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Abstract

This paper provides a unified view for defining a measure of the reasons behind migration

flows whose nature is of social and economic type. To this aim, worldwide migration flows

are here presented in the context of complex network and a related socio-economic indicator

is conceptualized. The ingredients of the indicator also include the economic strengths of the

countries and how they behave in terms of community structure, where “community” has to

be intended in the sense of how countries interact in terms of immigration and emigration.

Empirical analyses on a wide set of real data validate the theoretical framework, hence giving a

paramount quantitative view of the roots of the worldwide migration flows.
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1 Introduction

The movement of individuals from the origin countries to new ones represents – and has represented

in the past – one of the most pervasive demographic phenomenon at international level. A number

of reasons can be found behind migrations. Most of them are of socio-economic nature. Often

migrants leave their countries to escape from ethnic tensions and conflicts, civil wars or poverty and

absence of a satisfactorily labour market.

This paper aims at providing a new perspective for exploring the socio-economic reasons behind

the migration flows. Specifically, we propose a novel socio-economic indicator with the purpose of

defining a synthetic measure of the incoming and outgoing flows between countries in terms of: (i)

the economic characteristics of the origin and destination countries; (ii) the interconnectedness of

the countries in the overall context of migration flows; (iii) the entity of the migration flows from

the origin country to the destination one.
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The issues listed in points (i)− (iii) are reasonably assumed to broadly include the entire set of

motivations for explaining migration flows. As a very relevant example, think at the motivations for

migrating related to the social connections with people living in a given destination country. In this

case, the roots of migration can be found in the economic strength of the hosting country – which

indeed gave the possibility to migrants’ connected people to take a position in the socio-economic

context – and in how easily the final destination can be reached through other transit countries.

Several papers have dealt with the analysis of the roots of migrations. Migration is a global

phenomenon, which is the effect of many different factors. For instance, sociological and economic

motivations have driven (and they still drive) the migrations (see [2], [13], [15]). A crucial hypothesis

is that the migration flow comes from poor to rich countries. This fact results from disequilibrium

in the global distribution of income and wealth, encouraging the movement towards richer countries

in the attempt to improve the conditions of life (see [4], [19]). Other theories about migrations

are related to spatial distance between countries, as well as the mass of the migrants. A well-

explored literature focuses on the “gravity-model”, in which the migration is directly related to

the population of the origin and of the destination country, and inversely related to the distance

between them ([1], [3], [12]). For instance, in [18] the mass of migrant flows reduces with increasing

the spatial distance, due to travel time, monetary costs but also cultural differences, facilitating in

this way the back-and-forth migration.

An interesting perspective in the migration roots context is offered by [23]. Such a point of

view is rather different from ours, since the authors deal with a concept of migration related to the

changing of opinion, while we consider the socio-economic contextualization of the migrants. The

physical nature of migration is well explained in [24], where the motion of substance (or of human)

is modelled over the nodes of a network. The paper is of particular interest, because it assumes that

the nodes can also exhibit an attracting behaviour. In this respect, our paper carries out arguments

which are similar to those of [24], where countries are able to polarize migrants. Such a property is

here captured by the proposed indicator.

Global migration flows between countries naturally can be well described in terms of complex

networks (see [9], [22]). However, a network analysis of internal migration patterns has not been

explored enough. A recent contribute to this aspect is given by [11], where the network structure

of US migration on a yearly basis is analysed, identifying communities that arise, as well as their

trend.

One of the most recent and prominent contributes is due to [25], where the network of global

migration is considered and empirically explored over the period 1990-2013. This paper uses meth-

ods of temporal and cross-sectional exponential random graph for identifying the determinants of

migrations and assessing the presence of noticeable clusters in migration flows.

We feel close to [25]. Indeed, the quoted paper advances a methodological proposal for simulta-
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neously combining different aspects of geographic, demographic, economic, religious, linguistic, and

historical nature – all related to migration. Also in the present paper a unified framework is carried

out and determinants of migration are evaluated jointly. However, to the best of our knowledge, this

is the first paper proposing a synthesis of such elements through a novel indicator, which is then

able to capture in a unified framework the universe of socio-economic motivations for explaining the

immigration phenomenon.

Our approach is based on theory of complex networks, which seems to be particularly appropriate

for our purposes. Countries are viewed as nodes of a weighted network, whose directed weighted

arcs model both the presence and the entity of the migration flows between a (origin) country to

another (destination) one. In so doing, we can imagine that any node has a in-weight and out-weight

associated to an adjacent node, to capture both immigration and emigration phenomena.

The interconnected structure is represented by means of the weighted clustering coefficient of

the nodes of the network, with a special reference to immigration for destination countries and

emigration for origin ones. In particular, we here adopt the definitions proposed by [8] and [20].

Indeed, the interconnection plays a fundamental role in determining the migration patterns. A

migration from a country to another could be the result not only of a direct movement but also the

effect of the transition through a third country. In other words, the presence of weighted triangles

in this network matters.

The economic strength of the countries are identified through their GDPs.

All the considered quantities have been opportunely normalized, in order to derive a relative in-

dicator and be able to make comparisons. Moreover, we propose a global analysis of the immigration

and emigration flows related to single countries and sets of countries by means of a local indicator

related to the connections between couples of countries. In so doing, we are able to present and

discuss a paramount view of reasoning behind the migration flows.

In dealing with the definition of a social indicator in a complex networks environment, we are

in line with a wide strand of the literature. The mainstream literature in social network analysis

focuses on local network measures, as vertex centralities, in order to assess the power or influence of

a node/link in a whole system, as well as other global network parameters, as assortativity, average

path length or average clustering coefficient. For instance, in [16] the author provides a composite

index that measures the bundles of institutions channelling the positive effect on economic prosperity.

The rest of the paper is organized as follows. Section 2 describes the network of migration flows.

This Section also provides the basic notation used throughout the paper. Section 3 contains the

construction of the socio-economic indicator, which is the core of the study. Section 4 is devoted to

the empirical experiments and to the discussion of the obtained results. Last Section offers some

conclusive remarks.
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2 The network of migration flows

First, we briefly remind the terminology on networks that will be used in the paper. For a reference

about graph and network theory, the reader can refer to [14], [21].

A graph G = (V,E) is a pair of sets V and E, where V is the set of N vertices (or nodes) and E

is the set of M pairs (links) of vertices of V ; if (i, j) or (j, i) ∈ E, then vertices i and j are adjacent.

A link (i, i) ∈ E is said a loop. A weight wij > 0 can be associated with each link (i, j) so that

a weighted graph is obtained. The adjacency relationships between vertices of G are described by

a non-negative, real N -square matrix A (the adjacency matrix). The degree of a node i, di, is the

number of links incident with it. In case of weighted graphs, the so-called strength of the node

can be also computed. Formally, it is simply the sum of the weights over all links incident with it,

si =
∑

(i,j)∈E wij .

A graph is directed if it is characterized by directed links (or arcs) between nodes. In this case

(i, j) ∈ E does not imply (j, i) ∈ E. The in-degree dini of a node i is the number of links pointing

towards i, the out-degree douti of i is accordingly defined as the number of edges originating from i.

The total degree of a node is the sum of in-degree and out-degree, dtoti = dini +douti . In-strength and

out-strength are defined analogously as:

sini =
∑

(j,i)∈E

wji, (1)

souti =
∑

(i,j)∈E

wij . (2)

The total strength is the sum of in-and out-strength.

We model the migrant’s flow through a network, where nodes are countries and links identify

the migrants moving from a country to another. Since a migration between two countries i and j

can occur everywhere and in both directions, the network G is complete and all nodes are connected

through bilateral directed links. Given the nature of the migration phenomenon, in the network

loops are not present, therefore the total number of arcs is M = 2N(N − 1).

The analysis will be performed in one period, taking a “picture” of one reference year. For the

analysis, we will consider the entire set of countries, according to the United Nations (UN) classifi-

cation1, extended in order to take into account also of dependencies2, areas of Special Sovereignty3

1The standard classification of UN comprises 193 member states and 2 countries that are non-member observes

states (Holy See and State of Palestine). Therefore, this classification considers the 195 independent countries in the

world.
2A “dependent territory” is a territory that is not fully independent or sovereign. Dependent territories belong to

a sovereign state, and are dependent on that state to some degree. There are varying degrees and forms of such a

dependence. Several islands and territories depending on Australia, Denmark, France, Netherland, United Kingdom,

United States of America, New Zealand are here considered separately.
3Hong Kong and Macau are examples of special sovereignty.
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and state in free associations4. In particular, we use for our analysis 231 distinct countries.

Links are opportunely weighted by relative amounts of migration flows. Specifically, we denote

by MIGRij ∈ N the number of people migrating from the origin country i to a destination country

j, for each i, j ∈ V . Observe that, in general MIGRij 6= MIGRji.

Given i, j ∈ V , the weight of the link (i, j) is defined as:

wij =
MIGRij∑

h,k∈V ;h6=kMIGRhk
. (3)

Note that, being the network complete, the absence of a migration flow from i to j is not

associated to the missing link (i, j) but, rather, to an existing link with wij = 0. This allows us

to catch in our analysis also the effect of relations between countries where no migrants’ flows are

observed.

We also assign to each node an attribute in order to quantify a specific characteristic of the

country. More precisely, for each i ∈ V , we denote by αi ∈ [0, 1] the relative weight of the node

i in the overall system. In our context, αi represents the relative richness of country i, which is

measured through the ratio between the GDP (Gross Domestic Product) of the country i and the

total GDP of all the countries populating the network. Formally:

αi =
GDPi∑
k∈V GDPk

, (4)

where GDPi is the GDP of country i at the reference year. It’s evident that
∑
k∈V αk = 1, then αi

represents the proportion of richness of the country i over the totality of the countries.

3 Construction of the socio-economic indicator

In this Section we propose a new socio-economic indicator of the flow of migrants from a country

i to a country j. This indicator aims at providing a measure of the economic and social reasons

behind the migration flows.

Indeed, there is a wide evidence that migrants generally move from poor countries to rich ones,

preferring locations highly connected with the others to feel free to move again in the future from

the hosting country to a new one. A socio-economic indicator related to the migrant flows should

reflect both aspects, modelling both the macroeconomic status of the considered countries and the

neighbourhood structure associated to each country.

To this end, we include the GDP of the country/node i (i.e. the parameter αi) as well as the local

clustering coefficient of i in the definition. Furthermore, the definition of local clustering coefficient

will take into account of both the bidirectional links and the weights.

4Examples are self-governing state in free association, as Niue and Cook Island that are in free association with

New Zealand
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Being the distribution of weights really skewed, because of significant differences in terms of

migrant stock between countries, the well-known clustering coefficients proposed in [8] may be useless

to depict heterogeneity of countries providing values close to zero. Furthermore, as shown in [20],

the coefficient proposed in [8] may fail when weighted complete graphs are considered5. Hence, we

follow the idea proposed in [20] to consider weights in a binary clustering and we also adapt the

coefficient to our framework in order to catch the effects of links with wi,j = 0. In particular, as in

[20], we modify the adjacency matrix fixing a threshold s ∈ [0,maxi,j(wi,j)] and defining As, whose

elements are:

asij =

1 if wij ≥ s

0 otherwise

. (5)

Hence, As is the adjacency matrix describing the existing links in the network having weight wij at

or above the threshold s.

The idea is to capture the mean cluster prevalence of the network looking at a zoom-out level

where only the strongest edges (i.e. edges with a weight greater than a given threshold) are visible.

To this end, we compute the following local clustering coefficient for directed networks:

Ci(As) =
1
2 [As + AT

s ]3ii
(2N − 2)(2N − 3)− 2(N − 1)

=
1
2 [As + AT

s ]3ii
2(N − 1)(2N − 4)

. (6)

where [As + AT
s ]3ii is the i − th element of the main diagonal of [As + AT

s ]3, being this matrix

the 3-power of the matrix [As + AT
s ].

The coefficient in the previous formula has been proposed in [8] for binary and directed case, and

it is conveniently adjusted to our framework. In particular, the denominator is properly arranged in

order to also include in the analysis those links having weight equal to zero. In other words, in this

way we take into accounts that migrants from an origin country can hypothetically move to every

other destination country.

Therefore, the total degree, that is considered at the denominator of the original formula in [8] is

here replaced by the total degree of a complete graph (i.e. 2(N −1)). As in [8], bilateral arcs (whose

number is (2(N − 1)) in a complete graph) have to be removed by the formula, as they represent

“false” triangles, being formed by i and by a pair of directed arcs pointing to the same node, e.g.,

(i, j) and (j, i).

Since for a country the migrants’ flow is incoming as well as outcoming, we are able to take into

account different patterns among neighbouring countries, reflected by specific clustering coefficients

(Cini (As) and Couti (As)) .

Also in this particular case we refer to in- and out-clustering coefficients proposed in [8], adapting

them to our specific context:

5The alternative clustering coefficient proposed in [5] cannot be used for our purpose being equal to one for complete

graphs.
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Cini (As) =
[AT

s A2
s]ii

(N − 1)(N − 2)
. (7)

Couti (As) =
[A2

sA
T
s ]ii

(N − 1)(N − 2)
. (8)

In-clustering considers triangles such that there are two arcs incoming into i (j → i, k → i,

j → k∨k → j) (i.e. “in” triangles)Hence, it could give an idea of the movement of incoming migrants,

also passing through neighbouring countries. Analogously, out-clustering focuses on triangles such

that there are two arcs coming out of i (i→ j, i→ k, j → k ∨ k → j) (i.e. “out” triangles), giving

an idea of the emigration towards neighbouring countries.

The process is repeated varying the threshold s and computing the clustering coefficient Ci for

a node i as the average of Ci(As) overall s ∈ [0,maxi,j(wi,j)]:

Ci =

∫ maxi,j(wi,j)

0

Ci(As)ds (9)

In a similar way, we can also obtain Cini and Couti by averaging overall values of Cini (As) and

Couti (As) respectively.

Notice that both local in- and out-clustering coefficients are in the range [0, 1], for each i ∈ V .

As already mentioned above, such a quantity provides information on the sense of neighbourhood

structure associated to a country i in terms of migration flows: a high value of Cini (or Couti ) is

associated to a country i with a large quantity of incoming (or outgoing) flows. We study them in

a separate way in order to test possible different patterns in terms of incoming and outgoing flows.

Now, we provide the definition of the indicator at the level of a single directed migration flow

between two countries, and then we define how to combine them at a country, macro area or global

level.

We introduce the local economic indicator associated to the migration flows from country i to

country j – and denote it as Iij – as follows:

Iij =

αi(1 + Couti )− αj(1 + Cinj ) if wij ≥ 0

0 if wij = 0

(10)

Definition (10) offers a measure of the economic and social ground of the migration flows from

country i to country j. In particular, it takes into account the difference between the economic

strengths – measured through the α’s – of the involved countries, which is remarkably amplified

if the considered country forms a strict community with the adjacent countries (high value of the

clustering coefficient). In particular, the clustering coefficient of a country i acts in formula (10) as

a uniperiodal rate of return for the economic parameter αi. In this respect, the term αi(1 + Couti )

(or αj(1 +Cinj )) can be viewed as an indicator which provides a synthesis of the economic strength

of i and of the level of the “out” (“in”) community around it.
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It is worth listing the properties of the quantity defined in (10).

• Iij ∈ [−2, 2], for each i, j ∈ V . This is a very important property, allowing to state a consistent

comparison among migration flows in terms of the economic wealth of the involved countries.

• Iij > 0 (Iij < 0) when αi(1 + Couti ) > αj(1 + Cinj ) (αi(1 + Couti ) < αj(1 + Cinj )). This means

that the origin country can be briefly seen as richer and more (poorer and less) interconnected

– in terms of migration flows – with the surrounding environment than the destination one.

The situation Iij > 0 can be characterized with more detailed remarks. In this case, one has

that αi > αj ·
1+Cin

j

1+Cout
i

or, alternatively, Couti > (1 + Cinj ) · αj

αi
− 1. Thus, the socio-economic

indicator Iij is positive when the origin country i has economic strength or community level

above some thresholds also depending on the parameters related to the destination country.

The same arguments can be opportunely reverted for explaining the situation of Iij < 0.

One can expect that the case Iij > 0 will be the exception rather than the rule. Empirical

data will support this intuition (see the next Section).

• Iij = −2 is associated to the case in which αi = 0, αj = 1, Cinj = 1 and wij = 1. Thus,

this extreme case captures the situation in which the total amount of migrants flows from the

poorest country – even, with null GDP – to the richest one, and the richest country has the

largest possible sense of community with its neighborhood(i.e., the maximal level of clustering

coefficient). The community level of the origin country does not play any role in this specific

situation.

• Iij = 2 is associated to the case in which αi = 1, αj = 0, Couti = 1 and wij = 1. The total

amount of migrants flows from the richest country to the poorest one – also in this case the

poorest country is the one with null GDP and the richest country has the maximal clustering

coefficient. Symmetrically with the previous case, the community level of the destination

country does not matter.

• Iij = 0 when αi(1 + Ci) = αj(1 + Cj) and/or wij = 0. This neutral case is then related to

migration flow between countries sharing an identical quantitative synthesis of economic and

community levels and/or absence of migrants from i to j. Thus, this situation of fairness might

depend on migration flows between identical countries – to be intended under a joint economic

and community perspective.

It is clear that there is no any country with null GDP . Thus, the bounds ±2 are extremal cases

and cannot be achieved in practical analysis.

Moving from the indicators computed for each couple of countries, we can provide a measure of

the migration network with the aim of analyzing the socio-economic reasons of such a phenomenon

at either country, macro area or global level.
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We define the country (“in” and “out”) socio-economic indicators of the migration flows as a

weighted mean of the local socio-economic indicators, as follows:

Iini = −
∑
j 6=i∈V Ijiwji∑
j 6=i∈V wji

, (11)

Iouti =

∑
j 6=i∈V Iijwij∑
j 6=i∈V wij

. (12)

It is worth pointing out that Iouti is lower than zero when emigrants of country i move on average

to a destination country with a higher economic strength or community level. In a opposite way, Iini

is lower than zero when immigrants of country i comes from origin countries with higher economic

strength or community level.

The approach can be extended by aggregating values at different levels. For instance we can

derive both indicators for a set K (of size k) of countries i ∈ K ⊂ V (for instance all countries of

the same macro area or the same continent)

IinK = −
∑
i∈K

∑
j 6=i∈V Ijiwji∑

i∈K
∑
j 6=i∈V wji

=

∑
i∈K I

in
i s

in
i∑

i∈K s
in
i

(13)

IoutK =

∑
i∈K

∑
j 6=i∈V Iijwij∑

i∈K
∑
j 6=i∈V wij

=

∑
i∈K I

out
i souti∑

i∈K s
out
i

(14)

It is noteworthy that the aggregate indicators can be derived as the weighted average of country

indicators with weights equal to in (out) strength (i.e. sini and souti ).

For K = V , we have global (“in” and “out”) socio-economic indicators of the migration flows as a

weighted mean of the local socio-economic indicators. By construction, all the aggregated indicators

are in the range [−2, 2]. Therefore, it is possible to derive insights from the comparison among the

local indicators and the global ones.

4 Empirical experiments

In order to test the performance of the indicator proposed in the previous Section, we consider data

based on international migrant stock in 2015. In particular, the Population Division of the Depart-

ment of Economic and Social Affairs of the United Nations Secretariat provides the international

community with timely and accessible population data and analysis of population trends and devel-

opment outcomes for all countries and areas of the world. As regard to the data we deal with, the

dataset presents the estimates of total migrant stock at mid-year 2015 by origin and destination.

The estimates are available for all countries and areas of the world, based on official statistics on

the foreign-born or the foreign population (mainly based on population censuses but also on pop-

ulation registers and nationally representative surveys). Specific adjustments are also made by the

Department in order to exclude both foreign-born persons naturalized in their country of residence
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and children born to international migrants that live in countries where citizenship is granted upon

birth (i.e a birthright citizenship based on jus soli). Finally, also the refugees’ statistics reported by

international agencies have been used by the Department in order to catch the number of person

recognized as refugees or find themselves in refugee-like situations (see [6] for details).

Figure 1: Total Stock of migrants (2015 data) according to different destination (in) and origin

countries (out). Categories are based on the following classes [0−q30], (q30−q60],(q60−q90],(q60−q100]

where qp is the p-quantile of the distribution. The top figure displays the number of immigrants

observed into different countries. Northern America, Central and Western Europe, India, Russia

and richest Arabian countries are top of the list. Bottom figure shows instead countries with the

most emigrants living abroad. India, Russia and Mexico are close contenders in this case.

We have at disposal data of 231 countries also including dependencies and areas with special

Sovereignty. To give a brief idea of the heterogeneity between different countries, we display in

Figure 1 (top) the number of immigrants observed in 2015 into different destination countries (“in”

values). In a similar way, we report at the bottom in Figure 1 the number of emigrants according

to the origin country. Data have been plotted by dividing the distribution into four different classes

(from “low” to “very high”) where bins are based on the 30th, 60th and 90th quantiles of the
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distribution6. For instance, origin (or destination) countries, that have a number of migrants lower

or equal than the 30th quantile, belong to the “low” category.

In 2015, two thirds of all international migrants were living in only 20 countries, starting with the

United States of America, which hosted 18.6% of all migrants, with an immigrant population that

climbed in 2015 at 43.6 million7. Germany, Russian Federation, Saudi Arabia, United Kingdom,

United Arab Emirates, Canada, France, Australia, Italy and India follow in decreasing order with a

number of immigrants greater than 5 million.

On the other hand, India has the largest diaspora in the world with 16 million people living

outside of their country, followed by 12 million from Mexico. Other countries with larger number

of emigrants included the Russian Federation, China, Bangladesh, Pakistan and Ukraine. Of the

fifteen countries with the largest number of international migrants living abroad, 9 are in Asia and

5 in Europe.

As described in Section 2, a network is used to describe migrants’ flow where nodes are countries

(i.e. 231 nodes) and weighted directed links, computed as in (3), consider migration between origin

and destination countries. The network is plotted in Figure 2.

We can compute some classical network indicators. Values of degree and node strength provide

meaningful insights. Ranking of top ten countries according to these indicators are reported in Table

1. As regard to destination countries, we observe the case of Chile, characterized by a low number

of immigrants (in-strength is approximately 0.27% at the 67th position) but also by a significant

heterogeneity of people that comes from 209 different origin countries8. Furthermore, of the twenty

countries with the largest in-degree, fifteen are in Europe. This result is also an effect of million of

migrants and refugees that crossed into Europe over the last years.

According to “out” indicators, we observe that India has the highest out-strength but also a

high out-degree, meaning that Indian people are widely distributed in different countries of world.

A different situation is instead observed for Mexico that, although a high diaspora (i.e. a high

out-strength), has the 98% of its emigrants settled in USA.

6We did not use the classical grouping based on quartiles in order to emphasize differences on the right tail of the

distribution.
7According to the U.S Census Bureau, an increase of 12.6 million has been observed since the turn of the century.

Immigrants now comprise 13.5% of the U.S. population, roughly one out of eight residents, the highest share in 106

years.
8Immigration has indeed contributed to the demographics and the history of this South American nation. This

country has been characterized by different flows of immigration over time from Europe, South America, North

and Central America, North Africa and Asia and Sub-Saharian Africa. Today, continuing economic growth and

reconsolidated political stability have positioned Chile as an emerging country of destination.
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Figure 2: Network of migrants. Each country is a node and a weighted directed edge measures total

migrants’ flow from a country to another one. Edges opacity is proportional to weights (i.e. number

of migrants).

Countries in-degree Countries in-strength Countries out-degree Countries out-strength

Chile 209 USA 18.62% USA 161 India 6.66%

France 206 Germany 5.13% UK 144 Mexico 5.27%

Australia 206 Russian Federation 4.98% China 143 Russian Federation 4.52%

UK 205 Saudi Arabia 4.21% France 137 China 4.08%

Canada 197 UK 3.63% India 128 Bangladesh 3.08%

Ireland 195 UAE 3.42% Canada 127 Pakistan 2.54%

Greece 194 Canada 3.35% Germany 125 Ukraine 2.49%

Italy 192 France 3.33% Italy 110 Philippines 2.27%

Austria 192 Australia 2.86% Australia 107 Syrian Arab Republic 2.14%

Denmark 186 Spain 2.50% Japan 102 UK 2.10%

Table 1: Top 10 countries ranked in terms of in/out-degree and in/out-strength.

In order to catch the neighbourhood structure of each destination and origin country in terms

of migrant, we compute directed clustering coefficients as described in Section 2. Through the

clustering coefficient, we want to catch both the number of relations between different countries and

the number of migrants involved.

It is noticeable that main patterns are caught by the coefficient but also some specific behaviours

(see Figure 3). For instance, we observe on average a very low in-clustering for the African continent

and part of the Western Asia. Migrants in these countries comes in general from countries that are

not related each other leading to a low coefficient. An exception is represented by South Africa, that
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is characterized by a high clustering because of different kind of migrants. In particular over the

last years, neighbouring people from different nationalities that have fled the political and economic

instability at home (Nigerians, Zimbabweans, Congolese and Somalis for instance), go in South Africa

for the hope of employment and political protection (see [10] for an analysis of intra-continental

migration within Africa).

As regard to the “out”values, it is noteworthy that Mexico does not belong to the very high

category, despite a huge number of people living abroad. As said before, this is a consequence of

almost unidirectional diaspora towards USA. Furthermore we observe that North America, Europe,

China, India and Australia are characterized by very high value of clustering. Finally, it is inter-

esting the case of Brazil characterized by both in and out-clustering. On one hand this country is

characterized by a huge variety of immigrants, where current trends show the presence of people of

different nationalities9. On the other hand, Brazilian people are leaving the country in the search

of employment, as shown on a research made by International Centre for Migration Policy Devel-

opment (ICMPD). There is a growing emigration towards Europe, but United States, Japan and

Paraguay are at moment the most popular destinations.

The indicator proposed in previous Section has been computed at country level in order to

emphasize differences between countries in terms of immigrants and emigrants (see Figure 4). As

regard to the origin country, we observe a prevalence of negative values. It means that on average

origin countries has economic strength and community structure lower than the destination countries.

In particular, the movement of migrants is often towards countries with a greater GDP. Exception

are represented by countries with a very high level of GDP and clustering. United States, China,

Russian Federation are the only three countries with an average index significantly greater than zero.

Other countries with a high GDP level (as Japan and UK) have a weighted average (see formula

(12)) lower than zero because of the significant number of migrants towards countries with a higher

GDP (as USA and China). For instance, Japanese people live abroad in 102 different countries,

but almost half of them are in USA and China. In a similar way, United Kingdom has a positive

index Ii,j with respect to 140 different countries, but the weights of negative indices (based on the

relations with USA, China, Japan and Germany) lead to a total negative indicator.

Strong negative values of Iouti are instead observed for Central America and Caribbean countries.

For instance, Mexico and Puerto Rico rank at the bottom, because, as well-known, these countries

are characterized by a significant emigration towards USA.

According to the countries where migrants settle, several destination countries have a community

and GDP level higher than the country of origin of migrants. Other than well-known results (as

for USA, China and Russian Federation), it is noticeable the case of Europe where on average

immigrants come from “weaker” countries. Effects of recent migration from Africa, Western Asia

9For instance, since 2010 Brazil is home to 4,251 refugees from 76 different nationalities.
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category

low
medium
high
very high

Local Clustering Coefficient (In)

category

low
medium
high
very high

Local Clustering Coefficient (Out)

Figure 3: In and out local clustering coefficients of different countries. Data have been plotted by

dividing the distribution into four different classes (from “low” to “very high”) where bins are based

on the 30th, 60th and 90th quantiles of clustering distribution. We depict the neighborhood structure

of different countries (i.e. a red colour means a high neighbourhood structure in terms of in-flows

or out-flows). Main patterns are caught, but also some specific behaviours (as high immigration in

South Africa from neighbouring countries and the emigration of Mexicans towards USA)

and East Europe is here caught.

It is also very singular the case of Nigeria. On one hand, as Africa’s most populous country,

Nigeria, with an estimated population of 150 million and over 250 ethnic groups, deals with a range

of migration issues, from massive internal and regional migration to brain drain and a large, well-

educated diaspora in the West (mainly towards the United States and the United Kingdom) that it

sees as key to future development (indeed Iouti =-6.3%). On the other hand, country is characterized

by an immigration from other African countries (as Benin, Chad, Liberia, Mali) with a lower level of

GDP and community (indeed Iini =0.6%). In particular, this is also a consequence of the development

of ECOWAS10 treaty, between countries of Western Africa in order to strengthen regional economic

10The Economic Community of West African States (ECOWAS) Treaty is a multilateral agreement signed by the

member states that made up the Economic Community of West African States. Benin, Burkina Faso, Cape Verde,

Cote d’Ivoire, Gambia, Guinea, Guinea Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone and
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integration through progressively free movement of goods, capital, and people and to consolidate

states’ efforts to maintain peace, stability, and security (see [7]). At the bottom of the ranking

(with Iini ≤ −10%), we have mainly countries of Eastern Asia (as Hong Kong, Macao, Mongolia,

Myanmar, Philippines) characterized by an immigration from China and also from other countries

with higher GDP (for instance from Russia for Mongolia, from USA for Hong Kong and Philippines,

from Portugal for Macao).

category

[−26%−10%]
(−10%,−5%]
(−5%,−1%]
(−1%,−0.1%]
(−0.1%,0.1%]
(0.1%,1%]
(1%,10%]
(10%,26%]

Index (Origin Countries)

category

[−26%−10%]
(−10%,−5%]
(−5%,−1%]
(−1%,−0.1%]
(−0.1%,0.1%]
(0.1%,1%]
(1%,10%]
(10%,26%]

Index (Destination Countries)

Figure 4: Figure reports indicators for different origin and destination countries (see formulas (11)

and (12)). In top figure, a negative index (green colour) means that people of that country migrated

on average to countries with a greater economic strength and community level. In general, results

confirm that migrants move toward destination countries with a higher community and GDP level.

As regard to the destination countries (bottom figure), we observe a negative index when, on average,

immigrants come from richer or more interconnected countries.

Indicators have been also computed by grouping countries according to a macro area classifica-

tion. We followed the composition of geographical regions used by the Statistics Division of United

Nations in its publications and databases. Each country or area is shown in one region only. These

geographic regions are based on continental regions, further subdivided into sub-regions and inter-

Togo have accordingly agreed to a Revised Treaty of 24th July, 1993
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mediary regions drawn as to obtain greater homogeneity in terms of population size and accuracy

of demographic statistics. Results are displayed in Table 2.

It is noteworthy that emigrants move on average towards countries and regions with a higher

GDP or community structure. Exception are represented by Northern America and Eastern Asia.

However, Eastern Asia is characterized by a significant heterogeneity with a positive index for

China and very negative values for Republic of Korea and Hong Kong. As already stressed before,

at the bottom we have Caribbean and Central America with a significant emigration towards other

countries of the North and South American continents.

Looking instead at values of IinK , Northern America and all European sub-regions show positive

indices. The effect of recent migration flows to EU ([17]) explain these values. Also Eastern Europe

seems more affected than in the past by immigration. How many people working in this sector

are suggesting for some time now: Europe’s restrictive policies and tightened borders do not deter

overall migration but instead merely divert flows towards different routes.

UN geographic regions Iout
K UN geographic regions IinK

Northern America 12.0% Northern America 20.5%

Eastern Asia 2.5% Western Europe 2.0%

Middle Africa -1.2% Northern Europe 1.0%

Western Europe -1.4% Eastern Europe 0.5%

Southern Asia -1.9% Southern Europe 0.3%

Northern Africa -2.1% Southern Asia 0.2%

Central Asia -2.2% Western Africa 0.0%

Western Asia -2.3% Eastern Africa -0.1%

Eastern Europe -2.3% Middle Africa -0.2%

Northern Europe -2.4% Northern Africa -0.4%

Western Africa -2.5% Western Asia -0.6%

Southern Africa -2.6% Southern Africa -0.6%

Eastern Africa -2.6% South America -0.7%

Australia and New Zealand -3.3% Australia and New Zealand -1.3%

Southern Europe -3.6% Central Asia -1.4%

Polynesia -4.8% South-Eastern Asia -1.4%

South-Eastern Asia -5.8% Melanesia -2.3%

Melanesia -5.9% Polynesia -3.1%

South America -7.0% Caribbean -5.5%

Micronesia -8.9% Eastern Asia -6.1%

Caribbean -19.3% Micronesia -6.5%

Central America -23.2% Central America -11.5%

Table 2: Out and in indicators for each macro area based on UN classification (see formulas (14)

and (13) respectively). Indicators are ranked in decreasing order.
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5 Conclusions

Immigration is now a prominent feature in the economic, social, and political landscape of many

countries. The reception and assimilation of immigrants is indeed a significant economic and social

phenomenon in many previous emigration countries. This paper provides a unified view of the anal-

ysis of migration whose nature is of social and economic type. To this aim, worldwide migration is

here presented as a network and a related socio-economic indicator is proposed. Both the macroeco-

nomic status and the community structure of origin and destination countries are taken into account.

Indeed, the interconnection plays a fundamental role in determining the migration patterns. The

interconnectedness of the network is here represented by means of the weighted clustering coefficient,

referring to both immigration for destination countries and emigration for origin ones.

Empirical analysis confirms that migrants move, on average, toward destination countries with a

higher community and GDP level. Furthermore, the indicator proves effective also in capturing

patterns of migration flows showing at different “observation scales” peculiarity of countries or

macro-areas of the world. Hence, we are able to catch distinctive behaviours related to specific

contexts.
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