW created by the
object at angle φ. Therefore, φ is calculated from the radian
measure, and equivalent degree conversion is,

φ =
Y Z × 360◦

XY × 2× π
(3)

Therefore, the position or the coordinate of a pulse hitting
a human body would be found by considering range, eleva-
tion, and azimuth calculations. Let, a pulse which has back-
scattered from human body have its arc, range, height are a,
r, h respectively. Once, the position of back-scattered pulses
from a human body has been identified, the points have been
considered as vector (e.g., aî + rĵ + hk̂ where, î, ĵ, and k̂
are unit vectors of three planes) in a 3D space to determine
the gait parameters. The subscripts of a, r, and h have been
used throughout the article to denote arc, range, and height of
a back-scattered pulse. The properties of vector algebra has
been applied to measure the step length, hip angle, and knee
joint angles for each participant using the a priori knowledge
of human body sections and detailed in the following sections.

D. Knee Angle Calculation from IR-UWB Model

The human knee joint has two sections, thigh and shank.
Thus, human gait creates an angle between these two muscles
during the walking process. The angle increases during muscle
extension (i.e., the straightening of the legs) and decreases
during muscle flexion (i.e., articulation of legs). The change
of knee joint angle is significant to characterize human gait.
Figure 3b shows a human walking posture where, two points−→
LT ,

−→
LS ∈ R3 Euclidean space at time t have been assumed

on thigh and shank of left leg respectively. The dot product
of these two points provides the acute angle γL between
them whereas, the measurement of the obtuse angle (βL) is
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(a) UWB P410 radar module. (b) Anechoic chamber. (c) Normal environment.

Length of thigh


Length of shank


Length of leg


Height


(d) Measurement of body parts.

Fig. 2: UWB device and the environments during data collection.
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(b) Vectorization

Fig. 3: Three dimensional sphere consideration and vectorisa-
tion of back-scattered UWB pulse.

anatomically more significant. The detailed calculations of γ
and β have been included in Eq. 4 and Eq. 5.

−→
LT .
−→
LS = |

−→
LT ||
−→
LS | cos γ

⇒ cos γL =

−→
LT .
−→
LS

|
−→
LT ||
−→
LS |

⇒ cos γL =
(a1î+ r1ĵ + h1k̂).(a2î+ r2ĵ + h2k̂)

|a1î+ r1ĵ + h1k̂||a2î+ r2ĵ + h2k̂|

⇒ cos γL =
(a1a2 + r1r2 + h1h2)√

a21 + r21 + h21
√
a22 + r22 + h22

⇒ γL = cos−1
(

(a1a2 + r1r2 + h1h2)√
a21 + r21 + h21

√
a22 + r22 + h22

)
(4)

Therefore, the obtuse knee angle (βL) for the left leg,

βL = 180◦ − γL (5)

Similarly, the acute knee angle γR between
−→
RT and

−→
RS for

right leg has been determined in Eq. 6.

γR = cos−1
(

(a3a4 + r3r4 + h3h4)√
a23 + r23 + h23

√
a24 + r24 + h24

)
(6)

Therefore, the obtuse knee angle for right leg has been
included in Eq. 7,

βR = 180◦ − γR (7)

E. Calibration of Kinect Xbox One

The results obtained from the proposed model have been
corroborated by measuring the knee angles with the Microsoft
Kinect Xbox One. It includes a 3D image and voice sensor
and employs time-of-flight (TOF) technology to deliver high
resolution, low latency, light independent 3D image sensing.
The Kinect sensor tracks 3D human skeleton using colour
and depth sensors [30]. It has the potential as a low cost,
accurate gait motion analysis tool which has good correlation
with VICON Nexus motion capture system for hip, knee, and
stride timing measurements. Furthermore, the study shows
error is low and correlation high for stride and knee angle
measurement compared to hip angular measurements carried
out by Kinect and VICON sensor [31]. The proposed work
aims to characterize human gait in a non-intrusive manner, so
the device has been calibrated to obtain colour and skeleton
only from the video. Frames per second (FPS) has been fixed
at 30 for colour and depth sensor for video acquisition. The
camera has a field view of 70◦ horizontal and 60◦ vertical.
The camera sensor operates at range from 0.8 to 4.2 meters in
one room only (unlike the model developed which has through
wall capability) from the device. It tracks the skeleton from
a moving body posture (as shown in Figure 4) and provides
3D joint coordinates. The Kinect sensor delivers 20 skeletal
data (3D joint coordinates) at standing condition from the body
posture. This skeletonization process is similar to the proposed
prototype permitting the validation of the work via the Kinect
sensor. Figure 4b shows the 20 joints (white markers) from
a human body where, the validation process has used only 6
joints from lower limb of a human body such as, the hip left
(
−−→
HL), knee left (

−−→
KL), ankle left (

−→
AL), hip right (

−−→
HR), knee

right (
−−→
KR), and ankle right (

−→
AR). Then the vector algebra

has been employed on these joints to validate the proposed
outcomes such as, step size, number of steps, speed, hip angle,
and knee angles (for both left and right leg). Let, the vectors−−→
HL,

−−→
KL,

−→
AL,

−−→
HR,

−−→
KR,

−→
AR ∈ Rn in Euclidean n-space.

The component form of these vectors have been denoted as,−−→
HL = a5î + r5ĵ + h5k̂,

−−→
KL = a6î + r6ĵ + h6k̂,

−→
AL =

a7î+r7ĵ+h7k̂,
−−→
HR = a8î+r8ĵ+h8k̂,

−−→
KR = a9î+r9ĵ+h9k̂,

and
−→
AR = a10î+ r10ĵ + h10k̂ where, subscripts with a, r, h

represents the distance from î, ĵ, k̂ planes respectively. These
vectors have been further used to determine parameters for
gait characterization in the following sections.
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(a) Frame from color sensor. (b) Frame from depth sensor.

Fig. 4: Sample video frame of human gait tracked through
Kinect color and depth sensor.

F. Knee Angle Calculation from Kinect

The knee angles (left and right) have been measured in a
similar way to the hip joint calculation using the vector dot
products. The knee and ankle joints (shown in Figure 4b) from
skeletal data of both legs have been used to calculate knee
angles of human gait. In the case of the left leg, the connecting
line between vectors

−−→
HL and

−−→
KL would be spanned through

the vector
−−→
LT k = a56î + r56ĵ + h56k̂ where a56 = (a5 −

a6), r56 = (r5 − r6), h56 = (h5 − h6) and the straight line
between points

−−→
KL and

−→
AL would span through the vector−−→

LSk = a67î + r67ĵ + h67k̂ where a67 = (a6 − a7), r67 =

(r6− r7), h67 = (h6−h7). The dot product of
−−→
LT k and

−−→
LSk

provides the acute angle between these two whereas, inner
knee angle would be the obtuse angle between them. The acute
angle has been denoted by γ ′L and detailed in Eq. 8.

−−→
LT k.

−−→
LSk = |

−−→
LT k||

−−→
LSk| cos γ ′

⇒ cos γ ′L =

−−→
LT k.

−−→
LSk

|
−−→
LT k||

−−→
LSk|

⇒ cos γ ′L =
(a56î+ r56ĵ + h56k̂).(a67î+ r67ĵ + h67k̂)

|a56î+ r56ĵ + h56k̂||a67î+ r67ĵ + h67k̂|

⇒ cos γ ′L =
a56a67 + r56r67 + h56h67√

a256 + r256 + h256
√
a267 + r267 + h267

⇒ γ ′L = cos−1
(

a56a67 + r56r67 + h56h67√
a256 + r256 + h256

√
a267 + r267 + h267

)
(8)

Therefore, the inner knee angle or obtuse knee angle for the
left leg,

β′L = 180◦ − γ ′L (9)

Similarly, the acute knee angle γR′ between
−−→
RT k and

−−→
RSk

for right leg has been determined in Eq. 10.

⇒ γR
′ = cos−1

(
a89a910 + r89r910 + h89h910√

a289 + r289 + h289
√
a2910 + r2910 + h2910

)
(10)

Therefore, the obtuse angle or inner knee angle for right leg
would be,

β′R = 180◦ − γR′ (11)

G. Bland and Altman (B&A) Plot Analysis

The proposed IR-UWB prototype and Kinect have been
used here to measure the same gait parameter i.e., knee
angle with differences found. Subsequently, the outcomes have
been compared using B&A plot analysis [32], [33] based
on the quantification of the agreement between two quan-
titative measurements by studying the mean difference and
constructing limits of agreement to assess the comparability
between the methods. The statistical limits are calculated using
the mean, standard deviation of the differences between the
two measurements, and a hypothetical graphical approach to
indicate the agreement. The knee angle of participants has
been measured through both the proposed and Kinect systems.
Let, the measured knee angles from the proposed and Kinect
system be kp and kk respectively, mean of knee angle is
mk, differences between paired knee angle is dk, standard
deviation of the differences obtained for knee angle is sk. The
graphical approach is employed to observe the assumptions
of normality of differences and other characteristics where,
the x-axis represents the average of measurements and y-axis
shows the difference between the two measurements. The two
systems would agree when most of the consequences lie within
dk±1.96sk for the measurement of knee angle. More precisely,
95% of differences must lie within dk±1.96sk for measuring
the knee angle according to Bland Altman analysis. Thus, the
null hypothesis states here there is no significant difference
between populations (measurements) when using the proposed
gait identification model and Kinect for determining knee
angles of participants where probability value p < 0.05
indicates acceptance of null hypothesis and correctness of
assumption.

III. RESULT ANALYSIS

As explained the experiment has been conducted in two
environments: anechoic and multipath to investigate robust-
ness, cost effectiveness, and suitability. In addition to this, the
preciseness and acceptance of the work for gait characterisa-
tion has been supported through B&A plot analysis in each
environment. The results and B&A plot analysis are presented
in the following sections.

A. Result Analysis from Anechoic Chamber

The comparative analysis of the obtained results from the
proposed prototype and Kinect sensor are demonstrated in this
section. The processing of IR-UWB data and interpretation has
been discussed in Section II-C, which explains the positions of
back-scattered pulses from a human body and defines motion
through the IR-UWB. Figure 5 shows one of the twenty normal
walking patterns through the IR-UWB response in 3D over an
observation period, where Figure 5a and 5b lay out front and
side views of walking motion captured through the proposed
model.

The x, y, and z axis signify gait motion width, distance
from radar, and height of movement respectively. The motion
appears like the letter ‘W’, showing the symmetry of the
human body with three areas labeled P1, P2, and P3. Here,
the area P1 reflects the hip joint of that person, P1 to P2 and
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(a) 2D view of IR-UWB 3D
response from a normal walk.

(b) Side view of IR-UWB 3D
response from a normal walk.

Fig. 5: The front and side views of IR-UWB 3D response from
a normal walk.

P1 to P3 denotes the change of position of human body due
to gait motion when one leg is lifted off of the ground and
another leg is contacted the ground to push forward the body
during walking. The person walked back and forth in front of
the radar (within the 3 m testbed) during the observation times
creating the distinct areas (P1, P2, and P3) in 3D. Also, the
distance between the bottom of P2 and P3 areas represent the
step base width i.e., the perpendicular distance between two
steps during gait. In addition, two areas detected above leg
height are the hand movements (both right and left). Figure 6a
displays the front view of a walking pattern captured through
the IR-UWB response and 6b demonstrates the skeletonization
of that gait pattern acquired using the Kinect in the anechoic
chamber.

(a) 2D view of 3D human mo-
tion from IR-UWB.

(b) 3D human skeleton
from Kinect.

(c) Variation of knee angles
determined from proposed
model in anechoic chamber.

(d) Variation of knee angles de-
termined from skeleton in ane-
choic chamber.

Fig. 6: The human motion and knee angles obtained from
the proposed model and Kinect for a person having normal
walking pattern.

Figure 6a shows a 3D structure resembling the letter ‘W’
which includes the flexion and extension of the skeletal
muscle’s (i.e., arm and legs) motion over time. The skeletal
muscles move faster than the other body sections implying the
transmission of higher energy by the bio-mechanical process

that allows UWB radar to capture motion. The extension of
lower limbs (left and right) creates a separate motion area,
whereas the flexion (right and leg) of the lower limb and upper
limbs creates a linear region from the shoulders that explains
human motion. The person depicted in 6a and 6b has an actual
height of 1.55 m whereas the estimated height of the shape is
1.35 m. This is because the model has captured all movements
by UWB upto the shoulder height from the ground level. The
leg length of that participant is 0.95 m and knee height is
0.45 m from the ground level have been used to separate each
lower limb sections to determine the left and right knee angles.
Figure 6c and 6d demonstrates the estimation of knee angles
from the proposed study and Kinect respectively using the
method of Eq. 4, 6 and Eq. 8, 10. The x-axis denotes the
single gait cycle (in percentage) of a person by considering
two consecutive steps and the process has been repeated for
30 seconds then plotted in y-axis and z-axis representing
the knee angles during the observation time. The outcomes
have been detailed here for 30 seconds for each participant.
This participant has walked at a speed of 1.33 m/s (obtained
from Doppler effect) and the knee angles obtained from the
proposed prototype vary between approximately 120◦ to 178◦

whereas, the angles obtained from Kinect results vary between
approximately 122◦ to 175◦. The troughs here represent the
angles during flexion and crest signifies the angles at the time
of leg extension.

(a) 2D view of IR-UWB 3D re-
sponse from a abnormal walk.

(b) The side view of IR-UWB
3D response from a abnormal
walk.

Fig. 7: The front and side views of IR-UWB 3D response from
an abnormal walk.

Figure 7 shows one of the abnormal walking patterns
through the IR-UWB response in 3D over the same observa-
tion period, where Figure 7a and 7b lay out the front and side
views of the walking motion captured through the proposed
model. The x, y, and z axis signify gait motion width, distance
from the radar, and height of movement respectively. The
motion again appears like the letter ‘W’, shows symmetry of
the human body and again there are three areas are labeled
with P1, P2, and P3. But, Figure 7 has differences from
Figure 5. Here the abnormality creates two extra regions for
the abnormal leg movement (spasticity). Similarly, the area
P1 reflects the hip joint of that person, P1 to P2 and P1

to P3 denotes the change of position of human body due
to gait motion when one leg is lifted off of the ground and
another leg is contacted to the ground to push the body forward
during walking. As before the person walked back and forth
in front of radar (within 3 m of testbed) during observation
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time that creates separate areas (P1, P2, and P3) in 3D for
change of position. Overall the person’s movement is effected
by their condition in particular one leg is affected by their
spasticity, hence the both legs create two separate areas in
P2 and P3. This shows the person needs to stretch and drag
one leg more than a regular walker and this motion reflected
in the proposed IR-UWB model outcomes. Also, the distance
between the bottom of P2 and P3 areas represents step base
width which is also different from normal walk. In addition,
two areas detected above leg height are the hand movements
(both right and left legs).

Figure 8 displays the gait details of that person through
IR-UWB and Kinect. Figure 8b displays the motion of the
said participant and stiffness of the left leg muscle forces the
person to stretch the leg more during walking. Figure 8a shows
that the leg deviates more from the centre of the body during
walking, resulting in the unusual knee angle variation between
135◦ to 163◦ determined from the proposed prototype. The
knee angles obtained from Kinect are changes between 139◦

to 171◦ approximately.

(a) 2D view of 3D human mo-
tion captured by IR-UWB from
spastic gait.

(b) 3D human skeleton
captured by Kinect from
spastic gait.

(c) Changes of knee angles
determined from proposed
model for spastic gait.

(d) Changes of knee an-
gles determined from Kinect
skeleton for spastic gait.

Fig. 8: Human motion and knee angles obtained from proposed
model and Kinect respectively for a person with spasticity.

B. B&A Plot: Results Obtained in Anechoic Chamber

The results obtained from the proposed model and Kinect
system have been corroborated through a B&A plot analysis.
Theoretical details of B&A plot has been demonstrated in
II-G to support the measurement of knee angle utilising
the proposed model. Figure 9 shows B&A plots have been
constructed on knee angle measurements from the proposed
prototype and Kinect sensor, where Figure 9a demonstrates
B&A plots of knee angle measurements taken from twenty
normal gait persons using the proposed prototype and Kinect
respectively and Figure 9b demonstrates B&A plots of knee

angle measurements taken for four abnormal gait persons
from the proposed prototype and Kinect system. The x and
y axis represents the mean of the two measurements and
difference between two paired measurements respectively.
Both, the developed model and Kinect methods imply some
degree of error but B&A plot indicates relationship and
agreement between these two methods for gait analysis. Figure
9a shows the bias or mean of difference is -0.847, signifying
the second method here Kinect always produces 0.847◦ units
more than the proposed model and 95% differences are within
dk ± 1.96sk while measuring knee angles. In addition, Figure
9b displays the bias at -2.242 when measuring abnormal gait
patterns, indicating Kinect always delivers 2.242◦ units more
than the designed prototype for the measurement of knee
angles and 95% differences are within dk ± 1.96sk in this
context. Thus, both cases suggest the null hypothesis (there
is no significant difference between the proposed prototype
and Kinect system’s magnitude while measuring knee angles)
is true and the developed model would be an alternative gait
analysis method for consideration.

(a) B&A plot of knee angles
from normal gaits.

(b) B&A plot of knee angles
from abnormal gaits.

Fig. 9: B&A plot of obtained knee angles experimented in
anechoic chamber.

C. Result Analysis from Multipath Environment

Figures 10a and 10b illustrate the 3D motion captured
from a person’s gait by the proposed prototype and Kinect
respectively in the multipath environment (laboratory and
corridoor environment). Figures 10c and 10d demonstrate the
obtained knee angles from the proposed and Kinect systems
respectively. The x-axis of Figures 10c and 10d indicate the
fractions of gait cycles covered by the knee angles during
the observation time where, each gait cycle contains two
consecutive steps (stance ≈ 60% and swing ≈ 40% phase)
with respect to the reference leg (left leg in this case) involved
in the walking. The knee angle increases nearly at the time
while the reference leg is in the swing phase and decreasing
in the stance phase, is shown in Figures 10c and 10d. The
variation of knee angles has been captured in the same way
from the proposed IR-UWB and Kinect system (in Figure 10c
and 10d). The knee angle varies between 115◦ to 163◦ and
between 122◦ to 163◦ while using proposed prototype and
Kinect system respectively.

D. B&A Plot: Results Obtained in Multipath Environment

Here, the measurements taken in the multipath environment
(laboratory environment) has been supported through B&A
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(a) 2D view of 3D human mo-
tion obtained from IR-UWB in
multipath environment.

(b) 3D human skeleton
obtained from Kinect in
multipath environment.

(c) Variation of knee angles
determined from proposed
model in anechoic chamber.

(d) Variation of knee an-
gles determined from Kinect
skeleton in anechoic cham-
ber.

Fig. 10: The human motion and knee angles obtained from
proposed model and Kinect respectively for a person having
normal walking pattern in multipath environment.

plot analysis same as for anechoic chamber experiment. Figure
11 shows the B&A plots constructed on knee angle measure-
ments from the developed prototype and Kinect sensor, where
Figure 11a demonstrates B&A plots of knee angle measure-
ments taken for twenty ‘normal’ gait persons from the de-
signed framework and Kinect with Figure 11b demonstrating
the B&A plots of the knee angle measurements taken for four
abnormal gait persons via the developed system and Kinect
in the normal or multipath environment. The x and y axis
represent the mean of two knee angle measurements and the
differences between their paired measurements respectively.
Figure 11a shows the bias or mean of difference is -0.902
which signifies that Kinect always produces 0.902◦ units more
than the proposed work to determine knee angles of normal
gait persons where p value is 1.0406× 10−6 (i.e., p < 0.05).
In addition, Figure 11b displays the bias at -2.514 when mea-
suring knee angles of abnormal gait persons indicating Kinect
always delivers 2.514◦ degree units more than the constructed
framework for the measurement of the knee angles, where p
is 0.0017 (i.e., p < 0.05). Thus, the null hypothesis have been
found to be true in both cases (normal and abnormal gaits) in
normal environment, 95% differences are within dk ± 1.96sk
and there is no significant difference between the proposed
framework and Kinect system’s magnitude while measuring
knee angles in normal environment. This shows the system
has potential suitability for NWS gait analysis.

IV. DISCUSSION & CONCLUSION

In this work, for the first time a proposed 3D model of
human motion has been generated from non-contact, camera
free, IR-UWB sensing by employing trigonometry and vector

(a) B&A plot of knee angles
from normal gaits.

(b) B&A plot of knee angles
from abnormal gaits.

Fig. 11: B&A plot of obtained knee angles experimented in
normal environment.

algebra where, subjective knowledge enabled the study to
further characterize human gait. The scope of the current work
considered identification of the knee angles only. The imple-
mentation execution time is proportional to the square of the
scan number (or, number of received pulses). Thus, the study
requires quadratic time in real scenario which costs O(n2)
running time. Subsequently, a greater number of participants,
including those with conditions such as, propulsive, waddling,
steppage, etc. will be considered for future experiments. The
Kinect sensor has been employed as a reference system
used to evaluate the performance of proposed model. The
experiment has been conducted in both an anechoic chamber
and ‘normal’ environment where the proposed prototype and
Kinect sensor have an accuracy of approximately 9 mm and
18 mm [34] respectively. Furthermore, Kinect suffers from
the self-occlusion problem where the one half of the body is
occluded by the other each time the participant turns around
at the end of test bed. This problem only occurs at the 0◦

azimuth beam angle in IR-UWB model, whereas Kinect results
are biased in 0◦, 30◦, 60◦ affecting the Kinect sensor. It has
been also reported that the Kinect shows an error greater
than 5◦ in clinical settings for knee angle measurements [31].
Though, here it has been found that the Kinect delivers 0.047◦

(normal walks) and 2.242◦ (abnormal walks) more in the
anechoic environment, whereas 0.902◦ (normal walks) and
2.514◦ (abnormal walks) more in the real environment for the
knee angle computation than proposed work, explored through
B&A analysis. The difference between the results obtained
from the two devices occurs because of the self-occlusion
problem and the number of joints detected. The Kinect is
more biased in terms of self-occlusion. Also, Kinect only
consider points over joints whether the problems may belong
to somewhere between the joints, Kinect fails to represent this,
whereas the proposed IR-UWB creates a rendered geometric
pattern and detects more points all over the body which is
capable of detecting abnormalities more precisely. Hence, the
obtained experimental result demonstrate the new system’s
obvious potential, producing equivalent or better results than
Kinect sensor. The proposed model is a cutting edge solution
to address gait disability and monitoring by non-contact IR-
UWB technology as a plug and play option e.g., field zones,
local home systems or care homes. Further, this study will
now be extended by employing supervised machine learning
techniques to automatically recognise changes and identify
human walking disorders, which involves dedicated sports lab-
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oratory conditions to perform gold standard test comparisons
and realise supervised machine learning (SML) algorithms to
identify abnormality in gait automatically. This would provide
a cutting-edge game changing and widely deployable solution
in health and medical perspective to assist in clinical and
pathological gait diagnosis.
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