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Abstract: This paper presents a theoretical Monte Carlo Markov chain
procedure in the framework of graphs. It specifically deals with the con-
struction of a Markov chain whose empirical distribution converges to a
given reference one. The Markov chain is constrained over an underlying
graph so that states are viewed as vertices, and the transition between two
states can have positive probability only in the presence of an edge con-
necting them. The analysis focuses on the relevant case of support of the
target distribution not connected in the graph. Some general arguments on
the speed of convergence are also carried out.
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1. Introduction

Monte Carlo Markov Chain (MCMC) problems represent a challenging research
theme not only for their natural practical implications but also for the related
methodological advancements.
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The idea of a MCMC problem is to build a Markov chain with a target
stationary distribution (see e.g. [5, 14, 30]). To pursue this scope, several algo-
rithms have been proposed in the literature. Some of them are worthy of being
mentioned.

In the Metropolis Hastings algorithm (see [20, 25]), a transition kernel is
employed to iteratively generate a value y at time t+1 on the basis of the value
x observed at time t.

When the states space is huge, the Metropolis Hastings algorithm must be
used with great care to avoid that the probabilities of transition become too
small and in practice unusable for computer simulation purposes.

The Gibbs sampler, see [18], solves the problem of the huge cardinality in
the presence of a multivariate structure for the states space. The strategy is to
change state by changing only one of the components of the multivariate state.
In so doing, there are few transition probabilities that are different from zero;
therefore, they remain not too small in order to be used on a computer. The
Gibbs sampler loses meaningfulness when the multivariate structure of the state
space is not identified.

The debate on the validity of the Gibbs sampler has been remarkably en-
riched by [19]. In the quoted paper, the Author elaborates on [30] and deals
with a Bayesian choice of a vector of models, whose individual components are
selected among a set of countable candidates. Each model has several unknown
parameters; such a number depends on the specific model. In this context of not
fixed dimension of the parameter set, [19] adapts the Metropolis-Hastings algo-
rithm, by proposing a so-called “reversible jump” version of it (see also [2] for
further advancements). In [6], the Authors observe that the convergence issues
of the MCMC procedures always arise when the problem involves the selection
of one among many different model specifications. [6] proposes a modified Gibbs
sampler procedure obtained by introducing a sort of average of the considered
models, to solve the convergence matter. In general, the issue of the conver-
gence is a critical aspect, as also acknowledged by Persi Diaconis in his long
experience of scientific research and publications in the field. In this respect, we
strongly recommend the reading of Diaconis’ personal view on the matter, with
some relevant insights of the future development of the MCMC in both areas of
mathematical advancements and practical applications (see [11, 12]).

Our paper adds to this debate by dealing with a MCMC problem on a con-
nected graph where the target distribution has support not connected in the
graph. More specifically, we construct some Markov chains whose empirical dis-
tributions converge to such a target one as time goes to infinity. In so doing, a
discussion on the speed of convergence is also carried out.

Some notation is needed, to present the problem. We will refer hereafter to
a connected graph G = (S, E), being S the set collecting the nodes and E the
set of the edges. The nodes s, t ∈ S are declared adjacent in G if {s, t} ∈ E or
s = t. The degree of a node s ∈ S is deg(s). We denote the maximum degree
of G by Δ(G) = maxs∈S deg(s). The distance between two nodes s, t ∈ S, say
d(s, t), is the number of the edges of the shortest path connecting s and t. The
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diameter of G is
d = d(G) = max

s,t∈S
d(s, t).

We now state a definition linking graphs and stochastic processes.

Definition 1. We say that a stochastic process X = (X(t) : t ∈ N) on the state
space S is consistent with the graph G = (S, E) if, for each t ∈ N, X(t) and
X(t + 1) are adjacent in G with probability one.

Given two graphs G = (S, E) and G′ = (S ′, E′) we say that G′ is a subgraph
of G if S ′ ⊂ S and E′ ⊂ E, and we write G′ ⊂ G.

A particular class of subgraphs will be of interest in the following. Specifically,
the subgraph G′ = (S ′, E′) ⊂ G = (S, E) is said to be an induced subgraph of
G if s, t ∈ S ′ and {s, t} ∈ E imply {s, t} ∈ E′. In this case we write G′ = G[S ′]
in order to stress the dependence on the set of nodes S ′.

We notice that Definition 1 implies that if a process X = (X(t) : t ∈ N) is
consistent with a graph G′ then it is also consistent with any graph G such that
G′ ⊂ G.

From now on we only consider |S| < ∞ and, consequently, a finite graph
G = (S, E). Given a graph G = (S, E) and a distribution μ = (μ(s) : s ∈ S),
we will provide in this paper an answer to the following question:

Q: Is it possible to construct a (not necessarily homogeneous) Markov chain
X = (X(t) : t ∈ N) which is consistent with G and such that its empirical
distribution converges almost surely to μ as t goes to infinity?

More precisely we aim at constructing a reversible Markov chain X = (X(t) :
t ∈ N) with the following properties: X is consistent with the graph G and

lim
t→∞

1
t

t−1∑
m=0

1{X(m)=s} = μ(s), s ∈ S a.s.. (1)

The motivations to pose the question Q are basically three:

a) we face the problem of the large cardinality of the states space by control-
ling the transitions among the states through the edges of a graph;

b) we introduce a clear structure of the states space through the graph so
that one can think to get some desired properties such as stochastic mono-
tonicity or fast convergence;

c) the introduction of a graph which constrains the positive transitions of
the Markov chain describes several real-life evolution phenomena, where
it is possible to move in a single step only from a state to an “adjacent
one”.

In the following, we provide an answer to question Q by showing that it is
possible to construct such a (not necessarily time-homogeneous) Markov chain.

The adopted strategy for responding to Q is of constructive type. We start
from the introduction of a sequence of probability distributions (μk : k ∈ N)
converging to the target μ and such that supp (μk) = S. Accordingly, we
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construct a suitable sequence of irreducible and aperiodic transition matrices
(P (μk,G) : k ∈ N) such that (μk, P

(μk,G)) is reversible. Then, we derive a new
non-homogeneous Markov chain consistent with G as a concatenation of this se-
quence of homogeneous ones. The transition matrix P (μk,G) insists over a time
interval whose length increases with k. The proper selection of the time intervals
– whose length is estimated on the basis of the diameter of G and is independent
from the target distribution μ – is shown to lead to the response to question
Q for the resulting non-homogeneous Markov chain. In this respect, see also
Example 2.

In this construction, a not unexpected problem of dependence arises. We con-
trol for the dependence in two steps. First, we lump together the events related
to the Markov chain at large time-distance; second, the convergence properties
of the Markov chain over all the times are obtained through a union bound
procedure. At this aim, a coupling of the Markov chain with a sequence of inde-
pendent random variables is performed (see Theorem 1). Such a method allows
an estimation of the speed of convergence to the target probability distribution
μ; moreover, it has the relevant advantage of being general and reproducible in
other contexts.

The paper also presents an extension of the above-discussed framework for the
products of graphs and product measures. The usefulness of such an extension
lies in its ability to reduce the cardinality of the states space. Indeed, it moves
from a multidimensional Markov chain to several unidimensional ones (see The-
orem 2). In this context, we present a discussion on the possible applicability of
such a result in the field of game theory (see Remark 3).

The structure of the paper is the following. In the next section we present
the main results of our study. Section 3 provides some supporting remarks and
examples, by discussing advantages, limitations and applicability of the pro-
posed procedure. Section 4 offers the extension of our findings to the case of the
product of graphs and distributions.

2. Main results

For a target probability distribution (μ(s) : s ∈ S) and a connected graph G,
we give an answer to question Q in the interesting case when G[supp (μ)] is not
connected.

As we will see, the solution strategy for solving the problem moves from
creating a sequence of distributions that converges to the target one and having
the states space S as support.

Without loss of generality, we start from a nonnegative function η : S →
[0,+∞), which induces a distribution μ = (μ(s) : s ∈ S) such that

μ(s) = η(s)
Z

, s ∈ S, (2)

where Z =
∑

s′∈S η(s′) is the normalizing constant. We take M > 0 such that
maxs∈S η(s) ≤ M .
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The distribution μ in (2) will be the target probability one. The derivation of
μ from a given η is a standard procedure in statistical mechanics. In this context,
the computation of the normalizing constant Z can be computationally complex,
mainly when the cardinality of S is huge. In the following, we will implement a
strategy for answering to Q that will manage this problem by avoiding such a
computation.

Let N denote the cardinality of S. Since G[supp (μ)] is not connected, then
it contains at least two points. Since supp (μ) ⊂ S and G is connected, then
N ≥ 3.

We now consider k ∈ N and define

ηk(s) =
{

η(s), if η(s) > 0;
1
k , if η(s) = 0. (3)

As in (2), the ηk in (3) induces the probability distribution μk = (μk(s) : s ∈ S),
with the normalizing constant Zk =

∑
s′∈S ηk(s′).

Denote by || · ||TV the total variation norm (see e.g. [24]). Since Z ≤ Zk and
Zk − Z ≤ N

k , one has

||μk − μ||TV = 1
2
∑
s∈S

|μk(s) − μ(s)| = 1
2
∑
s∈S

∣∣∣∣ηk(s)Zk
− η(s)

Z

∣∣∣∣ ≤
≤
∑
s∈S

[
η(s)(Zk − Z)

2ZkZ
+ 1

2kZk

]
≤ N

2kZk
+ N

2kZk
≤ N

kZ
= Γ

k
, (4)

where Γ = N
Z .

By construction, for any

k > k̄ =
⌈

1
min{η(s) > 0 : s ∈ S}

⌉
,

we have Zk ≤ MN so that

μk(s) ≥
1

kMN
, s ∈ S. (5)

Let us label the elements of S = {s1, . . . , sN} such that

μ(s1) ≥ μ(s2) ≥ · · · ≥ μ(sN ) = 0.

According to the definition of μk, for k > k̄, one also obtains

μk(s1) ≥ μk(s2) ≥ · · · ≥ μk(sN ) > 0. (6)

We construct the transition matrix P (μk,G) = (pl,m : l,m = 1, . . . , N) related
to the distribution μk and to the graph G = (S, E). The dependence on k of the
elements of matrix P (μk,G) is conveniently omitted. For each l,m = 1, . . . , N ,

pl,m =

⎧⎪⎪⎨
⎪⎪⎩

p, if l < m and {sl, sm} ∈ E;
μk(sm)
μk(sl) p, if l > m and {sl, sm} ∈ E;
pl, if l = m;
0, otherwise,

(7)
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where

pl = 1 − p

[ ∑
m′:m′>l

1{{sl,sm′}∈E} +
∑

m′:m′<l

μk(sm
′)

μk(sl)
1{{sl,sm′}∈E}

]
(8)

and

p ≤ p̃ = min
l=1,...,N

1
2
(∑

m′:m′>l 1{{sl,sm′}∈E} +
∑

m′:m′<l
μk(sm′ )
μk(sl) 1{{sl,sm′}∈E}

) .
(9)

Clearly, P (μk,G) is a transition or stochastic matrix. As already announced
above, we notice that the construction of the transition matrix P (μk,G) does not
require the knowledge of the normalizing constant Zk, in that μk(sm

′
)

μk(sl) = ηk(sm
′
)

ηk(sl) .
This is particularly relevant for the computational applications of the proposed
algorithm, in accord to the appropriateness of the Gibbs sampler for computa-
tions (see [18]). Moreover, by definition p ≤ p̃ ≤ 1

2 . In fact, since G is connected,
there exists at least an edge {s1, sm} ∈ E, with m > 1; thus the denominator
of (9) is at least equal to 2, when l = 1.

Definition in (7) assures that the couple (μk, P
(μk,G)) is reversible. Moreover,

P (μk,G) is irreducible, since G is connected; thus, μk is the unique invariant
distribution of P (μk,G). The transition matrix P (μk,G) is also aperiodic since,
by (8) and (9), pl ≥ 1

2 for l = 1, . . . , N .
Condition (9) is of particular usefulness. Indeed, the estimation of p̃ from

below can be obtained more easily than computing its exact value, hence being
more appropriate for applications. In this respect, we provide an example where
the computation of p̃ is hardly achieved while its estimation from below is simple.

Example 1. To make the arguments simple, we take a given μ in place of
a sequence (μk : k ∈ N). Let us consider an Ising model on a finite square
sublattice Λ of Z

2 with side L ∈ N, e.g. Λ = {0, . . . , L − 1}2. Thus, a single
state is a vector in S = {−1,+1}L2 , and the cardinality of S is N = 2L2 . The
probability distribution μ is such that

μ(s) ∝ η(s) = e−H(s), s ∈ S

where
H(s) = −

∑
i,j∈Λ:||i−j||1=1

Jijsisj

is the Hamiltonian. The interactions (Jij : i, j ∈ Λ : ||i − j||1 = 1) can be
taken either as assigned in an interval or randomly sampled from a suitable
distribution. We here take any single interaction as assigned in [ 1

16 ,
2
16 ].

We form the graph G = (S, E) by imposing

{s, s′} ∈ E ⇐⇒ ||s− s′||1 = 2.

Substantially, {s, s′} ∈ E is equivalent to say that s, s′ differ only on one com-
ponent.
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In this case, the computation of p̃ in (9) is rather complex. However, a lower
bound for p̃ is almost simple to obtain. Indeed,

min
l=1,...,N

1
2
(∑

m′:m′>l 1{{sl,sm′}∈E} +
∑

m′:m′<l
μ(sm′ )
μ(sl) 1{{sl,sm′}∈E}

) ≥

≥ 1
2L2 max

{
μ(s)
μ(s′) : {s, s′} ∈ E

} ≥ e−2

2L2 .

We introduce the ergodic coefficient of Dobrushin (see [13] and [4] p. 235),
which is defined as

δ(P ) = 1 − inf
i,j=1,...,N

N∑
h=1

pi,h ∧ pj,h (10)

where P = (pi,j : i, j = 1, . . . , N) is a stochastic matrix.

Lemma 1. Given the transition matrix P (μk,G) on S constructed above, with
N = |S| ≥ 3 and p ∈

[
c
k , p̃
]
, the Dobrushin’s ergodic coefficient can be bounded

from above as follows
δ((P (μk,G))d) ≤ 1 −

( c
k

)d
,

for any k > k̄, where c = 1
2Δ(G)MN .

Proof. For k > k̄, inequalities (5) and (6) provide

1 ≤ μk(sm)
μk(sl)

≤ 1
μk(sl)

≤ kMN, for l > m.

We now observe that, for k > k̄,

p̃ ≥ min
l=1,...,N

1
2kMN deg(sl) = 1

2kMNΔ(G) = c

k
.

Therefore, one can select p into the nonempty interval
[
c
k , p̃
]
. Then, for p ∈

[
c
k , p̃
]

and {sl, sm} ∈ E one has,
pl,m ≥ c

k
. (11)

For k > k̄, since the graph G is connected and pl ≥ 1
2 for each l = 1, . . . , N and

by definition of diameter d, then (11) gives that

p
(d)
l,m ≥

( c
k

)d
, ∀ l,m = 1, . . . , N,

where p
(d)
l,m is the transition probability from sl to sm in d steps.

Then, by definition of the ergodic coefficient of Dobrushin in (10), one has
the thesis.
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Given an arbitrary distribution over S, namely λ = (λ(s) : s ∈ S), we
construct a non-homogeneous Markov chain X = (X(t) : t ∈ N) with λ as
initial distribution. The transition matrix of the Markov chain X at time t ∈ N

will be denoted by P (t) = (pi,j(t) : i, j = 1, . . . , N).
Let us consider an increasing sequence of times (t� : � ∈ N), and let us define

P (t) =
∞∑

k=k̄+1

P (μk,G)1[tk,tk+1−1](t). (12)

Theorem 1. Consider a connected graph G = (S, E) and a distribution μ =
(μ(s) : s ∈ S). Assume that G[supp (μ)] is not connected. Then any Markov
chain X = (X(t) : t ∈ N) constructed above with transition matrix given in (12)
and with sequence of times (t� = �5d : � ∈ N) is consistent with G and (1) holds
true, i.e.

lim
t→∞

1
t

t−1∑
m=0

1{X(m)=s} = μ(s), s ∈ S a.s..

Proof. The fact that X is consistent with G derives from the construction of P
(see (7) and (12)).

To prove the result, we first check that it is true for the sequence of times
(t� = �5d : � ∈ N), i.e.

lim
�→∞

1
t�

t�−1∑
m=0

1{X(m)=s} = μ(s), s ∈ S a.s.. (13)

By definition of (t� : � ∈ N) one has

lim
�→∞

t�+1 − t�
t�

= 0 and lim
�→∞

t�+1

t�
= 1. (14)

Therefore, if (13) holds true, also (1) is satisfied. In fact, for t ∈ [t�, t�+1 − 1],
one has

1
t�+1

t�−1∑
m=0

1{X(m)=s} ≤ 1
t

t∑
m=0

1{X(m)=s} ≤ 1
t�

t�+1−1∑
m=0

1{X(m)=s}

≤ 1
t�

t�−1∑
m=0

1{X(m)=s} + 1
t�

t�+1−1∑
m=t�

1 = 1
t�

t�−1∑
m=0

1{X(m)=s} + t�+1 − t�
t�

.

In any case, by (13) and (14)

lim
�→∞

1
t�+1

t�−1∑
m=0

1{X(m)=s} = lim
�→∞

1
t�

t�−1∑
m=0

1{X(m)=s}

= lim
�→∞

[
1
t�

t�−1∑
m=0

1{X(m)=s} + t�+1 − t�
t�

]
,



MCMC on graphs for a target with disconnected support 4387

therefore, by the squeeze theorem,

lim
t→∞

1
t

t∑
m=0

1{X(m)=s} = lim
�→∞

1
t�

t�−1∑
m=0

1{X(m)=s}.

For ε > 0 and s ∈ S let us define the sequence of events (B�(ε, s) : � ∈ N) as

B�(ε, s) =
{∣∣∣μ�(s) −

1
t�+1 − t�

t�+1−1∑
m=t�

1{X(m)=s}

∣∣∣ < ε

}
. (15)

To obtain (13) it is enough to prove that, for each ε > 0 and s ∈ S

P

(
lim inf
�→∞

B�(ε, s)
)

= 1. (16)

By (15) and (16), we conveniently restrict the attention to the interval [t�, t�+1−
1].

Notice that for each initial distribution λ on S, Lemma 1 and Dobrushin’s
Theorem (see e.g. [4]) give that

||λP (t�)�
2d − μ�||TV ≤ δ(P (t�)d)�

�2d
d � ≤

(
1 −
(c
�

)d)⌊ �2d
d

⌋
≤ exp

(
−ĉ

⌊
�d

d

⌋)
,

(17)
where ĉ = cd, for � large enough. Estimation (17) will turn out to be useful
soon.

Let us fix i = 0, . . . , �2d − 1 and consider the sequence of times

τ�,i = (t� + h�2d + i : h ≥ 0, t� + h�2d + i < t�+1). (18)

We observe that each time t ∈ [t�, t�+1 − 1] can be written uniquely as t =
t� + h�2d + i, for a value of i = 0, . . . , �2d − 1 and a value of h.

Now, take some auxiliary sequences of independent random variables

Y (�,i) = (Y (�,i)(t) : t ∈ τ�,i) (19)

with values on S such that Y (�,i)(t) has distribution μ�. We notice that the ran-
dom variables belonging to different sequences are not in general independent.

The proof of (16) would be simple if the X’s were i.i.d. random variables,
which is not the case. Then, we proceed by using the maximal coupling (see
[24]) between the X’s and the Y (�,i)’s defined above.

Specifically, by inequality (17) one can couple X(t�+h�2d+i) with Y (�,i)(t�+
h�2d + i), by assuming the knowledge of the X’s at the previous times in τ�,i of
the type t� + h′�2d + i, where h′ = 0, . . . , h− 1.

For � large enough, h ≥ 1 and t� + h�2d + i < t�+1, one has

P(X(t� + h�2d + i) �= Y (�,i)(t� + h�2d + i)
∣∣∣ h−1⋂
h′=0

{X(t� + h′�2d + i) = sh′}) =
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= P(X(t� + h�2d + i) �= Y (�,i)(t� + h�2d + i)|{X(t� + (h− 1)�2d + i) = sh−1})

≤ exp
(
−ĉ

⌊
�d

d

⌋)
. (20)

We notice that the first equality of (20) comes from the Markov property,
while the second inequality comes from (17).

For � ∈ N and i ∈ [0, �2d − 1], let us define the events

A�,i =
{
X(t) = Y (�,i)(t) : t ∈ τ�,i \ {t� + i}

}
=

=
{
X(t� + h�2d + i) = Y (�,i)(t� + h�2d + i) : h ≥ 1 and t� + h�2d + i < t�+1

}
.

(21)
We notice that A�,i is an event which compares the Markov chain X and the
independent random variables Y (�,i) on times belonging to the sublattice τ�,i of
step �2d.

By denoting A�,i,t = {X(t) = Y (�,i)(t)} for t ∈ N, we can write

A�,i =
⋂

t∈τ�,i\{t�+i}
A�,i,t.

For � large enough (we omit this statement hereafter, being clear its validity
from the context), by using the chain rule over the A�,i,t ordered by increasing
t, the Markov property on the sublattice τ�,i and by (20), one has

P(A�,i|X(t� + i) = s0) ≥
[
1 − exp

(
−ĉ

⌊
�d

d

⌋)](�+1)5d

≥ 1 − (� + 1)5d exp
(
−ĉ

⌊
�d

d

⌋)
, (22)

for each s0 ∈ S. It is worth noticing that (�+ 1)5d overestimates the cardinality
of τ�,i.

Since inequality in (22) holds true irrespectively on s0, we can remove the
conditioning on X(t� + i) = s0, so that

P(A�,i) ≥ 1 − (� + 1)5d exp
(
−ĉ

⌊
�d

d

⌋)
. (23)

We also set Â� =
⋂�2d−1

i=0 A�,i so that

P(Â�) = 1 − P

⎛
⎝�2d−1⋃

i=0
Ac

�,i

⎞
⎠ ≥ 1 − (� + 1)7d exp

(
−ĉ

⌊
�d

d

⌋)
. (24)

By (24) and the first Borel-Cantelli lemma, one has that

P(lim inf
�→∞

Â�) = 1. (25)
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In fact, since
∞∑
�=1

(� + 1)7d exp
(
−ĉ

⌊
�d

d

⌋)
< ∞ (26)

then
∑∞

�=1 P(Âc
�) < ∞.

Now, for ε > 0 and s ∈ S, let us define the sequence of events (B̂�(ε, s) : � ∈ N)
as

B̂�(ε, s) =
�2d−1⋂
i=0

⎧⎨
⎩
∣∣∣μ�(s) −

1
|τ�,i|

∑
m∈τ�,i

1{Y (�,i)(m)=s}

∣∣∣ < ε

2

⎫⎬
⎭ . (27)

Now, the rate function of a Bernoulli r.v. with parameter π ∈ [0, 1] is

I(π)(x) = x log
(x
π

)
+ (1 − x) log

(
1 − x

1 − π

)
, if x ∈ (0, 1); (28)

while I(π)(x) = +∞ if x /∈ (0, 1). By large deviation theory, one has

P

⎛
⎝∣∣∣μ�(s) −

1
|τ�,i|

∑
m∈τ�,i

1{Y (�,i)(m)=s}

∣∣∣ ≥ ε

2

⎞
⎠ ≤ e−g(ε)|τ�,i| ≤ e−g(ε)�3d−1

, (29)

where
g(ε) = min

π∈[0,1]

{
I(π)

(
π − ε

2

)
, I(π)

(
π + ε

2

)}
> 0.

Therefore, by the union bound,

P(B̂�(ε, s)) ≥ 1 − �2de−g(ε)�3d−1
. (30)

Therefore
P(lim inf

�→∞
B̂�(ε, s)) = 1. (31)

Moreover,
B̂�(ε, s) ∩ Â� ⊂ B�(ε, s),

thus
lim inf
�→∞

(B̂�(ε, s) ∩ Â�) ⊂ lim inf
�→∞

B�(ε, s). (32)

By (25), (31) and (32) we have the thesis.

3. A discussion of the main results

This section presents some remarks about Theorem 1, along with some relevant
examples.

As preliminary remark, we notice that a target distribution μ with discon-
nected support has to be perturbated to be simulated in the MCMC context
(see formula (3)). The properties of our Markov chain allows us to control Do-
brushin’s coefficient – hence, leading to solving the question Q. Such a control
cannot be obtained by using the standard Metropolis-Hastings algorithm.
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Remark 1. The definition of (t� : � ∈ N) provided in Theorem 1 represents only
one of the possible choices. In this respect, it is interesting to note that the proof
of Theorem 1 can be adapted to other sequences of times. For example, one can
take t�+1−t� ≥ c�5d−1, with c > 0. One can reproduce the proof of Theorem 1 by
suitably decomposing the intervals in subintervals with some useful properties.
In particular, for any � ∈ N, we can select I� ∈ N and an increasing sequence

t
(0)
� , t

(1)
� , . . . , t

(I�)
�

such that t� = t
(0)
� , t(I�)� = t�+1 and the following property holds

lim
�→∞

sup
i∈{0,1,...,I�−1}

t
(i+1)
� − t

(i)
�

t
(i)
�

= 0; lim
�→∞

t
(0)
� − t

(I�−1)
�−1

t
(I�−1)
�−1

= 0.

Then, one can take the sequence t
(0)
� , t

(1)
� , . . . , t

(I�)
� to obtain that the Markov

chain with transition matrix as in (12) satisfies (1).

Next example shows that the convergence of the distribution μk to the dis-
tribution μ should not be taken too fast and t�+1 − t� should be not taken too
small in order to hold (1).

Example 2. Let us consider a graph G = (S, E) with S = {s1, s2, s3, s4} and
E = {{s1, s3}, {s3, s4}, {s2, s4}}.

Let us take the distribution μ = (μ(s) : s ∈ S) having μ(s1) = μ(s2) =
η(s1) = η(s2) = 1

2 , and define t� = �, for each � ∈ N, and the sequence of
distributions (μ̂� : � ∈ N) where μ̂� = μ2� . In particular, ||μ̂� − μ||TV ≤ Γ

2�

(see (4)).
We take a non-homogeneous Markov chain X = (X(t) : t ∈ N) with transition

matrix P (�) = (pm,n(�) : m,n = 1, 2, 3, 4), at time �, given by

P (�) = P (μ̂�,G), � ∈ N.

Accordingly to the definition of p̃ given in (9) and highlighting the dependence
of p̃ on the index �, one has

p̃(�) = 1
2(1 + 2�−1) , � ∈ N. (33)

Thus, (33) gives that p1,1(�) = 1 − 1
2(1+2�−1) at time � (see (8)). Therefore,

the Borel-Cantelli’s Lemma guarantees that

|{� ∈ N : X(�) = s1, X(� + 1) �= s1}| < ∞ a.s., (34)

and therefore

P

(⋂
s∈S

{ lim
t→∞

1
t

t−1∑
m=0

1{X(m)=s} = μ(s)}
)

= 0. (35)
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In fact, formula (34) allows to consider only ω ∈ Ω such that condition |{� ∈
N : X(�) = s1, X(�+1) �= s1}| < ∞ is satisfied. If X(�) = s1 for a finite number
of times �, then

lim
t→∞

1
t

t−1∑
m=0

1{X(m)=s1} = 0 a.s..

Notice that Example 2 gives a natural comparison between our setting and
the simulated annealing (see [22, 26]). The goal of the quoted references was to
obtain convergence in law, while here we obtain convergence almost surely of
the empirical distribution to the target one.

In both cases the hope is that the rate of convergence is fast but, if one tries
to have an excessively high rate of convergence, it leads to local minima (case of
simulated annealing) or not convergence of the empirical measure to the target
distribution μ in our framework. In the case of excessively fast convergence rate,
the response to question Q might be wrong.

We now give an illustrative example based on the existing literature to high-
light the usefulness of Theorem 1.

Example 3. The situation of connected graph G and G[supp (μ)] not connected
can be deduced from previous contributions in the literature. In this respect, we
mention the hard-core model with two kinds of particles (see e.g., [21, 27]). In
particular, [27] presents a gas model on a lattice with particles of two kinds:
one is small-sized (type 1) and the other is large (type 2). Each type 1-particle
occupies only one site, leaving free the others; the particles of type 2 are so large
that they prevent to occupy their sites and also their adjacent ones. At each site
of the lattice, one can find no more than one particle. In doing so, we assign
to each site x ∈ Λ a vector (n1(x), n2(x)) ∈ {(0, 0), (0, 1), (1, 0)}, where nj(x)
denotes the number of particles of type j on site x. We define the collection of
such vectors – under the constraints related to particles of type 1 and 2 described
above – simply as the relevant states S̃.

In this framework, we consider the hard-core model with a canonical ensemble
condition – i.e., with a fixed number of particles of type 1 and 2, say N1 and N2
respectively – on a finite lattice Λ. We take a graph G = (S, E) as follows. The
state space S is the collection of two sequences of nonnegative integers over the
lattice Λ describing the number of particles of type 1 and 2 over all the sites of
Λ. By using the notation above, we say that nj(x) = 0, 1, . . . , Nj, with the only
constraint that the total number of type 1 and type 2 particles is given by N1
and N2, respectively. Given two states s, t ∈ S, there is an edge {s, t} ∈ E if
and only if t is obtained from s by moving only one particle from a site to an
adjacent one on the lattice Λ. Therefore, G is a connected graph.

The hard-core model introduces a distribution μ on S with support S̃. We do
not need the detailed definition of μ but only that μ has support S̃. If the lattice is
one-dimensional – so that two sites are adjacent when they have unitary distance
– then the particles types are ordered over the lattice and the order is preserved
over time. Therefore, if both N1, N2 > 0, then G[supp (μ)] is not connected.

We now treat some cases that are not covered by Theorem 1.
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In the case that G[supp (μ)] is connected one can construct a standard MCMC
algorithm using a reversible homogeneous Markov chain X = (X(t) : t ∈ N)
having μ as invariant distribution. A possible choice for the transition matrix
of X is e.g. P (μ,G[supp (μ)]).

We point out that if G is not connected and supp (μ) is contained in more
than one connected components of G, then one cannot pass from a component
to another one. This assures that it does not exist a stochastic process consistent
with G which satisfies (1).

Finally, assume that G is connected and G[supp (μ)] is not connected. Then,
we can apply Theorem 1 that shows a non-homogeneous Markov chain respond-
ing to question Q. Nevertheless, each homogeneous Markov chain X consistent
with G does not satisfy (1). Indeed, if X would be consistent with G and satisfy-
ing (1), then the ergodic theorem would imply that some states out of supp (μ)
should be visited with frequency greater than zero.

Remark 2. Theorem 1 can be used also in some circumstances in which
G[supp (μ)] is connected. Suppose that the set of the vertices S is given by the
union of three disjoint components: S = S1∪S2∪S3 such that μ(S1) = 1−ε−ε2,
μ(S3) = ε, while μ(S2) = ε2, being 0 < ε � 1 very small. Moreover, assume
that it does not exist an edge of G connecting S1 and S3. Therefore the Markov
chain needs to visit the states in S2 to achieve S1 from S3. If the starting state
of the Markov chain belongs to S3, then it will remain in S3 for a long time
being μ(S2) particularly small. Evidently, this leads to a slow convergence of the
empirical distribution to μ; the introduction of the μk’s and of the transition
matrix in (12) might be of usefulness for letting the convergence be faster. In
doing so, our approach is close to the principle of the annealing.

In this context, we can also implement a different strategy for raising the
speed of convergence of the MCMC algorithm. Specifically, one can fix k ∈ N
and consider the perturbated distribution μk instead of the target distribution
μ. One can conjecture that the speed of convergence of a homogeneous Markov
chain X(k) = (X(k)(t) : t ∈ N) with transition matrix P (μk,G) is higher than X
with transition matrix P (μ,G[supp (μ)]). Following (4), we bound the error from
above as follows:

lim
t→∞

∣∣∣∣∣1t
t−1∑
m=0

1{X(k)(m)=s} − μ(s)

∣∣∣∣∣ ≤ 2||μk − μ||TV ≤ 2Γ
k
, s ∈ S a.s..

(36)
Let us consider f : S → R and Eμ(f) =

∑
s∈S f(s)μ(s), by ergodic theory one

has

lim
t→∞

∣∣∣∣∣1t
t−1∑
m=0

f(X(k)(m)) − Eμ(f)

∣∣∣∣∣ ≤ 2 max
s∈S

|f(s)| · ||μk − μ||TV

≤ 2 max
s∈S

|f(s)| · Γ
k
, a.s.. (37)

Thus, accepting the error 2 maxs∈S |f(s)|Γ/k, that can be taken arbitrarily small,
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one can always use an homogeneous Markov chain to numerically estimate
Eμ(f).

We point out that a proper selection of the graph may lead to a more efficient
MCMC procedure. In particular, graphs can contribute to the reduction of the
number of possible transitions among states, as also Gibbs sampler proposes
(see e.g. [18]). In fact, when the number of the states is extremely large, then
the unconstrained transition probabilities involving all the pairs of states may
be too small, hence too difficult to simulate. In this respect, a proper choice
of the graph should ensure the connections among highly probable states, thus
avoiding the creation of metastable states (sometimes called wells, see [3, 23]).
Indeed, wells are states in which the Markov chain is expected to spend an
extremely long time before being able to visit other high-probability ones. This
would increase dramatically the mixing time and the convergence speed of the
MCMC algorithm (see e.g. [1, 16, 17]).

In this context, a very useful reading are [9, 15, 28], where the (stochastically)
monotone MCMC is explored. In details, a Markov chain is said to be stochasti-
cally monotone when the states space is endowed with a partial order and there
exists a coupling of the chain with itself that maintains the partial order of the
states space at any time. Stochastically monotone Markov chains are particu-
larly simple in the simulation procedures (see [15] and [28] for connections with
the perfect simulation literature). Now, let us assume that the states space S
is endowed with a partial order and consider the target distribution μ on S.
Naturally, there are infinite Markov chains satisfying (1). Some of them might
be stochastically monotone, i.e. simple in the simulation process. The role of
the graph in obtaining stochastically monotone Markov chains might then be
crucial.

As a paradigmatic example, we can take the classical ferromagnetic Ising
model assigning a spin σ(i) ∈ {−1,+1} to each vertex i ∈ V and assume that
the set S = {−1,+1}V is endowed with a partial order such that σ′ � σ′′ if
and only if σ′(i) ≤ σ′′(i) for each i ∈ V . In this situation, we have that the
Markov chain identified by the Gibbs sampler is stochastically monotone, and
this property leads to affordable simulation exercises for the convergence towards
the Gibbs measure of the ferromagnetic Ising model (see [28] and, more recently,
[10]). There are also other Markov chains converging to the Gibbs measure which
do not maintain the ordering of the states space (see e.g. [7, 28]).

It is not difficult to construct other examples for non-ferromagnetic Ising
models (where the Gibbs sampler is not stochastically monotone) such that
Markov chains consistent with suitably defined graphs are stochastically mono-
tone.

4. Product of graphs and product distributions

We now introduce the standard definition of product of graphs, as in [29]. It
leads to a simplification of the MCMC simulations.
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Definition 2. Consider two graphs G1 = (S1, E1), G2 = (S2, E2). The strong
product G1 � G2 is a graph G = (S, E), where S = S1 × S2 and E collects
the couples {(s1, s2), (s̄1, s̄2)}, with (s1, s2), (s̄1, s̄2) ∈ S, such that one of the
following condition is verified

• {s1, s̄1} ∈ E1 and s2 = s̄2;
• s1 = s̄1 and {s2, s̄2} ∈ E2;
• {s1, s̄1} ∈ E1 and {s2, s̄2} ∈ E2.

Since the strong product of graphs is associative (see [29]), then Definition 2
can be extended to any collection of r > 2 graphs obtaining G = G1 � · · ·�Gr.

Let us consider now r finite sets S1, . . . ,Sr and take a product distribution
μ =

∏r
h=1 μh, where μh is a distribution on the space Sh. We construct r

independent Markov chains X1 = (X1(t) : t ∈ N), . . . , Xr = (Xr(t) : t ∈ N)
such that the h-th Markov chain Xh has state space Sh and an arbitrary initial
distribution λh = (λh(sh) : sh ∈ Sh), for each h = 1, . . . , r.

Moreover, by replacing S with Sh and μ with μh, we replicate the construction
provided before Theorem 1. In so doing, we take ηh : Sh → [0,Mh] to define the
distribution μh, for h = 1, . . . , r. Then, we take k ∈ N to define the perturbed
distribution (μh)k = ((μh)k(sh) : sh ∈ Sh).

Now, take a sequence of increasing times (t(h)
� : � ∈ N), such that

min
h=1,...,r

t
(h)
�+1 − t

(h)
� ≥ ζ�5dh−1, (38)

with ζ a positive constant and dh is the diameter of graph Gh.
The transition matrices of Xh are (Ph(t) : t ∈ N) as in (12):

Ph(t) =
∞∑
k=1

P ((μh)k,Gh)1[t(h)
k

,t
(h)
k+1−1](t). (39)

We introduce the Markov chain

X =
(
X(t) = (X1(t), . . . , Xr(t)) ∈ S : t ∈ N

)
. (40)

Next result is similar to Theorem 1 but it is based on the independent Markov
chains constructed above.

Theorem 2. Let S =
∏r

h=1 Sh and G(S, E) = G1(S1, E1) � · · · � Gr(Sr, Er).
Let us consider μ1, . . . , μr constructed as above, the product distribution μ =∏r

h=1 μh and consider the Markov chains X as in (40).
Then

lim
t→∞

1
t

t−1∑
m=0

1{X(m)=s} = lim
t→∞

1
t

t−1∑
m=0

r∏
h=1

1{Xh(m)=sh} =
r∏

h=1

μh(sh) = μ(s),

(41)
for each s = (s1, . . . , sr) ∈ S.
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Proof. We follow the arguments in the proof of Theorem 1 and proceed in a
componentwise form. We take a sequence of times τ�,i,h as in (18) for the h-th
component, with step �2dh . Accordingly, we take the variables Y (�,i,h) as in (19),
that are independent and with distribution (μh)�.

On the ground of what done for deriving the constant Γ in Section 2, we can
find a positive Γ̂ such that∣∣∣∣∣

∣∣∣∣∣μ−
r∏

h=1

(μh)�

∣∣∣∣∣
∣∣∣∣∣
TV

≤
r∑

h=1

||μh − (μh)�||TV ≤ rΓ̂
�
, (42)

so that the total variation distance in (42) goes to zero as � → ∞.
Similarly to (26), we can employ Borel-Cantelli Lemma to obtain

r∑
h=1

∞∑
�=1

(� + 1)7dh exp
(
−ĉh

⌊
�dh

dh

⌋)
< ∞, (43)

where ĉh is a suitable positive constant. By following the final steps of the proof
of Theorem 1, condition (43) guarantees the convergence in (41).

Remark 3. Theorem 2 is grounded on the strong assumption that the target
distribution is a product one. However, such a condition leads to the possibil-
ity of estimating the target distribution in a parallel way – hence, leading to a
remarkable reduction of the computational complexity of the procedure. Interest-
ingly, the case of weakly dependent components might be also explored through
the procedure presented in Theorem 2. Moreover, Theorem 2 might present rel-
evant rooms for applications – for instance, in game theory. Specifically, one
can build a dynamic game where each player can move from her/his strategy to
another one only if such strategies are adjacent on a prefixed graph G. In this
context, we point out that Theorem 2 can be useful for identifying some mixed
Nash equilibria, that can be seen as product measures (see [8]).
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