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ABSTRACT Digital Image Correlation (DIC) has been widely used as a non-contact deformation
measurement technique. Nevertheless, its accuracy is greatly affected by the speckle pattern on the specimen.
To systematically evaluate how speckle deformability affects the precision of DIC algorithms. In this study,
a test dataset of 2D speckle patterns with various prescribed deformation fields was numerically generated,
containing two categories of speckles, i.e., the deformable and the non-deformable (rigid) ones. This dataset
was used to evaluate the performance of inverse compositional Gauss-Newton (ICGN)-basedDIC algorithms
with two types of shape function (first-order and second-order), in the different scenarios of the deformation
field. The results showed that imaging noise had a significant influence on the DIC algorithm. The first-order
shape function (ICGN-1) performed better when tracking the simple linear deformation field. While the
second-order shape function (ICGN-2) was proved to perform better on non-linear deformations. Moreover,
the deformability of the speckle was found to have an obvious impact on the performance of the DIC
algorithm. ICGN-2 could effectively reduce so-called speckle rigidity induced (SRI) error. Conclusively,
ICGN-2 should be chosen as priority, because of its feasibility on non-linear deformation fields and speckle
rigidity. While in the linear deformation scenarios, ICGN-1 was still a robust and efficient method.

INDEX TERMS Digital image correlation, speckle pattern, displacement measurement, motion tracking,
imaging processing algorithms.

I. INTRODUCTION
Imaging-based deformation measurement technologies have
been rapidly developed in recent years. The algorithms
track the change of local pattern characteristics between

The associate editor coordinating the review of this manuscript and
approving it for publication was Byung-Gyu Kim.

adjacent frames and present the changes as displacement
vectors. For example, digital image correlation (DIC) is
a mature-developed algorithm for 2D full-field surface
deformation measurement. It tracks the speckle pattern in
pixel blocks to obtain the displacement vector field and
strain map [1]. Based on the same principle, digital volume
correlation (DVC) is developed to provide 3D full-field
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FIGURE 1. Samples of the generated speckle pattern. The pattern at top left: the sample of the reference image. The six patterns at the top right: samples
of rigid speckle patterns, the applied deformation fields. From left to right are pure translation and rotation tension, sinusoidal deformation, Gaussian
deformation, and Portevin-Le Chatelier (PLC) band deformation. The chart at bottom left: the parameters used for generating the series of deformation of
speckle patterns, whose mathematical definition could be found in Table 1. The four patterns at the bottom right: samples of deformable speckle
patterns. From left to right, the applied deformation fields include tension, sinusoidal deformation, Gaussian deformation, and PLC band deformation.

volumetric displacement measurement [2], [3]. Compared
to the experimental and the simulating approaches for
strain analysis, the imaging-based measuring methods have
the advantages of non-contact, harmless, high-precision,
facticity and simple operability [4], [5], [6]. The sub-pixel
registration algorithm is the key to determining the accuracy
of DIC measurement. The original algorithm utilised in DIC
was forward additive Newton-Raphson (FA-NR) algorithm,
which was reported by Bruck et al. [7]. Subsequently,
it has been continuously optimised to improve its accuracy
and efficiency, and now it has been commonly used
for accurate sub-pixel displacement measurement [8], [9],
[10]. Nevertheless, as highlighted by several researchers,
a significant limitation of the FA-NR algorithm is its huge
computational cost [7], [11], [12]. In order to address the
inherent redundancy in FA-NR calculations, an advanced
inverse compositional Gauss-Newton (ICGN) algorithm was
introduced and subsequently refined to be an efficient, robust,
and accurate technology [13], [14]. Coupled with a robust
reliability-guided tracking scheme, the ICGN algorithm has
been anticipated to become a new standard approach in
DIC. Indeed, since introduced, the ICGN algorithm has
garnered widespread attention and acceptance [15], [16],
[17], [18]. The above-mentioned methods have been widely
used in engineering and especially in biomedical areas, where
the scenarios strictly require non-invasive measurement. For
example, Goh et al. [19] used the DIC method to measure
the strain field of the large deformation materials like rubber.
Lee and Ji [20] analysed the experimental data of polymer
material under tensile loading using DVC technique. Li et
al. employed the DVC algorithm in the mechanical test of
soil [21], [22]. DVC-based deformation measurement has
been reported to be applied on the magnetic resonance
imaging (MRI) of intervertebral discs both ex vivo [23] and
in vivo [24].

In the aforementioned DIC/DVC algorithms, the speckles
play an important role in carrying the information of local
displacement. These speckles in images could come from
natural, for example, the sub-structure of the imaged tis-
sue [24], specimen [25], and material [26]; or from artificial-
manufacturing, such as painting [27] and adding tracing
particles [28], [29]. Some previous research has discussed the
quality of speckle patterns and investigated their influence on
the DIC measurement errors. Lecompte et al. [30] presented
a method for determining the speckle size distribution of
speckle patterns using imagemorphology. Several parameters
have been applied to evaluate the quality of speckle

TABLE 1. The definition of the deformation fields applied in this study.
The principle of the generation of speckle patterns under various
deformation fields was following the work of Su and Zhang [39]. In the
rotated pattern, the deformation centre (x0, y0) was set at the centre of
the speckle pattern (120, 120). In the deformed patterns with tension,
Gaussian and PLC band, the deformation centre was set as x0 = 120, i.e.,
the middle vertical line. In the sinusoidal deformation field, the phase
b = 0. The definitions of other variables are listed in Figure 1.
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pattern, such as sum of square of subset intensity gradient
(SSSIG) [31], [32], mean intensity gradient (MIG) [33], root-
mean-square error (RMSE) [34] and Ef [35]. The concept
entropy was also borrowed to quantify the speckle pattern
quality [36], [37]. Atkinson et al. [38] recently reported
a novel artificial neural network (ANN) to predict subset
displacement error, such that the smallest subset size is
appointed.

Specifically in acquired imaging data, these speckles
can be separated into two categories, i.e. the deformable
and the non-deformable speckles [40]. For instance, the
painted pattern of speckles normally deformed following
the deformation of the sample; while the added particles
which are more rigid than the sample material intend not to
deform, which might cause speckle rigidity induced (SRI)
error [41], [42]. This study aims to systematically understand
how the speckle deformability affects the precision of
DIC algorithms. To achieve this, a test dataset of 2D
speckle patterns with various deformation fields applied
was numerically generated, which contained two versions
corresponding to two categories of the deformable and the
non-deformable (rigid) speckles. This dataset was used to
evaluate the performance of the ICGN-based DIC algorithms,
with first- and second-order shape functions, and in the
different scenarios of the deformation field.

II. METHODS
This study used simulated speckle patterns with different
deformation fields. As the generating process of 2D and
3D datasets shared the same principles, here to reduce
the computational loads for the use of second-order shape
function, 2D imaging datasets were selected in this study and
the corresponding ICGN-based DIC algorithms with first-
and second-order shape functions were employed.

A. SIMULATED SPECKLE PATTERN
The speckle patterns used in this study were generated using
an in-house developed MATLAB (R2022a, MathWorks,
Inc.) package. The definition of applied deformation fields
on speckle patterns were based on the work of Su and
Zhang [39]. The generated speckle patterns contained six
types of deformation fields, including pure translation and
rotation (for rigid speckles only), tension, sinusoidal, Gaus-
sian, and Portevin-Le Chatelier (PLC) band deformation.
Table 1 lists the theoretical definitions of each type of applied
deformation field. Figure 1 presents the samples of generated
speckle patterns with the aforementioned deformation fields.

In this algorithm, a set of Gaussian-shaped speckles
with the aforementioned deformation fields applied were
generated. It had the function to generate deformation fields
with both deformable and rigid particles. To simulate the
noise in the real image acquisition process, random Gaussian
noise with the zero-mean value and different standard
variances of 0, 5%, and 10% of the full 8-bit gray-scale were
added to all of the images.

B. DIGITAL IMAGING CORRELATION ALGORITHM
ICGN-based DIC method was employed in this study,
which was implemented based on an open-source library
OpenCorr [43]. The DIC algorithm tracks each point of
interest (POI) between the reference and the deformed image
frames based on a defined-size subset, which is centred at
the POI and contains a grid of pixels. The DIC algorithm first
obtains the integer pixel displacement in each direction of the
subset through fast Fourier transform-based cross-correlation
(FFT-CC). Subsequently, it refines the displacement map to
the sub-pixel level in the Gauss-Newton iteration. The DIC
algorithm finally determines the best match of the target
subsets in the deformed image to the reference subsets in
the original image by calculating the correlation function
between the reference and the target subsets, i.e., zero-
normalized sum of squared differences (ZNSSD):

CZNSSD(1p) =

∑
ξ


f (x + W(ξ ; 1p)) − fm√∑

ξ

[f (x + W(ξ ; 1p)) − fm]2

−
g(x + W(ξ ;p)) − gm√∑

ξ

[g(x + W(ξ ;p)) − gm]2


2

, (1)

where f (x) and g(x) denote the pixel intensity at x = (x, y)T

in the reference and the target subsets; ξ = (1x, 1y, 1)T

is the local coordinates of integer pixels in the subset; fm
and gm are the average intensities of the reference and the
target subsets; W(ξ ;p) represents the warp function, which
describes the displacement and the deformation of the target
subset relative to the reference subset; 1p represents the
incremental deformation vector; and W(ξ ; 1p) represents
the incremental warp function exerted on the reference
subset [13], [44].

The displacement between reference and target subsets are
described using shape functions. Considering a POI x =

(x, y)T in the reference image, its corresponding point x′
=

(x ′, y′)T in the deformed image is described using shape
functions: [

x ′

y′

]
=

[
1 0 u
0 1 v

] xy
1

 , (2)

where u, v are the displacements of POI to be determined.
The above shape functions is in zero-order, which can
only describe the pure translation. The first-order shape
function, which describes translation, rotation, shear and
normal strains:[

x ′

y′

]
=

[
1 + ux uy u
vx 1 + vy v

] xy
1

 , (3)

where the ux , uy, vx , vy are the first-order gradient of u, v
in the corresponding directions. The second-order shape
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FIGURE 2. The histograms show the errors when using DIC to track the speckle patterns with pure translation applied in
the x-axis direction (Part A: row 1-3) and in the y-axis direction (Part B: row 4-6). Each part, from left to right, shows the
displacement applied in the x-direction by 0.05, 0.1 0.2, 0.35, 0.55, and 0.8 pixels. From top to bottom shows the three
different noise variance levels 0, 5%, and 10%. In each subplot, the horizontal axis is the error in the x-direction between
DIC-measured displacement (pixel) and the theoretical value; the vertical axis is the frequency, i.e., the count of points. The
blue colour means the measurement by ICGN-1, while the yellow colour means ICGN-2. The axis ranges were unified into
the same scale for each part.

function further includes the strain gradients and is able to
describe complex deformation fields:

[
x ′

y′

]
=

[ 1
2uxx uxy

1
2uyy 1 + ux uy u

1
2vxx vxy

1
2vyy vx 1 + vy v

]

x2

xy
y2

x
y
1

 , (4)

where uxx , uxy, uyy, vxx , vxy, vyy are the second-order gradi-
ents of u, v [45].

C. ANALYSIS AND STATISTICS
All the deformed speckle patterns (with the resolution of
240 × 240 pixels) were calculated against to their initial
status using ICGN-based DIC algorithms with the defined
subset size of 31 pixels and grid step of 1. Both first-
and second-order shape functions (hereinafter called the
‘ICGN-1’ and ‘ICGN-2’, respectively) were employed. The
results between deformable versus rigid speckles, ICGN-1

versus ICGN-2, and different noise level were compared to
each other.

III. RESULTS
A. TRANSLATION, ROTATION, AND TENSION
When the speckle pattern was given sub-pixel translation, the
DIC-measured error distributions against the imposed value
are presented in Figure 2. In general, DIC properly tracked
the displacement in an acceptable and consistent error range
with the translation steps increasing. The noise level and
the order of shape function had a significant influence on
the error distribution. The increased noise variance brought
more errors in the displacement measurement. In both x-
direction (same as the direction of applied displacement) and
y-direction (without displacement loads, the error represented
the systemic error of the DIC system), ICGN-1 had a
narrower error distribution than ICGN-2.

Figure 3 plots the mean value and the standard deviation
(SD) of the calculation error in the simple displacement
fields of translation and rotation. The mean errors showed a
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FIGURE 3. The mean value and standard deviation (SD) of calculation error plots show the DIC’s performance when
tracking the speckle patterns with pure translation and rotation. Part A presents the translation in the x-direction. The first
column presents the error in the x-direction, while the second column shows that in the y-direction. Part B presents the
rotation by 2◦, 4◦, and 6◦, from left to right columns, respectively. Both Part A&B: from top to bottom rows shows the three
different noise variance levels 0, 5%, and 10%. The blue colour means the measurement by ICGN-1, while the yellow colour
means ICGN-2.

sinusoidal shape with period of one pixel and no dependency
on the noise level and nor the shape function for translation.
For noise level 0, the mean value of the calculation error for
both shape function were almost the same. But the maximum
SD error of ICGN-2 was 0.0075 pixels, which performed
worse than the ICGN-1 (0.0044 pixels), because of the
over-fitting problem in iteration process. With the increasing
of noise level to 5% and 10%, the maximum SD of ICGN-2
increased to 0.0097 and 0.0155 pixels, respectively. Similarly,
the maximum SD of ICGN-1 increased to 0.0054 and 0.0091.
The same phenomenon of standard error was also observed
in the y-direction. As no translation was added in the y-
direction, therefore, it represented the system error of the
DIC calculation. Regarding to the rotational displacement,
the mean value and the SD error of both shape function were
found oscillating with the increasing radius from rotation
center and were irrespective of the rotate angle. The mean
value and SD error of ICGN-2 in rotation were both larger
than those of ICGN-1. The noise level was also found to have
significant impact on the performance of calculation error.

A set of contour maps of the error between the imposed
and calculated tension fields is plotted in Figure 4. With
the tension magnitude increasing, the error pattern tended
to oscillate at a higher frequency. The error of ICGN-1 was
less than 0.01 pixels even when tension was increased to
14%, whereas the accuracy of the ICGN-2 was found to be
worse (more than 0.02 pixels) for both rigid and deformable
speckles. The error statistics of tension displacement fields
are presented in Figure 5. When the magnitude of tension
changed from 2% to 14%, the SD of ICGN-1 increased from
0.0031 to 0.0041 pixels for undeformable speckle patterns,

while the SD of ICGN-2 raised significantly from 0.0057 to
0.0083 pixels. The deformable speckle patterns brought less
mean errors, and the SD errors of both shape function
maintained stable in a range of around 0.003 ∼ 0.005 pixels.

B. SINUSOIDAL, GAUSSIAN, AND PLC BAND
DEFORMATION
Figure 6 plots both magnitude and error of the calculated
sinusoidal-shape displacement field with a period of 80.
Unlike the performance when tracking linear displacement
field, ICGN-2 brought much smaller error than ICGN-1 in
tracking the sinusoidal-shape deformation field with both
rigid and deformable speckle patterns. Another interesting
finding was that, although the magnitude of error was
similar regardless of the speckle deformability, the error of
deformable speckle varied smoothly, while the error of rigid
speckle presented significant high-frequency oscillation,
especially at the sections with large error magnitude. The
displacement errors of sinusoidal-shape displacement field
with different periods are shown in Figure 7. For such
non-linear displacement field, the maximum measurement
errors for all three period were less than 0.5, 0.2 and 0.15 pix-
els, respectively. Furthermore, the displacement errors were
found increased following the frequency increasing for the
sinusoidal deformation. The performance of ICGN-2 was
found better than that of ICGN-1 in this non-linear deforma-
tion field. It was noted that high-frequency oscillatory errors
were observed from the rigid speckle patterns.

More evidences of non-linear deformation fields of
Gaussian and PLC-shaped displacement fields with different
periods are shown in Figure 8. The period of applied
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FIGURE 4. The results of tension with 2%, 8%, and 14% in x-direction. Part A: the contour plots of the error in the
x-direction. In each subsection, the top row presents the results calculated using ICGN-1, bottom row presents that using
ICGN-2. The left column represents the results calculated based on rigid speckle pattern, the right column represents that
based on deformable speckle pattern. The shown contours were calculated using non-noise patterns. Part B: the histogram
of the error in the x-direction. It presents the errors calculated based on speckle patterns with non-noise (top row) and
10% noise (bottom row). Left and right columns represent rigid and deformable speckle patterns, respectively.

displacement field, which represented the different displace-
ment gradient, had significant influence on the error level.
The errors of displacement for period 10 was larger than that
of period 40 for both displacement fields. The improvement
of using ICGN-2 and deformable speckle pattern were clearly
indicated from these plots.

A Bland-Altman chart (Figure 9 and Table 2) was used
to cross compare the aforementioned factors (the order of
used shape function, speckle deformability, and period of
displacement fields). The error level from ICGN-1 was found
more sensitive to the sharpness of strain field, which indicated
that the limitation of first-order shape function when tracking
highly non-linear displacement fields.

IV. DISCUSSION
A. IMPACT OF NOISE
As a speckle pattern tracking algorithm, DIC is sensitive to
noise level of the image data. Previous studies have proved
that compared to the FA-NR algorithms. the ICGN algorithms
had better performance on the elimination of noise-induced
bias. This is because the higher-order Taylor expansion of
gray-scale intensities caused by the deformation increment
is performed on integer-pixel points [17], [46], [47].
Nevertheless, in this study, the noise level was found still

to have a strong correlation to the DIC calculated error
even with ICGN, irrespective of using ICGN-1/ICGN-2 and
rigid/deformable speckle patterns. Therefore, to elevate the

DIC accuracy further, the improvement of imaging quality
and denoising would be one of the key priorities. Some
pioneer studies demonstrated that appropriate pre-processing
methods could enhance the image quality and reduce the
noise level, hence, effectively mitigating DIC computational
errors to some extent [48], [49], [50]. Inspired by the
novel techniques in imaging processing [51], [52], [53]
and noise-cancelling [54], [55], [56], the performance of
DIC algorithms on image samples with pre-processing and
denoising techniques will be further investigated in our future
studies.

B. PARTICLE DEFORMABILITY AND ITS EFFECT
Particle pattern plays an important role in the DIC algorithms.
Ideally the test sample used in DIC algorithms should
have similar deformability for both speckle and the rest
of areas, so that the tracked displacement and deformation
of speckle structures could fully represent the deformation
field of the testing sample. Nevertheless, in actual practical
scenarios, the speckle deformability widely varies based on
different methods of imposing speckles, such as natural-
form sub-structures, spraying speckles, and mixing parti-
cles. In a deformed subset, the rigid speckles make the
deformation matchingmore complicated, even when tracking
simple deformation field, subsequently results in SRI error.
To exhaust the potential of DIC, the deformable speckles are
recommended to be chosen to use as far as possible, to reduce

VOLUME 12, 2024 66471



J. Wang et al.: Impact of Speckle Deformability on Digital Imaging Correlation

FIGURE 5. The error statistics of tension displacement fields from 2%,
4%,. . . ,14%. From top to bottom rows, the results come from the speck
patterns with noise levels of 0, 5%, and 10%. The left column shows the
results of rigid speckle patterns, where the blue and yellow markers
represent the calculation results from ICGN-1 and ICGN-2, respectively.
The right column shows the results of deformable speckle patterns,
where the green and red markers represent the calculation results from
ICGN-1 and ICGN-2, respectively.

the magnitude and its oscillation of the error level. Also, the
use of ICGN-2 has been proved could decrease the SRI error
to some degree.

C. THE NATURE OF DEFORMATION FIELD
The nature of deformation field would be a decisive
basis of choosing DIC-algorithms. Based on the results,
ICGN-2 is not always a good option when tracking a
simple and linear displacement field. In a linear displacement
field, which could be ideally described by using first
order shape foundation, the redundant second order factors
from ICGN-2 algorithm causes over-fitting problem and
induces larger error. In turn, in a complex displacement
field, ICGN-1 performs worse than ICGN-2 due to missing
of the second-order factors to describe the non-linear
change of displacement field. The gradient of the non-linear
displacement field is another key factor to determine the
DIC performance. A sharp-changing displacement field (i.e.,
with large gradient) could significantly increase the error
level expressly using ICGN-1. Contrastively, ICGN-2 could
effectively track the high-gradient displacement field and
reduce the error.

D. THE ORDER OF SHAPE FUNCTION
As introduced, there are various shape functions available
in DIC. The zero-order shape function only describes the

FIGURE 6. The DIC results of tracking the applied sinusoidal-shape
displacement field with a period of 80: A) the calculated displacement
field, and B) the error between calculated and applied displacement
values. Each sub-figure contains four subplots, i.e., the ICGN-1 tracked
rigid and deformable speck patterns (top row from left to right); and the
ICGN-2 tracked rigid and deformable speck patterns (bottom row from
left to right). Under each contour plot, a curve of displacement/error
averaged from the pixels at each vertical line is plotted along with the
horizontal axis, where the displacement gradient was applied.

FIGURE 7. The errors of the DIC-tracked sinusoidal-shape displacement
field with periods of 80, 120, and 160 (from top to bottom rows,
respectively). From the left to right columns in sequence are ICGN-1
tracked rigid (blue) and deformable (green) speckle patterns, and ICGN-2
tracked rigid (yellow) and deformable (red) speckle patterns.

pure planer translational motions of subsets. It is mostly
applied in theoretical studies and has limited applications
in practical scenarios with large and non-linear deforma-
tion fields [31], [32], [57]. The first-order shape function
used in ICGN-1 simplifies the subset deformation only
consisting of translation, rotation and uniform strain. So that
ICGN-1 is only suitable to describe such simple and linear
deformation field. The second-order shape function used in
ICGN-2 adds the second-order displacement gradient terms,
which could describe the subset’s non-linear deformation.
Therefore, the accuracy of ICGN-2 is theoretically higher
than the ICGN-1 algorithms when calculating non-linear
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FIGURE 8. The errors of DIC-tracked (A) Gaussian and (B) PLC
displacement field with periods of 10 (left) and 40 (right). Each subplot
contains four curves, i.e., ICGN-1 tracked rigid (blue) and deformable
(green) speckle patterns, and ICGN-2 tracked rigid (yellow) and
deformable (red) speckle patterns.

TABLE 2. The parameters of mean, ±1.96SD of the corresponding
Bland-Altman subplots in Figure 9.

deformation fields (i.e., sinusoidal, Gaussian and PLC band
in this study). Nevertheless in the simple deformation fields
(i.e., translation, rotation and tension in this study), the

FIGURE 9. The Bland-Altman plots present the consistency of DIC-tracked
displacement against the prescribed displacement: A) the sinusoidal-
shape displacement; B) the Gaussian displacement; C) the PLC
displacement. Each subplot contains three displacement field periods.
And four colour labels were used to distinguish the shape function order
and the speckle deformability: i.e., ICGN-1 tracked rigid (blue) and
deformable (green) speckle patterns, and ICGN-2 tracked rigid (yellow)
and deformable (red) speckle patterns. The parameters of mean, ±1.96SD
of the each Bland-Altman subplot are listed in Table 2.

computation errors associated with a second-order shape
function has been proved obviously larger than that with
first-order shape function, because the redundancy high
order terms (i.e., uxx, uxy, uxx, vxx, vxy, vyy, whose value
should be zero in these simple deformation fields) of the
second-order shape function are over-fitted with small non-
zero values during the iterative process. This error in ICGN-2
could be compressed by using a larger subset.

Considering the majority of the practical applications of
DIC/DVC algorithm are tracking complex and non-linear
displacement field, also, the ability of reduce the SRI error,
the second-order shape function-based ICGN-2 should be the
preferred algorithm for DIC analysis. Whereas, the ICGN-
1’s advantages include fast processing time, low request of
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computational resources, and stability when tracking linear
deformation fields. It is still a robust choice if the deformation
field is simple, linear, low gradient, and with deformable
speckle patterns.

E. LIMITATIONS
This study used the simulated speckle patterns to analyse
the DIC algorithms’ performance. Limited by the used
method of generating speckle patterns, besides the rota-
tion, the deformation fields were only available to be
loaded in single-axis direction. Thereby, this study did
not include the complicated deformation field with bi-axis
loads. Such as complex deformation field was expected
to further highlight the advantages of using second-order
shape function. In our next-step study, a finite element
method (FEM)-based mesh method will be borrowed to
generate the deformed images/speckle patterns with precise
node-to-node displacement control, which could be used to
test the DIC algorithms with more complex deformation
fields.

The use of simulated speckle patterns in this study could
eliminate potential errors from out-plane deformation, image
acquisition quality and volume distortion during loading
process. Nevertheless, it has to be noticed that the ideal rigid
and deformed particles, and the ideal theoretical displacement
fields like sinusoidal- and Gaussian- shapes were difficultly
reproduced in the real experiment. Therefore, a validating
experiment using real imaging data was not able to be
included in this study. In the future, the deformation fields
will be mimicked using our developed optical coherence
tomography (OCT)-based mechanical test experiment [29].
Then the ICGN-1 and ICGN-2 based DVC algorithms will
be able to be analysed based on the real experimental
data.

V. CONCLUSION
This research utilised the simulated speckle patterns with
various deformation fields, and investigated the performance
of DIC algorithms in tracking deformation. The factors
discussed in this study included the type of prescribed
deformation fields, speckle deformability, imaging noise
level, and the order of shape function. The imaging noise
had significant influence on the DIC analytical results.
ICGN-1 performed better when tracking simple linear
deformation field. In turn, ICGN-2 was proved to have better
performance on non-linear deformations. The deformability
of speckle was found to have an impact on the perfor-
mance of DIC algorithm, and the use of second order
shape function could effectively reduce such SRI error.
In the cases of complex deformation, the ICGN-2 could be
chose as priority, because of its feasibility on non-linear
deformation fields and speckle rigidity. However, in the
sample cases, the ICGN-1 is still an robust and efficient
method.
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