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Abstract It is observed that the kinematic equations of many vehicles take the same
form. This form is that the body-fixed velocity twist of the vehicle lies in a fixed
screw-system of a particular type. The Cayley map can be used to pull-back these
equations to the Lie algebra of the group of rigid-body motions. Rational solutions
to the equations can be found by the method of undetermined coefficients. Since the
Cayley map is a rational map, mapping these rational solutions back to the group
gives rational rigid-body motions. A 3-parameter family of rational Frenet-Serret
motions is found in this way. Multiplying these motions by a rational roll-motion
gives a 4-parameter family of aeroplane motions.
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1 Introduction

Many vehicles are modelled as non-holonomic systems. Usually the kinematic equa-
tions for a vehicle’s motion have the form

G(t)−1 dG(t)
dt

= SB, (1)

here G(t) lies in the group of rigid-body motions and represents the motion of the
vehicle. The body fixed velocity twist SB is constrained to lie in some fixed screw
system. The ubiquity of this type of model can be explained by the fact that for
most vehicles the actuators are fixed with respect to the body and provide forces or
torques along screws fixed in the body. Many examples exist, a few are listed below.

Bicycles and cars. Perhaps the motivating example and the most intensely stud-
ied one. It is of course, a planar problem so the analysis can be done in the group
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of planar rigid displacements, SE(2). The body-fixed velocity of such a vehicle
is restricted to a forward velocity in only one direction and a rotational velocity
about a line perpendicular to the plane.

Aeroplanes, roller-coasters, autonomous underwater vehicles. These vehicles
can translate forward, in a fixed direction relative to the vehicle, but can also roll,
pitch and yaw. Hence the body-fixed velocity twist SB, of such a vehicle lies in a
particular 4-system of screws.

Needle steering. The problem of steering a long flexible needle or cannula with
a bevelled tip is now well known in robotics. The motion of the needle tip is a
Frenet-Serret motion (see below) but based on a curve with constant curvature.
This means that SB for this system lies in a 2-system of screws. The kinematic
equations for this problem can be found in [5], see also [3].

Frenet-Serret motions. Not the motion of a vehicle but it does have that same
kinematic equation as given in (1). Here the body-fixed velocity twist SB, lies in
a particular 3-system of screws. This example is often studied in computer aided
design but these motions have also been proposed as suitable motions for the
end-effector of a manipulator arm. See also Bishop motions [3].

Many workers have studied the path-planning problem for such vehicles. Here
a very simple view is taken. The idea is to plan rigid-body motions using simple
interpolation schemes. It is well known that polynomial interpolation on the group
of rigid motions is far from straightforward due to the non-linear nature of the group.
Moreover, another problem arises, not all motions in the group satisfy the kinematic
equation (1), for the vehicle. This work addresses the problem of finding simple
families of motions satisfying the vehicle’s kinematic equations. Such families need
to be large enough to be able to interpolate a wide range of possible motions yet
simple enough to be easy to work with especially for computers. For these reasons
rational motions are preferred.

The following strategy is used to find such families of motions. First the Cayley
map is used to pull-back the kinematic equation to R6. Since the Cayley map is a
rational map, rational curves in R6 will be mapped to rational curves in the group.
Then a rational anzatz is substituted into the equation to turn the differential equation
into algebraic equations. Solutions of the resulting algebraic equations will produce
motions with the desired properties.

2 The 4×4 Cayley Map

In classical differential geometry a standard problem is to reconstruct a space-curve
from its curvature and torsion functions. The differential equations to be solved for
this problem have exactly the same for as given in (1) above. However, G lies in
SO(3), the group of rotations about a point. The classical approach to the problem
is to make a substitution which turns the equation into a Riccati equation, see [1] for
example.
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This approach generalises to other matrix groups. The substitution required is
the standard Cayley map. Suppose G ∈ G , the matrix Lie group. Let S be a square
matrix representing an element of the Lie algebra to G . The Cayley map is given by,

G = (I +S)(I−S)−1, (2)

see [2] for more details. Substituting this into the kinematic equation (1) gives,

dS
dt

=
1
2
(I +S)SB(I−S) =

1
2
(I +SSB−SBS−SSBS). (3)

This is an example of a matrix Riccati equation. If SB is a known function of time
then this equation can be solved numerically to simulate the motion of the vehicle.

Here G ∈ SE(3),the group of proper rigid-body displacements in 3-dimensions.
It is assumed that all that is known is that SB lies in a known screw-system; a linear
subspace of the Lie algebra to SE(3). In the 4×4 representation of the Lie algebra
to SE(3) a general twist can be written as,

S =

(
Ω v
0 0

)
, (4)

where Ω is the anti-symmetric 3× 3 matrix corresponding to the angular velocity
vector ω . That is, Ωp = ω×p for any vector p. The vector v is the linear velocity
of the origin.

The motion within this system is usually specified by a number of control func-
tions related to the physical actuators. To project out these control functions equation
(3) can be rearranged to give,

2(I +S)−1 dS
dt

(I−S)−1 = SB. (5)

Next we write the equation using the adjoint representation of the group. In this
representation twists are represented as 6-dimensional column vectors. These vector
are usually written in a partitioned form with the first three components of s given
by ω and the second three by v. In this representation equation (5) becomes,

F(s)
ds
dt

= sB, (6)

where F(s) is the matrix.

F(s) =
2

1+ |ω|2

(
I−Ω 0

V Ω −V (1+ |ω|2)I−Ω +Ω 2

)
. (7)

Here V is the 3× 3 anti-symmetric matrix corresponding to v. This result can be
found using the methods presented in [2].

Suppose W1, . . .Wn are a set of linearly independent wrenches forming a basis
of the dual space to screw-system that sB lies in. That is W T

i sB = 0, i = 1, . . . ,n.
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Fig. 1 Bicycle paths. The left-hand figure shows the body-fixed frame in the bike. On the right
three different rational motions between the same positions are illustrated. The motion of the body-
fixed frame is shown for the top path.

Finally the kinematic equations can be written as,

W T
i F(s)

ds
dt

= 0, i = i, . . . ,n. (8)

To make this clearer a simple example is presented in the next section.

3 Rational Bicycle Motions

This is a planar problem so let,

S =

0 −ω vx
ω 0 vy
0 0 0

 or as a column vector s =

ω

vx
vy

 .

With the coordinates given in fig. 1 the bicycle can translate in the x-direction or
rotate about a vertical line located on the y-axis. In general any combination of these
two infinitesimal motion is possible so that,

sB = ν

0
1
0

+µ

1
0
0

 , (9)

where the arbitrary coefficients ν and µ are related to the forward velocity and turn-
ing velocity. The only wrench dual to every possible sB is given by W T = (0, 0, 1).
This expresses the fact that the bicycle cannot instantaneously translate in the y-
direction. In this planar problem the matrix F(s) reduces to,

F(s) =
2

1+ω2

 1 0 0
−vy 1 ω

vx −ω 1

 . (10)
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Hence the kinematic equation for the motion reduces to,

vxω̇−ω v̇x + v̇y = 0. (11)

We can produce polynomial solutions to this equation by choosing arbitrary poly-
nomials for ω and vx, substituting these into equation (11) and solving for vy
by integration. For example, choosing ω = a1t + a2t2 and vx = b1t + b2t2 gives
vy = (1/3)(a1b2− a2b1)t3. The constant terms, including the integration constant,
have been chosen as zero, so that the motion begins at the identity when t = 0. This
gives a 4-parameter family of motions, with a1, a2, b1 and b2 as the 4-parameters.

The Cayley map can now be used to map this result to the 3×3 representation of
the group,

GP(t) =


(1+a1t+a2t2)(1−a1t−a2t2)

1+(a1+a2t)2t2
−2(a1t+a2t2)
1+(a1+a2t)2t2 δx

2(a1t+a2t2)
1+(a1+a2t)2t2

(1+a1t+a2t2)(1−a1t−a2t2)
1+(a1+a2t)2t2 δy

0 0 1

 , (12)

where

δx =
2
(
3b1t +3b2t2−a1(a1b2−a2b1)t4−a2(a1b2−a2b1)t5

)
3
(
1+(a1 +a2t)2t2

) , (13)

δy =
2
(
3a1b1t2 +(2a1b2 +4a2b1)t3 +3a2b2t4

)
3
(
1+(a1 +a2t)2t2

) . (14)

Examples of this motion are shown in Fig. 1.

4 Rational Frenet-Serret Motions

Frenet-Serret motions are usually defined with respect to a space-curve. Given a reg-
ular curve in space its Frenet-Serret motion is the motion of a body rigidly attached
to the Frenet frame of the curve. This frame is sometimes known as the normal-
tangent-binormal coordinate system. The origin of the coordinate frame fixed in the
body to be the point on the curve, the x-axis of the body-fixed frame will be aligned
with the tangent to the curve and y-axis will be taken to lie along the curve’s normal
vector.

The motion of this frame can be written as a curve of group elements G(t) satis-
fying the famous Frenet-Serret equations, which coincide with equation (1) above.
In this case SB has the form,

SB =


0 −νκ 0 1

νκ 0 −ντ 0
0 ντ 0 0
0 0 0 0

 , (15)
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where ν , κ and τ are respectively the speed, curvature and torsion of the curve
generating the motion. The adjoint representation of this twist is,

sB = α

(
k
0

)
+β

(
i
0

)
+ γ

(
0
i

)
, (16)

where i, j and k are the unit vectors in the x, y and z-directions respectively and the
coefficients α = νκ, β = ντ and γ = ν .

The three wrenches dual to any sB are clearly given by,

W1 =

(
j
0

)
, W2 =

(
0
j

)
and W3 =

(
0
k

)
.

Using the result for F(s) from equation (7) above the three equations defining the
motion can be given as,

0 = ω̇y +ωxω̇z− ω̇xωz, (17)

0 = (ωxωy−ωz)v̇x +(1+ω
2
y )v̇y +(ωx +ωyωz)v̇z +

(ω̇z + ω̇xωy−ωxω̇y)vx− (ω̇x + ω̇yωz−ωyω̇z)vz (18)

0 = (ωxωz +ωy)v̇x +(ωyωz−ωx)v̇y +(1+ω
2
z )v̇z−

(ω̇y +ωxω̇z− ω̇xωz)vx +(ω̇x + ω̇yωz−ωyω̇z)vy. (19)

Notice that the common denominators in these relations have been cancelled.
Now consider equation (17), this has exactly the same form as equation (11)

above. Expressions for ωx and ωz can be chosen and then the solution for ωy can
be found by integration. Let us set ωx = at and ωz = bt this gives ωy = 0. To find
possible solutions for vx, vy and vy consider the anzatz,

vx =α1t+α2t2+α3t3+α4t4, vy = β1t+β2t2+β3t3+β4t4, vz = γ1t+γ2t2+γ3t3+γ4t4.

Substituting the chosen solution for ωi and the anzatz for the v j into equations (18)
and (19) gives a pair of polynomial equations in t. These equations have degree 4
and 5 in t and the coefficients are linear in the undetermined coefficients αi, β j and
γk. These polynomials must vanish for all values of t hence the coefficients can be
set equal to zero. This produces a set of 11 linear equations in the 12 unknowns. The
system can be solved easily to give,

vx = α1t +
1
3

α1(a2 +2b2)t3, vy =
1
6

α1(a2 +b2)bt4, vz =
1
3

α1abt3.

These results give the entries of S and hence, using the Cayley map, the correspond-
ing 4×4 matrix function of t can be calculated,
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GFS(t) =



1+(a2−b2)t2

1+(a2+b2)t2
−2bt

1+(a2+b2)t2
2abt2

1+(a2+b2)t2
2c
3 (3t +(a2−b2))t3

2bt
1+(a2+b2)t2

1−(a2+b2)t2

1+(a2+b2)t2
−2at

1+(a2+b2)t2 2bct2

2abt2

1+(a2+b2)t2
2at

1+(a2+b2)t2
1−(a2−b2)t2

1+(a2+b2)t2
4
3 abct3

0 0 0 1


, (20)

note that α1 has been replaced by c in the above for neatness. This is a 3-parameter
family of rational Frenet-Serret motions. It includes the rational Frenet-Serret mo-
tion found by Wagner and Ravani [4], which is reproduced by setting a = b = c =
1/
√

2 and a change of the coordinate frame.

5 Rational Aeroplane Motions

In [3] it is proved that these general moving frame motions can be factored into the
product of a Frenet-Serret motion with a pure rotation about the heading direction,
the tangent to the curve. Hence all that is needed to produce a rational family of
such motions is to compose a rational rotation with a family of rational Frenet-Serret
motions, such as the family derived above.

The required pure rotation is about the x-axis in the body and can be written,

GR(t) =


1 0 0 0
0 1−λ 2t2

1+λ 2t2
−2λ t

1+λ 2t2 0

0 2λ t
1+λ 2t2

1−λ 2t2

1+λ 2t2 0
0 0 0 1

 , (21)

the parameter λ is essentially the rate of rotation. Combining this with the Frenet-
Serret motions given in (20) gives a 4-parameter family of rational Aeroplane mo-
tions,

GA(t) = GFS(t)GR(t) =

1+(a2−b2)t2

1+(a2+b2)t2
−2(bt−(2a+λ )bλ t3)

(1+(a2+b2)t2)(1+λ 2t2)
2(2+a)bt2−abλ 2t4

(1+(a2+b2)t2)(1+λ 2t2)
ax

2bt
1+(a2+b2)t2

1−(a2+b2+4aλ+λ 2)t2+(a2+b2)λ 2t4

(1+(a2+b2)t2)(1+λ 2t2)
−2((a+λ )t−(a2+b2+aλ )λ t3)

1+(a2+b2)t2 ay

2abt2

1+(a2+b2)t2
2((a+λ )t−(a2−b2+aλ )λ t3)
(1+(a2+b2)t2)(1+λ 2t2)

1−(a2−b2+4aλ+λ 2)t2+(a2−b2)λ 2t4

(1+(a2+b2)t2)(1+λ 2t2)
az

0 0 0 1

 ,

where,

ax =
2c
3
(3t +(a2−b2))t3, ay = 2bct2, az =

4
3

abct3.
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6 Conclusion

In this work a new class of rigid-body motion has been introduced. These vehicle
motions include many well known types associated to various types of vehicle as
well as some other motions of interest in Computer Aided Design. By unifying these
different types of motion it is possible to find methods which can be applied to any
of them. For example the Cayley substitution given in section 2, will transform the
kinematic equations for any vehicle motion into a Riccarti equation. The rest of the
paper gives another method that can be used for any of these vehicle motions. The
problem addressed is to find rational motions satisfying the kinematic equations for
the vehicle. In Robotics this has applications in path planning, in Computer Aided
Design is has applications to motion interpolations for example.

The results given here are only intended to be indicative, the main purpose is to
show that very similar methods can be used for rather different vehicles. However,
it is not too difficult to see how the solutions presented could be extended to more
practical techniques.
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