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Abstract

Human behaviour and occupancy accounts for a substantial proportion of
variation in the energy efficiency profile of domestic buildings. Yet while
people often claim that they would like to reduce their energy bills, rhetoric
frequently fails to match action due to the effort involved in understand-
ing and changing deeply engrained energy consumption habits. Here, we
present and, through dedicated experiments, test in-house developed soft-
ware to remotely identify appliance energy usage within buildings, using
energy equipment which could be placed at the electricity meter location.
Furthermore, we monitor and compare the occupancy of the location under
study through Ultra-Wideband (UWB) radar technology and compare the
resulting data with those received from the power monitoring software, via
time synchronization. These signals when mapped together can potentially
provide both occupancy and specific appliances power consumption, which
could enable energy usage segregation on a yet impossible scale as well as
usage attributable to occupancy behaviour. Such knowledge forms the ba-
sis for the implementation of automated energy saving actions based on a
households unique energy profile.
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1. Introduction

Currently the effect of human behaviour on domestic building energy con-
sumption is an underestimated factor. Reducing unnecessary energy wastage
is becoming a global challenge with responsibility being asked of the indi-
vidual to make changes, that when summed can have greater national and
international significance. Hitherto, human behaviour has not been effec-
tively factored into existing building legislations that have been designed to
predict and improve energy consumption. A simple, yet forgettable truth is
that “buildings dont use energy, people do” [1], a fact which has been demon-
strated in findings that reveal considerable variation in energy demand and
consumption between virtually identical apartments [2]. This is further sup-
ported by time-use survey data, showing that there are no “average” days
or “average” consumer profiles that can reliably predict energy demand and
consumption [3].

In recent studies, it has been verified that there is a gap between pre-
dicted energy consumption and actual energy consumption [4, 5]. A paper
by the Carbon Trust [6] compared the modelling for Part L and the Energy
Performance Certificate (EPC) to actual energy through a series of case stud-
ies. In one instance, actual energy use was underestimated by five times in
the first year alone. Furthermore, even when more detailed modelling and
benchmarking were done for other case studies, an average gap of 16% ex-
isted between actual use and estimated use. Such findings would indicate
that although designers can influence many aspects of the building that de-
termine low carbon outcomes, there are still important areas that can only
be influenced by the occupiers. This is further supported by the research
findings that have shown even in buildings designed to be energy efficient,
an occupants actions account for up to 51% of the variance in heating, and
37% in electricity consumption [2].

Often, occupants form energy habits that are less than optimal in terms of
energy usage resulting in over consumption, either intentionally (for comfort
reasons) or unintentionally (due to absent mindedness). According to the
Energy Saving Trusts report (The Habits of a Lifetime), 71% of consumers
left appliances on standby, 67% boiled more water than needed in the kettle,
and 63% forgot to turn off the lights in unoccupied rooms.

Of vital importance to the effective design of a successful home energy
management system is an understanding of how and why people use en-
ergy. Evidently, people do not use energy for the sake of it but rather in



the accomplishment of everyday activities such as showering, keeping warm,
and cooking [7]. In other words, much of energy consumption is driven by
habitual behaviours [8, 9] so deeply embedded into peoples lives that they
rarely question the energy use associated with them rendering consumption
invisible, both physically and consciously [10]. Energy consumption is also
affected by occupants “energy related preferences” which are informed by
a myriad of factors including; an individuals subjective experiences of an
environment (e.g., some individuals accept larger temperature ranges than
others; [11]); social norms (e.g., 55% of people adjust heating to host guests;
[12]); and even misconceptions about the most efficient ways of using energy
(e.g., qualitative data reveals occupant uncertainty about whether it is more
efficient to leave heating on all the time to prevent home cool down and then
heat up again).

The Internet of Things (IoT) has changed the way we interact with our
environment. Its egress into our daily lives will be expedited if the technol-
ogy offered is useful, secure and brings benefits without much user effort.
Automated and non-intrusive sensing methods to assist users to reduce their
energy consumption without them actively having to remember or constantly
manually intervene at the expense of other tasks would ultimately help con-
sumers lower energy consumption and with it bring the obvious greener ben-
efits. The current roll out of smart meters although in the right direction
for energy awareness does not generally assist citizens to reduce their bills.
The information is general and does not normally provide useful feedback on
how users can work with their own home to improve consumption reduction
efforts. Thus any initial “greener” enthusiasm normally fades after time. Ex-
isting energy monitors only report the energy being used, but do not provide
information on which appliances within the home are responsible for that
energy consumption [13].

This paper reports a system that has been developed to potentially item-
ize building energy consumption per appliance instance. The development of
non-intrusive systems that learns a users “habits” in their own home and au-
tomatically initiates energy saving actions: for example reducing the thermo-
stat temperature when the house is unoccupied or changing the thermostat
timetable based on the real heating profile of the house and user occupancy
is a step-change in energy reduction approaches. Automated actions and
feedback approaches without continual user input can engage users more ef-
fectively in reducing energy consumption. It can provide the user a true
understating of their home’s energy profile, how they use energy within their
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environment and through automation, and help reduce wasteful habits.

Wireless sensor networks (WSNs) are to the fore of IoT egress. They
consist of distributed nodes wirelessly connected to different sensors e.g. pol-
lution, temperature, light, and have the capability of duplex communication
[14]. WSNs importantly permit the creation of non-intrusive communication
system ready for deployment within domestic to large commercial environ-
ments. The edge nodes associated with WSNs can be very small in size
and accompanied with a mounted microprocessor, memory and transceiver.
Within the test bed developed in this work a wireless network based on XBee
(using ZigBee protocol) is designed and adapted to UWB set up for trans-
mitting UWB processed data to a remote server to be stored into a database.
XBee module based on IEEE 802.15.4 forms a low power, low maintenance
and self-organizing WSN [14]. It was essential that any network topology
developed was not commercially stinted so that nodes from different com-
mercial suppliers could be integrated depending on the users’ need. XBee
networks use a single coordinator device, which is responsible for forming the
network, handling addresses, and managing the other functions like defining
and securing the network. All other XBees in the network connected with the
coordinator are known as routers or end devices. Each can join the existing
network, send, receive and route information (router only) [15]. A MySQL
database was used for data storage, and later retrieval in tabular as well as
plotted format.

Ultra-Wideband (UWB) is known as a new and emerging technology, al-
though its first use goes back many decades. In 1973 the first US patent
was awarded to Sperry research centre for UWB communications. Follow-
ing this for many years, most of the applications and development of UWB
occurred in the military or work funded by the US government under classi-
fied programs and the technology was alternatively referred to as baseband,
carrier-free or impulse communication systems. The move to commercialise
UWB communication devices and systems arose during the late 1990s, when
companies such as Time Domain and Xtreme Spectrum were formed around
the idea of consumer communications using UWB [16]. In 2002, the USA
based Federal Communication Commission (FCC) [17], allocated a band-
width of 7.5 GHz for UWB signals [18]. This bandwidth covers a frequency
band of 3.1 to 10.6 GHz. In order for any signal to be considered a UWB
signal, it must either have a bandwidth of at least 500MHz, or it should have
a fractional bandwidth of greater than 20% in the frequency range defined
by the FCC.



There are a wide range of advantages associated with UWB signals. The
key benefits are high data rates, low equipment cost and low hardware sys-
tem complexity, multipath immunity, simultaneous ranging and communi-
cation, and importantly a very low power non-ionising transmission level,
much lower than Wi-Fi or Bluetooth, enabling its use in domestic environ-
ments [16]. Having these advantages, ultra-short information pulses along
with not requiring sine-wave carriers in modulation, enables UWB signals to
be used in a wide range of applications, which include precision navigation,
through wall imaging, high resolution ground penetrating radar and short
range and high-speed broadband access. Impulse Radio UWB (IR-UWB)
communication systems transmit very short duration pulses, resulting in the
production of very high bandwidth signals. The short duration of the pulses
allows a high level of accuracy with centimetre-level ranging resolution and
unmatched performance in multipath environments [16]. Multiple studies
can be found in the literature focussing on ranging [18], location and tracking
algorithms [19, 20]. Pivotally, UWB sensing when developed appropriately
does not require end-users to wear any form of tag to engage with the sys-
tem. This creates a more natural environment when outputs on movement
and occupancy are required, creating more realistic data on user movement.

In this work, the data gathered from UWB detects and identifies the
movements of person(s) within an indoor environment. This enables the
system to potentially identify the occupancy or non-occupancy rates as well
as the exact real time location of person(s) inside the house and to distinguish
the number of people in each room.

Augmenting the non-intrusive wireless radar system, algorithms were de-
veloped to identify appliance energy usage within an environment, from
voltage and current measurement equipment which could be placed at the
electricity meter location. This type of system falls under the category of
Non-Intrusive Load Monitoring (NILM), so called because the measurement
equipment does not intrude onto the consumers property any more than the
existing kilowatt hour (kWh) meter [21]. The electrical signature profiling
seeks to determine which appliances turn on and off at which times, by pro-
cessing the aggregate power signals which can be measured at the kWh meter
in a pattern recognition scheme. The nearest-neighbour supervised learning
technique was used to identify appliances in a typical home, using a training
set consisting of laptop, microwave, fan, toaster and kettle power signatures
for the experiment in question. Detailed per-appliance energy consumption
information was then computed, which could be provided to the consumer.



This paper is organized as follows. In section 2, the theory and methods
behind the experiments are explained and section 3 gives a detailed expla-
nation of the lab measurement. The corresponding results and analysis are
presented in section 4 while section 5 concludes the paper.

2. Methodology

The overall system developed merges signal profiling and UWB radar into
an appliance detection and occupancy scheme. Both systems were designed
individually and integrated for physical experimentation as will be described.

Power signals measured at the electrical intake position to a building are
the aggregate of each appliance connected to the installation. Figure 1 shows
a time series snapshot of a typical household power signature, where appli-
ance usage periods overlap and transients exist in the real and reactive com-
ponents; the signature shown was generated in the lab by manually switching
typical household appliances on and off over an eight minute period, whilst
data-logging the aggregate real and reactive power levels. In order to pro-
vide energy consumption information for each target appliance category, it
is necessary to disaggregate the total energy measured at a single point (the
kWh meter position). Several methods for achieving this disaggregation are
described in the literature.

Egarter [22] describes a real time unsupervised load disaggregation algo-
rithm which uses only real power values, sampled at 1Hz. The pattern recog-
nition method used is particle filtering, which is computationally expensive.
Bijker [23] utilises Real Power and duty cycle as appliance load features. This
would predominantly be suited to detect target loads which are switched by
an internal thermostat, for example a fridge or cooker. Nguyen [24] describes
a system that uses active, reactive and apparent power as appliance features.
A decision tree classifier uses step changes in these quantities to identify ap-
pliance usage. The decision tree method does not appear to be scalable to
large numbers of appliance categories.

Electrical appliances can also be categorized by their steady state real
power and reactive power consumption [25], where transients in the signals
are ignored in favour of sharp turn-on and turn-off edges. This method
was adopted in the NILM software developed, as it does not require a large
amount of processing power, and is capable of detecting a wide range of
household appliances making it suitable for domestic and business scenario
requirements.
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Figure 1: Typical household raw power signature.

The algorithm functions as follows; the acquired power signal is first pro-
cessed to detect changes in steady state power levels, known as load edges
[21], by voltage level normalisation, steady period filtering, and then discrete-
time differentiation. Figure 2 shows the real and reactive parts of the pro-
cessed typical household power signal from figure 1, with load edges now
appearing as impulses.

Loads are then detected by pairing on and off edges with similar magni-
tudes but opposite signs, and classified into appliance categories using the
nearest neighbour algorithm in two dimensions. This classifies test appli-
ances according to the training appliance that has the most similar power
profile. The training dataset used was formed of experimental data acquired
from multiple instances of five test appliance categories, namely microwave,
laptop, fan, kettle and toaster.

Python 3.0 code was used for the development of a dedicated program
to perform the required signal processing and pattern recognition described
above, to recognise each appliance under test and the energy used by each
appliance instance, and output an itemised energy usage table. The research
team is currently finalising its development alongside energy bills to assist
users’ understanding of their energy use and will be published once full ex-
periments, currently underway are finished. . The software output included
an infographic displaying the total energy consumption for each appliance
over a period of time. An algorithm was developed to pre-process the real

and reactive power signals by normalising against the voltage signal using
the formula [21]:
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Figure 2: Associated load edges of Figure 1.
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where puorm 1S the normalized power sample, vg is the nominal supply
voltage (240V AC), and v(t) and p(t) indicate the voltage and power samples,
respectively. The output was then filtered using a consecutive steady sample
method [21] to remove high frequency transients and sharpen edges. The
steady state edges were detected by taking the discrete-time first derivative
of the power signals. Load edges, now appearing as impulses (see figure 2),
were paired into loops [25] according to testing the real power edges against:

|Edge,, + Edge, ;| < Tolerance (2)

A tolerance value of 25W was found to work well for the models un-
dertaken and this tolerance value was used for all subsequent experiments.
Each load-edge pair was mapped into an appliance category using the nearest
neighbour algorithm, and the training dataset.

Figure 3 is a scatter plot showing the manually labelled experimental
training points used for the nearest-neighbour classification. The classifica-
tion features found to work best were:

e Real power (P)

e Reactive power per real power (Q/P)



Both features were normalized to give equal weighting, and rescaled to
percentages for easier human readability. Energy usage was calculated per
appliance instance and then re-aggregated by appliance category, in order to
produce data for a histogram of each appliances energy usage over a time
interval.
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Figure 3: Scatter of training data and kettle test point.

3. Lab experiment

A lab experiment was carried out in a staff kitchen. Real and reactive
power signals were sampled at 1Hz, using a standard laboratory power anal-
yser with a BS1363 [26] breakout socket (Voltech PM1000 [27]). The resident
toaster, kettle and a microwave were all connected to the breakout socket via
a multi-way adaptor, providing an aggregated power signal and the connec-
tion is shown below in figure 4.

Figure 5 shows the real time Power Analyser software trend screen, used
to confirm that the power signal was being received and logged.



AC Source I

Y

Power Analyser
Voltage Terminals

Parallel
Connections

B.S5.1363
Breakout Socket

Series
Connections

Power Analyser
Current Terminals

Kettle Toaster '

|

Multiway Adaptor

Y

Figure 4: Block diagram of appliance monitoring connections.

VA

Vims 24532 V

Watt

VA 16281 uVAr

VA

10004

Figure 5: Power signature measurement trend screen.
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The monitoring UWB radar set-up employed commercially available hard-
ware and the corresponding in-house developed code was embedded on the
radar module to fulfil the required monitoring tasks of the experiment. The
UWB radar module, with a bandwidth of 3.1-5.3 GHz, includes one Time-
Domain PulsON P410 module board and two Broadspec antennas, one for
transmission and one for reception. The UWB board itself is shown in figure




6. For ease of installation and use, the topology of the system must use a
single edge sensor type; in this case we use XBee.

Figure 6: Physical UWB and RPi arrangement.

To receive data back to a single point of the network the UWB data must
be converted to XBee format in order for the network coordinator to upload
the data to the MYSQL database. To fulfill this requirement the UWB board
was integrated with a Raspberry-Pi (R-Pi) interface and an XBee module as
shown in Figure 7. Data would be transmitted from the UWB radar system
and uploaded to the database via XBee modules, maintaining the pivotal
single sensor interface of the scheme.

The UWB transceiver (Figure 7-b) is attached to a Raspberry Pi (RPi)
BCM2835 microarchitecture (Figure 7-a) via a USB serial connection. [28,
29]. Tt is a credit-card sized single board computer running under Debian
and Arch Linux ARM distribution [30]. The RP1i is subsequently connected
to an XBee router. The XBee coordinator (7-d) is connected with the server
containing the database (7-e). A computer program, developed in C++, was
created to collect the UWB data, perform the signal processing and interpret
the occupancy and movements into binary data at the RPi. The binary data
was then sent by the XBee router (7-c¢) to the XBee coordinator once every
500ms (time can be altered depending on application). Subsequently the
received data at XBee coordinator was extracted by a Java program running
on a remote computer. The Java program stores this received data into
MySQL database with a time stamp and displays in a plotted format as
shown in upper graph of Figure 11 (Occupancy vs time). The nominal pulse
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Figure 7: Test set-up sketch of UWB and XBee modules.

Appliance | Actual Time ON
Kettle 13:53
Toaster 13:55
Microwave 13:59

Table 1: Diary of appliance usage.

repetition frequency for the system was 10 MHz and the default gain of the
system corresponded to the peak emission power permitted under the FCC
rules [16]. The optional parameters of the radar module, such as the required
distance range to be covered can be adjusted depending on the size of the
building under test. To ensure reliability and accuracy a diary was kept of
appliance usage during the kitchen occupation periods (Table 1).

The Comma Separated Value (CSV) file produced by the power analyzer
was automatically uploaded to the custom-built Python NILM software. The
physical system was deployed in a staff kitchen as mentioned; the kitchen
floorplan is shown in Figure 8.
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4. Results and analysis

The power signal of appliance usage before processing is shown in the
lower graph of Figure 11 (Real power vs Time), clearly displaying the power
timelines of the three appliance instances that were available in the kitchen.

The NILM software produced an itemized energy statement shown in Ta-
ble 2, which details the duration and energy consumption for each appliance
instance. The NILM software correctly identified each appliance category by
classifying the test points according to load complex steady power, using the
nearest neighbour algorithm developed. Figure 9 shows the test points as
small red dots. It can be seen that the test points corresponding to the mi-
crowave are not in the exact correct location, which is due to the variability
in electrical power signatures of the microwave used in training. Appliance
instance on-duration, and thus consumed energy, were also calculated by the
software, which were then used to generate the aggregated appliance energy
usage infographic shown in Figure 10.

The UWB radar system ran for the same timeline and as can be observed
in figure 11, excellent correlation between the power consumption data and
that of the occupancy (shown in the upper half of figure 11) is shown. In
both active instances, the power consumption starts soon after occupancy is
noted in the room and ends before those present leave. The waterfall plot
from the UWB radar data is shown in figure 12 and displays the processed
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Time ON | Time OFF | Appliance | Duration (s) | Energy (Wh)
0| 13:54:14 | 13:55:08 Kettle 54 31.4118
1] 13:55:39 13:56:04 Toaster 25 5.96627
2| 13:59:03 13:59:33 | Microwave 30 12.5463

Table 2: NILM Software Output of Disaggregated Power.

120

100 +

80

60 |-

40|

Normalised Q/P (%)

20

=20

Lapto
~ ptop

Fan

Toaster

~
°)

Microwave

O

Kettle

=20

0 20

4IU GIU
Normalised P (%)

80 100

120

Figure 9: Scatter Plot of Training Set with Test Points.

occupancy data over the period of 15 minutes tested.

Dark regions indicate the time and locations when no movement or occu-
pancy was present while the white patterns represent the real-time movement
both within the room. X-axis represents the distance from the radar module
while the y-axis is the timestamp ascending from top to bottom. At the
top of the figure, persons leaving the room can be detected and further two
instances at the bottom half of the figure, where patterns are present at a
distance of 2 metres or less (length of radar to kitchen door) match the diary

and appliance power signatures.

Further experiments are underway on larger scale settings correlating
video, radar and remote appliance algorithm integration to further validate
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Figure 11: Plot of Occupancy and Real Power vs Time.

the non-intrusive system.
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Figure 12: UWB raw data plot during the test period (waterfall plot).

5. Conclusions and future work

In this paper, a lab experiment was performed to analyze if together non-
intrusive radar and remote signature profiling could be combined effectively
in real-time to understand and pinpoint movement patterns and appliance
use.

The results show that non-intrusive wireless monitoring is possible and
when augmented by improved signal processing techniques for appliance iden-
tification and power consumption, could lead to a step change in understand-
ing how occupants use energy and the buildings they occupy. This approach
could be employed to effectively close the energy gap problem between build-
ing design and occupancy.

The UWB radar system is part of a larger automated energy saving
project in its final stages taking place in flats and houses, where the infor-
mation gathered from it is combined with information collected from various
other sensors and smart plugs, while considering the occupants behavioral
patterns to enable the control system to make the best energy saving deci-
sions.
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By comparing a recorded diary of activities with results obtained from
both the UWDB movement tracking and appliance signature monitoring, an
effective synchronization was observed. This could enable the further disag-
gregation of a buildings energy consumption into energy likely to have been
used as a result of occupant behaviour, and energy likely to have been used
due to background appliance consumption.

Further work will include developing non-intrusive sensor hardware to
measure electrical power consumption from the household kilowatt-hour me-
ter position; this would remove the need for the Power Analyser used in the
lab experiment, thus making the NILM system capable of retrofitting into
dwellings.

The combined UWB and NILM system is designed for remote monitoring
of household occupancy and disaggregated energy consumption by uploading
relevant gathered data to a remote repository using a gateway installed in
the home. This system has obvious implications for smart buildings, under-
standing how users engage with buildings, and assisted living.
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