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Abstract: Photothermal techniques are infrared remote sensing techniques that have been used for 7 

biomedical applications as well as industrial non-destructive testing (NDT). Machine Learning is a 8 

branch of artificial intelligence, which includes a set of algorithms for learning from past data and 9 

analyzing new data without being explicitly programmed to do so. In this paper, we first review the 10 

latest development of Machine Learning and its applications in photothermal techniques. Next, we 11 

present our latest work on Machine Learning for data analysis in Opto-Thermal Transient Emission 12 

Radiometry (OTTER), which is a type of photothermal techniques that has been extensively used in 13 

skin hydration, skin hydration depth profiles, skin pigments, as well as topically applied substances 14 

skin penetration measurements. We have investigated different algorithms such as Random Forest 15 

Regression, Gradient Boosting Regression, Support Vector Machine (SVM) Regression, Partial Least 16 

Squares Regression, as well as Deep Learning Neural Networks Regression. We first introduce the 17 

theoretical background, then illustrate its applications with experimental results. 18 

Keywords: photothermal techniques, skin hydration, machine learning, deep learning, regression, 19 

classification; 20 

 21 

1. Introduction 22 

Photothermal techniques [1] are infrared remote sensing techniques that have been 23 

used for biomedical applications as well as industrial non-destructive testing (NDT). They 24 

can be dated back to the 1970s [2,3]. Photothermal techniques have since developed into 25 

different approaches, such as photothermal radiometry [4-7], photothermal tomography 26 

[8], photothermal imaging [9], photothermal radar [10], photothermal lens [11,12], photo- 27 

thermal cytometry [13] and so on. The main advantages of photothermal techniques lie in 28 

their non-invasive, remote-sensing, most importantly spectroscopic nature, which make 29 

photothermal techniques a potentially powerful tool in many industrial, agricultural, en- 30 

vironmental and biomedical applications. Pawlak has highlighted the advantages of spec- 31 

trally resolved photothermal radiometry measurements on semiconductor samples [14]. 32 

Machine learning [15,16] is a branch of artificial intelligence, which includes a set of 33 

algorithms for learning from the past data and analyzing the new data without being ex- 34 

plicitly programmed to do so. Machine Learning can be generally divided into Supervised 35 

Learning, Un-supervised Learning, Semi-supervised Learning and Reinforcement Learn- 36 

ing. Machine Learning has also been used in photothermal techniques recently. Verdel et 37 

al have developed a predictive model for the quantitative analysis of human skin using 38 

photothermal radiometry and diffuse reflectance spectroscopy [17,18], as well as a hybrid 39 

technique for characterization of human skin by combining Machine Learning and in- 40 

verse Monte Carlo approach [19], and they made their Machine Learning model publi- 41 

cally available through GitHub platform [20]. Ahmadi et al have developed a customized 42 

deep unfolding neural network, called Photothermal-SR-Net, for enabling super resolu- 43 

tion (SR) imaging in photothermal radiometry [21]. Their model was based on an original 44 
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deep unfolding neural network (USRNet) [22]. Jawa et al have used Machine Learning 45 

and statistical methods for studying voids and photothermal effects of a semiconductor 46 

rotational medium with thermal relaxation time [23]. Kovács et al [24] have investigated 47 

Deep Learning approaches, based on U-net [25], for recovering initial temperature profiles 48 

from thermographic images in non-destructive material testing. There are also several 49 

studies using Deep Learning neural networks on infrared thermal images for machine 50 

health monitoring [26,27], as well as for pavement defect detection and pavement condi- 51 

tion classification [28]. Qu et al have developed a low-cost thermal imaging with Machine 52 

Learning for non-invasive diagnosis and therapeutic monitoring of pneumonia [29]. Gajj- 53 

ela et al have leveraged mid-infrared spectroscopic imaging and deep learning for tissue 54 

subtype classification in ovarian cancer [30]. Li Voti et al have developed photothermal 55 

depth profiling by Genetic Algorithms [31]. Xiao et al have conducted a review of the field 56 

including photothermal depth profiling techniques [32,33]. 57 

In this paper, we use Machine Learning for analyzing our own measurement data by 58 

using Opto-thermal transient emission radiometry (OTTER), which is a type of photother- 59 

mal radiometry technique that has been used in skin hydration, hydration depth profiling, 60 

skin pigments and trans-dermal drug delivery studies [32-39]. Compared with other tech- 61 

nologies, OTTER has the advantages of non-contact, non-destructive, quick to make a 62 

measurement (a few seconds), and being spectroscopic in nature. It is also color blind, and 63 

can work on any arbitrary sample surfaces. It has a unique depth profiling capability on 64 

a sample surface (typically the top 20 µm)[33], which makes it particularly suitable for 65 

skin measurements. OTTER is information rich, however to analyze the signal and get the 66 

information is often difficult. To solve this problem, we proposed using Machine Learning 67 

for data analysis. Comparing conventional mathematical analysis, the main advantage of 68 

Machine Learning is that it can study and learn to analyze the data automatically, without 69 

the need of building complex mathematical models. We have investigated different algo- 70 

rithms such as Random Forest Regression, Gradient Boosting Regression, Support Vector 71 

Machine (SVM) Regression, Partial Least Squares Regression, as well as Deep Learning 72 

Neural Networks Regression. We first introduce the theoretical background, then illus- 73 

trate its applications with experimental results. 74 

2. Materials and Methods 75 

This section describes the OTTER apparatus used, the machine learning algorithms 76 

developed, the volunteer information and the measurement procedures. 77 

2.1. OTTER Apparatus 78 

Figure 1 shows the schematic diagram of Opto-thermal transient emission radiome- 79 

try (OTTER). It uses a pulsed laser (Er:YAG laser, 2.94µm, a few milli joules per pulse) as 80 

a heat source to heat the sample, an ellipsoidal mirror, and a fast infrared MCT (mercury 81 

cadmium telluride, InfraRed Associates, Inc., USA) detector to measure the consequent 82 

blackbody radiation increase of the sample [31,32]. The MCT detector used is the most 83 

sensitive infrared detector on the market. It is liquid nitrogen cooled and has a wide sen- 84 

sitivity spectrum range (3-15μm), high bandwidth (10MHz), and a purposely designed 85 

amplifier. A narrow band interference filter is also used in front of the MCT detector to 86 

select different detection wavelengths. By analyzing the OTTER signals, we can get the 87 

optical properties, thermal properties, and layered structure information from the sample. 88 

The selection of detection wavelength is achieved by using narrow bandpass mid-infrared 89 

interference filters. By selecting different detection wavelengths using different narrow 90 

band interference filters, we can measure different properties of the sample, for example, 91 

the water concentration information in skin (13.1 µm) or solvent concentration infor- 92 

mation within skin (9.5 µm). The OTTER detection depth is about 20µm. No other tech- 93 

niques can do depth-profiling in this range on in-vivo samples [32]. The OTTER skin 94 
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measurements therefore should only be confined within Stratum Corneum, which is the 95 

outmost skin layer. 96 

 97 

Figure 1. The schematic diagram of OTTER measurements [33]. 98 

For most OTTER measurements, it can be simplified as one dimensional semi-infinite 99 

problem [31]. For a semi-infinite, optically homogenous material, the OTTER signal can 100 

be generally expressed as [5-7], 101 

S(t) = Aet/τerfc√t/τ  (1) 

Where A is the amplitude of the signal, τ=1/(β2 D) is the signal decay lifetime, β is the 102 

sample’s emission absorption coefficient, and D is the sample’s thermal diffusivity. By 103 

fitting the OTTER signal using Eq.(1), we can get the best fit β, and from β we can get the 104 

water content H in the sample, i.e. skin, hair, or nail [32]. 105 

H =  
𝛽𝑤−𝛽

𝛽𝑤−𝛽𝑑
  (2) 

Where βw is the emission absorption coefficient of water, βd is the emission absorp- 106 

tion coefficient of dry sample. By using segmented least square (SLS) fitting, we can also 107 

get the water content at different depth, details are available elsewhere [33-35]. 108 

For a semi-infinite, optically non-homogenous material, the first assumption is that 109 

β is a linear function of depth [32], 110 

β(z) =  β0 + 𝑤𝛽𝑧 (3) 

where β0 is the absorption coefficient of the surface of the skin, and 𝑤𝛽 is the gradient 111 

of the absorption coefficient. Then, the corresponding OTTER signal can be calculated as: 112 

S(t) = A (
2𝑊√𝑡𝜏

√𝜋(2𝑊𝑡+1)
+

1

√2𝑊𝑡+1
e

t/τ

2𝑡/τ+1erfc (
√t/τ

√2𝑊𝑡+1
))  (4) 

Where 𝑊 = 𝑤𝛽𝐷 is the effective gradient, and τ=1/(β2 D) is the signal decay lifetime. 113 

By fitting the OTTER signal with Eq. (4) we can get the skin surface absorption coefficient 114 

β0 and the effective gradient W. 115 

For most complex materials, where β is not a linear function of depth, we can use the 116 

enhanced segmented least squares (SLS) fitting algorithm [33], to get the skin hydration 117 

depth profiles in the following steps:  118 

1. Load the OTTER signal 119 

2. Find the starting point and end point of the signal 120 
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3. Fit the entire signal with Eq.(1) to get an average sample’s emission absorption 121 

coefficient β. 122 

4. Divide signal into 10 slices. 123 

5. Fit the first slice of the signal with Eq.(1) to get the first β, then calculate the cor- 124 

responding detection depth z. 125 

6. Fit the first and the second slice of the signal with Eq.(1) to get the second β, then 126 

calculate the corresponding detection depth z. 127 

7. Repeat step 6 until all the slices are used. 128 

 129 

With the above algorithm, we can then plot β against depth z to get a depth resolved 130 

emission absorption coefficient. With Eq.(2) we can also interpret the plot as skin hydra- 131 

tion levels at different depth (in micron meters), as shown in Figure 2.  132 

 133 

As the we can see, the skin water hydration levels depth profiles are not linear, to 134 

simplify the problem, we fit the skin hydration depth profiles results in Figure 2 with 135 

Eq(3), to get simplified linear distribution of skin water content, as shown in Figure 3. 136 

 137 

 138 

Figure 2. The typical OTTER measurement signals (left) and the corresponding hydration depth 139 
profiles (right) analyzed by using enhanced segmented least squares (SLS) fitting algorithm, of skin 140 
site at arm low, arm high, face, finger back, finger front and forehead. 141 
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 142 

Figure 3. The simplified linear skin hydration distribution by fitting the skin hydration profiles in 143 
Figure 2 with Eq(3). The smooth curves are original profiles, the curves with squared markers are 144 
fitted straight line profiles. 145 

 146 

2.2. Machine Learning Algorithms 147 

From the history of Artificial Intelligence (AI) development [39], it can be roughly 148 

divided into three stages, artificial neural networks (1950s – 1970s), Machine Learning 149 

(1980s – 2010s) and Deep Learning (2010s – present). Generally speaking, Machine Learn- 150 

ing is considered as a subset of AI, and Deep Learning is considered as a subset of Machine 151 

Learning. Machine Learning was originally developed in 1980s and consists a set of math- 152 

ematical algorithms that can automatically analyze the data without being specifically 153 

programmed to do so. Machine Learning can be divided into Supervised Learning, Unsu- 154 

pervised Learning, Semi-supervised Learning and Reinforcement Learning [40]. In this 155 

paper, we will mainly focus on Supervised Learning, for the purpose of Regression and 156 

Classification. For Regression, we have investigated different algorithms such as Lasso 157 

(least absolute shrinkage and selection operator) [41], ElasticNet [42], Decision Tree [43], 158 

Support Vector Machine [44], Gradient Boosting [45], Linear Regression [46], Random 159 

Forest [47], K Nearest Neighbors [48], Extreme Gradient Boosting [49], Partial Least 160 

Squares(PLS) Regression [50], Voting Regression [51], Ridge regression with built-in 161 

cross-validation (RidgeCV) [52], as well as Deep Learning Neural Networks [53,54], to 162 

analyze the OTTER data. For Classification, we have investigated different Supervised 163 

Learning algorithms for classifying OTTER data. 164 

Lasso Regression and Ridge Regress can be viewed as improved versions of Linear 165 

regression [55]. For linear regression, the cost function RSS (Residual Sum of Squares) can 166 

be written as: 167 

 168 

𝑅𝑆𝑆 (𝑊) =  ∑ (𝑦𝑖 − 𝑦̂)2𝑁
𝑖=1  =  ∑ (𝑦𝑖 − ∑ (𝑤𝑗𝑥𝑖𝑗))𝑀

𝑗=1
2𝑁

𝑖=1  (4) 

 169 
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Where 𝑦𝑖 is the individual y values, N is total number of y values, 𝑤𝑗  is the corre- 170 

sponding weight for the 𝑥𝑖𝑗 , M is the total number of x values. In order to minimize this 171 

cost, we generally use an algorithm called “gradient descent” [56]. Gradient descent 172 

means to calculate the partial differentiation of the above equation against weight 𝑤𝑗 , and 173 

adjust weight in each iteration until it reaches the optimum stage. However, when the 174 

gradient is close to zero, the gradient descent algorithm will stop to work. This is com- 175 

monly known as vanishing gradient [57]. 176 

Ridge Regression calculate the cost function RSS as the following, with sum of weight 177 

squares: 178 

 179 

𝑅𝑆𝑆 (𝑊) =  ∑ (𝑦𝑖 − 𝑦̂)2𝑁
𝑖=1  =  ∑ (𝑦𝑖 − ∑ (𝑤𝑗𝑥𝑖𝑗))𝑀

𝑗=1
2𝑁

𝑖=1 + 𝜆 ∑ (𝑤𝑗)𝑀
𝑗=1

2
 (4) 

The 𝜆 is the calculation parameter. When we do the partial differentiation of the 180 

above equation, it is equivalent reduce the effect of weight, and can help in the event van- 181 

ishing gradient problem. 182 

Lasso Regression calculate the cost function RSS as the following, with the sum ab- 183 

solute value of the magnitude of weights: 184 

 185 

𝑅𝑆𝑆 (𝑊) =  ∑ (𝑦𝑖 − 𝑦̂)2𝑁
𝑖=1  =  ∑ (𝑦𝑖 − ∑ (𝑤𝑗𝑥𝑖𝑗))𝑀

𝑗=1
2𝑁

𝑖=1 + 𝜆 ∑ ⌊𝑤𝑗⌋𝑀
𝑗=1

2
 (4) 

 186 

Ridge Regression includes all (or none) of the features in the model, hence has the 187 

advantage of coefficient shrinkage and reducing model complexity. 188 

Lasso Regression also has several benefits, apart from shrinking coefficients, it also 189 

performs feature selection. This is equivalent to exclude certain features from the model. 190 

Elastic_Net Regression uses the linear combination of the penalty functions of Ridge 191 

Regression and Lasso Regression. By using this approach Elastic_Net can help on overfit- 192 

ting and underfitting problems. 193 

Decision Tree and Random Forest are very popular Machine Learning algorithms. 194 

They are commonly used for classification. For Regression, the tree predicted outcome can 195 

be considered a real number, and it can contain different levels of depth, not enough layers 196 

of depth can result to underfit, and too many layers of depth can lead to overfit. 197 

Support Vector Machine (SVM) is another popular Machine Learning algorithm, that 198 

is commonly used in Classification. For Regression, Support Vector Regression (SVR)’s 199 

goal is to find a function that approximates the relationship between the input variables 200 

and an output variable, with minimum error. SVR can handle non-linear relationships 201 

between the input variables and the target variable and makes it a powerful tool for ana- 202 

lyzing complex problems. 203 

Gradient boosting is a relatively new Machine Learning algorithm that is particularly 204 

suitable for tabular datasets. Gradient boosting is a type of ensemble methods where you 205 

create multiple weak models and in order to get better performance as a whole. It can find 206 

any nonlinear relationship between your model target and features and has great usabil- 207 

ity. It can also effectively deal with missing values, outliers, and high cardinality categor- 208 

ical values on your features. There are different versions of gradient boosting trees such 209 

as XGBoost or LightGBM.  210 

Partial least squares regression (PLS regression) is a popular regression technique 211 

that is commonly used in spectral data analysis. It first projects the input data into a new 212 

space, then tries to fit the data by using a linear regression model in the new space. It is a 213 

quick, efficient and optimal regression technique. PLS regression is recommended in cases 214 

of regression where the number of explanatory variables is high, and likely multicolline- 215 

arity among the variables [58,59]. 216 

Voting Regressions [60] belongs to the family of Ensemble Learning [61], which com- 217 

bines the predictions from multiple individual regression models to improve the 218 
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performance. Voting Regressor can use simple averaging or weighted averaging to decide 219 

the final outcome. 220 

 221 

2.3. Measurement Procedure 222 

All the measurements were performed on healthy volunteer (male and female, age 223 

25 - 55), under normal ambient laboratory conditions of 20-21°C and 40-50% RH. The vol- 224 

unteer was instructed avoid excess water intake and the measurements were perform in 225 

the morning. The volar forearm skin sites used were initially wiped clean with 226 

ETOH/H2O (95/5) solution. The volunteer was then acclimatized in the laboratory for 20 227 

minutes prior to the experiments. 228 

3. Results and Discussions 229 

3.1. Regression - Homogenous Model 230 

All the OTTER measurements are done and analyzed using the steps described in 231 

section 2.1. OTTER signals are analyzed by using Eq.(1) and the skin hydration are calcu- 232 

lated by using Eq.(2). Figure 4 shows 97 OTTER skin measurement signals and the corre- 233 

sponding skin hydration levels in percentages calculated by using Eq.(1) and Eq.(2). These 234 

OTTER signals are were measured from the volar forearm of healthy volunteers, 20-30 235 

years old, understand the standard laboratory condition (21°C, 40%). 236 

 237 

  

(a) (b) 

Figure 4. The OTTER skin measurement signals (a) and corresponding skin hydration levels in per- 238 
centages (b). 239 

We randomly divided the above set of 97 measurement data into 75% as training dataset, and 25% 240 
as testing dataset and fed them into different Machine Learning algorithms models. Figure 5 shows 241 
the different Machine Learning Regression results. The results show that Lasso, Elasticnet, and Sup- 242 
port Vector Machine Regressor (SVR) are almost completely not working in this case. Gradient 243 
Boosting, Extreme Gradient Boosting, as well as Decision Tree, work fine for the training data, but 244 
not very well for the testing data. Linear Regression gives the best results, followed by K Nearest 245 
Neighbors, Partial Least Squares Regression(PLS) and Random Forest. Deep Learning Neural Net- 246 
work, see Figure 6 for the architecture, was also used. It works fine for the training data, but not 247 
very well for the testing data. 248 

 249 
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 250 

Figure 5. The Regression results of different Machine Learning algorithms models, (A) Lasso, (B) 251 
ElasticNet, (C) Decision Tree, (D) Support Vector Machine, (E) Gradient Boosting, (F) Linear Regres- 252 
sion, (G) Random Forest, (H) K Nearest Neighbours, (I) Extreme Gradient Boosting, (J) Partial Least 253 
Squares(PLS) Regression, (K) Voting Regression, (L) Deep Learning. 254 

 255 

 256 

 257 
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 258 

Model: "sequential" 259 

_________________________________________________________________ 260 

Layer (type)                 Output Shape              Param #    261 

================================================================= 262 

dense (Dense)                (None, 256)               1048832    263 

_________________________________________________________________ 264 

dense_1 (Dense)              (None, 256)               65792      265 

_________________________________________________________________ 266 

dense_2 (Dense)              (None, 32)                8224       267 

_________________________________________________________________ 268 

dense_3 (Dense)              (None, 11)                363        269 

================================================================= 270 

Total params: 1,123,211 271 

Trainable params: 1,123,211 272 

Non-trainable params: 0 273 

_________________________________________________________________ 274 

Figure 6. The Deep Learning model architecture. 275 

 276 

3.2. Regression - None-Homogenous Model 277 

Figure 7 shows the same 97 OTTER skin measurement signals and the corresponding skin hydration 278 
depth distributions analyzed by using enhanced segmented least squares (SLS) fitting algorithm, 279 
then fitted with Eq(3). 280 

Figure 8 shows the different Machine Learning Regression results. As you can see, again, Linear 281 
Regression gives the best result, it works well for both training data and testing data. RidgeCaV also 282 
gives a very good result, followed by PLS regression and K Nearest Neighbor. Deep Learning Neu- 283 
ral Networks with the same architecture shown in Figure 6 was also used, again, it does not work 284 
very well. 285 

  

(a) (b) 

Figure 7. The OTTER skin measurement signals (a) and corresponding skin hydration [%] linear 286 
distribution depth profiles (b). 287 
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(A) (B) 

  
(C) (D) 

  
(E) (F) 

 288 

Figure 8. The Regression results of different Machine Learning algorithms models, (A) Random 289 
Forest, (B) RidgeCV, (C) Partial Least Squares(PLS) Regression, (D) K Nearest Neighbours, (E) Lin- 290 
ear Regression, (F) Deep Learning Neural Networks.. 291 

 292 

3.3. Classification - Real OTTER Data 293 



Sensors 2023, 22, x FOR PEER REVIEW 12 of 18 
 

 

Figure 9 shows 20 OTTER signals of 4 different healthy volunteers (male and female, aged 25 - 55 294 
years old) on the volar forearm, each volunteer has 5 measurement signals and volunteers are clas- 295 
sified as 1, 2, 3, and 4. 296 

 

 

(A) (B) 

Figure 9. The 20 OTTER signals of 4 different volunteers on the volar forearm (A) and the corre- 297 
sponding 3D presentation (B). 298 

 299 

The 20 OTTER signals were then randomly divided into a 75% training dataset and 300 

a 25% testing dataset. The training dataset was used to train Machine Learning models, 301 

and trained Machine Learning models were then tested on the testing dataset. The follow- 302 

ing are classification results, as shown in Table 1. Accuracy means how many percentage 303 

of data that a model predicted correctly. Logistic, Ada Boost, and Gradient Boost give the 304 

best results, which achieved 100% accuracy for training data and 100% accuracy for testing 305 

data. The Deep Learning Neural Networks model based on the architecture shown in Fig- 306 

ure 7, also performs well and reached 88.2% for training data and 83.3% for testing data. 307 

Table 1. The classification accuracy results for Logistic, Naïve Bayes, SVC, Random Forest, Bagging 308 
Classifier, Ada Boost Classifier and Gradient Boosting Classifier. 309 

Models Accuracy (Training) [%] Accuracy (Test) [%] 

Logistic 100.0% 100.0% 

Naive Bayes 100.0% 83.3% 

SVC 82.4% 83.3% 

Random Forest 100.0% 83.3% 

Bagging 70.6% 66.7% 

Ada Boost 100.0% 100.0% 

Gradient Boost 100.0% 100.0% 

Deep Learning 88.2% 83.3% 

LDA 82.4% 83.3% 

   

 310 
 311 

Linear Discriminant Analysis (LDA) [62] and Principal Component Analysis (PCA) 312 

[63] are two related Machine Learning Algorithms for dimensionality reduction before 313 

later classification. LDA projects the data into a lower dimensioned space to separate the 314 

data better into different classes and to reduce computational costs, whilst PCA aims to 315 

project the data into new axis (called components), to maximize the variance. LDA first 316 

calculates the mean and covariance matrix for each class in the data, then calculates the 317 
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scatter matrix between classes and that of within each class. The goal is to find a projection 318 

that can maximize the ratio of the scatter matrix between classes and that of within each 319 

class. PCA first centers the data around its mean, then finds the eigenvectors and eigen- 320 

values of the covariance matrix, which are then used to project the data onto a lower- 321 

dimensional space. The eigenvectors specify the directions of maximum variance, and ei- 322 

genvalues specify the corresponding amount of variance. The number of principal com- 323 

ponents represents the amount of variance we want to retain. Typically, we choose the 324 

number of principal components that is enough to explain a certain percentage of the total 325 

variance in the data.  326 

 327 

Figure 10 shows the LDA plot of the first two components of the 20 OTTER signals 328 

of 4 different volunteers on the volar forearm. The results show that LDA can reasonably 329 

separate the OTTER signal from different volunteers effectively, the classification results 330 

show that LDA can reach 82.4% accuracy on training data and 83.3% accuracy on testing 331 

data. 332 

 333 

Figure 11 shows the PCA plot of the first two components of the 20 OTTER signals 334 

of 4 different volunteers on the volar forearm. The results show that PCA can also reason- 335 

ably separate the OTTER signal from different volunteers effectively. By applying Ran- 336 

dom Forest Classifier on PCA results, we can also achieve 100% accuracy was achieved 337 

on classifying training data and 100% accuracy on classifying testing data. 338 

 339 

With SHAP (SHapley Additive exPlanations) [63] values we can also evaluate the 340 

importance of each feature, and how it affects each final prediction. SHAP is originally a 341 

game theoretic approach that measures each player's contribution to the final outcome, 342 

and now has been widely using in Machine Learning to analyze the feature importance. 343 

In Machine Learning, each feature is assigned an important value representing its contri- 344 

bution to the model's output. By plotting the features according to their importance val- 345 

ues, we can understand which are the most important features and which are the least 346 

important features. SHAP values can be used to interpret any machine learning model, 347 

such as Linear regression, Decision trees, Random forests, Gradient boosting models, and 348 

Neural networks and so on. Figure 12 shows the important features for OTTER data clas- 349 

sification. As we are using OTTER signal data values as features, features 0, 1, 2, 3, 4 are 350 

the first four data points of the OTTER signal. This means that for classification, the early 351 

part of the signal is more important than the later part of the signal. 352 

 353 

 354 
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 355 

Figure 10. The LDA plot of the first two components of the 20 OTTER signals of 4 different volun- 356 
teers on the volar forearm. 357 

 358 

Figure 11. The PCA plot of the first two components of the 20 OTTER signals of 4 different volun- 359 
teers on the volar forearm. 360 
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 361 

Figure 12. The most important features according to SHAP values. 362 

As for the future work, we can further improve the classification accuracy in two 363 

ways, fine tuning model hyper parameters [65] and using Voting Classifier [66].  364 

For most Machine Learning models, they have many hyper-parameters, and choos- 365 

ing the correct values for the hyper-parameters can have a good impact for the prediction 366 

accuracy. Take SVM (Support Vector Machine) for example, it can have the following hy- 367 

per-parameters, C: the regularization parameter, kernel: the kernel type (‘linear’, ‘poly’, 368 

‘rbf’, ‘sigmoid’, ‘precomputed’, or a callable) to be used in the algorithm, degree: the de- 369 

gree of the polynomial kernel function (‘poly’) and ignored by all other kernels, the default 370 

degree value is 3, gamma: the kernel coefficient for ‘rbf’, ‘poly’, and ‘sigmoid’. If gamma 371 

is ‘auto’, then 1/n_features will be used instead. There can be several ways to find the best 372 

hyper-parameter values. The simplest one is exhaustive grid search, i.e. search all possible 373 

combinations. As you can see, this touch is comprehensive, but could be very time-con- 374 

suming. An alternative approach is randomized parameter optimization, in which you 375 

first randomized the hyper-parameter values, then perform searching for the optimized 376 

values. 377 

A voting classifier is a machine learning model that improves the classification accu- 378 

racy by using a collection of models and predicts the results based on the largest majority 379 

of votes. It averages each classifier’s results into the voting classifier. There are two differ- 380 

ent types of voting classifiers: Hard Voting and Soft Voting. Hard Voting predicts output 381 

with the highest majority of votes. Soft Voting averages the probabilities of the classes 382 

determine which one will be the final prediction.  383 

 384 

5. Conclusions 385 

We have investigated a range of Machine Learning algorithms for analysing our 386 

opto-thermal transient emission radiometry (OTTER) signals. For regression, we have in- 387 

vestigated the OTTER signals using both homogenous model and non-homogenous 388 

model. For homogeneous model, the results show that Lasso, Elasticnet, and Support Vec- 389 

tor Machine Regressor (SVR) are not working at all. Linear Regression gives the best re- 390 

sults, followed by K Nearest Neighbors and Random Forest. For non-homogeneous 391 

model, Linear Regression gives the best result, followed by RidgeCV, PLS regressor and 392 

K Nearest Neighbors. In both cases, Deep Learning Neural Network model does not work 393 

well. For classification, Logistic, Ada Boost, and Gradient Boost give the best results, 394 

which achieved 100% accuracy for both training data and testing data. LDA and PCA can 395 

effectively separately the OTTER signals from different volunteers. By applying Random 396 

Forest Classifier on PCA results, we can also achieve 100% accuracy on classifying both 397 

training data and testing data. With SHAP values we can understand the importance of 398 

the different features. The results show that for classification, the early part of the OTTER 399 
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signal is more important than the later part of the signal. For the future work, we can 400 

further improve the classification accuracy by using fine tuning model hyper parameters 401 

and Voting Classifier. 402 

The main advantage of Machine Learning algorithms is that it can learn through 403 

training data and once trained, it can automatically analyze any unseen data, without the 404 

needing of complex mathematical models. The main disadvantage of Machine Learning 405 

algorithms is that many works like a blackbox, more work is needed for explainable Ma- 406 

chine Learning algorithms. 407 
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