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Abstract. 
Nowadays, thanks to the digital transformation of the oil and gas industry, there is a more diverse range of data available 

from production wells to history match reservoir simulation models. Still, conventional history matching methods continue 
using a limited set of observed data as validation parameters or model selection criteria. Therefore, sometimes critical 
factors controlling the fluid dynamic, and consequently the production forecasting are overlooked.  

One of the challenges found in almost any history matching process is the precise estimation of fluid saturation and 
waterfront movement during the simulation period, however, despite being demonstrated that using surveillance logs into 
reservoir characterisation improves the model representation, not much effort has been allocated to incorporate saturation 
well logs into the core of the history matching workflows. 

Therefore, this paper proposes a methodology for an alternative history matching process enhanced by the 
incorporation of a simplified binary interpretation of reservoir saturation logs (RST) as objective function. Incorporating 
fluids saturation logs during the history matching phase unlocks the possibility to adjust or select models that better 
represent the near wellbore waterfront movement, which is particularly important for uncertainty mitigation during future 
well intervention assessments in water driven reservoirs. 

For the purposes of this study, a semi-synthetic open-source reservoir model was used as base case to evaluate the 
proposed methodology. The reservoir model represents a water driven, highly heterogenous sandstone reservoir from 
Namorado field in Brazil. 

To effectively compare the proposed methodology against the conventional methods, a commercial reservoir simulator 
was used in combination with a state-of-the-art benchmarking workflow based on the Big LoopTM approach.  

A well-known group of binary metrics were evaluated to be used as the objective function, and the Matthew correlation 
coefficient (MCC) has been proved to offer the best results when using binary data from water saturation logs. History 
matching results obtained with the proposed methodology allowed the selection of a more reliable group of reservoir 
models especially for cases with high heterogeneity. The methodology also offers additional information and understanding 
of sweep behaviour behind the well casing at specific production zones, thus revealing full model potential to define new 
wells and reservoir development opportunities. The methodology proposed in this paper does not compromise 
conventional methods used to evaluate the history matching quality, instead, it should be considered as an option for multi-
parameter history matching workflows. The contribution to knowledge from this research is the methodology, which has 
also been applied in a real case for the model build and validation of a North Sea turbidite reservoir, with similar 
enhancements in history matching as presented in this publication. 
 
Keywords:  Reservoir modelling, Objective function, Reservoir simulation, Binary classification, Data analytics, History 
matching, Saturation logs, Data assimilation. 
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1. Introduction 
 

Reservoir simulation is traditionally required as a 
decision-making tool in reservoir management studies, as it 
provides the physical representation of static 
characteristics and dynamic behaviour of a hydrocarbon 
reservoir, while considering a large number of known 
uncertainties. The history matched model is essential for 
reservoir management to assess different strategies 
maximising hydrocarbon recovery. History matching is the 
model calibration exercise, which relies on the fact that if a 
model can accurately reproduce the production history or 
observed data, it will be useful to predict the future 
performance of the reservoir.  

One of the challenges for reservoir engineers and 
history matching processes is to reproduce detailed 
information about the fluid displacement in the porous 
media in order to identify the time of water breakthrough 
for each well and each pay zone in a production well. On 
that topic, Benlacheheb (2014) highlighted the advantages 
of incorporating additional monitoring data as part of the 
history matching process to allow more detailed outcome 
related to vertical heterogeneity of reservoir properties in 
the validated model.  

This research aims to develop a complementary 
methodology to improve the results obtained from the 
history matching process by incorporating binary 
saturations logs as part of the evaluation parameters. The 
proposed methodology leads to a more robust and reliable 
reservoir model. 

The objectives of the study were as follow: 
o To present a complementary history matching 

methodology which allows the incorporation of 
Saturation Logs as an additional evaluation parameter. 

o To evaluate available misfit calculations for binary 
parameters to assess the history matching quality of 
the different models. 
The novelty of the methodology proposed in this paper 

lies in its flexibility to include new evaluation parameters 
independent of the type of data. Besides, the methodology 
also provides a simplification of the matching responses by 
transforming the original format into binary output, which 
opens the possibility to use more complex frameworks to 
accelerate the matching process such as machine learning. 
 

1.1. Objective Functions 
The history matching quality of a model is often 

expressed in terms of its global objective function. The 
objective function is a mathematical function that allows a 

measure of the misfit between simulated and observed 
data (Mata-Lima, 2011). Most of the existing formulations 
can be written as a function of a point-by-point difference 
between simulated and historical data. Equation 1 shows 
the simplest way of calculating an objective function: 

 

𝑂𝐹(𝑷) = 𝑓 ({𝑌𝑖,𝑗
𝑑 (𝑷) − 𝑌𝑖,𝑗

𝑑 𝐻
}

𝑖,𝑗,𝑑
) 

Equation 1 

Where 𝑷 is a set of parameters defined by simulation 

model, the function 𝑓 is a real-valued function, 𝑌𝑖,𝑗
𝑑 𝐻

 

corresponds to the historical data of the response 𝑗, on the 

object 𝑖 at a date/depth 𝑑, while 𝑌𝑖,𝑗
𝑑  corresponds to the 

simulated data of the response 𝑗, on the object 𝑖 at a 
date/depth 𝑑. 

In a conventional history matching process, all 
reservoir data is gathered to create a 3D model through the 
reservoir characterisation process, then using dynamic 
simulation and the observed data it is possible to use the 
model to predict historical results, finally model simulated 
results are compared to the observed data using the 
objective function to determine the history matching 
quality of the model in order to determine whether the 
model match is acceptable. 

More holistic approaches have been introduced into 
geomodelling processes by unlocking the potential of 
assessing a significant number of possible combinations of 
inputs used to create the 3D model, and creating a wide 
range of alternative solutions (Schiozer et al., 2005; Kumar 
et al., 2017; Luo and Bhakta, 2020).  These alternative 
solutions are commonly described as representative group 
of models. The final representative group of models are 
selected from a bigger equally probable ensemble which is 
derived from the combination of all related uncertainties in 
an uncertainty analysis. The selection of the representative 
group of models is based on their history matching quality. 

The rationale of these original approaches is based on 
the nature of the history matching as an inverse problem 
optimisation which means that there is no unique solution 
to the problem and hence different sets of inputs could lead 
to almost the same outcome.  

The incorporation of the geologist’s interpretation 
data as part of the whole process provides the results with 
more information about the most representative reservoir 
models and uncertainties about static reservoir data (Landa 
and Horne, 1997; Wang and Kovscek, 2001).  

The selection of the different objective functions used 
for the evaluation of model’s performance and efficiency 
was reviewed by Mata-Lima (2011). Further findings from 
published data show that Root Mean Squared Error (RMSE) 



as well as Mean of the Deviations (AE) are the most widely 
used in history matching, considering the linear nature of 
the parameters commonly used in the process. However, 
many of these deviation-based statistics differ from each 
other in the way that differences between observed and 
simulated results are evaluated.  

 

1.2. Limitation of conventional objective function 
calculations 
In conventional history matching workflows, the 

objective function is commonly calculated using well level 
production data such as production rates (oil, gas, water, or 
total liquid rates), gauge pressures and production ratios 
such as well water cut.  

It is well known that for any model-built process, the 
more the number of key performance indicators (KPIs) the 
model managed to represent, the better the quality of the 
model. Hence, matching a reservoir model using only 
limited data may not be enough to define a satisfactory 
representation of the reservoir in order to predict its future 
performance (Sahni and Horne, 2006).   

One of the main challenges of using well production 
data to validate the models is to accurately capture the 
correct saturation changes in individual producing zones in 
commingled production wells. Frequent practice evokes 
two methods to measure near wells water saturation 
changes: (1) Saturation Logs and (2) 4D seismic. The use of 

4D seismic technology has positively contributed to a better 
interpretation of fluid displacement (Kjelstadli et al., 2005; 
Ferreira et al., 2015). However, this technology can lead to 
some difficulties which require additional algorithms and 
statistical analysis to predict fluid saturations. Besides, 4D 
seismic data is not always available and has additional 
economic implications on the budget. On the other hand, 
saturation logs are commonly obtained during regular 
surveillance interventions.  
 

1.3. Classification Metrics 
Several classification techniques have been applied in 

different fields of sciences depending on the nature of the 
problem and the classification output (binary or multi-class) 
(Tharwat, 2020).  
 
1.3.1. The Confusion Matrix (CM) 

The CM is defined as a table that allows the user to 
analyze results and performance of a specific algorithm 
which classifies data. The confusion matrix is one of the 
most common tools used to assess binary classifiers. A CM 
contains information about actual and predicted 
classifications done by a classification system (Provost and 
Kohavi, 1998). The performance of such systems is 
commonly evaluated using the data in the matrix. Table 1 
shows an example of the confusion matrix for a two-class 
classifier.

Table 1 The confusion matrix for two-class classification problem 
  Predicted 

  Negative Positive 

Actual 
Negative a b 

Positive c d 

 
The entries in the CM, in the context of the study 

presented in this paper, have the following meaning:  
a is the number of correct predictions for a negative 

instance or True Negatives (TN), 
b is the number of incorrect predictions for the 

negative instance or False Positives (FP),  
c is the number of incorrect predictions for a positive 

instance or False Negatives (FN), and 
d is the number of correct predictions for the positive 

instance or True Positives (TP). 
A wide portfolio of metrics used for binary 

classification assessments can be found in the literature 
and most of these metrics are derived from the confusion 
matrix (CM). However, many of these metrics can be only 
applied to specific problems due to their biases and 
limitations as noted by Powers (2008). 

 

Table 2 summarise the applicability and limitations of 
some of the more widely used binary metrics. 

 
1.3.2. The Matthews correlation coefficient (MCC) 

The MCC is a confusion matrix derived metric which 
was introduced by Brian W. Matthews in 1975 when 
comparing chemical structures (Matthews, 1975).  MCC 
represents the correlation between the observed and 
predicted classifications with the advantage of overcoming 
problems generated for cases with imbalanced data as 
found by Chicco and Jurman (2020) by comparison of 
different confusion matrix metrics. As others confusion 
matrix metrics, MCC can be calculated using predicted 
instances of the confusion matrix (TP, TN, FP and FN). 

The MCC outcomes goes from -1 to 1, where a 
coefficient 1 indicates a perfect prediction or perfect 
match, −1 represents total disagreement between 



prediction and true values, and zero means no better than 
a random prediction. MCC is the only binary classification 
metric that generates a high score only if the binary 
predictor is able to correctly predict most positive and 
negative data instances.  

According to previous statistical studies and data 
science applications (Chicco and Jurman, 2020),  in most of 

the cases, MCC can provide more reliable statistical results 
than other imbalanced binary metrics such as F-measure 
and Accuracy. 

Although the classification metrics defined in table 2 
have been widely applied for data science and engineering 
problems, there is not public evidence of their applicability 
as part of history matching objective functions.  

 
Table 2: Metrics used for binary classification, adapted from Tharwat (2020) 

Binary Metric Key features Application Formulae 

Confusion 
Matrix (CM) 

CM measures the correlation between 
the observed and predicted data as 
quality of a binary response (true/false), 
(positive/negative) 

The CM allows the application of 
the different metrics to correlate 
the data. 

𝑀 = (
𝑇𝑃  𝐹𝑁

𝐹𝑃 𝑇𝑁
) 

False Positive 
Rate (FPR) 

FPR represents the proportion of positive 
cases that are incorrectly classified as 
positive from the total number of 
negative outcomes. 

Also recognized as fallout and false 
alarm rate. This metric is not 
affected by imbalanced data. 

𝐹𝑃𝑟 =
FP

(FP + TN)
 

True 
Negative 

Rate (TNR) 

TNR represents the proportion of 
negative cases that are properly 
identified as negative from the total 
number of negative outcomes. 

It is also called specificity or 
inverse recall. This metric is less 
affected by imbalanced data. 

𝑇𝑁𝑟 =
TN

(FP + TN)
 

False 
Negative 

Rate (FNR) 

FNR represents the proportion of 
negative cases that are incorrectly 
identified as negative from the total 
number of negative outcomes. 

It is also called miss rate or inverse 
recall. This metric is less affected 
by imbalanced data. 

𝐹𝑁𝑟 =
FN

(TP + FN)
 

Precision (P) 
Represents the ratio of correct 
predictions that are relevant. When the 
prediction is yes, how often is it correct? 

It is also called “confidence” 
metric. It does not consider the 
number of true negatives. 

𝑃 =
TP

(TP + FP)
 

Recall (R) 
Measure the accuracy on the positive 
class. Thus, when the correct prediction 
is yes, how often does it predict yes? 

The metric is valuable to measure 
the real positive cases that are 
predicted. The metric is 
represented as a rate of discovery 
of positive classifiers. 

𝑅 =
TP

(TP + FN)
 

F-Measure 
(FM) 

It is the ratio of metrics Precision/Recall. 
It is the harmonic mean of precision and 
recall metrics. 

It considers the ratio of True 
Positives to the arithmetic mean of 
predicted positives and real 
positives. This metric is sensitive to 
changes in the class distribution. 

𝐹𝑚 =
2TP

(2TP + FP + FN)
 

Accuracy (A) 
Represents the ratio between correct 
predictions to all predictions. The best 
value is 1 and the worst value is 0. 

The metric is not reliable for 
imbalanced data. It can provide an 
overoptimistic 
estimation of the classifier. 

𝐴 =
(TP + TN)

(TP + TN + FP + FN)
 



 

2. Methodology 
 
In order to evaluate the advantages and quality 

enhancement of the proposed methodology compared 
with a conventional history matching objective function  
which only use production rates, a semi-synthetic 
geological model developed by UNISIM-M (Gaspar et al., 
2016) was used in combination with a benchmarking 
workflow.  

 

2.1. Benchmarking the proposed methodology 
To benchmark the proposed methodology, a modified 

“Big Loop” workflow was used. This benchmarking 

workflow differs from the original presented by Kumar 
(2017) as it only uses the first iteration of the loop to 
generate the ensemble of models and it does not iterate to 
improve the history matching quality of the ensembles. 

The modified workflow is divided in two stages, Stage 
1, or Pre-Loop, which is used to generate a base or control 
case to represent the real reservoir outcomes or 
“observed” data. In the Stage 2, a final ensemble of models 
is created from the base case. The final ensemble of model 
is later used to benchmark the proposed methodology by 
comparing the performance of both, conventional and 
enhanced proposed approaches in a model selection 
assessment. The modified “Big Loop” workflow is illustrated 
in Fig. 1

  

 
Fig. 1: Modified “Big Loop” workflow including proposed methodology 

 

Stage 1: Base case generation [Pre-Loop]  
This stage includes the base reservoir model building 

(or observed data case) using all available data. Geological 
and dynamic inputs are analysed and included in the 
workflow. Variables and ranges of uncertainty are defined 
and analysed. The initial ensemble of models is generated 
as result of an uncertainty analysis loop using MonteCarlo 
permutation in combination with a Latin-hypercube 
sampling method.  

After the base case is generated, key producers are 
identified to evaluate the methodology. In real applications, 
this step will depend on the data available in terms of 
number of saturation logs per well. For the purpose of the 
methodology benchmarking, all producer wells existing in 
the model were considered as well as one RST log per year 
per well. 

 

Matthew’s 
correlation 
coefficient 

(MCC) 

Represents the relation between the 
observed and predicted classes. 

The outcome ranges from +1 to -1, 
+1 represents a perfect prediction 
and -1 total disagreement. The 
metric is sensitive to imbalance 
data. 

𝑀𝐶 =
𝐴 − 𝐵

√𝐶 ∗ 𝐷 ∗ 𝐸 ∗ 𝐹
 

    Where: 
A=TP*TN            B=FP*FN 
C=TP+FP             D=TP+FN 
E=TN+FP             F=TN+FN 



Stage 2: Benchmarking workflow 
To generate the final ensemble of models, a second 

uncertainty analysis loop is performed using the same 
inputs and variables defined in the previous stage. The 
difference between stage 1 and 2 uncertainty analyses is 
that the observed data used in stage 2 correspond to the 
simulation data of the base case selected in stage 1. After 
the final ensemble of models is generated, both, traditional 
and proposed methodologies are used to select the best 
history matching models from the ensemble. To select the 
models, the traditional approach uses an objective function 
calculation based on producer’s water cut. The proposed 
RST approach methodology uses binary RST logs and a 
confusion matrix metric to select the group of best 
matching cases. 

To assess the history matching quality of individual 
cases in each group, different key performance indicators 

(KPIs) such as the well and layer production rates are used 
to compare the selected cases against the base case.  

 

2.2. Proposed RST Approach Methodology  
The proposed methodology is an add-in module that 

can be used as an additional validation step in any history 
matching process as indicated previously in Fig. 1.  

By incorporating reservoir water saturation changes, 
derived from cased hole saturation logs, into the history 
matching process; the proposed methodology adds more 
granularity in terms of matching zonal level water 
saturation changes around producer wells. The new 
proposed methodology for enhanced history matching 
process using RST logs is represented in more details in Fig. 
2 and each step is explained on this section. 

 

   
Fig. 2: Methodology proposed for enhanced history matching process using RST logs 

 

Step 1: Estimation of observed binary RST logs  
The location and movement of the waterfront or 

sweep for each producer well is a key uncertainty in 
understanding and modelling the behaviour of an oil 
reservoir through production. Water saturation changes in 
the reservoir can be monitored by acquiring cased hole 
saturation logs.  

The standard interpretation approach for estimating 
cased hole saturation changes is based on log analysis of 
the cased hole log data. The process requires the use of a 
formation evaluation model that includes rock and fluid 
properties to interpret the log responses, and additional 
parameters to model the borehole configuration. The 
product of this interpretation is an estimate of water 
saturation that varies on a continuous basis from 0 to 100% 
at each depth increment in the zone of interest. The results 
obtained from this interpretation approach contain high 
uncertainty, as there are many unknown parameters in the 

formation evaluation model, and the data can be noisy, 
which represents some challenges in the use of this data as 
a history matching parameter.  

The proposed approach to overcome some of the 
challenges associated with the use of saturations logs for 
history matching is to create an interpreted binary (yes/no) 
‘sweep’ flag that represents the break-through of the 
waterfront. Although this binary sweep interpretation 
approach is a simplification of the normal process; it can be 
a valid characterisation of the saturation in several ways. 
The simplification reduces the grade of uncertainty created 
to determine a specific saturation value which is usually 
well defined when the waterfront has arrived. 

Analysis of time-lapse saturation logs shows that for 
any specific depth interval, there is a single and appreciable 
change of water saturation from a low initial value to a high 
one, corresponding to the arrival of the waterfront. 



This large, one-time change in water saturation is 
followed by little subsequent changes. Given this observed 
behaviour of the waterfront, it becomes reasonable to 
simplify the existing interpretation of the saturation log 
response by defining the waterfront arrival at the time and 
interval when the sigma log response changes. One 
limitation for this approach resides on the need of a 
previous comparable log, to define a baseline. 

As the timing of the arrival of the waterfront varies at 
different intervals depending on reservoir properties and 
vertical heterogeneities, these are the key adding 
observations for the history matching objective function. 

This method of characterisation of the ‘style of sweep’ 
in a reservoir is consistent with the observed behaviour of 
many special core analysis tests in which water 
breakthrough occurs in a ‘piston-like’ type behaviour. 

Gradual changes in water saturation are not usually 
observed in core flood experiments or in actual production 
surveillance observation data.  

In the example shown in Fig. 3, the water saturation 
changes in the reference case simulation model are 
captured at discrete times (January 2004, 2011, 2012 and 
2013). These water saturation scenarios are then forward 
modelled to create synthetic ‘Sigma’ cased hole saturation 
responses. This process simulates or reproduces the 
observation data that would be available in an actual field 
development with reservoir surveillance monitoring. 

Besides, in Fig. 3 the Sigma data is analysed to create a 
series of binary interpretation products that show the 
sweep response of the reservoir at the different time steps 
as shown in the penultimate 4 tracks. 

 

 
Fig. 3:  Illustration of water saturation changes in the reservoir, as identified by cased hole saturation logs and interpreted 
in ‘sweep’ binary log 

Through this process, the binary yes/no ‘sweep’ /’un-
swept’ interpretation is used to represent the most 
significant changes in saturation in the reservoir. 
Simplification of the changes in water saturation from a 
continuous variable to a binary variable has the additional 
benefit of mitigating the inherent uncertainty in the precise 
change in saturation, which may be unknowable from cased 
hole saturation logs.  

For many decades both, Sigma and Carbon/Oxygen 
logging technology have been established to provide 
saturation estimates through casing. Recent improvements 
to this technology have reduced the uncertainty in 
saturation estimates. The innovative interpretation 
approach proposed on this research opens the possibility to 
use diverse sources of well logging interpretation data 
(including open-hole interpretations from new infill wells), 

to define waterfront arrival times over decades of field 
development, irrespective of the data logging technology. 

Step 2: Generating synthetic saturation logs for each 
equiprobable model 

As spatial fluid property changes are recorded for each 
individual grid cell, changes of water and oil saturation near 
the wellbore are also recorded, thus allowing the 
estimation of synthetic saturation well logs at any time 
during the simulation period. Synthetic saturation logs can 
capture the fluid saturation for each grid block located 
along the path of a specific well.  

Information from saturation logs is critical in producer 
wells because an increase in water saturation, above a 
specific threshold, can be related to water breakthrough. 
Fig. 4 shows an example of a 2D vertical section of water 
saturation profile along the well trajectory of a pair of 



producer and injector wells at a specific point in time during 
the simulation. Fig. 4 also shows a well log view of the 
corresponding synthetic water saturation log of the 
producer well at the same simulation time step. Moreover 
Fig. 4 also shows how injected water in the injector well 

INJ017V has created preferential paths towards the 
producer RJS19 at the top and the bottom of the reservoir. 
These preferential waterfront paths are also captured as 
high-water saturation intervals in the producer synthetic 
water saturation log  

 

 
Fig. 4: 2D vertical section of water saturation profile containing the well trajectory of a producer and an injector, along 

with the producer synthetic water saturation log 

For the proposed workflow, synthetic saturation logs 
are generated for all producer wells with available 
saturation logs, providing an additional quality check 
parameter used during the validation of the simulation 
model. 

 

Step 3: Transforming saturation logs into binary logs 
using a threshold 

To transform the previously generated synthetic 
saturations logs into binary (“Swept”, “un-Swept”) 
simulation logs, a water saturation threshold is used. This 
threshold represents the minimum water saturation of the 
near wellbore cells, at the moment the waterfront arrives 
at the producer well.  

Classifications in the binary saturation log are obtained 
as follow:  

1) Swept class (after waterfront has arrived). A log 
segment is classified as swept when the water saturation in 
specific zones is above the threshold. 

2) Un-swept class (dry production). A log segment is 
classified as un-swept when the water saturation has not 
yet reached the threshold. 

 

Threshold estimation. Threshold or the value of saturation 
at water breakthrough can be estimated either empirically 
or analytically, depending on the field data available. In 
order to capture results impact and uncertainty ranges, 
both methods have been included in this research. 
 
a. Analytical Method. When special core analysis (SCAL) 
data is available, the fractional flow curve can be used in 
combination with the Welge method (Wheaton, 2016) to 
estimate the average water saturation at the waterfront, as 
suggested by Welge (1975). The common procedure to 
estimate the average water saturation at the waterfront is 
by drawing a tangent line to the fractional flow curve from 
the initial water saturation. Fig. 5 shows an example of 
calculation of the water saturation at the front (Swf) using 
the Welge method, where Sw represents the water 
saturation percentage and fw correspond to the fractional 
flow or water cut.  
 



 
Fig. 5: Welge plot of fractional flow curve. 

This method relies on the availability of core samples for 
the different type of rocks and SCAL results from laboratory 
experiments. The method is affected by reservoir 
characteristics, fluid and reservoir properties and pressure 
draw-down. The saturation determined from the Welge 
method is an average saturation and from the 
mathematical point of view, there are some limitations to 
determine the exactly tangent point when the fractional 
curve does not show appreciable changes with water 
saturation. Results reported by Iscan  (2021) showed a good 
match between water saturation values estimated by 
fractional flow and production logging tools PLT for 
different rock types. 
 

b. Empirical Method. As previously captured, water 
saturation threshold is the near wellbore water saturation 
at the producers when water arrives to the well, hence if a 
saturation log has been taken at the point of time when a 
specific well starts producing water, the maximum water 
saturation registered in the log can be used as the 
threshold. This method relies on the availability of water 
saturation logs at the time the well started producing 
water. 

Fig. 6 shows swept and un-swept areas of a vertical 
section of a model, highlighting the producer well name 
“RJS19” and the closest injector well “INJ017V”at a specific 
time step, Fig. 6 also shows the corresponding synthetic 
binary RST log (right side), the equivalent saturation log and 
the applied threshold to transform saturation log into 
binary RST, for this example 0.2 was used. 

 

Step 4: Comparing match quality between Observed vs 
Synthetic logs by generating a confusion matrix Log 

Each binary synthetic saturation log, derived from 
individual models, can be directly compared with the 
observed binary RST log. The direct comparison process is 
performed using the confusion matrix classification 
metrics, after segmenting both observed and synthetic logs 
in depth units. As a result, a confusion matrix log is created 
for the entire log depth. Example of one model confusion 
matrix log and its corresponding confusion matrix table is 
shown in Fig. 7. Moreover, Fig. 8 shows confusion matrix 
logs generated for the first twenty different models of an 
ensemble. 

  

 
Fig. 6: Swept and un-swept areas of a 2D reservoir model slice highlighting the producer RJS19 and the closest injector at a 

specific time step 



 

Fig. 7: Example of one model confusion matrix log and its corresponding confusion matrix table 

 
Fig. 8: Confusion matrix logs of the first 20 different models for an ensemble

Step 5: Assessing history matching quality of individual 
models using binary Confusion Matrix derived metrics 

During the development of the proposed 
methodology, the top five widely recommended confusion 
matrix metrics were assessed to identify the most suitable 
to address the binary RST mismatch. As result of this 
assessment, the Matthew Correlation Coefficient (MCC) 
was selected as the only metric that could numerically 
represent similarities between observed and synthetic 
saturation logs. Results from this analysis are included 
further down in the methods application section (section 
3.1). 

The Matthew Correlation Coefficient (MCC) metric is 
calculated for all the models in the ensemble. Afterwards, 
all models are ranked by the MCC metric results, and the 
best ranked model is selected. 

 

2.3. Geological model used 
The UNISIM semisynthetic 3D reservoir model from 

UNICAMP was used to evaluate the applicability of the new 
methodology.  

The chosen geological model was a case study project 
developed by Cepetro educational centre (UNICAMP 
university, Brazil). UNISIM is a black oil semi-synthetic 
sector model built in a high-resolution 3D grid using public 
data from the Namorado Field, located in Campos Basin 
(offshore Brazil). 

One of the main objectives of the development of 
UNISIM was ensuring that all relevant reservoir geological 
details were captured to makes UNISIM one of the best 
benchmarking models to evaluate new methodologies.  

The reservoir is contained in an anticlinal tramp with a 
bottom driven active aquifer. The field is divided in three 
main flooding units defined by three depositional 
sequences separated by discontinuous sequences of marls 



and poor vertical connection. The reservoir is divided in 
two main compartments, separated by a sealing fault with 
two Oil-Water contacts. The developing strategy of the 
field considers water injection as pressure support 
mechanism, with 14 producers, 11 injectors and 7 years of 
historical production.  

A modified high resolution waterflooding UNISIM 
model obtained by additional modifications of the original 
3D model was used to assess method feasibility and 
reservoir heterogeneity impact. 

Modifications introduced to the original UNISIM-I-H 
model were aimed to increase heterogeneity and 
waterflooding applicability. Relevant modifications are 
explained as follow: 

 
A. Model vertical resolution increased.  
In order to incorporate more heterogeneity to the model, 
which allows better representation of the reservoir fluid 
movement, the model grid was subdivided in three 
separated zones and the vertical cell resolution was 
increased 1:2 times in all the zones. Fig. 9 shows the model 
before and after the modification of the vertical resolution. 

 
Fig. 9: 3D reservoir model before and after including 

vertical resolution changes 

B. Well trajectories. 
Existing well trajectories were changed from 

horizontal to vertical to simplify the model for the 
waterfront monitoring study. In order to expand the model 
usability and incorporate a more general view of the 
reservoir development, well trajectories and injection 
patterns were changed. The image presented in Fig. 10 

shows a 2D view of the changes performed to well injectors 
and producers. 

 
Fig. 10: Injectors and producers well trajectory 

modification 

C. Porosity and Net-to-Gros log correction 
After incorporating more vertical grid resolution and 

changing the well path to vertical, original porosity and 
Net-to-Gross (NTG) property logs became obsolete. As 
porosity and NTG logs are inputs required in the stochastic 
model-built workflow, missing logs were regenerated using 
data from vertical wells in conjunction with a neural 
network algorithm.  

This last modification to the model also incorporated 
more stratigraphic resolution and better vertical sand-
shale definition. 

After all model enhancements were introduced, an 
uncertainty matrix was created considering the most 
relevant UNISIM model uncertainties captured by Gaspar 
(2016). This procedure is a widespread practice applied in 
reservoir modelling for data quality check, relevant 
variables and workflows definition, and estimation of 
ranges of uncertainty and sampling distributions in 
preparation to any uncertainty analysis. 

Model modifications and uncertainty ranges defined in 
the uncertainty analysis were sufficient to generate a 
diverse initial ensemble of 160 3D models. Fig. 11 shows 
porosity and permeability diversity of four randomly 
selected models from one of the ensembles. 
 



 

 
Fig. 11: Porosity and permeability diversity of four randomly selected models from the modified case ensemble 

 
 

After initial ensemble was generated and the base case 
(case 127) was selected, a final ensemble of 200 models 
was generated in the second stage of the benchmarking 
workflow.  

To mitigate the uncertainty associated to aggregation 
methods, one producer observation well and one RST date 
were identified to be used in the assessment and evaluation 
of classification metrics (section 3.1). The well RJS19 was 
selected for this assessment due to its high vertical 
permeability contrast and the date 08/08/2013 was 
selected as RST date to ensure that the waterfront has 
already arrived to the well at least in one zone.  

Additionally, both analytical and empirical threshold 
calculation were used in this assessment in order to 
mitigate the uncertainty associated to threshold 
estimation. For the empirical method, the water saturation 
threshold of the observation well RJS19 was estimated 
using water saturation log and water production data from 
the base case. For the analytical method, synthetic UNISIM 
SCAL data was extracted from the base case saturation 
model and used in combination with Welge method to 
estimate the threshold.  

 
Fig. 12 shows empirical threshold estimation using the 

base case water saturation log at the time of water 
breakthrough obtained from the water production data. 

 
 Fig. 13 shows analytical average water saturation at 

breakthrough using saturation model extracted from base 
case. After estimating the thresholds, synthetic water 
saturation logs were created and converted to binary logs 
for RJS19 well in all ensemble models as well as the base 
cases. Subsequently, confusion matrix logs were generated 
for all model cases. 

 

 
Fig. 12: Empirical threshold estimation using base case 
water saturation log at the time of water breakthrough 

 
Fig. 13: Water saturation threshold using Welge method 

 



For the comparison of proposed vs conventional 
history matching methodologies (section 3.2) all producers 
and one RST per year during the entire historical data were 
considered. Due to the data limitations of the Welge 
method highlighted in the methodology section (section 
2.2), empirical threshold calculation was only used in the 
methodology’s comparison. 

 
3. Method application and discussion 
 

3.1. Assessment and evaluation of classification 
metrics 
This preliminary assessment incorporated the testing 

and evaluation of the top binary metrics derived from the 
confusion matrix to quantify the matching quality of 
saturation logs. As mentioned before, for the binary metric 
assessment, the observation well RSJ19 was selected to be 
used as representative well. As a result of this analysis the 
best binary metric was selected to be used with the 
proposed methodology.  

In order to capture the threshold uncertainty impact 
into the metric selection, empirical and analytical 
thresholds estimation methods were used to transform 
water saturation logs into binary sweep logs for the 200 
cases ensemble (defined as Group A and B, respectively). 
To evaluate the matching quality, individual metrics were 
used to calculate the RST mismatch and all cases were 
compared and ranked in each threshold group. After the 
ranking, the top ten best matching cases were selected 
from the ranked list to visually compare with the observed 
RST log for final qualitative analysis of the selected cases.  

 
3.1.1. Precision.  

For the group A (empirical threshold) a complete 
subset of ten cases was selected using precision metrics 
after the 200 cases were ranked as it is showed in Fig. 14. 
However, the expected selection of the top ten best cases 
was not possible for the group B (analytical threshold) as 
the first 14 cases shared the maximum precision score as it 
is showed in Fig. 15. As a result, precision metric could not 
be used to select smaller subsets of cases or a best 
representative case as the top ten cases in group A, and top 
14 cases in group B shared the maximum precision score of 
1. 

As has been highlighted by Powers (2008) and then 
corroborated in this analysis, precision metric or True 
Positive Rate tends to be biased by the positive category, in 
the RST binary context, the un-swept category.  
 

 
Fig. 14 Precision scores of all 200 models in group A 

 
Fig. 15 Precision scores of all 200 models in group B 

3.1.2. Accuracy, F-Measure and Recall 
Like when using the Precision metric, it was not always 

possible to select a group of ten cases when using Accuracy, 
F-Measure or Recall metrics. For some of them a maximum 
group of six cases was able to be selected, however it was 
a norm along these metrics that most of the cases in the 
ensemble tend to share the same calculated value, which 
makes impossible to rank the models and select a 
representative case. 

 
3.1.3. MCC.  

Opposite to the other assessed metrics, a full subset of 
ten cases were selected using the MCC metric in the group 
A, and the difference in case scores in the MCC subset 
allowed the selection of a representative case with the best 
matching quality (case 37). This metric also allowed the 
selection of a reduced group of cases if needed. In the 
group B only six cases were able to be selected, however 



MCC showed consistency on selecting the same top ranked 
case in both groups.  

MCC metric score for both groups of cases are shown in 
Fig. 16 and Fig. 17. 

 

 
Fig. 16 MCC scores of all 200 models in group A 

 

 
Fig. 17 MCC scores of all 200 models in group B 

3.1.4. Binary metrics assessment summary. 
A visual comparison of the observed and models generated 
binary logs for the top selected cases using both threshold 
groups is presented in Fig. 18. On this figure, dashed yellow 

lines indicate boundaries between the two categories 
“swept” and “un-swept”. For the group A, all the selected 
cases using the precision metric perfectly match the un-
swept category; however, the matching quality of the 
swept category is inaccurate. Comparable results were 
observed for the group B for selected cases using the recall 
metric. However, for this metric, all cases perfectly 
matched the swept category but show inconsistent results 
for the un-swept category matching. 

 
Unpredicted results were also found for the accuracy 

and f-measure metrics when comparing both threshold 
groups. For group A both metrics present inaccuracies 
matching for both swept and un-swept categories.  

 
For both, empirical and analytical threshold groups, 

Accuracy, f-measure and MCC metrics selected the same 
model 37 as top case with best matching quality among the 
entire ensemble of cases. However, MCC metric is the only 
metric which included cases 154 (in group A), and 166 (in 
group B) within the top selected models; as can be seen in 
Fig. 18, both 154 and 166 cases seem to be visually similar 
to the observed RST logs, hence they have better history 
matching quality than other selected cases. 

 
MCC metric presented the most balanced results 

between swept and un-swept classes when compared to 
observed binary RST, independently of the threshold used. 

 
This assessment demonstrated that MCC metric is the 

best to be used as history matching quality metric when 
two equally important categories are assessed. Besides, 
results indicate that the MCC metric can mitigate any 
category bias by considering all categories equally 
important to be matched. MCC score distinction adds extra 
flexibility to the model selection when incorporating 
additional KPIs into the selection process. 

 
Table 3 shows a summary of selected cases by metric, 

colour coded to highlight the commonly selected cases 
between metrics, for instance, cases highlighted in green 
were cases commonly selected by 4 metrics, red colour 
cases were those commonly selected by 3 metrics, blue 
highlighted cases are those selected by 2 metrics, and black 
coloured cases were unique selected by individual metrics. 

.



 
Fig. 18: Evaluation of selected model cases for each metric vs observed binary RST logs 

Table 3: Summary of selected cases by metric in Group A and B 
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Case 
Ranking 

MCC Precision F-Measure Accuracy 

Case 
Number 

Metric 
Value 

Case 
Number 

Metric 
Value 

Case 
Number 

Metric 
Value 

Case 
Number 

Metric 
Value 

1 37 0.62338 61 1 37 0.90909 37 0.86207 
2 18 0.60799 74 1 39 0.89362 18 0.82759 
3 154 0.50777 2 1 103 0.88000 39 0.82759 
4 39 0.47544 118 1 18 0.87805 103 0.79310 
5 61 0.47392 176 1         
6 74 0.47392 14 1         
7 2 0.40922 108 1         
8 118 0.40922 3 1         
9 110 0.37302 66 1         

10 151 0.37302 163 1         
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Case 
Ranking 

MCC Recall F-Measure Accuracy 

Case 
Number 

Metric 
Value 

Case 
Number 

Metric 
Value 

Case 
Number 

Metric 
Value 

Case 
Number 

Metric 
Value 

1 37 1.00000 6 1 37 1.00000 37 1 
2 77 0.80123 37 1 77 0.80000 77 0.9655 
3 119 0.80123 56 1 119 0.80000 119 0.9655 
4 141 0.80123 82 1 141 0.80000 141 0.9655 
5 193 0.80123 107 1 193 0.80000 193 0.9655 
6 166 0.66506 111 1         
7     125 1         
8     166 1         
9     179 1         

10                 



3.2. Comparing proposed RST methodology versus 
conventional history matching approach 
For traditional approach, the selection of the subset of 

ten cases was performed using a water-cut well based 
objective function. The objective function was created 
using standardised RMSE calculation method. For the RST 
methodology approach, the best ten cases were selected 
using the MCC metric.  

For this comparison, data from all producer wells were 
included, and for both, conventional and proposed 
methodologies, global misfits were calculated as 
cumulative error of individual well’s mismatches, as 
captured in Equation 2.  

Where, 𝑓 represents the partial objective function of 
each producer and 𝐺𝑂𝐹 is the global misfit of a specific 
case; other parameters were previously described in 
Equation 1. To facilitate the comparison, global misfits were 
normalised (0-1) in a way that cases with better history 
matching quality from both methodologies were those with 
values closer to zero. 

 

G𝑂𝐹 = 𝑓1 ({𝑌𝑖,𝑗
𝑑 (𝑷𝟏) − 𝑌𝑖,𝑗

𝑑 𝐻
}

𝑖,𝑗,𝑑
) 

            +𝑓2 ({𝑌𝑖,𝑗
𝑑 (𝑷𝟐) − 𝑌𝑖,𝑗

𝑑 𝐻
}

𝑖,𝑗,𝑑
) 

            +𝑓𝑛 ({𝑌𝑖,𝑗
𝑑 (𝑷𝒏) − 𝑌𝑖,𝑗

𝑑 𝐻
}

𝑖,𝑗,𝑑
)   

Equation 2 

Calculation of the global misfits of the 200 cases and 
selection of the 10 cases with the best history matching 
quality was performed for both methods and results are 
showed in Fig. 19 and Fig. 20. Selected subsets of cases are 
also showed in Fig. 19 and Fig. 20.  

The selection criteria for both methodologies was 
based on GOF values, and the objective was to select the 
top ten ranking cases with smaller GOF. 

Cases selected by individual methods and the values of 
each GOF are showed in Table 4. There are two cases which 
were commonly selected by both methods, the top ranked 
case (case 37) and case 151 which was ranked differently in 
both subsets.  

Top ranked cases highlighted in yellow in Table 4 were 
analysed and qualitatively compared to the base case to 
assess the history matching quality, hence, to judge the 
ability of both methodologies to select a case with the best 
history matching quality. Comparison was performed using 
well and zone water cut ratio.  

 
Fig. 19: GOF of 200 cases using proposed method and 
highlighting selected subset of cases 

 
Fig. 20: GOF of 200 cases using conventional method  and 
highlighting selected subset of cases 

Table 4: Results obtained by using standard RMSE and 
proposed MCC metrics 

  Proposed Approach Standard Approach 

Case 
Ranking 

Case 
Number 

GOF 
Value 

Case 
Number 

GOF 
Value 

1 37 0.0000 37 0.0800 

2 105 0.0767 110 0.0871 

3 55 0.0789 113 0.0958 

4 84 0.0865 151 0.1093 

5 67 0.0882 154 0.1131 

6 146 0.1419 104 0.1142 

7 61 0.1962 101 0.1257 

8 33 0.2703 34 0.1292 

9 151 0.2900 90 0.1315 

10 132 0.3099 36 0.1323 



For illustration purposes, three representative wells were 
selected to show history matching quality results of the top 
ranked cases. 

For the well and zonal level history matching 
comparison. NA2, NA3D and PROD021V wells were 
selected based on their field location and stratigraphic 
column in order to capture different heterogeneity 
degrees of the reservoir properties (NA2 and NA3D have 
thick and good quality sands divided by a poorest intra 
layer sand, and PROD021V has poor vertically connected 
thin sands separated by small shale layers). Full 

stratigraphic column of selected wells can be seen in Fig. 
21. As well as  the comparison of the base case RST log 
against RST logs of the two top ranked cases selected from 
the different methodologies.  

As expected, near wellbore saturation of the case 
selected by using RST methodology (case 105) seems to 
have a better history matching quality. 

Other wells were also analysed, and same responses 
were observed for all producers.  
 

 
 

 
Fig. 21: Binary RST logs of top raked cases for the representative wells 

Well level water cut results from representative wells 
are showed in the following figures: Fig. 22, Fig. 23 and Fig. 
24. From well results, both selected cases seem to have 
reasonable high-quality match, however proposed 
methodology case seems to outperform the conventional 
method in wells NA3D and PROD021V (Fig. 23 and Fig. 24).  

As it is showed in Fig. 23, the history matching quality 
of well PROD021V for the case selected by the RST 
methodology is remarkable. As explained before, 
PROD021V is the well with the highest degree of 
heterogeneity in property distribution from the selected 
group of wells. 
 

 
Fig. 22: Well NA2 water cut  



 
Fig. 23: Well PROD021V water cut 

 
Fig. 24: Well NA3D water cut  

 

Fig. 25 shows zonal level results of selected wells for both 
cases compared to the observed data. As expected, and 
corroborated by Figures 27 b, c and d, the proposed 
methodology performs better over the conventional 

method when selecting cases with better zonal history 
matching quality. The well drilled across high heterogeneity 
formations (PROD021V) seems to be the one with better 
matching results in case 105 (proposed methodology case).

  

 
Fig. 25: Water Cut per zone for NA2, NA3D and PROD021V wells using conventional and proposed methodologies.

A global analysis of the obtained results suggests that 
although the conventional method exceeds on selecting 
cases where the total water cut of a well is closer to the 

observed data, it fails to identify the waterfront arrival at 
different zones as the zonal match is poor.  

Depending upon model objectives, having a better 
representation of the actual zonal and intra-zonal water 



displacement could potentially provide critical information 
for the decision-making process. For instance, if the 
purpose of the model is to assess the value of adding or 
closing well perforations to reduce water production, 
having a model with detailed representation of the water 
displacement from different zones is crucial. 

 

4. Conclusions and future work 
The proposed methodology has been successfully 
evaluated using a high-resolution 3D gridding, from public 
data from the Brazilian Namorado Field model, and 
saturation logs data to assess the history matching quality 
in order to understand and select models with better sweep 
pattern match. The main conclusions are summarized 
below: 
• The zonal history matching quality of a reservoir model 

can be measured using statistical analysis metrics 
derived from the confusion matrix, such as the 
Matthew Correlation Coefficient MCC. 

• MCC metric can mitigate any category bias as it 
considers all categories as equally important, allowing 
the selection of more category balanced groups of 
cases. 

• The use of binary RST logs as matching parameter 
improves the selection of models with better history 
matching quality at zonal/sands level. 

• Reservoir heterogeneity seems to play a significant 
role when selecting different history matching 
methodologies. Thus, the use of RST logs as matching 
parameter contributed the most in highly 
heterogeneous waterflooded reservoirs. 

• As expected, the quality of the match when using RST 
as a matching criteria is highly correlated to the 
number of RSTs available per well. Approach is less 
effective when scarce data is available. 

• The history matching quality by well using RST logs for 
the selected cases relies on the number of RST samples 
available and the dates when they were taken. Having 
a better distributed set of RST logs along the history 
will positively impact selecting a model with better 
matching quality throughout the entire historical 
period.  

• Further studies should be performed when merging 
both conventional and proposed methodology for 
history matching processes.  

• The proposed methodology using binary classifiers as 
history matching parameters opens the application of 
other types of high uncertainty interpreted data such 
as 4D seismic, well tracer concentration or production 
logs between others. 
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Nomenclature 
K:  absolute permeability  
Kr: relative permeability of the fluids in the reservoir rock  
𝜇 :  fluid viscosity 
B:  fluids formation volume factor 
P:  reservoir pressure, 
𝑞 : fluid flow rate,  
𝜙 :  rock porosity,  
S: fluids saturation, 
x: is the coordinate along the x-axis and 
𝑥𝑜 : the initial point,  
t:  time coordinate.  
n: number of cells 
𝑝𝑎: Constant initial pressure 
RST:  Reservoir Saturation Tool 
𝑂𝐹(𝑷): Objective function for a set of the parameters (P) 
AE: Mean of the Deviations  



RMSE: Root Mean Squared Error 
RMS: Root Mean Square  
SSR: Sum of square residual 
SMS: Sum of mean square  
SAR: Sum of absolute residuals  
WRMS: Weighted root mean square  
MARE: Mean average relative error  
RE: Relative error  
CRM: Coefficient of residual mass  
EF: Efficiency function  
CM: Confusion Matrix  
MCC: Matthew’s correlation coefficient  
P: Precision  
R: Recall  
FM: F-Measure  
A: Accuracy  

References 

Benlacheheb, M., Al Meer, H. A., Kandil, A., Ross, F. and 

Rimach, M. (2014) Integration of the PLT and PBU Data 

in Permeability Modeling Workflow, in: International 

Petroleum Technology Conference, International 

Petroleum Technology Conference. 

Bertolini, A. C. and Schiozer, D. J. (2011) Influence of the 

objective function in the history matching process, Journal 

of Petroleum Science and Engineering, 78 (1), pp. 32-41. 

Chicco, D. and Jurman, G. (2020) The advantages of the 

matthews correlation coefficient (MCC) over F1 score and 

accuracy in binary classification evaluation, BMC 

Genomics, 21 (1), pp. 6. 

Ferreira, C. J., Davolio, A., Schiozer, D. J., Vernon, I. and 

Goldstein, M. (2015) Use of emulator and canonical 

correlation to incorporate 4D seismic data in the reduction 

of uncertainty process, in: EUROPEC 2015, Society of 

Petroleum Engineers. 

Gaspar, A. T., Avansi, G. D., Maschio, C., Santos, A. A. 

and Schiozer, D. J. (2016) UNISIM-IM: Benchmark case 

proposal for oil reservoir management decision-making, 

in: SPE Trinidad and Tobago Section Energy Resources 

Conference, Society of Petroleum Engineers. 

Iscan, A. G. (2021) Water saturation calculation using 

fractional flow and production logging data in a caspian 

region sandstone petroleum reservoir, Journal of 

Petroleum Science and Engineering, 200 , pp. 108355. 

Kjelstadli, R. M., Lane, H. S., Johnson, D. T., Barkved, O. 

I., Buer, K. and Kristiansen, T. G. (2005) Quantitative 

history match of 4D seismic response and production data 

in the Valhall field, in: Offshore Europe, Society of 

Petroleum Engineers. 

Kumar, S., Wen, X., He, J., Lin, W., Yardumian, H., 

Fahruri, I., Zhang, Y., Orribo, J. M., Ghomian, Y. and 

Marchiano, I. P. (2017) Integrated Static and Dynamic 

Uncertainties Modeling Big-Loop Workflow Enhances 

Performance Prediction and Optimization, in: SPE 

Reservoir Simulation Conference, Society of Petroleum 

Engineers. 

Landa, J. L. and Horne, R. N. (1997) A procedure to 

integrate well test data, reservoir performance history and 

4-D seismic information into a reservoir description, in: 

SPE Annual Technical Conference and Exhibition, Society 

of Petroleum Engineers. 

Luo, X. and Bhakta, T. (2020) Automatic and adaptive 

localization for ensemble-based history matching, Journal 

of Petroleum Science and Engineering, 184 , pp. 106559. 

Mata-Lima, H. (2011) Evaluation of the objective 

functions to improve production history matching 

performance based on fluid flow behaviour in reservoirs, 

Journal of Petroleum Science and Engineering, 78 (1), pp. 

42-53. 

Matthews, B. W. (1975) Comparison of the predicted and 

observed secondary structure of T4 phage lysozyme, 

Biochimica Et Biophysica Acta (BBA)-Protein Structure, 

405 (2), pp. 442-451. 

Oliver, D. S., Reynolds, A. C. and Liu, N. (2008) Inverse 

theory for petroleum reservoir characterization and 

history matching. . 

Powers, D. M. (2008) Evaluation Evaluation. in: ECAI, , 

pp. 843-844. 

Provost, F. and Kohavi, R. (1998) Glossary of terms, 

Journal of Machine Learning, 30 (2-3), pp. 271-274. 

Sahni, I. and Horne, R. N. (2006) Stochastic history 

matching and data integration for complex reservoirs using 

a wavelet-based algorithm, in: SPE annual technical 

conference and exhibition, Society of Petroleum 

Engineers. 

Tharwat, A. (2020) Classification assessment methods, 

Applied Computing and Informatics, . 

Wang, Y. and Kovscek, A. R. (2001) No title, A 

Streamline Approach for History-Matching Production 

Data, 


