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A B S T R A C T
Background and Objective: Ulcerative colitis (UC) is an inflammatory bowel disease (IBD)

affecting the colon and the rectum characterized by a remitting-relapsing course. To detect mucosal
inflammation associated with UC, histology is considered the most stringent criteria. In turn, histo-
logic remission (HR) correlates with improved clinical outcomes and has been recently recognized as
a desirable treatment target. The leading biomarker for assessing histologic remission is the presence
or absence of neutrophils. Therefore, the finding of this cell in specific colon structures indicates that
the patient has UC activity. However, no previous studies based on deep learning have been developed
to identify UC based on neutrophils detection using whole-slide images (WSI).

Methods: The methodological core of this work is a novel multiple instance learning (MIL)
framework with location constraints able to determine the presence of UC activity using WSI.
In particular, we put forward an effective way to introduce constraints about positive instances
to effectively explore additional weakly supervised information that is easy to obtain and enjoy a
significant boost to the learning process. In addition, we propose a new weighted embedding to enlarge
the relevance of the positive instances.

Results: Extensive experiments on a multi-center dataset of colon and rectum WSIs, PICASSO-
MIL, demonstrate that using the location information we can improve considerably the results at WSI-
level. In comparison with prior MIL settings, our method allows for 10% improvements in bag-level
accuracy.

Conclusion: Our model, which introduces a new form of constraints, surpass the results achieved
from current state-of-the-art methods that focus on the MIL paradigm. Our method can be applied to
other histological concerns where the morphological features determining a positive WSI are tiny and
similar to others in the image.
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1. Introduction
Ulcerative colitis (UC) is a chronic inflammatory bowel

disease (IBD) affecting the colon and the rectum with a
propensity to arise in adolescents and young adults. The
incidence of UC has been increasing globally [1] and cur-
rently ranges from 4 to 20 per 100,000 in North America
and Europe [2].

The treatment of UC aims to extinguish bowel inflam-
mation and prevent complications. Histological assessment
plays a critical role in determining inflammatory activity.
In this vein, histologic remission (HR) (also referred to as
histologic healing, HH) is emerging as the most rigorous
target of treatment and is associated with favorable clinical
outcomes [3, 4, 5, 6]. However, incorporating histology into
clinical practice remains challenging. This is due to: (1) the
lack of a universal definition of HR that varies depending
on the histological score/index applied, (2) the complexity
of most scores and (3) the high inter-observer variability
between pathologists [4, 7, 8, 9].

Over the past decades, more than 30 histological scores
have been developed, although their adoption in clinical
practice remains modest [10, 11]. Similarly, different def-
initions and criteria of HR have been proposed, rang-
ing from ‘elimination of mucosal ulceration/erosion’ to
‘complete histological normalization’. Almost all investi-
gators now agree that the absence of neutrophilic infiltra-
tion (‘neutrophil-free’ mucosa) is the key to define HR
[11, 12, 13, 14]. Indeed, this has been endorsed by two
independent expert panels [14, 15]. Recently, our medical
team developed a simplified histological score, PICASSO
Histological Remission Index or PHRI, see Table 1 [16].

The primary aim of PHRI was to create a simple ‘neu-
trophil only’ histologic evaluation that predicted specified
clinical outcomes. The structures of the biopsy where to
evaluate the presence or absence of neutrophils and predict
histological remission are: (a) lamina propia, (b) surface
epithelium, (c) cryptal epithelium and (d) cryptal lumen, see
Figure 1.

The computer-aided diagnosis systems (CADs) based
on artificial intelligence (AI) aim to support pathologists in
the daily analysis of histological biopsies, reducing both the
workload and the inconsistency generated. Their final goal is
to produce a reliable and reproducible real-time assessment
of disease activity. With the emergence of digital pathology,
the digitization of histological tissue sections into whole-
slide images (WSIs) has been standardized, leading to the
application of computer vision methods. Additionally, pre-
vious research showed the applicability of computer vision
methods based on deep-learning approaches using WSIs for
cancer detection, inflammatory prediction, etc. Regarding
the detection of UC activity based on deep learning tech-
niques, available research has focused on the analysis of
endoscopic images [17, 18, 19, 20, 21], but so far, only one
study has approached the analysis of WSIs [22]. In [22],
the authors used a deep learning algorithm to quantify the

ORCID(s):

Table 1
PICaSSO Histologic Remission Index (PHRI) to predict histo-
logical remmision.

Histologic finding Score
Neutrophil infiltration in lamina propria

Absent (No) 0
Present (Yes) 1

Neutrophil infiltration in epithelium
Absent (No) 0
Present (Yes)
- Surface epithelium 1
- Cryptal epithelium 1
- Crypt abscess 1

Total Score = sum of all above (maximum 4)

density of eosinophils in sigmoid colon biopsies from con-
secutive UC patients with histologically active disease. The
algorithm was applied to sigmoid and colon biopsies from a
cross-sectional cohort of 88 UC patients with histologically
active disease as measured by the Geboes score and Robarts
histopathology index (RHI). However, this study does not
differentiate between remission and active WSI.

To the best of our knowledge, no previous study based
on deep learning has been carried out to identify UC activity
based on neutrophils detection using WSI, which has proven
to be an accurate indicator of disease activity. In this work,
we present a novel deep learning strategy to distinguish
histological remission from activity based on the detection
of neutrophils following the PHRI index. In summary, the
main contributions of this work are:

• A deep learning framework used for the first time to
accurately predict ulcerative colitis activity based on
neutrophil detection.

• A novel constrained formulation that leverages prior
knowledge in terms of relative tissue location (i.e. neu-
trophil location in the WSI) by imposing constraints
on the feature extractor at bag (WSI)-level.

• A new attention weight for embedding-level MIL,
which enlarges the relevance of the positive instances.

• We benchmark the proposed model against relevant
body of literature on PICASSO-MIL, a large cohort
of biopsies collected and digitalized in 7 centers in the
UK, Germany, Belgium, Italy, Canada and USA.

• Comprehensive experiments demonstrate the superior
performance of our model. By simply incorporating
information about neutrophil location during the train-
ing, we found improvements of nearly 10% for bag-
level classification compared to prior MIL methods.
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Figure 1: The larger image corresponds to a Whole-Slide Image (WSI) of a patient suffering from ulcerative colitis. The patches
marked with colours denote different interest structures. Specifically: (a) lamina propia, (b) surface epithelium, (c) cryptal
epithelium and (d) cryptal lumen. The black mark indicates the presence of a neutrophil.

2. Related work
2.1. Multiple instance learning

Multiple instance learning (MIL), a particular form of
weakly-supervised learning, aims at training a model us-
ing a set of weakly labeled data [23]. In MIL tasks, the
training dataset is composed of bags, where each one con-
tains a set of instances and its goal is to teach a model
to predict the bag label. A positive label is assigned to
a bag if it contains at least one positive instance. MIL
approaches have been successfully applied to computational
histopathology for tasks such as tumor detection based on
WSIs, reducing the time required to perform accurate an-
notations [24, 25, 26, 27, 28, 29]. Some of these works
use convolutional neural networks (CNNs) for the feature
extraction process in each instance independently and then
combine the instance-level information into one bag-level
output. Methods that combine instance-level features are
known as embedding-based, which require a later classi-
fication layer. In the case of [25], the bag level repre-
sentation is achieved by the aggregation of the features
through a simple batch global max-pooling (BGMP). Recent
methods have proposed weighted-average embeddings, us-
ing instance-specific attention weights learned via a multi-
layered perceptron projection or recurrent neural networks.
In contrast, instance-based architectures combine instance-
level predictions directly into the bag classification. In this
vein, [24] obtained a tile-level feature representation through
a CNN. These representations were then used in a recurrent

neural network to integrate the information across the whole
slide and report the final classification result to obtain a final
slide-level diagnosis.

In most MIL-based papers, the WSIs employed have
broad features that determine that a bag is positive. However,
in this case, small cells (neutrophils) with features very
similar to others in the tissue differentiate whether a bag is
positive. Therefore, the typical MIL approach is not useful
as the extracted activations are degrade and do not allow
satisfactory classification.
2.2. Constrained CNNs

Constrained classification aims to guide the training of
a CNN towards a solution that satisfies a given condition,
which takes advantage of additional knowledge to the global
labels. This learning paradigm has gained popularity on
weakly-supervised scenarios (e.g. weakly supervised seg-
mentation or MIL) since it allows to incorporate local in-
formation for improving the final task. Several works have
tackled the problem of weakly-supervised segmentation by
imposing constraints on deep CNNs [30, 31, 32, 33]. In [30],
the authors proposed a latent distribution and KL-divergence
to constrain the output of a segmentation network. It is used
in a semi-supervised setting to impose size constraints and
image-level tags (i.e., force the presence or absence of given
labels) on the regions of unlabeled images. Moreover, an
L2 penalty term was proposed in [31] to impose equality
constraints on the size of the target regions in the context
of histopathology image segmentation which considerably
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Figure 2: Pipeline showing the embedded-level approach for ulcerative colitis detection. By incorporating the proposed location
constraints, we force the backbone to extract more significant features from each patch belonging to a given bag. After that, we
classify the entire biopsy using an aggregated bag-level feature vector weighted by the proposed attention-embedding weights.

improved the results. More recently, the authors showed in
[32] that imposing inequality constraints on size directly in
gradient-based optimization, also via an L2 penalty term,
provided better accuracy and stability when few pixels of
an image are labeled. Similarly, Zhou et al. embedded prior
knowledge on the target size in the loss function by matching
the probabilities of the empirical and predicted output distri-
butions via the KL divergence. As directly minimizing this
term by standard SGD is difficult, they proposed to optimize
it by using stochastic primal-dual gradient [33]. While these
works have helped to improve segmentation in a weakly-
supervised setting, few studies focused on classification
frameworks. In this work, by means of location constraints,
we force the activations of the feature extractor to focus on
those regions where neutrophils are localized. In this way,
a reduced number of annotations can significantly improve
the classification results.

3. Methodology
Here, we build an end-to-end MIL method as our base-

line to perform image-to-image learning and prediction.
The MIL formulation, based on CNNs, enables to detect
neutrophils in WSIs and classify them into either histological
remission or adverse outcome (UC activity). In Figure 2,
the proposed framework is shown. In the following, we
describe the problem formulation and each of the proposed
components.
3.1. Problem formulation

In MIL tasks, the training dataset is composed of bags,
where each bag contains a set of instances (patches). A
positive label is assigned to a bag if it has at least one positive
instance. The goal of MIL is to teach a model to predict the
bag label.

We denote our training dataset by  = (𝑋𝑘, 𝑌𝑘) with
𝑘 = {1, 2, 3, . . . , 𝑁}, where 𝑋𝑘 denotes the 𝑘-th input bag
(WSI) and 𝑌𝑘 ∈ 0, 1 refers to the global label (ground truth
label) assigned to the 𝑘-th input WSI. Here, 𝑌𝑘 = 0 refers
to a WSI with remission and 𝑌𝑘 = 1 refers to ulcerative
colitis activity. Note that we denote each individual bag or
WSI as: 𝑋𝑘 =

{

𝑥𝑘,1, ..., 𝑥𝑘,𝑡, 𝑥𝑘,𝐼𝑛
}

, where 𝑥𝑘,𝑡 is the t-
th instance of the bag and 𝐼𝑛 denotes the total number of
patches or instances in a slide. The number of instances
varies considerably between slides.

The loss function used to optimize the end-to-end MIL
approach is the cross-entropy cost function:

𝑚𝑖𝑙 =
∑

𝑘
(𝐼(𝑌𝑘 = 1)𝑙𝑜𝑔𝑌𝑘 + 𝐼(𝑌𝑘 = 0)𝑙𝑜𝑔(1−𝑌𝑘) (1)

where 𝐼(·) is an indicator function.
3.2. MIL backbone with location constraints

As will be shown in the experiment section, our baseline
MIL formulation produces a decent result for the proposed
task but still with room for improvement. One problem is
that the positive instances predicted by the algorithm tend
to outgrow the true regions with inflammation (UC activity)
progressively. We propose using a neutrophil area constraint
term to restrict the expansion of positive instances during
training. We refer to our algorithm as location constrained
MIL, abbreviated as LCMIL.

We denote our training set as  = (𝑋𝑘, 𝑌𝑘, 𝐴𝑘) with 𝑘 =
{1, 2, 3, . . . , 𝑁}, where 𝑋𝑘 denotes the 𝑘-th bag, 𝑌𝑘 ∈ {0, 1}
refers to the global label (ground truth label) assigned to the
𝑘-th input WSI and 𝐴𝑘 specifies a rough estimation of the
relative area in which the neutrophils are located within the
image 𝑋𝑘. Being 𝑎(𝑖, 𝑗)𝑘,𝑡 the pixel (𝑖, 𝑗) in the 𝑡-th patch
from the bag 𝑘-th, 𝑎(𝑖, 𝑗)𝑘,𝑡 = 1 if it corresponds to a pixel
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that is located around a neutrophil, whereas 𝑎(𝑖, 𝑗)𝑘,𝑡 = 0,
otherwise. Note that the rough annotations of neutrophil
areas only are used for optimizing the parameters of the
networ (𝜃) and not for the prediction phase.

A Global-aggregation layer is implemented to obtain an
activation map representing the distribution of the features
extracted from each of the instances belonging to a given
bag. This layer summarizes the information from all spatial
locations in the feature-embedded map 𝐹𝑘,𝑡 ∈ ℝ𝐻×𝑊 ×𝐶

(corresponding to the last volume of features extracted by
the backbone) to one representative map 𝜌 ∈ ℝ𝐻×𝑊 . Note
that 𝐻 × 𝑊 are the dimensions of the instances and 𝐶 is
the number of filters. Therefore, 𝜌 ∈ ℝ𝐻×𝑊 is defined as
follows:

𝜌(𝑖, 𝑗)𝑘,𝑡 =
1
𝐶

∑

𝑐∈𝐶
𝐹𝑘,𝑡(𝑖, 𝑗, 𝑐) (2)

In this way, we have a representation of how the back-
bone attention is distributed over the instance surface. In
order to have the same dimension as the input instances
(2242), a bilinear interpolation is performed to the activation
map 𝜌. In the following step, 𝜌 is transformed into 𝜌𝑠 = 𝜙(𝜌),
where 𝜙 is the sigmoid activation function. The aim of the
sigmoid activation function is to range the map activation
function into [0-1]. Then, we define an area constraint as the
𝐿2 penalty:

𝑙𝑐 =
∑

𝑘,𝑡
𝐼(𝑌𝑘 = 1 𝑎𝑛𝑑 𝑎(𝑖𝑗)𝑘,𝑡 > 0) ((𝑎𝑘,𝑡−𝜙(𝜌𝑘,𝑡))2) (3)

Naturally, the global loss function can be updated from
Equation (1) to:

 = 𝑚𝑖𝑙 + 𝜆𝑙𝑐𝑙𝑐 (4)
where 𝜆𝑙𝑐 ∈ ℝ+ weights the importance of the constraint

during training.
3.3. MIL attention-embedding weights

After the feature extraction of each instance, we obtain
a C-dimensional feature vector. The bag label predictor is
in charge of aggregating the C-dimensional feature vectors
{

h𝑡
}

𝑡∈𝐼𝑛
into an embedding vector 𝑍𝑘 ∈ ℝ1×𝐶 represen-

tative of each bag. In the literature, there exist different
simple aggregation functions such as batch global max-
pooling (BGMP) or batch global average pooling (BGAP).
However, these operators have a clear disadvantage. They
are pre-defined and non-trainable. Other works use trainable
aggregation functions [34]. However, in some situations,
these attention weights have the same value for all instances
in the bag, which is not suitable to determine a positive bag.
This could be due to the complexity of the instance in some
bags and the over-fitting tendency of neural networks. To
solve this problem, we propose to use a weighted average of
instances where weights are obtained from the representative

maps 𝜌𝑘,𝑡. Note that the weights of these maps are updated
each epoch using the 𝑙𝑐 term. Additionally, the weights
must sum to 1 to be invariant to the size of a bag.

Therefore, the embedded feature vector per bag is ob-
tained as 𝑍𝑘 =

∑

𝑡∈𝐼𝑛 𝑎𝑡 ⋅ h𝑡, where 𝑎𝑡 is defined as:

𝑎𝑡 =
𝑒𝑥𝑝{

∑

𝜌(𝑖, 𝑗)∕𝑆}
∑

𝐼𝑛
𝑒𝑥𝑝{

∑

𝜌(𝑖, 𝑗)∕𝑆}
(5)

where 𝑆 = 𝐻 ⋅𝑊 .
This attention vector promotes variability between in-

stances of a positive bag. If there is no activation correspond-
ing to neutrophils in the map (𝜌𝑘,𝑡), the value of 𝑎𝑡 will be low
and therefore, the embedding features h𝑡 will have smaller
weight in the final prediction. In the case of a negative bag,
the attention values will be very similar and all instances
will contribute equally. The superiority of this aggregation
function for neutrophil identification and HR prediction will
be shown in Section 4.

4. Experiments and Results
4.1. Implementation

All the tested approaches were implemented using Ten-
sorflow 2.3.1 with Python. Experiments were conducted on
the NVIDIA DGXA100 system.

1) Dataset (PICASSO-MIL): We analyzed 230 col-
orectal biopsies from UC patients enrolled in a prospective
international multicenter study to evaluate the proposed
deep-learning methodology. Note that the slides belong to
7 different hospitals [35]. To process the large WSIs, these
were downsampled to 20x resolution, divided into patches of
size 512x512x3 with a 50% overlap among them. Aiming at
pre-processing the biopsies and reducing the noisy patches,
a mask indicating the presence of tissue in the patches was
obtained by applying the Otsu threshold method over the
magenta channel. Subsequently, the patches with less than
20% of tissue were excluded from the database. Using this
database, we carried out a patient-level data partitioning
procedure to separate training and validation sets, aiming to
avoid overestimating the system’s performance and ensuring
its ability to generalize. Additionally, 100 non-annotated
images at pixel-level were used to test the framework, see
Table 2. During training, the human pathologists (with more
than 35-year clinical experience) make two image-level an-
notations for each WSI, indicating each image as HR or UC
activity depending on PHRI, and roughly estimating which
areas of the image show neutrophils and inflammation. Only
the bag label is necessary to evaluate the proposed method.

2) Model parameters: The MIL loss is known to be hard
to train and special care is required for choosing training hy-
perparameters. To reduce fluctuations in optimizing the MIL
loss, all training data are used in each iteration (the minibatch
size is equal to the size of the training set). The network
is trained with stochastic gradient descent (SGD) optimizer
and a fixed learning rate of 0.01. The number of epochs was
adapted in function of the experiment performed.
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Table 2
Database description. Amount of whole-slide images (first
row), number of patches (second row) and percentage of slides
with PHRI>0, ulcerative colitis (third row).

Training Validation Test
Number of WSI 84 (64,6%) 46 (35,4%) 100
patches 61.1 ± 54.2 58.2 ± 36.4 481.2 ± 292.1
PHRI score>0 51,1 % 39,15% 48%

3) Backbone network: We choose the SeaNet (with
VGG16) proposed in [36] as the CNN architecture of our
framework since it demonstrated the improvement over stan-
dard methods in histological imaging. This framework is
composed of VGG16 as a feature extractor and a squeeze
and excitation attention network. In addition, we performed
fine-tuning of this model, as it had previously been trained
with histological images, in a different task, the detection of
skin tumors.

4) Evaluation: The quantitative comparison of the dif-
ferent methodologies was handled by means of different
figures of merit, such as sensitivity (SN), specificity (SPC),
positive predictive value (PPV), false-positive rate (FPR)
negative predictive value (NPV), F1-score (F1S), accuracy
(ACC) and area under the ROC Curve (AUC).
4.2. Ablation experiments

In the following, we provide comprehensive ablation
experiments to validate several elements of our model
(LCMIL), and motivate the choice of the values employed
in our formulation, as well as our experimental setting.

1) Weight of location constraint loss: The weight of the
constraint loss is crucial for LCMIL since it directly decides
the strength of constraints. Strong constraints may make
the network unable to converge, while weak constraints
have little help with learning. Therefore, we optimized the
proposed formulation with the location constraint term in
Eq. 4. Using the training setting previously described, we
cross-validated different values of 𝜆𝑎𝑐 = {0.1, 0.1, 1, 1, 5}.
Additionally, we tried two loss functions, 1 and 2, to
check for differences. We obtained bag-level ACC from the
validation subset using the ACC on validation subset as early
stopping criteria. Results are presented in Figure 3.

These results show that the inclusion of the 𝑙𝑐 term
improves the performance at bag level. Nevertheless, using a
too large slope once the performance is satisfied can lead to
a worsening of the results. Thus, we selected 𝜆𝑙𝑐 = 1, which
led to the best results at bag level in the validation cohort.

Additionally, we want to get a more intuitive view of
how the proposed methodology location constraint term
influences the extraction of discriminative features. For that
purpose, we depict the feature representation of the em-
bedding space produced by the encoder networks of MIL
without 𝑙𝑐 and the proposed encoder on the instance-
level labeled validation. Concretely, we obtained the class
activation maps for regions of a bag where neutrophils are
found (cryptal lumen, cryptal epithelium, lamina propia and
surface epithelium). In Figure 4, the annotations made by the

Figure 3: Ablation studies on MIL formulation. Hyperparam-
eters study for 𝜆𝑎𝑐 are performed for bag-level accuracy on
validation set. Confidence intervals are shown at 95%.

pathologists, the activation maps obtained by a MIL module
without 𝑙𝑐 and the proposed method are compared.

The MIL without location constraint module does not
focus its attention on the areas where neutrophils are located
by the pathologist but on other cells found in the tissue.
Note that neutrophils are very similar to other cells found
in the tissue, such as eosinophils, macrophages, etc., but in
this case, they do not determine that a patient has active
ulcerative colitis. This is why the specificity of this model is
very low. In contrast, the inclusion of the location constraints
module forces the network to focus its attention on the
real determining cells, the neutrophils. In this way, we can
therefore obtain precise instance-level maps for unannotated
images that allow us to detect the neutrophils.

2) Attention weights for bag classification: Using the
best configuration reached for the 𝜆𝑙𝑐 term, we optimized the
embedded feature vector per bag, see Table 3. This Table
compares the best-known methodologies for constructing
the embedded vector (BGAP, BGMP and MIL-Attention)
versus the proposed method. Since the features that dis-
criminate a positive bag are relatively small compared to
the dimension of the different instances, in this case, the
BGMP layer improves the results of the BGAP and MIL-
Attention layers. However, the proposed aggregation method
outperforms all previous methods.

To compare the distribution of the attention weights of
[34] with those proposed here, we show the histogram of
these values in a positive bag, see Figure 5. In this case, the
bag comprises 80 instances, of which only 15% are positive,
i.e., contain neutrophil structures. In Figure 5 (b), attention
proposed in [34], the different values of weights have similar
probabilities. Therefore, no discriminatory weighting is per-
formed to separate negative and positive instances. However,
with the proposed method, most instances (around 60) have
a low weight, which would belong to the instances with-
out neutrophils. The remaining weights are spread across
instances with neutrophils, with higher weights assigned to
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Figure 4: Class activation maps (CAMs) of some regions where neuthophils are found. First column: original images with
pathologist annotation (green and red annotations); Second column: CAMs obtained using the normal MIL model. Third column:
CAMs using the proposed location constraints.

Table 3
Comparison of the different attention embedding weights
on the validation set. BGAP: batch global average pooling,
BGMP: batch global max-pooling, LCMIL: neutrophil con-
strained weak supervision (proposed). Note that in all cases the
location constraint proposed is integrated into the backbone.

BGAP BGMP Attention [34] LCMIL
SN 0.9643 0.9643 0.8889 0.9643
SPC 0.6667 0.7778 0.7778 0.8333
PPV 0.8182 0.8710 0.8571 0.9000
NPV 0.9231 0.9333 0.8235 0.9375
F1S 0.8852 0.9153 0.8727 0.9310
ACC 0.8478 0.8913 0.8444 0.9130
AUC 0.8155 0.8710 0.8333 0.8988

those with more significant features. Therefore, the proposed
attention-based MIL allows to assign more discriminate
weights to instances within a bag and hence the final rep-
resentation of the bag is highly informative for the bag-level
classifier.

Figure 5: Distribution of embedding weights across the
instances that comprise a WSI. (a) Proposed attention em-
beddings. (b) Attention weights proposed in [34].

4.3. Comparison to the literature
To compare the proposed method with the MIL base-

lines, a comparative analysis of the test cohort is performed
in this section, see Table 4. For this purpose, we included
the current state-of-the-art deep MIL models, the attention
based pooling operator (ABMIL) [34], non-local attention
based pooling operator (DSMIL) [28], single-attention-
branch (CLAM-SB) [29] and recurrent neural network
(RNN) based aggregation (MIL-RNN) [24].

The figures of merit are obtained at the biopsy label
because only these labels are available in the test set. In
general, the specificity of the MIL baseline models drops
considerably. The best state-of-the-art model (CLAM-SB)
achieves a specificity of 0.8033 compared to 0.9615 obtained
by the proposed model (LCMIL). State-of-the-art models are
not able to discriminate between neutrophils and other tissue
cells and therefore are not optimal for predicting diseases
such as ulcerative colitis, which are caused by very pre-
cise histological patterns. Under our proposed formulation
(LCMIL), the model can detect neutrophils at the instance
level and, therefore, predicts ulcerative colitis with a good
performance. Obviously, there is a high consistency between
the fine annotation area and CAMs obtained in Figure 4,
illustrating great interpretability and attention visualization
of the proposed framework. Therefore, with a small volume
of training annotations, the model can improve the accuracy
of the best baseline MIL approach by almost 10%.

5. Conclusion
Whole-slide images (WSI) have shown applicability to

developing computer vision models, but few studies have
approached the use of deep learning models to detect ul-
cerative colitis (UC). In this work, we propose an location

Rocío del Amor et al.: Preprint submitted to Elsevier Page 7 of 9



Location constraints for Ulcerative Colitis prediction

Table 4
Comparison of the different baseline frameworks in the test
cohort. Note that for the test cohort only the global bag label
are available.

ABMIL DSMIL CLAM-SB MIL-RNN LCMIL
SN 0.9583 0.8293 0.9302 0.8667 0.9583
SPC 0.6923 0.7288 0.8033 0.7797 0.9615
PPV 0.7419 0.6800 0.7692 0.7500 0.9583
NPV 0.9473 0.8600 0.9423 0.8846 0.9615
F1S 0.8393 0.7473 0.8421 0.8041 0.9583
ACC 0.8200 0.7700 0.8558 0.8173 0.9600
AUC 0.8253 0.7546 0.8321 0.8009 0.9599

constraint framework able to perform histological remission
prediction using WSIs of patients with UC. Our framework
comprises a feature extraction backbone with an attention
module to refine the patch-level features and a MIL approach
to predict the UC activity in each bag. We introduce a
location constraint module that forces the feature extractor to
focus on the most significant patterns in the patches that form
a bag. The biopsy classification comes from the bag-level
feature vector that the attention embedding has ponderated.
This approach reaches a test accuracy of 0.9600 in a more
significant subset than the training set, which shows that the
extra pixel-level annotation gives crucial information to the
algorithm.

Future research lines need to focus on detecting neu-
trophils in the different biopsy regions and grading PHRI
accordingly, not being limited to the histological activity
or remission prediction. The location constraint approach
also promises applicability to other pathologists in which
histological analysis is based on identifying single cells.
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