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Abstract 14 
 15 
The aim of this paper is to predict web-post buckling shear strength of cellular beams made 16 

from normal strength steel using the Artificial Neural Networks (ANN). 304 developed 17 

finite-element numerical models were used to train, validate and test 16 different ANN 18 

models. To verify the accuracy of the ANN model, the ANN predictions were compared with 19 

experimental and analytical results. Results show that ANN models that used geometric 20 

parameters as an ANN input were able to predict web-post buckling strength to a higher level 21 

of accuracy in comparison to models using only geometric ratios as an ANN input. An ANN-22 

based formula with 4 neurons was proposed in this study. In comparison to existing design 23 

guidance, it is shown that an ANN model trained with the Levenberg-Marquardt 24 

backpropagation algorithm is capable of predicting the web-post shear resistance to a higher 25 

level of accuracy. The formula developed can be easily implemented in Excel or in user 26 

graphical interface. It can be a potential tool for structural engineers who aim to accurately 27 

estimate the web-post buckling of cellular steel beams without the use of costly resources 28 

associated with FE analysis. 29 

 30 
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1. Introduction 33 
 34 
Cellular beams are widely used to achieve long spans that allow for fewer columns and 35 

footings in the structure, resulting in shorter construction times and cheap infrastructure costs 36 

[1, 2]. They have been used for different structures that would benefit from open spaces such 37 

as roofing with long spans, renovation, and strengthening and modernising historical 38 

buildings while preserving their aesthetic design. Selecting cellular beams can reduce floor 39 

zone depths as the services can be integrated with the floor beams which lower the building 40 

height and cost. 41 

Cellular beams can span much further than the regular I- beam sections since they have 42 

higher depth-to-weight ratio, section modulus, and moment of inertia. They are usually 43 

manufactured by cutting along the web of hot-rolled I-beam section in a certain pattern and 44 

re-welding the upper and lower tees to form a cellular beam. Cellular beams will be named 45 

all perforated beams with circular web opening. 46 

Figure 1 shows parent I-beam and cellular beam sections. In this figure, H is the total height 47 

of the cellular section; tf and tw are the flange and web thicknesses; bf is the flange width; d is 48 

the height of the parent section; do is the opening diameter; s and so are the centre-to-centre 49 

spacing and edge-to-edge spacing of adjacent openings, respectively. 50 

  

(a) 
 

                      (b) 

Figure 1: (a) Parent I-beam section; (b) Cellular beam geometry 51 

The structural behaviour and type of failure of cellular beams are different from regular I-52 

beam sections. The failure modes of cellular beams observed experimentally are: global 53 
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bending failure (BF), Vierendeel bending failure (BF), lateral torsional buckling (LTB), web- 54 

post rupture of weld joints, and web-post buckling (WPB), or lateral torsional buckling of 55 

web-post due to high in-plane horizontal shear stress in the web-post. WPB consists of lateral 56 

displacements of the web-post in double curvature accompanied by twisting deformations 57 

[3], as can be observed in the Figure 2.  58 

 59 

Figure 2. Web-post buckling mode of failure [4] 60 

Many experimental tests have been conducted on cellular beams to investigate their structural 61 

behaviour and failure modes [4-7]. It was observed from these experiments that the 62 

dominated failure mode of cellular beams is the web-post buckling, particularly for 63 

thin/narrow web-post cellular beams.  64 

There are different approaches to predict the shear resistance of the web-post of cellular 65 

beams. The design method by SCI publication 100 [8] was an early semi-empirical design 66 

method for the WPB which proposed a relationship between maximum allowable web- post 67 

moment and the web-post geometries. Grilio et al [4] proposed resistance curves to determine 68 

the shear resistance in cellular beams for the web-post buckling. Lawson et al [9] suggested 69 

another design approach to obtain the shear resistance of web-post based on the design of 70 

strut analogy acting diagonally in the web-post. This method was adopted by SCI publication 71 

355 [10] for WPB of cellular beams with large opening. More recently, Shamass and 72 

Guarracino [11] proposed a new design model obtained from a simplified mechanical 73 

approach for WPB which is based on the elementary model of an ideal inclined compressed 74 
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strut. This model can adjust the width, inclination and boundary conditions of the compressed 75 

ideal strut to the geometry of the cellular beam and is applicable for normal and high strength 76 

steel. 77 

However, plastic buckling of structures remains a rather complicated problem depending on a 78 

number of factors, as recently shown by investigations of one of the present authors [12-15] 79 

and for such a reason the recourse to artificial intelligence methods, such as neural networks 80 

and fuzzy logic (FL) may turn beneficial to these kinds of problems. 81 

In fact, over the years, the application of modelling methods based on neural networks and 82 

fuzzy logic (FL) have been implemented to solve various engineering problems. Artificial 83 

Neural Networks (ANN) solve complex problems with the help of interconnected computer 84 

elements and consist of 3 layers (input, hidden and output). The inputs in this case are the 85 

geometric variables within a cellular steel section shown in Figure 1. The hidden layer 86 

consists of neurons which recognises patterns and computes values from the input which in 87 

turn predicts the response variable.  Fuzzy control theory needs only to set a simple 88 

controlling method based on engineering experience. Therefore, it is particularly useful in 89 

complicated structural control system [16]. When comparing the two forms of modelling, 90 

both provided great levels of accuracy, however, it has been concluded that ANN provides 91 

better statistical results in comparison to FL [16-17]. 92 

ANN has been used to predict various forms of structural behaviour in steel elements such as 93 

I-beams [18], composite columns [19], frames [20], welded flange plate steel connections 94 

[21] and unstiffened steel plates [22], with some studies focusing on cellular and castellated 95 

steel beam [23-29].  It was reported that ANN showed more accurate ultimate moment 96 

capacities of castellated steel beams under lateral-distortional buckling (LTB) than those 97 

predicted by current design rules such as EC3 and AISC, the later provided unsafe and 98 

unconservative predictions [23]. In another study it was concluded that ANN-based formula 99 



 
 

5 

model trained on 140 castellated beams modelled using finite-element (FE) and Levenberg-100 

Marquardt algorithm provided accurate web-post buckling strength of castellated beams [29]. 101 

Sharifi et al. [26] used 96 data-based verified simulation to train ANN that predicted the 102 

strength capacity of cellular beams under LTB. They reported that ANN gave reliable 103 

estimations of the LTB strength capacity of steel cellular beams. Sharifi et al [25] trained an 104 

ANN network with a database of 99 cellular steel beams which were loaded under two 105 

concentrated loads and failed in LTB mode. The study compared 9 training algorithms in 106 

MATLAB and found that the Levenberg-Marquardt algorithm provided the most accurate 107 

predictions when reviewing the mean-squared error of the predicted results from the 108 

considered training algorithms.  Abambres et al [27] proposed ANN-based formula to predict 109 

elastic buckling load of cellular beams subjected to distributed load. It was concluded that the 110 

ANN-based formula yielded accurate predictions. Overall, studies showed that ANN is able 111 

to provide fast results with the high level of accuracy when compared to experimental and 112 

numerical results.  113 

In this context, it can be noted that there is currently no research that aims at predicting the 114 

web-post buckling of cellular beams using ANN. Therefore, the scope of this paper is to 115 

predict the vertical shear strength of cellular beams made from normal strength steel S355 116 

using ANN and to propose an ANN-based formula to accurately compute the web-post 117 

buckling strength, in terms of independent geometrical parameters. The study makes use of 118 

the FE model developed by Shamass and Guarracino [11] to generate the data that is 119 

successively employed to train the ANN. The output of the ANN is then compared to 120 

experimental data and current analytical analysis, with satisfactory results.  121 

 122 

 123 

 124 
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2. Development and validation of the numerical models 125 

Full beam models are generally used for numerical validation and to investigate the structural 126 

behaviour of cellular elements. The single web-post models are widely used in the literature 127 

to investigate numerically the effect of geometric properties of the cellular beams on the 128 

shear resistance of the web-post [4, 5, 7]. In this study, both the full beam and the single web-129 

post models are developed and validated.  130 

Shamass and Guarracino [11] previously developed finite-element (FE) model using 131 

ABAQUS software for simply supported cellular beams subjected to a point load. The same 132 

FE model is used in this study since it has proven capable of providing a good prediction of 133 

the behaviour of steel cellular beams in terms of vertical shear resistance, load-displacement 134 

response and WPB failure. The steel cellular beams test results conducted by Grilo et al. [4] 135 

and Tsavdaridis and D’Mello  [5] were used for the validation of the both full beam and the 136 

single web-post numerical models since all the cellular beams in these tests failed by pure 137 

WPB. The material was modelled using a multi-linear stress-strain relationship, including 138 

strain hardening. The cellular beam section and stiffeners were modelled using a general-139 

purpose three-dimensional reduced integration shell element named S4R in ABAQUS. 140 

Simply supported boundary conditions were used in the beams and loading was applied on 141 

the top flange of the beams under displacement control. A linear buckling analysis was first 142 

performed, followed by a nonlinear analysis using the Newton-Raphson solution method. 143 

Geometric imperfections were considered in the numerical model.  144 

The single web-post model used in this study shares the same numerical considerations of the 145 

full beam model with respect to the type of element, material properties and initial 146 

imperfection. The boundary conditions and the load application of the web-post model are 147 

described in Grilo et al. [4] and shown in Figure 3.  148 
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 149 

Figure 3: Single web-post model 150 

 151 

Table 1 shows comparisons between the buckling shear loads observed experimentally (VTest) 152 

by Grilo et al. [4] and Tsavdaridis and D’Mello  [5] with those obtained numerically (VFE) for 153 

both the full beam and single web-post models. It can be observed that the buckling shear 154 

loads from the single web-post model tend to be more conservative in comparison to those 155 

from the full beam model. Grilo et al. [4] conducted numerical models for full beam, single 156 

web-post and long beam models and found that long beam models predicted shear buckling 157 

results close to those predicted by the single web-post models, since the long beam models 158 

were less sensitive to border effects. Therefore, the single web-post models were not 159 

influenced by the border effect. In summary, the validation of the single web-post model 160 

confirms that the model can reasonably be utilised for further parametric study to predict 161 

buckling shear load of WPB with minimum computational effort. 162 

 163 

 164 

 165 

 166 
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Table 1: Comparison between experimental and numerical vertical shear buckling load 167 

Specimen  

Bucking shear strength (V) (kN) 
Percentage difference (%) 

Test 
(VTest) 

Numerical model (VFE) 
Full 
beam 

Single web-
post 

Full 
beam/test 

Single web-
post/test 

A1 38 40.0 37.1 5.26 -2.3 
A2 61.9 59.2 58.2 -4.34 -6.0 
A3 70.7 65.6 65.2 -7.21 -7.8 
A5 99.1 98.4 71.9 -0.75 -27.4 
A6 102.2 102.5 96.7 0.26 -5.4 
B1 54 54.9 53.1 1.57 -1.6 
B2 79 75.6 78.9 -4.32 -0.2 
B5 138.5 134.5 110.0 -2.91 -20.6 
B6 150 148.6 137.7 -0.93 -8.2 
C1 144.35 147.7 147.7 2.35 2.3 
C2 127.5 120.0 101.4 -5.88 -20.5 

  168 

3. Parametric study 169 

In this section, the single web-post model described in the Section 2 is used to predict the 170 

shear buckling loads. The numerical shear buckling loads will then be used to train the 171 

artificial neural network models.  172 

The steel grade is S355 with, elastic modulus E, yield stress fy, ultimate stress fu , strain at the 173 

onset of hardening εst and ultimate strain εu equal to 210 Gpa, 355 Mpa, 510 Mpa, 2.5% and 174 

18 %, respectively. The imperfection size is taken as H/500 [7]. 175 

The parameters characterising the web-post geometries resulting from the cutting process of 176 

the rolled I-beam are [8]: 177 

e =
d!
2 − &'

d!
2 (

"

− '
s − d!
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(1) 

H = d +
d!
2 − e (2) 

s! = s − d! (3) 
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In this study rolled sections presented in the Table 2 are used as the parent I-beam sections 178 

with slenderness ratios d t#⁄  range from 34.56 to 62.19. The opening ratio d! d⁄  is taken 179 

equal to 0.8, 0.9, 1, 1.1, and 1.2 and the spacing ratio s d!⁄  is taken equal to 1.1, 1.2, 1.3, 1.4, 180 

and 1.5. 181 

 182 

Table 2: Parent I-beam sections used in this study 183 

Section UB  152×89×16 203×102×25 245×102×28 254×146×37 305×102×28 
d t#⁄  33.91 35.65 41.33 40.63 51.45 

Section UB  305×127×48 356×171×45 406×140×39 406×178×60 457×191×67 
d t#⁄  34.56 50.2 62.19 51.44 53.34 

Section UB  457×191×74 457×152×82 533×165×85 610×178×100  
d t#⁄  50.78 46.47 51.93 53.75  

 184 

4.  Artificial neural network  185 
4.1 Neural Network Architecture  186 

The network architecture used in this paper is a Multi-Layer Perceptron Network 187 

(MLPN). The neural network toolbox with MATLAB [30] solves an input-output fitting 188 

problem with a two-layer feedforward neural network. Two-layer feed-forward network can 189 

fit multi-dimensional mapping problems arbitrarily well, given consistent data and enough 190 

neurons are provided to its hidden layer. It has been shown that the number of neurons within 191 

the hidden layer have an impact on the accuracy of the output. Figure 4 illustrates an example 192 

of 4 neurons ANN structure consisting of 4 input parameters and 1 output parameter. 193 

Each input parameter layer links with every neuron in the hidden layer and subsequently the 194 

neurons in the hidden layer links with the output layer. Each link is assigned with a synaptic 195 

weight (real number) which is dependent on the analysis of the training and validation data 196 

sets.  Biask and Biass in Figure 4 are constant values that are added at the hidden layer and 197 

output, respectively.   198 
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 199 

 200 

 201 

 202 

 203 

 204 

 205 

Figure 4: ANN Model with 4 neurons in the hidden layer 206 

4.2 Input and Output Normalisation   207 

The progress of training can be reduced if training data defines a region that is relatively 208 

narrow in some dimensions and elongated in others [27]. Therefore, normalisation for 209 

variables across all data patterns should be implemented to improve the training process. In 210 

order to normalize the input and output parameters, Equation 4 was applied to all input and 211 

target parameters.   212 

 213 

Y =
(Y$%& − Y$'()(X − X$'()
(X$%& − X$'() +	Y$'(

 (4) 

 214 

Where Ymin is the minimum value for each row of Y (default is –1), Ymax is the maximum 215 

value for each row of Y (default is +1), Xmax is the maximum value of the input/target output 216 

Input Hidden Layer Output 

𝐵𝑖𝑎𝑠!  

𝐵𝑖𝑎𝑠"  
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parameter, Xmin is the minimum value of the input/target output parameter, X is the actual 217 

value and Y is the normalised value   218 

 219 

4.3  Learning Algorithm  220 

The synaptic weight and bias are network unknown parameters that are identified through the 221 

learning. The ANN learning consists of training, validation and testing. The data points are 222 

randomly grouped into training set, validation set and testing set, with 15%,15% and 70% of 223 

the data being assigned respectively. While the training set is used to compute the gradient 224 

and update the weights and biases, a process of cross validation takes place using the 225 

validation data set so the generalization performance of the network can be verified.  When 226 

the optimum network parameters are defined, the test set will be used to assess the module 227 

accuracy. The Levenberg-Marquardt back propagation training algorithm is adopted in this 228 

study due to the high level of accuracy noted in previous studies [23-27] and it is suitable for 229 

training small- and medium-sized problems.  Golafshani et al. [31] stated that the back-230 

propagation algorithm involves two phases. The first one is the forward phase where the 231 

activations are propagated from the input to the output layer. The second one is the backward 232 

phase where the error between the observed actual value and the desired nominal value in the 233 

output layer is propagated backwards in order to modify the weights and bias values. 234 

4.4 Setting up Artificial Neural Network  235 

In total, 304 input and output parameters were obtained from the numerical FE models to 236 

produce the ANN. Equation 4 was applied to all input and output parameters and Table 3 237 

provides the values required in order to normalise and de-normalise the inputs and outputs.  238 

 239 

 240 
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Table 3: Parameters used to normalise input and target values 241 

Input/Target 

Parameter 
Ymax Ymin Xmin Xmax 

H 1 -1 205.19 970.01 

do 1 -1 121.92 728.88 

s 1 -1 146.30 947.54 

tw 1 -1 4.5 11.3 

d 1 -1 152.4 607.4 

do/tw 1 -1 19.06 505.89 

H/do 1 -1 27.09 74.63 

s/do 1 -1 1.27 1.75 

d/do 1 -1 1.10 1.50 

V 1 -1 19.06 505.89 

 242 

Table 4 provides the details of the 16 models that were developed and analysed in this study. 243 

For each of the input parameters reviewed, ANN models with 4, 6, 8 and 10 neurons in the 244 

hidden layer were created and analysed. 245 

Table 4: Parameters of 16 ANN models produced 246 

 247 

Equations 5 and 6 show the calculations which includes the transfer function that is required 248 

in order to determine the normalised output value based on the inputs provided [32].  249 

O) = Bias) +	7w*,,
-!

.

*/0

.
2

(1 +	e(2"3!)) − 1
 

 

(5) 

Model Input parameters Number of neurons in 
hidden layer 

Output 
parameter 

1  H, do, tw, s, d 4 6 8 10 V 

2  H, do, tw, s 4 6 8 10 V 

3 do/tw, H/do, s/do 4 6 8 10 V 

4   do/tw, H/do, s/do, d/do 4 6 8 10 V 
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H* =	Bias* +7w5,*
'- .

6

5/0

I5 
 

(6) 

Where, Os represents the normalised output value, q is the number of input parameters; r is 250 

the number of hidden neurons; s is the number of output parameters; Biass and Biask  are the 251 

biases of sth output neuron and kth hidden neuron (Hk), respectively; w5,*
'- 	is the weights of the 252 

connection between I5 and Hk; w*,,
-!	are the weights of the connection between Hk and Ol. 253 

 254 

4.5 Assessing Accuracy of Neural Network Output  255 

To assess the accuracy of the output the regression (R2), Root Mean Square Error (RMSE) 256 

and Mean Absolute Error (MAE) were calculated using Equations 7, 8 and 9 respectively. 257 

 258 

R" = 1 − '∑ (8"29")#$
"%&
∑ (8")#$
"%&

(                                        (7) 

RMSE = &∑ (Oi − ti)2N
i=1

N
 

 

(8) 

MAE = 	
1
N7

|O' − t'|
?

'/0

 
 

(9) 

Where ti and Oi are the actual and predicted shear resistance of the web-post of cellular beam, 259 

and N is the total number of data points in each set of data. 260 

 261 

4.6 Impact of Individual Input  262 

The weight from the input node to the hidden layer plays a crucial role in understanding the 263 

importance of the input parameters. An input value with a high positive weight will indicate 264 

that the input parameter has a significant impact on increasing the value of the output. If the 265 

weight of an input result is close to zero then this has minimal effect on the output. Similarly, 266 
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an input value with negative weight will indicate that increasing this value will decrease the 267 

output value. In order to calculate the importance of each weight the Connection Weight 268 

Approach was adopted. There are many approaches that can be used, and it was concluded 269 

that the Connection Weight Approach provides the best method for accurately quantifying 270 

variable importance [33]. It is important to note that this approach does not assess the 271 

accuracy of the ANN model created using MATLAB, as it simply quantifies the 272 

contributions of the predictor variables in the network. It provides a form of validation to the 273 

model, as it can be used to compare with what would be expected to occur if there was to be 274 

variation in a given input parameter. The Connection Weight Approach uses raw connection 275 

weights, which accounts for the direction of the input–hidden–output relationship and results 276 

in the correct identification of variable contribution [33]. Equation 10 shows the calculation 277 

required to determine the impact of each input parameter based on the Connection Weight 278 

Approach [33]. In this equation, the Inputx represents the importance, XY represents the 279 

input-hidden connection weights and Hidden represents the hidden-output connection 280 

weights.  281 

Input& = 7Hidden@A

B

A/C

 (10) 

  

5. Results and discussion 282 
 283 
5.1 ANN predictions 284 

 285 
Table 5 provides the regression values for the training, validation and testing data sets.  Table 286 

6 provides the overall statistics for the 16 ANN models when applying Levenberg-Marquardt 287 

backpropagation algorithm. Figures 5 and 6 are examples of the actual against predicted V 288 

for models 1 and 2 with 4 neurons, respectively.  Results from the Table 6 clearly show that 289 

the ANN models consisting of individual geometric input parameters provides more accurate 290 
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predictions than the ANN models using geometric ratios only. The highest accuracy with 291 

geometric ratios is found for model 4 with 10 neurons for which the corresponding regression 292 

value is 0.7355. Although a regression value of 0.7355 shows some form of accuracy, the 293 

MAE and RMSE values mean that it is unsuitable to predict the shear resistance with high 294 

degree of accuracy. When reviewing models 1 and 2 which only take into consideration the 295 

input geometric parameters of the cellular beam (without geometric ratios), model 1 and 296 

model 2 with 8 and 10 neurons, respectively, provide the highest accuracy among the other 297 

ANN models. In conclusion, the ANN model 1 and model 2 predict the shear resistance of 298 

the web-post of cellular beam with high level of accuracy.  299 

Table 5: Regression values for training, validation and testing data sets 300 
MODEL  INPUT 

PARAMETERS 
NO. OF 

NEURONS 
R2 

   Training Validation Testing 
 
 
1 

 
 

 H, do, tw, s, d 
  
   

4 0.9945 0.9964 0.9950 
6 0.9989 0.9984 0.9990 
8 0.9997 0.9996 0.9995 
10 0.9996 0.9993 0.9991 

 
 
2 

 
 

H, do, tw, s 

4 0.9981 0.9977 0.9972 
6 0.9985 0.9979 0.9978 
8 0.9985 0.9987 0.9991 
10 0.9998 0.9995 0.9992 

 
 
3 

 
 

do /tw, H/do, s/do 

4 0.7671 0.8109 0.7711 
6 0.8493 0.8666 0.7759 
8 0.8541 0.8482 0.7712 
10 0.7037 0.7696 0.7068 

 
 
4 

 
 

do/tw, H/do, s/do, d/do 

4 0.7109 0.7014 0.7015 
6 0.8376 0.8279 0.8269 
8 0.8351 0.8365 0.7879 
10 0.8741 0.8233 0.8173 

 301 
 302 
 303 
 304 
 305 
 306 
 307 
 308 
 309 
 310 
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Table 6: Output of ANN models 311 
 312 

MODEL  INPUT PARAMETERS NO. OF 
NEURONS 

R2 MAE RMSE 

 
 
1 

 
 

 H, do, tw, s, d 
  
   

4 0.9953 5.49 7.08 
6 0.9977 3.32 5.00 
8 0.9992 2.09 2.86 
10 0.9989 2.24 3.36 

 
 
2 

 
 

H, do, tw, s 

4 0.9959 5.03 6.67 
6 0.9967 4.5 5.94 
8 0.9973 4.01 5.49 
10 0.9993 1.81 2.76 

 
 
3 

 
 

do/tw, H/do, s/do 

4 0.6015 52.27 65.16 
6 0.7064 44.00 55.9 
8 0.7012 45.72 56.66 
10 0.5088 55.97 72.5 

 
 
4 

 
 

do/tw, H/do, s/do, d/do 

4 0.502 57.30 73.47 
6 0.6942 45.10 57.21 
8 0.6805 46.72 58.41 
10 0.7355 43.01 53.07 

 313 

  
Figure 5: Actual vs Predicted shear buckling                      

Model 1 with 4 Neurons 
 

Figure 6: Actual vs Predicted shear buckling                      
Model 2 with 4 Neurons  

 
In order to further validate the obtained results, the impact of inputs was assessed using the 314 

connection weight approach explained in Section 4.3. Figure 7 provides the impact that each 315 

input parameter within the ANN model has on the shear resistance outputs for the different 316 

neural network setups. When reviewing model 1 and 2, it can be seen that there is a 317 

consistency in the impact of each geometric input parameter for all neural networks analysed. 318 

The results further validate the ANN model as it shows that the input parameters that have 319 
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positive impact on strength are s, H and tw. This agrees with what would have been expected, 320 

as increasing these parameters leads to an increase in shear strength.  The input parameters 321 

that have a negative impact on strength is do. This once again agrees with what is expectable, 322 

as increasing this parameter results in a decrease in strength. Although model 3 shows some 323 

form of consistency in the impact of inputs, model 4 showed no level of consistency. Based 324 

on the results obtained it can be concluded that geometric ratios as inputs, used for models 3 325 

and 4 are not effective parameters to predict the shear resistance of web-post using the ANN. 326 

The low statistical accuracy that can be noted in Table 6 is reflected in the irregular 327 

consistency that can be noted in Figure 7 c) and d). As noted previously, these results do not 328 

correlate to the accuracy of the ANN model therefore the potential of an ill function. The 329 

results simply provide another form of validation for the Models 1 and 2, in which the input 330 

parameters are impacting the output variable as would be expected. In conclusion, since 331 

Models 1 and 2 provide predictions with high level of accuracy and the impact of the inputs 332 

on the shear strength is as theoretically expected, they are used in the following sections. 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 
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 349 

 350 

 351 

 352 
 353 
 354 
 355 
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 357 
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 359 
 360 
 361 
 362 
 363 
 364 

Figure 7: Impact of input parameter on WPB shear resistance 365 
 366 
 367 

5.2 Comparison to existing analytical models 368 
 369 
Table 7 illustrates statistics comparison between the shear resistance of the web-post results 370 

predicted by FE models with those predicted by design guidance for cellular beams given in 371 

SCI P355 [10] and more recent analytical model proposed by Shamass and Guarracino [11]. 372 

The FE results are also compared with those predicted by ANN Model 1 and Model 2 with 4 373 

and 10 neurons. It is worth mentioning that in the analytical model proposed by Shamass and 374 

Guarracino [11], the boundary condition coefficient was assumed to be no less than 0.3 and 375 

the width of the ideal strut was taken no more than 0.5so.  376 

From the Table 7, it can be noted that the ANN Model 1 with 4 and 10 neurons and Model 2 377 

with 4 and 10 neurons overestimate the shear buckling results by up to 23.9% ,11.1%, 18.5% 378 
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and 8.7%, respectively, while the design guidance SCI P355 [10] and Shamass and 379 

Guarracino [11] analytical model overestimates the shear buckling by up to 21.4% and 29%, 380 

respectively. For other cellular beams, the ANN Model 1 with 4 and 10 neurons and Model 2 381 

with 4 and 10 neurons underestimate the shear buckling results by up to 14.8% ,11.9%, 382 

19.5% and 13%, respectively, while the design guidance SCI P355 [10] and Shamass and 383 

Guarracino [11] analytical model underestimates the shear buckling by up to 30.4% and 40%, 384 

respectively. This is not surprising, given that the intrinsic regression provided by ANN, 385 

which naturally smooths the deviations which can be shown, on the contrary, by the other 386 

models.  387 

It can be pointed out that the RMSE values for the shear resistance predicted by the ANN 388 

models range between 2.76 and 7.07 while it is 23.76 and 22.23 for the shear resistance 389 

predicted by the design guidance SCI P355 [10] and Shamass and Guarracino [11] analytical 390 

model, respectively. Thus, the RMSE values for the predicted shear resistance by ANN are 391 

much lower than those for the predicted shear resistance by the design guidance [10] and the 392 

analytical model [11]. It should be mentioned that Shamass and Guarracino [11] compared 393 

their analytical model and SCI P355 [10] predictions with the finite-element predictions for 394 

normal and high strength steel. The finite-element element predictions were obtained from 395 

the full beam models. Based on their results, the RMSE for the shear strength results 396 

predicted by their analytical model and the design guide SCI P355 [10] were 18.5 and 29.3, 397 

respectively, for normal strength steel. It was evident that their formulation provided shear 398 

buckling results that were in much more agreement with FE results than those predicted by 399 

SCI P355 [10]. 400 

Based on the regression values R2, it can be observed that ANN models provide the most 401 

accurate predictions. Figures 8(a) and 8(b) show a graphical representation of ANN Model 1 402 

and 2 with 4 neurons, the design guidance [10] and the analytical model [11] predictions 403 
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together with the FE predictions. Overall, the ANN model tends to provide the most accurate 404 

shear resistance predictions while the analytical models tend to underestimate the predicted 405 

web-post shear resistance of cellular beams.  406 

Table 7: comparison between FEA shear buckling results with analytical and ANN predictions 407 

 Model 1- 4 
neurons 

Model 1- 
10 

neurons 

Model 2- 
4 neurons 

Model 2- 
10 

neurons 

SCI 
P300 
[10] 

Shamass and 
Guarracino 

[11] 
Maximum 
percentage 

difference (%) 
23.9 11.0 18.5 8.7 21.4 29 

Minimum 
percentage 

difference (%) 
-14.8 -11.9 -19.5 -13.0 -30.4 -40 

R2 0.995 0.999 0.996 0.999 0.981 0.986 

RMSE 7.07 3.36 6.67 2.76 23.76 
 

22.23 
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 418 

Figure 8: Comparison of the predicted shear strength with the FE shear strength 419 
 420 
 421 
4.2 Comparison with experimental results  422 
 423 
Equation 5 shows that as the number of hidden neurons increases, more terms are expected to 424 

determine the normalised output value of the shear strength. It can be seen from the Table 7 425 

that ANN Model 1 with 4 neurons provides accurate shear strength predictions and the ANN-426 

based formula to predict normalised shear resistance (V)n is shown in the Equation 11. In 427 

order for engineers to use this equation, the cellular beams geometric parameters H, do, s and 428 

tw would have to fall within the Xmin and Xmax range stated in Table 3. These parameters will 429 

then need to be normalised using Equation 4 and used in Equation 12. Hence, (H)n, (do)n, (s)n 430 

, and (tw)n  are the normalised values of the height, opening diameter, opening spacing and 431 

web thickness, respectively.  Thereafter, in order to determine the shear strength of the web-432 

post (V) from normalised values of the shear strength ((V)n), Equation 4 will need to be used. 433 

Table 8 illustrates comparison between web-post shear resistances observed experimentally 434 

by Grilo et al.  [4] and Tsavdaridis and D’Mello [5] with those predicted by ANN-based 435 
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formula, design guidance SCI P355 [10] and finite element (FE) results. It can be seen that 436 

ANN provides good web-post shear resistance predictions with RMSE of 19.7 and MAE of 437 

16.5. ANN-based formula generally provides conservative predictions in comparison with the 438 

test results. The reason is due to the fact that the FE web-post shear resistance results used to 439 

train and validate the ANN models are obtained for mild steel with yield stress of 355 Mpa 440 

while the actual values yield stress of the experimentally tested cellular beams range from 441 

375.5 Mpa to 449 Mpa. If we assume that there is a linear relationship between shear strength 442 

of web-post of cellular beams and the yield stress of normal strength steel, the ANN 443 

predictions can be multiplied by the factor of 355/fy(tested). The updated shear strength results 444 

predicted using ANN-based formula are shown in the Table 8 and it can be seen that further 445 

improvement of the results is obtained.  446 

It can be pointed out that the RMSE and MAE values for the shear resistance predicted by the 447 

ANN-based formula are lower than those obtained for the shear resistance predicted by the 448 

design guidance SCI P355 [10]. Based on the regression values R2, it can be observed that 449 

ANN-based formula predicts results more in-line with test results than those obtained by SCI 450 

P355 design guidance. Figures 9 shows a graphical representation of ANN-based formula, 451 

SCI P355 and FE shear strength predictions together with the experimental predictions. It can 452 

be noted that the ANN predictions are in-line with FE predictions.  453 

 454 

(V)n= -0.1 – 0.23 %
&'(	*("#	%&)+,'

 + 1.22 %
&'(	*("#	%#)+,'

 + 3.69 %
&'(	*("#	%()+,'

 – 1.53 %
&'(	*("#	%))+,'

  (11) 

 455 
Where: 456 
H1= 1.89 + 1.92(H)n - 1.86(do)n + 2.6(s)n - 0.9(tw)n 

H2= 0.91 + 0.6(H)n – 1.55(do)n + 2.32(s)n – 0.93(tw)n   

H3= -0.77 – 0.21(H)n - 0.55(do)n  + 0.36(s)n  + 0.55(tw)n   

H4= -1.64 – 1.86(H)n – 0.75(do)n  + 1.84(s)n  + 0.42(tw)n    

 

 

 

(12) 
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Table 8: Comparison with experimental results 458 
 459 

Spec. 
 Percentage difference (%) 
 Vtest 
(kN) 

VANN (355/fy(tested))VANN SCI P355 FE 

A1 38 -31.4 -13.3 -43.2 -2.3 
A2 61.9 -11.8 3.4 -35.1 -6.0 
A3 70.7 -13.5 -3.3 -36.0 -7.8 
A5 99.1 -26.8 -14.2 -36.8 -27.4 
A6 102.2 -13.3 -3.0 -26.6 -5.4 
B1 54 -22.8 -13.5 -28.6 -1.6 
B2 79 -10.4 -7.8 -31.1 -0.2 
B5 138.5 -27.2 -18.4 -25.6 -20.6 
B6 150 -17.0 -6.9 -16.9 -8.2 
C1 144.4 -0.4 5.3 0.5 2.3 
C2 127.5 -22.3 -17.8 -15.7 -20.5 

R2 0.949 0.983 0.911 0.974 
RMSE 19.7 12.3 24.5 15.0 
MAE 16.5 9.7 22.6 10.4 

 460 

 461 

Figure 9: Comparison of the predicted shear strength with the experimental shear strength 462 
 463 
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6. Concluding Remarks 466 

The aim of this study is to predict the vertical shear strength of cellular beams made from 467 

normal strength steel S355 using ANN and to propose an ANN-based formula to accurately 468 

compute the web-post buckling strength of cellular beams, as a function of independent 469 

geometrical parameters. Based on analysis and results obtained, it can be concluded that: 470 

• Out of the 4 different ANN models produced, the models relying on the input of 471 

geometric parameters provided a much greater level of accuracy than models based 472 

on geometric ratios only. Results showed that the most accurate results were obtained 473 

for ANN model 2 which consisted of H, do, tw, s as the input parameters. 474 

• The general trend for each model was that as the number of neurons increased in the 475 

hidden layer, the level of accuracy increased, too.  476 

• When reviewing the impact of inputs in each of the models, the ANN models based 477 

on geometric parameters were further validated as the impact correlates with what is 478 

expected to occur.  479 

• ANN model 1 and 2 had a lower RMSE, lower MAE and higher regression for the 480 

predicted web-post shear resistance when compared to the design guidance SCI P355 481 

[10] and the analytical model [11], leading to higher level of accuracy 482 

• When compared to experimental data, ANN-based formula provided good predictions 483 

of the web-post shear buckling with regression value of 0.949. A greater level of 484 

accuracy can be obtained between experimental and ANN predictions if the actual 485 

yield stress of the cellular beam is taken into consideration. Additionally, the ANN-486 

based formula provides results that are more in-line with test results that those 487 

predicted by SCI P355 design guidance. 488 

• On account of the high accuracy shown by the ANN-based formula, it can constitute a 489 

potential tool for structural engineers who aim to accurately estimate the web-post 490 
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buckling of cellular steel beams without the use of costly resources associated with 491 

FE analysis. This formula can be easily implemented in Excel or in user graphical 492 

interface. 493 
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